1// SPDX-License-Identifier: GPL-2.0
2/*
3 * Copyright �� 2019 Oracle and/or its affiliates. All rights reserved.
4 * Copyright �� 2020 Amazon.com, Inc. or its affiliates. All Rights Reserved.
5 *
6 * KVM Xen emulation
7 */
8#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
9
10#include "x86.h"
11#include "xen.h"
12#include "hyperv.h"
13#include "irq.h"
14
15#include <linux/eventfd.h>
16#include <linux/kvm_host.h>
17#include <linux/sched/stat.h>
18
19#include <trace/events/kvm.h>
20#include <xen/interface/xen.h>
21#include <xen/interface/vcpu.h>
22#include <xen/interface/version.h>
23#include <xen/interface/event_channel.h>
24#include <xen/interface/sched.h>
25
26#include <asm/xen/cpuid.h>
27#include <asm/pvclock.h>
28
29#include "cpuid.h"
30#include "trace.h"
31
32static int kvm_xen_set_evtchn(struct kvm_xen_evtchn *xe, struct kvm *kvm);
33static int kvm_xen_setattr_evtchn(struct kvm *kvm, struct kvm_xen_hvm_attr *data);
34static bool kvm_xen_hcall_evtchn_send(struct kvm_vcpu *vcpu, u64 param, u64 *r);
35
36DEFINE_STATIC_KEY_DEFERRED_FALSE(kvm_xen_enabled, HZ);
37
38static int kvm_xen_shared_info_init(struct kvm *kvm)
39{
40	struct gfn_to_pfn_cache *gpc = &kvm->arch.xen.shinfo_cache;
41	struct pvclock_wall_clock *wc;
42	u32 *wc_sec_hi;
43	u32 wc_version;
44	u64 wall_nsec;
45	int ret = 0;
46	int idx = srcu_read_lock(&kvm->srcu);
47
48	read_lock_irq(&gpc->lock);
49	while (!kvm_gpc_check(gpc, PAGE_SIZE)) {
50		read_unlock_irq(&gpc->lock);
51
52		ret = kvm_gpc_refresh(gpc, PAGE_SIZE);
53		if (ret)
54			goto out;
55
56		read_lock_irq(&gpc->lock);
57	}
58
59	/*
60	 * This code mirrors kvm_write_wall_clock() except that it writes
61	 * directly through the pfn cache and doesn't mark the page dirty.
62	 */
63	wall_nsec = kvm_get_wall_clock_epoch(kvm);
64
65	/* Paranoia checks on the 32-bit struct layout */
66	BUILD_BUG_ON(offsetof(struct compat_shared_info, wc) != 0x900);
67	BUILD_BUG_ON(offsetof(struct compat_shared_info, arch.wc_sec_hi) != 0x924);
68	BUILD_BUG_ON(offsetof(struct pvclock_vcpu_time_info, version) != 0);
69
70#ifdef CONFIG_X86_64
71	/* Paranoia checks on the 64-bit struct layout */
72	BUILD_BUG_ON(offsetof(struct shared_info, wc) != 0xc00);
73	BUILD_BUG_ON(offsetof(struct shared_info, wc_sec_hi) != 0xc0c);
74
75	if (IS_ENABLED(CONFIG_64BIT) && kvm->arch.xen.long_mode) {
76		struct shared_info *shinfo = gpc->khva;
77
78		wc_sec_hi = &shinfo->wc_sec_hi;
79		wc = &shinfo->wc;
80	} else
81#endif
82	{
83		struct compat_shared_info *shinfo = gpc->khva;
84
85		wc_sec_hi = &shinfo->arch.wc_sec_hi;
86		wc = &shinfo->wc;
87	}
88
89	/* Increment and ensure an odd value */
90	wc_version = wc->version = (wc->version + 1) | 1;
91	smp_wmb();
92
93	wc->nsec = do_div(wall_nsec, NSEC_PER_SEC);
94	wc->sec = (u32)wall_nsec;
95	*wc_sec_hi = wall_nsec >> 32;
96	smp_wmb();
97
98	wc->version = wc_version + 1;
99	read_unlock_irq(&gpc->lock);
100
101	kvm_make_all_cpus_request(kvm, KVM_REQ_MASTERCLOCK_UPDATE);
102
103out:
104	srcu_read_unlock(&kvm->srcu, idx);
105	return ret;
106}
107
108void kvm_xen_inject_timer_irqs(struct kvm_vcpu *vcpu)
109{
110	if (atomic_read(&vcpu->arch.xen.timer_pending) > 0) {
111		struct kvm_xen_evtchn e;
112
113		e.vcpu_id = vcpu->vcpu_id;
114		e.vcpu_idx = vcpu->vcpu_idx;
115		e.port = vcpu->arch.xen.timer_virq;
116		e.priority = KVM_IRQ_ROUTING_XEN_EVTCHN_PRIO_2LEVEL;
117
118		kvm_xen_set_evtchn(&e, vcpu->kvm);
119
120		vcpu->arch.xen.timer_expires = 0;
121		atomic_set(&vcpu->arch.xen.timer_pending, 0);
122	}
123}
124
125static enum hrtimer_restart xen_timer_callback(struct hrtimer *timer)
126{
127	struct kvm_vcpu *vcpu = container_of(timer, struct kvm_vcpu,
128					     arch.xen.timer);
129	struct kvm_xen_evtchn e;
130	int rc;
131
132	if (atomic_read(&vcpu->arch.xen.timer_pending))
133		return HRTIMER_NORESTART;
134
135	e.vcpu_id = vcpu->vcpu_id;
136	e.vcpu_idx = vcpu->vcpu_idx;
137	e.port = vcpu->arch.xen.timer_virq;
138	e.priority = KVM_IRQ_ROUTING_XEN_EVTCHN_PRIO_2LEVEL;
139
140	rc = kvm_xen_set_evtchn_fast(&e, vcpu->kvm);
141	if (rc != -EWOULDBLOCK) {
142		vcpu->arch.xen.timer_expires = 0;
143		return HRTIMER_NORESTART;
144	}
145
146	atomic_inc(&vcpu->arch.xen.timer_pending);
147	kvm_make_request(KVM_REQ_UNBLOCK, vcpu);
148	kvm_vcpu_kick(vcpu);
149
150	return HRTIMER_NORESTART;
151}
152
153static void kvm_xen_start_timer(struct kvm_vcpu *vcpu, u64 guest_abs,
154				bool linux_wa)
155{
156	int64_t kernel_now, delta;
157	uint64_t guest_now;
158
159	/*
160	 * The guest provides the requested timeout in absolute nanoseconds
161	 * of the KVM clock ��� as *it* sees it, based on the scaled TSC and
162	 * the pvclock information provided by KVM.
163	 *
164	 * The kernel doesn't support hrtimers based on CLOCK_MONOTONIC_RAW
165	 * so use CLOCK_MONOTONIC. In the timescales covered by timers, the
166	 * difference won't matter much as there is no cumulative effect.
167	 *
168	 * Calculate the time for some arbitrary point in time around "now"
169	 * in terms of both kvmclock and CLOCK_MONOTONIC. Calculate the
170	 * delta between the kvmclock "now" value and the guest's requested
171	 * timeout, apply the "Linux workaround" described below, and add
172	 * the resulting delta to the CLOCK_MONOTONIC "now" value, to get
173	 * the absolute CLOCK_MONOTONIC time at which the timer should
174	 * fire.
175	 */
176	if (vcpu->arch.hv_clock.version && vcpu->kvm->arch.use_master_clock &&
177	    static_cpu_has(X86_FEATURE_CONSTANT_TSC)) {
178		uint64_t host_tsc, guest_tsc;
179
180		if (!IS_ENABLED(CONFIG_64BIT) ||
181		    !kvm_get_monotonic_and_clockread(&kernel_now, &host_tsc)) {
182			/*
183			 * Don't fall back to get_kvmclock_ns() because it's
184			 * broken; it has a systemic error in its results
185			 * because it scales directly from host TSC to
186			 * nanoseconds, and doesn't scale first to guest TSC
187			 * and *then* to nanoseconds as the guest does.
188			 *
189			 * There is a small error introduced here because time
190			 * continues to elapse between the ktime_get() and the
191			 * subsequent rdtsc(). But not the systemic drift due
192			 * to get_kvmclock_ns().
193			 */
194			kernel_now = ktime_get(); /* This is CLOCK_MONOTONIC */
195			host_tsc = rdtsc();
196		}
197
198		/* Calculate the guest kvmclock as the guest would do it. */
199		guest_tsc = kvm_read_l1_tsc(vcpu, host_tsc);
200		guest_now = __pvclock_read_cycles(&vcpu->arch.hv_clock,
201						  guest_tsc);
202	} else {
203		/*
204		 * Without CONSTANT_TSC, get_kvmclock_ns() is the only option.
205		 *
206		 * Also if the guest PV clock hasn't been set up yet, as is
207		 * likely to be the case during migration when the vCPU has
208		 * not been run yet. It would be possible to calculate the
209		 * scaling factors properly in that case but there's not much
210		 * point in doing so. The get_kvmclock_ns() drift accumulates
211		 * over time, so it's OK to use it at startup. Besides, on
212		 * migration there's going to be a little bit of skew in the
213		 * precise moment at which timers fire anyway. Often they'll
214		 * be in the "past" by the time the VM is running again after
215		 * migration.
216		 */
217		guest_now = get_kvmclock_ns(vcpu->kvm);
218		kernel_now = ktime_get();
219	}
220
221	delta = guest_abs - guest_now;
222
223	/*
224	 * Xen has a 'Linux workaround' in do_set_timer_op() which checks for
225	 * negative absolute timeout values (caused by integer overflow), and
226	 * for values about 13 days in the future (2^50ns) which would be
227	 * caused by jiffies overflow. For those cases, Xen sets the timeout
228	 * 100ms in the future (not *too* soon, since if a guest really did
229	 * set a long timeout on purpose we don't want to keep churning CPU
230	 * time by waking it up).  Emulate Xen's workaround when starting the
231	 * timer in response to __HYPERVISOR_set_timer_op.
232	 */
233	if (linux_wa &&
234	    unlikely((int64_t)guest_abs < 0 ||
235		     (delta > 0 && (uint32_t) (delta >> 50) != 0))) {
236		delta = 100 * NSEC_PER_MSEC;
237		guest_abs = guest_now + delta;
238	}
239
240	/*
241	 * Avoid races with the old timer firing. Checking timer_expires
242	 * to avoid calling hrtimer_cancel() will only have false positives
243	 * so is fine.
244	 */
245	if (vcpu->arch.xen.timer_expires)
246		hrtimer_cancel(&vcpu->arch.xen.timer);
247
248	atomic_set(&vcpu->arch.xen.timer_pending, 0);
249	vcpu->arch.xen.timer_expires = guest_abs;
250
251	if (delta <= 0)
252		xen_timer_callback(&vcpu->arch.xen.timer);
253	else
254		hrtimer_start(&vcpu->arch.xen.timer,
255			      ktime_add_ns(kernel_now, delta),
256			      HRTIMER_MODE_ABS_HARD);
257}
258
259static void kvm_xen_stop_timer(struct kvm_vcpu *vcpu)
260{
261	hrtimer_cancel(&vcpu->arch.xen.timer);
262	vcpu->arch.xen.timer_expires = 0;
263	atomic_set(&vcpu->arch.xen.timer_pending, 0);
264}
265
266static void kvm_xen_init_timer(struct kvm_vcpu *vcpu)
267{
268	hrtimer_init(&vcpu->arch.xen.timer, CLOCK_MONOTONIC,
269		     HRTIMER_MODE_ABS_HARD);
270	vcpu->arch.xen.timer.function = xen_timer_callback;
271}
272
273static void kvm_xen_update_runstate_guest(struct kvm_vcpu *v, bool atomic)
274{
275	struct kvm_vcpu_xen *vx = &v->arch.xen;
276	struct gfn_to_pfn_cache *gpc1 = &vx->runstate_cache;
277	struct gfn_to_pfn_cache *gpc2 = &vx->runstate2_cache;
278	size_t user_len, user_len1, user_len2;
279	struct vcpu_runstate_info rs;
280	unsigned long flags;
281	size_t times_ofs;
282	uint8_t *update_bit = NULL;
283	uint64_t entry_time;
284	uint64_t *rs_times;
285	int *rs_state;
286
287	/*
288	 * The only difference between 32-bit and 64-bit versions of the
289	 * runstate struct is the alignment of uint64_t in 32-bit, which
290	 * means that the 64-bit version has an additional 4 bytes of
291	 * padding after the first field 'state'. Let's be really really
292	 * paranoid about that, and matching it with our internal data
293	 * structures that we memcpy into it...
294	 */
295	BUILD_BUG_ON(offsetof(struct vcpu_runstate_info, state) != 0);
296	BUILD_BUG_ON(offsetof(struct compat_vcpu_runstate_info, state) != 0);
297	BUILD_BUG_ON(sizeof(struct compat_vcpu_runstate_info) != 0x2c);
298#ifdef CONFIG_X86_64
299	/*
300	 * The 64-bit structure has 4 bytes of padding before 'state_entry_time'
301	 * so each subsequent field is shifted by 4, and it's 4 bytes longer.
302	 */
303	BUILD_BUG_ON(offsetof(struct vcpu_runstate_info, state_entry_time) !=
304		     offsetof(struct compat_vcpu_runstate_info, state_entry_time) + 4);
305	BUILD_BUG_ON(offsetof(struct vcpu_runstate_info, time) !=
306		     offsetof(struct compat_vcpu_runstate_info, time) + 4);
307	BUILD_BUG_ON(sizeof(struct vcpu_runstate_info) != 0x2c + 4);
308#endif
309	/*
310	 * The state field is in the same place at the start of both structs,
311	 * and is the same size (int) as vx->current_runstate.
312	 */
313	BUILD_BUG_ON(offsetof(struct vcpu_runstate_info, state) !=
314		     offsetof(struct compat_vcpu_runstate_info, state));
315	BUILD_BUG_ON(sizeof_field(struct vcpu_runstate_info, state) !=
316		     sizeof(vx->current_runstate));
317	BUILD_BUG_ON(sizeof_field(struct compat_vcpu_runstate_info, state) !=
318		     sizeof(vx->current_runstate));
319
320	/*
321	 * The state_entry_time field is 64 bits in both versions, and the
322	 * XEN_RUNSTATE_UPDATE flag is in the top bit, which given that x86
323	 * is little-endian means that it's in the last *byte* of the word.
324	 * That detail is important later.
325	 */
326	BUILD_BUG_ON(sizeof_field(struct vcpu_runstate_info, state_entry_time) !=
327		     sizeof(uint64_t));
328	BUILD_BUG_ON(sizeof_field(struct compat_vcpu_runstate_info, state_entry_time) !=
329		     sizeof(uint64_t));
330	BUILD_BUG_ON((XEN_RUNSTATE_UPDATE >> 56) != 0x80);
331
332	/*
333	 * The time array is four 64-bit quantities in both versions, matching
334	 * the vx->runstate_times and immediately following state_entry_time.
335	 */
336	BUILD_BUG_ON(offsetof(struct vcpu_runstate_info, state_entry_time) !=
337		     offsetof(struct vcpu_runstate_info, time) - sizeof(uint64_t));
338	BUILD_BUG_ON(offsetof(struct compat_vcpu_runstate_info, state_entry_time) !=
339		     offsetof(struct compat_vcpu_runstate_info, time) - sizeof(uint64_t));
340	BUILD_BUG_ON(sizeof_field(struct vcpu_runstate_info, time) !=
341		     sizeof_field(struct compat_vcpu_runstate_info, time));
342	BUILD_BUG_ON(sizeof_field(struct vcpu_runstate_info, time) !=
343		     sizeof(vx->runstate_times));
344
345	if (IS_ENABLED(CONFIG_64BIT) && v->kvm->arch.xen.long_mode) {
346		user_len = sizeof(struct vcpu_runstate_info);
347		times_ofs = offsetof(struct vcpu_runstate_info,
348				     state_entry_time);
349	} else {
350		user_len = sizeof(struct compat_vcpu_runstate_info);
351		times_ofs = offsetof(struct compat_vcpu_runstate_info,
352				     state_entry_time);
353	}
354
355	/*
356	 * There are basically no alignment constraints. The guest can set it
357	 * up so it crosses from one page to the next, and at arbitrary byte
358	 * alignment (and the 32-bit ABI doesn't align the 64-bit integers
359	 * anyway, even if the overall struct had been 64-bit aligned).
360	 */
361	if ((gpc1->gpa & ~PAGE_MASK) + user_len >= PAGE_SIZE) {
362		user_len1 = PAGE_SIZE - (gpc1->gpa & ~PAGE_MASK);
363		user_len2 = user_len - user_len1;
364	} else {
365		user_len1 = user_len;
366		user_len2 = 0;
367	}
368	BUG_ON(user_len1 + user_len2 != user_len);
369
370 retry:
371	/*
372	 * Attempt to obtain the GPC lock on *both* (if there are two)
373	 * gfn_to_pfn caches that cover the region.
374	 */
375	if (atomic) {
376		local_irq_save(flags);
377		if (!read_trylock(&gpc1->lock)) {
378			local_irq_restore(flags);
379			return;
380		}
381	} else {
382		read_lock_irqsave(&gpc1->lock, flags);
383	}
384	while (!kvm_gpc_check(gpc1, user_len1)) {
385		read_unlock_irqrestore(&gpc1->lock, flags);
386
387		/* When invoked from kvm_sched_out() we cannot sleep */
388		if (atomic)
389			return;
390
391		if (kvm_gpc_refresh(gpc1, user_len1))
392			return;
393
394		read_lock_irqsave(&gpc1->lock, flags);
395	}
396
397	if (likely(!user_len2)) {
398		/*
399		 * Set up three pointers directly to the runstate_info
400		 * struct in the guest (via the GPC).
401		 *
402		 *  ��� @rs_state   ��� state field
403		 *  ��� @rs_times   ��� state_entry_time field.
404		 *  ��� @update_bit ��� last byte of state_entry_time, which
405		 *                  contains the XEN_RUNSTATE_UPDATE bit.
406		 */
407		rs_state = gpc1->khva;
408		rs_times = gpc1->khva + times_ofs;
409		if (v->kvm->arch.xen.runstate_update_flag)
410			update_bit = ((void *)(&rs_times[1])) - 1;
411	} else {
412		/*
413		 * The guest's runstate_info is split across two pages and we
414		 * need to hold and validate both GPCs simultaneously. We can
415		 * declare a lock ordering GPC1 > GPC2 because nothing else
416		 * takes them more than one at a time. Set a subclass on the
417		 * gpc1 lock to make lockdep shut up about it.
418		 */
419		lock_set_subclass(&gpc1->lock.dep_map, 1, _THIS_IP_);
420		if (atomic) {
421			if (!read_trylock(&gpc2->lock)) {
422				read_unlock_irqrestore(&gpc1->lock, flags);
423				return;
424			}
425		} else {
426			read_lock(&gpc2->lock);
427		}
428
429		if (!kvm_gpc_check(gpc2, user_len2)) {
430			read_unlock(&gpc2->lock);
431			read_unlock_irqrestore(&gpc1->lock, flags);
432
433			/* When invoked from kvm_sched_out() we cannot sleep */
434			if (atomic)
435				return;
436
437			/*
438			 * Use kvm_gpc_activate() here because if the runstate
439			 * area was configured in 32-bit mode and only extends
440			 * to the second page now because the guest changed to
441			 * 64-bit mode, the second GPC won't have been set up.
442			 */
443			if (kvm_gpc_activate(gpc2, gpc1->gpa + user_len1,
444					     user_len2))
445				return;
446
447			/*
448			 * We dropped the lock on GPC1 so we have to go all the
449			 * way back and revalidate that too.
450			 */
451			goto retry;
452		}
453
454		/*
455		 * In this case, the runstate_info struct will be assembled on
456		 * the kernel stack (compat or not as appropriate) and will
457		 * be copied to GPC1/GPC2 with a dual memcpy. Set up the three
458		 * rs pointers accordingly.
459		 */
460		rs_times = &rs.state_entry_time;
461
462		/*
463		 * The rs_state pointer points to the start of what we'll
464		 * copy to the guest, which in the case of a compat guest
465		 * is the 32-bit field that the compiler thinks is padding.
466		 */
467		rs_state = ((void *)rs_times) - times_ofs;
468
469		/*
470		 * The update_bit is still directly in the guest memory,
471		 * via one GPC or the other.
472		 */
473		if (v->kvm->arch.xen.runstate_update_flag) {
474			if (user_len1 >= times_ofs + sizeof(uint64_t))
475				update_bit = gpc1->khva + times_ofs +
476					sizeof(uint64_t) - 1;
477			else
478				update_bit = gpc2->khva + times_ofs +
479					sizeof(uint64_t) - 1 - user_len1;
480		}
481
482#ifdef CONFIG_X86_64
483		/*
484		 * Don't leak kernel memory through the padding in the 64-bit
485		 * version of the struct.
486		 */
487		memset(&rs, 0, offsetof(struct vcpu_runstate_info, state_entry_time));
488#endif
489	}
490
491	/*
492	 * First, set the XEN_RUNSTATE_UPDATE bit in the top bit of the
493	 * state_entry_time field, directly in the guest. We need to set
494	 * that (and write-barrier) before writing to the rest of the
495	 * structure, and clear it last. Just as Xen does, we address the
496	 * single *byte* in which it resides because it might be in a
497	 * different cache line to the rest of the 64-bit word, due to
498	 * the (lack of) alignment constraints.
499	 */
500	entry_time = vx->runstate_entry_time;
501	if (update_bit) {
502		entry_time |= XEN_RUNSTATE_UPDATE;
503		*update_bit = (vx->runstate_entry_time | XEN_RUNSTATE_UPDATE) >> 56;
504		smp_wmb();
505	}
506
507	/*
508	 * Now assemble the actual structure, either on our kernel stack
509	 * or directly in the guest according to how the rs_state and
510	 * rs_times pointers were set up above.
511	 */
512	*rs_state = vx->current_runstate;
513	rs_times[0] = entry_time;
514	memcpy(rs_times + 1, vx->runstate_times, sizeof(vx->runstate_times));
515
516	/* For the split case, we have to then copy it to the guest. */
517	if (user_len2) {
518		memcpy(gpc1->khva, rs_state, user_len1);
519		memcpy(gpc2->khva, ((void *)rs_state) + user_len1, user_len2);
520	}
521	smp_wmb();
522
523	/* Finally, clear the XEN_RUNSTATE_UPDATE bit. */
524	if (update_bit) {
525		entry_time &= ~XEN_RUNSTATE_UPDATE;
526		*update_bit = entry_time >> 56;
527		smp_wmb();
528	}
529
530	if (user_len2) {
531		kvm_gpc_mark_dirty_in_slot(gpc2);
532		read_unlock(&gpc2->lock);
533	}
534
535	kvm_gpc_mark_dirty_in_slot(gpc1);
536	read_unlock_irqrestore(&gpc1->lock, flags);
537}
538
539void kvm_xen_update_runstate(struct kvm_vcpu *v, int state)
540{
541	struct kvm_vcpu_xen *vx = &v->arch.xen;
542	u64 now = get_kvmclock_ns(v->kvm);
543	u64 delta_ns = now - vx->runstate_entry_time;
544	u64 run_delay = current->sched_info.run_delay;
545
546	if (unlikely(!vx->runstate_entry_time))
547		vx->current_runstate = RUNSTATE_offline;
548
549	/*
550	 * Time waiting for the scheduler isn't "stolen" if the
551	 * vCPU wasn't running anyway.
552	 */
553	if (vx->current_runstate == RUNSTATE_running) {
554		u64 steal_ns = run_delay - vx->last_steal;
555
556		delta_ns -= steal_ns;
557
558		vx->runstate_times[RUNSTATE_runnable] += steal_ns;
559	}
560	vx->last_steal = run_delay;
561
562	vx->runstate_times[vx->current_runstate] += delta_ns;
563	vx->current_runstate = state;
564	vx->runstate_entry_time = now;
565
566	if (vx->runstate_cache.active)
567		kvm_xen_update_runstate_guest(v, state == RUNSTATE_runnable);
568}
569
570void kvm_xen_inject_vcpu_vector(struct kvm_vcpu *v)
571{
572	struct kvm_lapic_irq irq = { };
573
574	irq.dest_id = v->vcpu_id;
575	irq.vector = v->arch.xen.upcall_vector;
576	irq.dest_mode = APIC_DEST_PHYSICAL;
577	irq.shorthand = APIC_DEST_NOSHORT;
578	irq.delivery_mode = APIC_DM_FIXED;
579	irq.level = 1;
580
581	kvm_irq_delivery_to_apic(v->kvm, NULL, &irq, NULL);
582}
583
584/*
585 * On event channel delivery, the vcpu_info may not have been accessible.
586 * In that case, there are bits in vcpu->arch.xen.evtchn_pending_sel which
587 * need to be marked into the vcpu_info (and evtchn_upcall_pending set).
588 * Do so now that we can sleep in the context of the vCPU to bring the
589 * page in, and refresh the pfn cache for it.
590 */
591void kvm_xen_inject_pending_events(struct kvm_vcpu *v)
592{
593	unsigned long evtchn_pending_sel = READ_ONCE(v->arch.xen.evtchn_pending_sel);
594	struct gfn_to_pfn_cache *gpc = &v->arch.xen.vcpu_info_cache;
595	unsigned long flags;
596
597	if (!evtchn_pending_sel)
598		return;
599
600	/*
601	 * Yes, this is an open-coded loop. But that's just what put_user()
602	 * does anyway. Page it in and retry the instruction. We're just a
603	 * little more honest about it.
604	 */
605	read_lock_irqsave(&gpc->lock, flags);
606	while (!kvm_gpc_check(gpc, sizeof(struct vcpu_info))) {
607		read_unlock_irqrestore(&gpc->lock, flags);
608
609		if (kvm_gpc_refresh(gpc, sizeof(struct vcpu_info)))
610			return;
611
612		read_lock_irqsave(&gpc->lock, flags);
613	}
614
615	/* Now gpc->khva is a valid kernel address for the vcpu_info */
616	if (IS_ENABLED(CONFIG_64BIT) && v->kvm->arch.xen.long_mode) {
617		struct vcpu_info *vi = gpc->khva;
618
619		asm volatile(LOCK_PREFIX "orq %0, %1\n"
620			     "notq %0\n"
621			     LOCK_PREFIX "andq %0, %2\n"
622			     : "=r" (evtchn_pending_sel),
623			       "+m" (vi->evtchn_pending_sel),
624			       "+m" (v->arch.xen.evtchn_pending_sel)
625			     : "0" (evtchn_pending_sel));
626		WRITE_ONCE(vi->evtchn_upcall_pending, 1);
627	} else {
628		u32 evtchn_pending_sel32 = evtchn_pending_sel;
629		struct compat_vcpu_info *vi = gpc->khva;
630
631		asm volatile(LOCK_PREFIX "orl %0, %1\n"
632			     "notl %0\n"
633			     LOCK_PREFIX "andl %0, %2\n"
634			     : "=r" (evtchn_pending_sel32),
635			       "+m" (vi->evtchn_pending_sel),
636			       "+m" (v->arch.xen.evtchn_pending_sel)
637			     : "0" (evtchn_pending_sel32));
638		WRITE_ONCE(vi->evtchn_upcall_pending, 1);
639	}
640
641	kvm_gpc_mark_dirty_in_slot(gpc);
642	read_unlock_irqrestore(&gpc->lock, flags);
643
644	/* For the per-vCPU lapic vector, deliver it as MSI. */
645	if (v->arch.xen.upcall_vector)
646		kvm_xen_inject_vcpu_vector(v);
647}
648
649int __kvm_xen_has_interrupt(struct kvm_vcpu *v)
650{
651	struct gfn_to_pfn_cache *gpc = &v->arch.xen.vcpu_info_cache;
652	unsigned long flags;
653	u8 rc = 0;
654
655	/*
656	 * If the global upcall vector (HVMIRQ_callback_vector) is set and
657	 * the vCPU's evtchn_upcall_pending flag is set, the IRQ is pending.
658	 */
659
660	/* No need for compat handling here */
661	BUILD_BUG_ON(offsetof(struct vcpu_info, evtchn_upcall_pending) !=
662		     offsetof(struct compat_vcpu_info, evtchn_upcall_pending));
663	BUILD_BUG_ON(sizeof(rc) !=
664		     sizeof_field(struct vcpu_info, evtchn_upcall_pending));
665	BUILD_BUG_ON(sizeof(rc) !=
666		     sizeof_field(struct compat_vcpu_info, evtchn_upcall_pending));
667
668	read_lock_irqsave(&gpc->lock, flags);
669	while (!kvm_gpc_check(gpc, sizeof(struct vcpu_info))) {
670		read_unlock_irqrestore(&gpc->lock, flags);
671
672		/*
673		 * This function gets called from kvm_vcpu_block() after setting the
674		 * task to TASK_INTERRUPTIBLE, to see if it needs to wake immediately
675		 * from a HLT. So we really mustn't sleep. If the page ended up absent
676		 * at that point, just return 1 in order to trigger an immediate wake,
677		 * and we'll end up getting called again from a context where we *can*
678		 * fault in the page and wait for it.
679		 */
680		if (in_atomic() || !task_is_running(current))
681			return 1;
682
683		if (kvm_gpc_refresh(gpc, sizeof(struct vcpu_info))) {
684			/*
685			 * If this failed, userspace has screwed up the
686			 * vcpu_info mapping. No interrupts for you.
687			 */
688			return 0;
689		}
690		read_lock_irqsave(&gpc->lock, flags);
691	}
692
693	rc = ((struct vcpu_info *)gpc->khva)->evtchn_upcall_pending;
694	read_unlock_irqrestore(&gpc->lock, flags);
695	return rc;
696}
697
698int kvm_xen_hvm_set_attr(struct kvm *kvm, struct kvm_xen_hvm_attr *data)
699{
700	int r = -ENOENT;
701
702
703	switch (data->type) {
704	case KVM_XEN_ATTR_TYPE_LONG_MODE:
705		if (!IS_ENABLED(CONFIG_64BIT) && data->u.long_mode) {
706			r = -EINVAL;
707		} else {
708			mutex_lock(&kvm->arch.xen.xen_lock);
709			kvm->arch.xen.long_mode = !!data->u.long_mode;
710
711			/*
712			 * Re-initialize shared_info to put the wallclock in the
713			 * correct place. Whilst it's not necessary to do this
714			 * unless the mode is actually changed, it does no harm
715			 * to make the call anyway.
716			 */
717			r = kvm->arch.xen.shinfo_cache.active ?
718				kvm_xen_shared_info_init(kvm) : 0;
719			mutex_unlock(&kvm->arch.xen.xen_lock);
720		}
721		break;
722
723	case KVM_XEN_ATTR_TYPE_SHARED_INFO:
724	case KVM_XEN_ATTR_TYPE_SHARED_INFO_HVA: {
725		int idx;
726
727		mutex_lock(&kvm->arch.xen.xen_lock);
728
729		idx = srcu_read_lock(&kvm->srcu);
730
731		if (data->type == KVM_XEN_ATTR_TYPE_SHARED_INFO) {
732			gfn_t gfn = data->u.shared_info.gfn;
733
734			if (gfn == KVM_XEN_INVALID_GFN) {
735				kvm_gpc_deactivate(&kvm->arch.xen.shinfo_cache);
736				r = 0;
737			} else {
738				r = kvm_gpc_activate(&kvm->arch.xen.shinfo_cache,
739						     gfn_to_gpa(gfn), PAGE_SIZE);
740			}
741		} else {
742			void __user * hva = u64_to_user_ptr(data->u.shared_info.hva);
743
744			if (!PAGE_ALIGNED(hva) || !access_ok(hva, PAGE_SIZE)) {
745				r = -EINVAL;
746			} else if (!hva) {
747				kvm_gpc_deactivate(&kvm->arch.xen.shinfo_cache);
748				r = 0;
749			} else {
750				r = kvm_gpc_activate_hva(&kvm->arch.xen.shinfo_cache,
751							 (unsigned long)hva, PAGE_SIZE);
752			}
753		}
754
755		srcu_read_unlock(&kvm->srcu, idx);
756
757		if (!r && kvm->arch.xen.shinfo_cache.active)
758			r = kvm_xen_shared_info_init(kvm);
759
760		mutex_unlock(&kvm->arch.xen.xen_lock);
761		break;
762	}
763	case KVM_XEN_ATTR_TYPE_UPCALL_VECTOR:
764		if (data->u.vector && data->u.vector < 0x10)
765			r = -EINVAL;
766		else {
767			mutex_lock(&kvm->arch.xen.xen_lock);
768			kvm->arch.xen.upcall_vector = data->u.vector;
769			mutex_unlock(&kvm->arch.xen.xen_lock);
770			r = 0;
771		}
772		break;
773
774	case KVM_XEN_ATTR_TYPE_EVTCHN:
775		r = kvm_xen_setattr_evtchn(kvm, data);
776		break;
777
778	case KVM_XEN_ATTR_TYPE_XEN_VERSION:
779		mutex_lock(&kvm->arch.xen.xen_lock);
780		kvm->arch.xen.xen_version = data->u.xen_version;
781		mutex_unlock(&kvm->arch.xen.xen_lock);
782		r = 0;
783		break;
784
785	case KVM_XEN_ATTR_TYPE_RUNSTATE_UPDATE_FLAG:
786		if (!sched_info_on()) {
787			r = -EOPNOTSUPP;
788			break;
789		}
790		mutex_lock(&kvm->arch.xen.xen_lock);
791		kvm->arch.xen.runstate_update_flag = !!data->u.runstate_update_flag;
792		mutex_unlock(&kvm->arch.xen.xen_lock);
793		r = 0;
794		break;
795
796	default:
797		break;
798	}
799
800	return r;
801}
802
803int kvm_xen_hvm_get_attr(struct kvm *kvm, struct kvm_xen_hvm_attr *data)
804{
805	int r = -ENOENT;
806
807	mutex_lock(&kvm->arch.xen.xen_lock);
808
809	switch (data->type) {
810	case KVM_XEN_ATTR_TYPE_LONG_MODE:
811		data->u.long_mode = kvm->arch.xen.long_mode;
812		r = 0;
813		break;
814
815	case KVM_XEN_ATTR_TYPE_SHARED_INFO:
816		if (kvm_gpc_is_gpa_active(&kvm->arch.xen.shinfo_cache))
817			data->u.shared_info.gfn = gpa_to_gfn(kvm->arch.xen.shinfo_cache.gpa);
818		else
819			data->u.shared_info.gfn = KVM_XEN_INVALID_GFN;
820		r = 0;
821		break;
822
823	case KVM_XEN_ATTR_TYPE_SHARED_INFO_HVA:
824		if (kvm_gpc_is_hva_active(&kvm->arch.xen.shinfo_cache))
825			data->u.shared_info.hva = kvm->arch.xen.shinfo_cache.uhva;
826		else
827			data->u.shared_info.hva = 0;
828		r = 0;
829		break;
830
831	case KVM_XEN_ATTR_TYPE_UPCALL_VECTOR:
832		data->u.vector = kvm->arch.xen.upcall_vector;
833		r = 0;
834		break;
835
836	case KVM_XEN_ATTR_TYPE_XEN_VERSION:
837		data->u.xen_version = kvm->arch.xen.xen_version;
838		r = 0;
839		break;
840
841	case KVM_XEN_ATTR_TYPE_RUNSTATE_UPDATE_FLAG:
842		if (!sched_info_on()) {
843			r = -EOPNOTSUPP;
844			break;
845		}
846		data->u.runstate_update_flag = kvm->arch.xen.runstate_update_flag;
847		r = 0;
848		break;
849
850	default:
851		break;
852	}
853
854	mutex_unlock(&kvm->arch.xen.xen_lock);
855	return r;
856}
857
858int kvm_xen_vcpu_set_attr(struct kvm_vcpu *vcpu, struct kvm_xen_vcpu_attr *data)
859{
860	int idx, r = -ENOENT;
861
862	mutex_lock(&vcpu->kvm->arch.xen.xen_lock);
863	idx = srcu_read_lock(&vcpu->kvm->srcu);
864
865	switch (data->type) {
866	case KVM_XEN_VCPU_ATTR_TYPE_VCPU_INFO:
867	case KVM_XEN_VCPU_ATTR_TYPE_VCPU_INFO_HVA:
868		/* No compat necessary here. */
869		BUILD_BUG_ON(sizeof(struct vcpu_info) !=
870			     sizeof(struct compat_vcpu_info));
871		BUILD_BUG_ON(offsetof(struct vcpu_info, time) !=
872			     offsetof(struct compat_vcpu_info, time));
873
874		if (data->type == KVM_XEN_VCPU_ATTR_TYPE_VCPU_INFO) {
875			if (data->u.gpa == KVM_XEN_INVALID_GPA) {
876				kvm_gpc_deactivate(&vcpu->arch.xen.vcpu_info_cache);
877				r = 0;
878				break;
879			}
880
881			r = kvm_gpc_activate(&vcpu->arch.xen.vcpu_info_cache,
882					     data->u.gpa, sizeof(struct vcpu_info));
883		} else {
884			if (data->u.hva == 0) {
885				kvm_gpc_deactivate(&vcpu->arch.xen.vcpu_info_cache);
886				r = 0;
887				break;
888			}
889
890			r = kvm_gpc_activate_hva(&vcpu->arch.xen.vcpu_info_cache,
891						 data->u.hva, sizeof(struct vcpu_info));
892		}
893
894		if (!r)
895			kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
896
897		break;
898
899	case KVM_XEN_VCPU_ATTR_TYPE_VCPU_TIME_INFO:
900		if (data->u.gpa == KVM_XEN_INVALID_GPA) {
901			kvm_gpc_deactivate(&vcpu->arch.xen.vcpu_time_info_cache);
902			r = 0;
903			break;
904		}
905
906		r = kvm_gpc_activate(&vcpu->arch.xen.vcpu_time_info_cache,
907				     data->u.gpa,
908				     sizeof(struct pvclock_vcpu_time_info));
909		if (!r)
910			kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
911		break;
912
913	case KVM_XEN_VCPU_ATTR_TYPE_RUNSTATE_ADDR: {
914		size_t sz, sz1, sz2;
915
916		if (!sched_info_on()) {
917			r = -EOPNOTSUPP;
918			break;
919		}
920		if (data->u.gpa == KVM_XEN_INVALID_GPA) {
921			r = 0;
922		deactivate_out:
923			kvm_gpc_deactivate(&vcpu->arch.xen.runstate_cache);
924			kvm_gpc_deactivate(&vcpu->arch.xen.runstate2_cache);
925			break;
926		}
927
928		/*
929		 * If the guest switches to 64-bit mode after setting the runstate
930		 * address, that's actually OK. kvm_xen_update_runstate_guest()
931		 * will cope.
932		 */
933		if (IS_ENABLED(CONFIG_64BIT) && vcpu->kvm->arch.xen.long_mode)
934			sz = sizeof(struct vcpu_runstate_info);
935		else
936			sz = sizeof(struct compat_vcpu_runstate_info);
937
938		/* How much fits in the (first) page? */
939		sz1 = PAGE_SIZE - (data->u.gpa & ~PAGE_MASK);
940		r = kvm_gpc_activate(&vcpu->arch.xen.runstate_cache,
941				     data->u.gpa, sz1);
942		if (r)
943			goto deactivate_out;
944
945		/* Either map the second page, or deactivate the second GPC */
946		if (sz1 >= sz) {
947			kvm_gpc_deactivate(&vcpu->arch.xen.runstate2_cache);
948		} else {
949			sz2 = sz - sz1;
950			BUG_ON((data->u.gpa + sz1) & ~PAGE_MASK);
951			r = kvm_gpc_activate(&vcpu->arch.xen.runstate2_cache,
952					     data->u.gpa + sz1, sz2);
953			if (r)
954				goto deactivate_out;
955		}
956
957		kvm_xen_update_runstate_guest(vcpu, false);
958		break;
959	}
960	case KVM_XEN_VCPU_ATTR_TYPE_RUNSTATE_CURRENT:
961		if (!sched_info_on()) {
962			r = -EOPNOTSUPP;
963			break;
964		}
965		if (data->u.runstate.state > RUNSTATE_offline) {
966			r = -EINVAL;
967			break;
968		}
969
970		kvm_xen_update_runstate(vcpu, data->u.runstate.state);
971		r = 0;
972		break;
973
974	case KVM_XEN_VCPU_ATTR_TYPE_RUNSTATE_DATA:
975		if (!sched_info_on()) {
976			r = -EOPNOTSUPP;
977			break;
978		}
979		if (data->u.runstate.state > RUNSTATE_offline) {
980			r = -EINVAL;
981			break;
982		}
983		if (data->u.runstate.state_entry_time !=
984		    (data->u.runstate.time_running +
985		     data->u.runstate.time_runnable +
986		     data->u.runstate.time_blocked +
987		     data->u.runstate.time_offline)) {
988			r = -EINVAL;
989			break;
990		}
991		if (get_kvmclock_ns(vcpu->kvm) <
992		    data->u.runstate.state_entry_time) {
993			r = -EINVAL;
994			break;
995		}
996
997		vcpu->arch.xen.current_runstate = data->u.runstate.state;
998		vcpu->arch.xen.runstate_entry_time =
999			data->u.runstate.state_entry_time;
1000		vcpu->arch.xen.runstate_times[RUNSTATE_running] =
1001			data->u.runstate.time_running;
1002		vcpu->arch.xen.runstate_times[RUNSTATE_runnable] =
1003			data->u.runstate.time_runnable;
1004		vcpu->arch.xen.runstate_times[RUNSTATE_blocked] =
1005			data->u.runstate.time_blocked;
1006		vcpu->arch.xen.runstate_times[RUNSTATE_offline] =
1007			data->u.runstate.time_offline;
1008		vcpu->arch.xen.last_steal = current->sched_info.run_delay;
1009		r = 0;
1010		break;
1011
1012	case KVM_XEN_VCPU_ATTR_TYPE_RUNSTATE_ADJUST:
1013		if (!sched_info_on()) {
1014			r = -EOPNOTSUPP;
1015			break;
1016		}
1017		if (data->u.runstate.state > RUNSTATE_offline &&
1018		    data->u.runstate.state != (u64)-1) {
1019			r = -EINVAL;
1020			break;
1021		}
1022		/* The adjustment must add up */
1023		if (data->u.runstate.state_entry_time !=
1024		    (data->u.runstate.time_running +
1025		     data->u.runstate.time_runnable +
1026		     data->u.runstate.time_blocked +
1027		     data->u.runstate.time_offline)) {
1028			r = -EINVAL;
1029			break;
1030		}
1031
1032		if (get_kvmclock_ns(vcpu->kvm) <
1033		    (vcpu->arch.xen.runstate_entry_time +
1034		     data->u.runstate.state_entry_time)) {
1035			r = -EINVAL;
1036			break;
1037		}
1038
1039		vcpu->arch.xen.runstate_entry_time +=
1040			data->u.runstate.state_entry_time;
1041		vcpu->arch.xen.runstate_times[RUNSTATE_running] +=
1042			data->u.runstate.time_running;
1043		vcpu->arch.xen.runstate_times[RUNSTATE_runnable] +=
1044			data->u.runstate.time_runnable;
1045		vcpu->arch.xen.runstate_times[RUNSTATE_blocked] +=
1046			data->u.runstate.time_blocked;
1047		vcpu->arch.xen.runstate_times[RUNSTATE_offline] +=
1048			data->u.runstate.time_offline;
1049
1050		if (data->u.runstate.state <= RUNSTATE_offline)
1051			kvm_xen_update_runstate(vcpu, data->u.runstate.state);
1052		else if (vcpu->arch.xen.runstate_cache.active)
1053			kvm_xen_update_runstate_guest(vcpu, false);
1054		r = 0;
1055		break;
1056
1057	case KVM_XEN_VCPU_ATTR_TYPE_VCPU_ID:
1058		if (data->u.vcpu_id >= KVM_MAX_VCPUS)
1059			r = -EINVAL;
1060		else {
1061			vcpu->arch.xen.vcpu_id = data->u.vcpu_id;
1062			r = 0;
1063		}
1064		break;
1065
1066	case KVM_XEN_VCPU_ATTR_TYPE_TIMER:
1067		if (data->u.timer.port &&
1068		    data->u.timer.priority != KVM_IRQ_ROUTING_XEN_EVTCHN_PRIO_2LEVEL) {
1069			r = -EINVAL;
1070			break;
1071		}
1072
1073		if (!vcpu->arch.xen.timer.function)
1074			kvm_xen_init_timer(vcpu);
1075
1076		/* Stop the timer (if it's running) before changing the vector */
1077		kvm_xen_stop_timer(vcpu);
1078		vcpu->arch.xen.timer_virq = data->u.timer.port;
1079
1080		/* Start the timer if the new value has a valid vector+expiry. */
1081		if (data->u.timer.port && data->u.timer.expires_ns)
1082			kvm_xen_start_timer(vcpu, data->u.timer.expires_ns, false);
1083
1084		r = 0;
1085		break;
1086
1087	case KVM_XEN_VCPU_ATTR_TYPE_UPCALL_VECTOR:
1088		if (data->u.vector && data->u.vector < 0x10)
1089			r = -EINVAL;
1090		else {
1091			vcpu->arch.xen.upcall_vector = data->u.vector;
1092			r = 0;
1093		}
1094		break;
1095
1096	default:
1097		break;
1098	}
1099
1100	srcu_read_unlock(&vcpu->kvm->srcu, idx);
1101	mutex_unlock(&vcpu->kvm->arch.xen.xen_lock);
1102	return r;
1103}
1104
1105int kvm_xen_vcpu_get_attr(struct kvm_vcpu *vcpu, struct kvm_xen_vcpu_attr *data)
1106{
1107	int r = -ENOENT;
1108
1109	mutex_lock(&vcpu->kvm->arch.xen.xen_lock);
1110
1111	switch (data->type) {
1112	case KVM_XEN_VCPU_ATTR_TYPE_VCPU_INFO:
1113		if (kvm_gpc_is_gpa_active(&vcpu->arch.xen.vcpu_info_cache))
1114			data->u.gpa = vcpu->arch.xen.vcpu_info_cache.gpa;
1115		else
1116			data->u.gpa = KVM_XEN_INVALID_GPA;
1117		r = 0;
1118		break;
1119
1120	case KVM_XEN_VCPU_ATTR_TYPE_VCPU_INFO_HVA:
1121		if (kvm_gpc_is_hva_active(&vcpu->arch.xen.vcpu_info_cache))
1122			data->u.hva = vcpu->arch.xen.vcpu_info_cache.uhva;
1123		else
1124			data->u.hva = 0;
1125		r = 0;
1126		break;
1127
1128	case KVM_XEN_VCPU_ATTR_TYPE_VCPU_TIME_INFO:
1129		if (vcpu->arch.xen.vcpu_time_info_cache.active)
1130			data->u.gpa = vcpu->arch.xen.vcpu_time_info_cache.gpa;
1131		else
1132			data->u.gpa = KVM_XEN_INVALID_GPA;
1133		r = 0;
1134		break;
1135
1136	case KVM_XEN_VCPU_ATTR_TYPE_RUNSTATE_ADDR:
1137		if (!sched_info_on()) {
1138			r = -EOPNOTSUPP;
1139			break;
1140		}
1141		if (vcpu->arch.xen.runstate_cache.active) {
1142			data->u.gpa = vcpu->arch.xen.runstate_cache.gpa;
1143			r = 0;
1144		}
1145		break;
1146
1147	case KVM_XEN_VCPU_ATTR_TYPE_RUNSTATE_CURRENT:
1148		if (!sched_info_on()) {
1149			r = -EOPNOTSUPP;
1150			break;
1151		}
1152		data->u.runstate.state = vcpu->arch.xen.current_runstate;
1153		r = 0;
1154		break;
1155
1156	case KVM_XEN_VCPU_ATTR_TYPE_RUNSTATE_DATA:
1157		if (!sched_info_on()) {
1158			r = -EOPNOTSUPP;
1159			break;
1160		}
1161		data->u.runstate.state = vcpu->arch.xen.current_runstate;
1162		data->u.runstate.state_entry_time =
1163			vcpu->arch.xen.runstate_entry_time;
1164		data->u.runstate.time_running =
1165			vcpu->arch.xen.runstate_times[RUNSTATE_running];
1166		data->u.runstate.time_runnable =
1167			vcpu->arch.xen.runstate_times[RUNSTATE_runnable];
1168		data->u.runstate.time_blocked =
1169			vcpu->arch.xen.runstate_times[RUNSTATE_blocked];
1170		data->u.runstate.time_offline =
1171			vcpu->arch.xen.runstate_times[RUNSTATE_offline];
1172		r = 0;
1173		break;
1174
1175	case KVM_XEN_VCPU_ATTR_TYPE_RUNSTATE_ADJUST:
1176		r = -EINVAL;
1177		break;
1178
1179	case KVM_XEN_VCPU_ATTR_TYPE_VCPU_ID:
1180		data->u.vcpu_id = vcpu->arch.xen.vcpu_id;
1181		r = 0;
1182		break;
1183
1184	case KVM_XEN_VCPU_ATTR_TYPE_TIMER:
1185		/*
1186		 * Ensure a consistent snapshot of state is captured, with a
1187		 * timer either being pending, or the event channel delivered
1188		 * to the corresponding bit in the shared_info. Not still
1189		 * lurking in the timer_pending flag for deferred delivery.
1190		 * Purely as an optimisation, if the timer_expires field is
1191		 * zero, that means the timer isn't active (or even in the
1192		 * timer_pending flag) and there is no need to cancel it.
1193		 */
1194		if (vcpu->arch.xen.timer_expires) {
1195			hrtimer_cancel(&vcpu->arch.xen.timer);
1196			kvm_xen_inject_timer_irqs(vcpu);
1197		}
1198
1199		data->u.timer.port = vcpu->arch.xen.timer_virq;
1200		data->u.timer.priority = KVM_IRQ_ROUTING_XEN_EVTCHN_PRIO_2LEVEL;
1201		data->u.timer.expires_ns = vcpu->arch.xen.timer_expires;
1202
1203		/*
1204		 * The hrtimer may trigger and raise the IRQ immediately,
1205		 * while the returned state causes it to be set up and
1206		 * raised again on the destination system after migration.
1207		 * That's fine, as the guest won't even have had a chance
1208		 * to run and handle the interrupt. Asserting an already
1209		 * pending event channel is idempotent.
1210		 */
1211		if (vcpu->arch.xen.timer_expires)
1212			hrtimer_start_expires(&vcpu->arch.xen.timer,
1213					      HRTIMER_MODE_ABS_HARD);
1214
1215		r = 0;
1216		break;
1217
1218	case KVM_XEN_VCPU_ATTR_TYPE_UPCALL_VECTOR:
1219		data->u.vector = vcpu->arch.xen.upcall_vector;
1220		r = 0;
1221		break;
1222
1223	default:
1224		break;
1225	}
1226
1227	mutex_unlock(&vcpu->kvm->arch.xen.xen_lock);
1228	return r;
1229}
1230
1231int kvm_xen_write_hypercall_page(struct kvm_vcpu *vcpu, u64 data)
1232{
1233	struct kvm *kvm = vcpu->kvm;
1234	u32 page_num = data & ~PAGE_MASK;
1235	u64 page_addr = data & PAGE_MASK;
1236	bool lm = is_long_mode(vcpu);
1237	int r = 0;
1238
1239	mutex_lock(&kvm->arch.xen.xen_lock);
1240	if (kvm->arch.xen.long_mode != lm) {
1241		kvm->arch.xen.long_mode = lm;
1242
1243		/*
1244		 * Re-initialize shared_info to put the wallclock in the
1245		 * correct place.
1246		 */
1247		if (kvm->arch.xen.shinfo_cache.active &&
1248		    kvm_xen_shared_info_init(kvm))
1249			r = 1;
1250	}
1251	mutex_unlock(&kvm->arch.xen.xen_lock);
1252
1253	if (r)
1254		return r;
1255
1256	/*
1257	 * If Xen hypercall intercept is enabled, fill the hypercall
1258	 * page with VMCALL/VMMCALL instructions since that's what
1259	 * we catch. Else the VMM has provided the hypercall pages
1260	 * with instructions of its own choosing, so use those.
1261	 */
1262	if (kvm_xen_hypercall_enabled(kvm)) {
1263		u8 instructions[32];
1264		int i;
1265
1266		if (page_num)
1267			return 1;
1268
1269		/* mov imm32, %eax */
1270		instructions[0] = 0xb8;
1271
1272		/* vmcall / vmmcall */
1273		static_call(kvm_x86_patch_hypercall)(vcpu, instructions + 5);
1274
1275		/* ret */
1276		instructions[8] = 0xc3;
1277
1278		/* int3 to pad */
1279		memset(instructions + 9, 0xcc, sizeof(instructions) - 9);
1280
1281		for (i = 0; i < PAGE_SIZE / sizeof(instructions); i++) {
1282			*(u32 *)&instructions[1] = i;
1283			if (kvm_vcpu_write_guest(vcpu,
1284						 page_addr + (i * sizeof(instructions)),
1285						 instructions, sizeof(instructions)))
1286				return 1;
1287		}
1288	} else {
1289		/*
1290		 * Note, truncation is a non-issue as 'lm' is guaranteed to be
1291		 * false for a 32-bit kernel, i.e. when hva_t is only 4 bytes.
1292		 */
1293		hva_t blob_addr = lm ? kvm->arch.xen_hvm_config.blob_addr_64
1294				     : kvm->arch.xen_hvm_config.blob_addr_32;
1295		u8 blob_size = lm ? kvm->arch.xen_hvm_config.blob_size_64
1296				  : kvm->arch.xen_hvm_config.blob_size_32;
1297		u8 *page;
1298		int ret;
1299
1300		if (page_num >= blob_size)
1301			return 1;
1302
1303		blob_addr += page_num * PAGE_SIZE;
1304
1305		page = memdup_user((u8 __user *)blob_addr, PAGE_SIZE);
1306		if (IS_ERR(page))
1307			return PTR_ERR(page);
1308
1309		ret = kvm_vcpu_write_guest(vcpu, page_addr, page, PAGE_SIZE);
1310		kfree(page);
1311		if (ret)
1312			return 1;
1313	}
1314	return 0;
1315}
1316
1317int kvm_xen_hvm_config(struct kvm *kvm, struct kvm_xen_hvm_config *xhc)
1318{
1319	/* Only some feature flags need to be *enabled* by userspace */
1320	u32 permitted_flags = KVM_XEN_HVM_CONFIG_INTERCEPT_HCALL |
1321		KVM_XEN_HVM_CONFIG_EVTCHN_SEND |
1322		KVM_XEN_HVM_CONFIG_PVCLOCK_TSC_UNSTABLE;
1323	u32 old_flags;
1324
1325	if (xhc->flags & ~permitted_flags)
1326		return -EINVAL;
1327
1328	/*
1329	 * With hypercall interception the kernel generates its own
1330	 * hypercall page so it must not be provided.
1331	 */
1332	if ((xhc->flags & KVM_XEN_HVM_CONFIG_INTERCEPT_HCALL) &&
1333	    (xhc->blob_addr_32 || xhc->blob_addr_64 ||
1334	     xhc->blob_size_32 || xhc->blob_size_64))
1335		return -EINVAL;
1336
1337	mutex_lock(&kvm->arch.xen.xen_lock);
1338
1339	if (xhc->msr && !kvm->arch.xen_hvm_config.msr)
1340		static_branch_inc(&kvm_xen_enabled.key);
1341	else if (!xhc->msr && kvm->arch.xen_hvm_config.msr)
1342		static_branch_slow_dec_deferred(&kvm_xen_enabled);
1343
1344	old_flags = kvm->arch.xen_hvm_config.flags;
1345	memcpy(&kvm->arch.xen_hvm_config, xhc, sizeof(*xhc));
1346
1347	mutex_unlock(&kvm->arch.xen.xen_lock);
1348
1349	if ((old_flags ^ xhc->flags) & KVM_XEN_HVM_CONFIG_PVCLOCK_TSC_UNSTABLE)
1350		kvm_make_all_cpus_request(kvm, KVM_REQ_CLOCK_UPDATE);
1351
1352	return 0;
1353}
1354
1355static int kvm_xen_hypercall_set_result(struct kvm_vcpu *vcpu, u64 result)
1356{
1357	kvm_rax_write(vcpu, result);
1358	return kvm_skip_emulated_instruction(vcpu);
1359}
1360
1361static int kvm_xen_hypercall_complete_userspace(struct kvm_vcpu *vcpu)
1362{
1363	struct kvm_run *run = vcpu->run;
1364
1365	if (unlikely(!kvm_is_linear_rip(vcpu, vcpu->arch.xen.hypercall_rip)))
1366		return 1;
1367
1368	return kvm_xen_hypercall_set_result(vcpu, run->xen.u.hcall.result);
1369}
1370
1371static inline int max_evtchn_port(struct kvm *kvm)
1372{
1373	if (IS_ENABLED(CONFIG_64BIT) && kvm->arch.xen.long_mode)
1374		return EVTCHN_2L_NR_CHANNELS;
1375	else
1376		return COMPAT_EVTCHN_2L_NR_CHANNELS;
1377}
1378
1379static bool wait_pending_event(struct kvm_vcpu *vcpu, int nr_ports,
1380			       evtchn_port_t *ports)
1381{
1382	struct kvm *kvm = vcpu->kvm;
1383	struct gfn_to_pfn_cache *gpc = &kvm->arch.xen.shinfo_cache;
1384	unsigned long *pending_bits;
1385	unsigned long flags;
1386	bool ret = true;
1387	int idx, i;
1388
1389	idx = srcu_read_lock(&kvm->srcu);
1390	read_lock_irqsave(&gpc->lock, flags);
1391	if (!kvm_gpc_check(gpc, PAGE_SIZE))
1392		goto out_rcu;
1393
1394	ret = false;
1395	if (IS_ENABLED(CONFIG_64BIT) && kvm->arch.xen.long_mode) {
1396		struct shared_info *shinfo = gpc->khva;
1397		pending_bits = (unsigned long *)&shinfo->evtchn_pending;
1398	} else {
1399		struct compat_shared_info *shinfo = gpc->khva;
1400		pending_bits = (unsigned long *)&shinfo->evtchn_pending;
1401	}
1402
1403	for (i = 0; i < nr_ports; i++) {
1404		if (test_bit(ports[i], pending_bits)) {
1405			ret = true;
1406			break;
1407		}
1408	}
1409
1410 out_rcu:
1411	read_unlock_irqrestore(&gpc->lock, flags);
1412	srcu_read_unlock(&kvm->srcu, idx);
1413
1414	return ret;
1415}
1416
1417static bool kvm_xen_schedop_poll(struct kvm_vcpu *vcpu, bool longmode,
1418				 u64 param, u64 *r)
1419{
1420	struct sched_poll sched_poll;
1421	evtchn_port_t port, *ports;
1422	struct x86_exception e;
1423	int i;
1424
1425	if (!lapic_in_kernel(vcpu) ||
1426	    !(vcpu->kvm->arch.xen_hvm_config.flags & KVM_XEN_HVM_CONFIG_EVTCHN_SEND))
1427		return false;
1428
1429	if (IS_ENABLED(CONFIG_64BIT) && !longmode) {
1430		struct compat_sched_poll sp32;
1431
1432		/* Sanity check that the compat struct definition is correct */
1433		BUILD_BUG_ON(sizeof(sp32) != 16);
1434
1435		if (kvm_read_guest_virt(vcpu, param, &sp32, sizeof(sp32), &e)) {
1436			*r = -EFAULT;
1437			return true;
1438		}
1439
1440		/*
1441		 * This is a 32-bit pointer to an array of evtchn_port_t which
1442		 * are uint32_t, so once it's converted no further compat
1443		 * handling is needed.
1444		 */
1445		sched_poll.ports = (void *)(unsigned long)(sp32.ports);
1446		sched_poll.nr_ports = sp32.nr_ports;
1447		sched_poll.timeout = sp32.timeout;
1448	} else {
1449		if (kvm_read_guest_virt(vcpu, param, &sched_poll,
1450					sizeof(sched_poll), &e)) {
1451			*r = -EFAULT;
1452			return true;
1453		}
1454	}
1455
1456	if (unlikely(sched_poll.nr_ports > 1)) {
1457		/* Xen (unofficially) limits number of pollers to 128 */
1458		if (sched_poll.nr_ports > 128) {
1459			*r = -EINVAL;
1460			return true;
1461		}
1462
1463		ports = kmalloc_array(sched_poll.nr_ports,
1464				      sizeof(*ports), GFP_KERNEL);
1465		if (!ports) {
1466			*r = -ENOMEM;
1467			return true;
1468		}
1469	} else
1470		ports = &port;
1471
1472	if (kvm_read_guest_virt(vcpu, (gva_t)sched_poll.ports, ports,
1473				sched_poll.nr_ports * sizeof(*ports), &e)) {
1474		*r = -EFAULT;
1475		return true;
1476	}
1477
1478	for (i = 0; i < sched_poll.nr_ports; i++) {
1479		if (ports[i] >= max_evtchn_port(vcpu->kvm)) {
1480			*r = -EINVAL;
1481			goto out;
1482		}
1483	}
1484
1485	if (sched_poll.nr_ports == 1)
1486		vcpu->arch.xen.poll_evtchn = port;
1487	else
1488		vcpu->arch.xen.poll_evtchn = -1;
1489
1490	set_bit(vcpu->vcpu_idx, vcpu->kvm->arch.xen.poll_mask);
1491
1492	if (!wait_pending_event(vcpu, sched_poll.nr_ports, ports)) {
1493		vcpu->arch.mp_state = KVM_MP_STATE_HALTED;
1494
1495		if (sched_poll.timeout)
1496			mod_timer(&vcpu->arch.xen.poll_timer,
1497				  jiffies + nsecs_to_jiffies(sched_poll.timeout));
1498
1499		kvm_vcpu_halt(vcpu);
1500
1501		if (sched_poll.timeout)
1502			del_timer(&vcpu->arch.xen.poll_timer);
1503
1504		vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
1505	}
1506
1507	vcpu->arch.xen.poll_evtchn = 0;
1508	*r = 0;
1509out:
1510	/* Really, this is only needed in case of timeout */
1511	clear_bit(vcpu->vcpu_idx, vcpu->kvm->arch.xen.poll_mask);
1512
1513	if (unlikely(sched_poll.nr_ports > 1))
1514		kfree(ports);
1515	return true;
1516}
1517
1518static void cancel_evtchn_poll(struct timer_list *t)
1519{
1520	struct kvm_vcpu *vcpu = from_timer(vcpu, t, arch.xen.poll_timer);
1521
1522	kvm_make_request(KVM_REQ_UNBLOCK, vcpu);
1523	kvm_vcpu_kick(vcpu);
1524}
1525
1526static bool kvm_xen_hcall_sched_op(struct kvm_vcpu *vcpu, bool longmode,
1527				   int cmd, u64 param, u64 *r)
1528{
1529	switch (cmd) {
1530	case SCHEDOP_poll:
1531		if (kvm_xen_schedop_poll(vcpu, longmode, param, r))
1532			return true;
1533		fallthrough;
1534	case SCHEDOP_yield:
1535		kvm_vcpu_on_spin(vcpu, true);
1536		*r = 0;
1537		return true;
1538	default:
1539		break;
1540	}
1541
1542	return false;
1543}
1544
1545struct compat_vcpu_set_singleshot_timer {
1546    uint64_t timeout_abs_ns;
1547    uint32_t flags;
1548} __attribute__((packed));
1549
1550static bool kvm_xen_hcall_vcpu_op(struct kvm_vcpu *vcpu, bool longmode, int cmd,
1551				  int vcpu_id, u64 param, u64 *r)
1552{
1553	struct vcpu_set_singleshot_timer oneshot;
1554	struct x86_exception e;
1555
1556	if (!kvm_xen_timer_enabled(vcpu))
1557		return false;
1558
1559	switch (cmd) {
1560	case VCPUOP_set_singleshot_timer:
1561		if (vcpu->arch.xen.vcpu_id != vcpu_id) {
1562			*r = -EINVAL;
1563			return true;
1564		}
1565
1566		/*
1567		 * The only difference for 32-bit compat is the 4 bytes of
1568		 * padding after the interesting part of the structure. So
1569		 * for a faithful emulation of Xen we have to *try* to copy
1570		 * the padding and return -EFAULT if we can't. Otherwise we
1571		 * might as well just have copied the 12-byte 32-bit struct.
1572		 */
1573		BUILD_BUG_ON(offsetof(struct compat_vcpu_set_singleshot_timer, timeout_abs_ns) !=
1574			     offsetof(struct vcpu_set_singleshot_timer, timeout_abs_ns));
1575		BUILD_BUG_ON(sizeof_field(struct compat_vcpu_set_singleshot_timer, timeout_abs_ns) !=
1576			     sizeof_field(struct vcpu_set_singleshot_timer, timeout_abs_ns));
1577		BUILD_BUG_ON(offsetof(struct compat_vcpu_set_singleshot_timer, flags) !=
1578			     offsetof(struct vcpu_set_singleshot_timer, flags));
1579		BUILD_BUG_ON(sizeof_field(struct compat_vcpu_set_singleshot_timer, flags) !=
1580			     sizeof_field(struct vcpu_set_singleshot_timer, flags));
1581
1582		if (kvm_read_guest_virt(vcpu, param, &oneshot, longmode ? sizeof(oneshot) :
1583					sizeof(struct compat_vcpu_set_singleshot_timer), &e)) {
1584			*r = -EFAULT;
1585			return true;
1586		}
1587
1588		kvm_xen_start_timer(vcpu, oneshot.timeout_abs_ns, false);
1589		*r = 0;
1590		return true;
1591
1592	case VCPUOP_stop_singleshot_timer:
1593		if (vcpu->arch.xen.vcpu_id != vcpu_id) {
1594			*r = -EINVAL;
1595			return true;
1596		}
1597		kvm_xen_stop_timer(vcpu);
1598		*r = 0;
1599		return true;
1600	}
1601
1602	return false;
1603}
1604
1605static bool kvm_xen_hcall_set_timer_op(struct kvm_vcpu *vcpu, uint64_t timeout,
1606				       u64 *r)
1607{
1608	if (!kvm_xen_timer_enabled(vcpu))
1609		return false;
1610
1611	if (timeout)
1612		kvm_xen_start_timer(vcpu, timeout, true);
1613	else
1614		kvm_xen_stop_timer(vcpu);
1615
1616	*r = 0;
1617	return true;
1618}
1619
1620int kvm_xen_hypercall(struct kvm_vcpu *vcpu)
1621{
1622	bool longmode;
1623	u64 input, params[6], r = -ENOSYS;
1624	bool handled = false;
1625	u8 cpl;
1626
1627	input = (u64)kvm_register_read(vcpu, VCPU_REGS_RAX);
1628
1629	/* Hyper-V hypercalls get bit 31 set in EAX */
1630	if ((input & 0x80000000) &&
1631	    kvm_hv_hypercall_enabled(vcpu))
1632		return kvm_hv_hypercall(vcpu);
1633
1634	longmode = is_64_bit_hypercall(vcpu);
1635	if (!longmode) {
1636		params[0] = (u32)kvm_rbx_read(vcpu);
1637		params[1] = (u32)kvm_rcx_read(vcpu);
1638		params[2] = (u32)kvm_rdx_read(vcpu);
1639		params[3] = (u32)kvm_rsi_read(vcpu);
1640		params[4] = (u32)kvm_rdi_read(vcpu);
1641		params[5] = (u32)kvm_rbp_read(vcpu);
1642	}
1643#ifdef CONFIG_X86_64
1644	else {
1645		params[0] = (u64)kvm_rdi_read(vcpu);
1646		params[1] = (u64)kvm_rsi_read(vcpu);
1647		params[2] = (u64)kvm_rdx_read(vcpu);
1648		params[3] = (u64)kvm_r10_read(vcpu);
1649		params[4] = (u64)kvm_r8_read(vcpu);
1650		params[5] = (u64)kvm_r9_read(vcpu);
1651	}
1652#endif
1653	cpl = static_call(kvm_x86_get_cpl)(vcpu);
1654	trace_kvm_xen_hypercall(cpl, input, params[0], params[1], params[2],
1655				params[3], params[4], params[5]);
1656
1657	/*
1658	 * Only allow hypercall acceleration for CPL0. The rare hypercalls that
1659	 * are permitted in guest userspace can be handled by the VMM.
1660	 */
1661	if (unlikely(cpl > 0))
1662		goto handle_in_userspace;
1663
1664	switch (input) {
1665	case __HYPERVISOR_xen_version:
1666		if (params[0] == XENVER_version && vcpu->kvm->arch.xen.xen_version) {
1667			r = vcpu->kvm->arch.xen.xen_version;
1668			handled = true;
1669		}
1670		break;
1671	case __HYPERVISOR_event_channel_op:
1672		if (params[0] == EVTCHNOP_send)
1673			handled = kvm_xen_hcall_evtchn_send(vcpu, params[1], &r);
1674		break;
1675	case __HYPERVISOR_sched_op:
1676		handled = kvm_xen_hcall_sched_op(vcpu, longmode, params[0],
1677						 params[1], &r);
1678		break;
1679	case __HYPERVISOR_vcpu_op:
1680		handled = kvm_xen_hcall_vcpu_op(vcpu, longmode, params[0], params[1],
1681						params[2], &r);
1682		break;
1683	case __HYPERVISOR_set_timer_op: {
1684		u64 timeout = params[0];
1685		/* In 32-bit mode, the 64-bit timeout is in two 32-bit params. */
1686		if (!longmode)
1687			timeout |= params[1] << 32;
1688		handled = kvm_xen_hcall_set_timer_op(vcpu, timeout, &r);
1689		break;
1690	}
1691	default:
1692		break;
1693	}
1694
1695	if (handled)
1696		return kvm_xen_hypercall_set_result(vcpu, r);
1697
1698handle_in_userspace:
1699	vcpu->run->exit_reason = KVM_EXIT_XEN;
1700	vcpu->run->xen.type = KVM_EXIT_XEN_HCALL;
1701	vcpu->run->xen.u.hcall.longmode = longmode;
1702	vcpu->run->xen.u.hcall.cpl = cpl;
1703	vcpu->run->xen.u.hcall.input = input;
1704	vcpu->run->xen.u.hcall.params[0] = params[0];
1705	vcpu->run->xen.u.hcall.params[1] = params[1];
1706	vcpu->run->xen.u.hcall.params[2] = params[2];
1707	vcpu->run->xen.u.hcall.params[3] = params[3];
1708	vcpu->run->xen.u.hcall.params[4] = params[4];
1709	vcpu->run->xen.u.hcall.params[5] = params[5];
1710	vcpu->arch.xen.hypercall_rip = kvm_get_linear_rip(vcpu);
1711	vcpu->arch.complete_userspace_io =
1712		kvm_xen_hypercall_complete_userspace;
1713
1714	return 0;
1715}
1716
1717static void kvm_xen_check_poller(struct kvm_vcpu *vcpu, int port)
1718{
1719	int poll_evtchn = vcpu->arch.xen.poll_evtchn;
1720
1721	if ((poll_evtchn == port || poll_evtchn == -1) &&
1722	    test_and_clear_bit(vcpu->vcpu_idx, vcpu->kvm->arch.xen.poll_mask)) {
1723		kvm_make_request(KVM_REQ_UNBLOCK, vcpu);
1724		kvm_vcpu_kick(vcpu);
1725	}
1726}
1727
1728/*
1729 * The return value from this function is propagated to kvm_set_irq() API,
1730 * so it returns:
1731 *  < 0   Interrupt was ignored (masked or not delivered for other reasons)
1732 *  = 0   Interrupt was coalesced (previous irq is still pending)
1733 *  > 0   Number of CPUs interrupt was delivered to
1734 *
1735 * It is also called directly from kvm_arch_set_irq_inatomic(), where the
1736 * only check on its return value is a comparison with -EWOULDBLOCK'.
1737 */
1738int kvm_xen_set_evtchn_fast(struct kvm_xen_evtchn *xe, struct kvm *kvm)
1739{
1740	struct gfn_to_pfn_cache *gpc = &kvm->arch.xen.shinfo_cache;
1741	struct kvm_vcpu *vcpu;
1742	unsigned long *pending_bits, *mask_bits;
1743	unsigned long flags;
1744	int port_word_bit;
1745	bool kick_vcpu = false;
1746	int vcpu_idx, idx, rc;
1747
1748	vcpu_idx = READ_ONCE(xe->vcpu_idx);
1749	if (vcpu_idx >= 0)
1750		vcpu = kvm_get_vcpu(kvm, vcpu_idx);
1751	else {
1752		vcpu = kvm_get_vcpu_by_id(kvm, xe->vcpu_id);
1753		if (!vcpu)
1754			return -EINVAL;
1755		WRITE_ONCE(xe->vcpu_idx, vcpu->vcpu_idx);
1756	}
1757
1758	if (xe->port >= max_evtchn_port(kvm))
1759		return -EINVAL;
1760
1761	rc = -EWOULDBLOCK;
1762
1763	idx = srcu_read_lock(&kvm->srcu);
1764
1765	read_lock_irqsave(&gpc->lock, flags);
1766	if (!kvm_gpc_check(gpc, PAGE_SIZE))
1767		goto out_rcu;
1768
1769	if (IS_ENABLED(CONFIG_64BIT) && kvm->arch.xen.long_mode) {
1770		struct shared_info *shinfo = gpc->khva;
1771		pending_bits = (unsigned long *)&shinfo->evtchn_pending;
1772		mask_bits = (unsigned long *)&shinfo->evtchn_mask;
1773		port_word_bit = xe->port / 64;
1774	} else {
1775		struct compat_shared_info *shinfo = gpc->khva;
1776		pending_bits = (unsigned long *)&shinfo->evtchn_pending;
1777		mask_bits = (unsigned long *)&shinfo->evtchn_mask;
1778		port_word_bit = xe->port / 32;
1779	}
1780
1781	/*
1782	 * If this port wasn't already set, and if it isn't masked, then
1783	 * we try to set the corresponding bit in the in-kernel shadow of
1784	 * evtchn_pending_sel for the target vCPU. And if *that* wasn't
1785	 * already set, then we kick the vCPU in question to write to the
1786	 * *real* evtchn_pending_sel in its own guest vcpu_info struct.
1787	 */
1788	if (test_and_set_bit(xe->port, pending_bits)) {
1789		rc = 0; /* It was already raised */
1790	} else if (test_bit(xe->port, mask_bits)) {
1791		rc = -ENOTCONN; /* Masked */
1792		kvm_xen_check_poller(vcpu, xe->port);
1793	} else {
1794		rc = 1; /* Delivered to the bitmap in shared_info. */
1795		/* Now switch to the vCPU's vcpu_info to set the index and pending_sel */
1796		read_unlock_irqrestore(&gpc->lock, flags);
1797		gpc = &vcpu->arch.xen.vcpu_info_cache;
1798
1799		read_lock_irqsave(&gpc->lock, flags);
1800		if (!kvm_gpc_check(gpc, sizeof(struct vcpu_info))) {
1801			/*
1802			 * Could not access the vcpu_info. Set the bit in-kernel
1803			 * and prod the vCPU to deliver it for itself.
1804			 */
1805			if (!test_and_set_bit(port_word_bit, &vcpu->arch.xen.evtchn_pending_sel))
1806				kick_vcpu = true;
1807			goto out_rcu;
1808		}
1809
1810		if (IS_ENABLED(CONFIG_64BIT) && kvm->arch.xen.long_mode) {
1811			struct vcpu_info *vcpu_info = gpc->khva;
1812			if (!test_and_set_bit(port_word_bit, &vcpu_info->evtchn_pending_sel)) {
1813				WRITE_ONCE(vcpu_info->evtchn_upcall_pending, 1);
1814				kick_vcpu = true;
1815			}
1816		} else {
1817			struct compat_vcpu_info *vcpu_info = gpc->khva;
1818			if (!test_and_set_bit(port_word_bit,
1819					      (unsigned long *)&vcpu_info->evtchn_pending_sel)) {
1820				WRITE_ONCE(vcpu_info->evtchn_upcall_pending, 1);
1821				kick_vcpu = true;
1822			}
1823		}
1824
1825		/* For the per-vCPU lapic vector, deliver it as MSI. */
1826		if (kick_vcpu && vcpu->arch.xen.upcall_vector) {
1827			kvm_xen_inject_vcpu_vector(vcpu);
1828			kick_vcpu = false;
1829		}
1830	}
1831
1832 out_rcu:
1833	read_unlock_irqrestore(&gpc->lock, flags);
1834	srcu_read_unlock(&kvm->srcu, idx);
1835
1836	if (kick_vcpu) {
1837		kvm_make_request(KVM_REQ_UNBLOCK, vcpu);
1838		kvm_vcpu_kick(vcpu);
1839	}
1840
1841	return rc;
1842}
1843
1844static int kvm_xen_set_evtchn(struct kvm_xen_evtchn *xe, struct kvm *kvm)
1845{
1846	bool mm_borrowed = false;
1847	int rc;
1848
1849	rc = kvm_xen_set_evtchn_fast(xe, kvm);
1850	if (rc != -EWOULDBLOCK)
1851		return rc;
1852
1853	if (current->mm != kvm->mm) {
1854		/*
1855		 * If not on a thread which already belongs to this KVM,
1856		 * we'd better be in the irqfd workqueue.
1857		 */
1858		if (WARN_ON_ONCE(current->mm))
1859			return -EINVAL;
1860
1861		kthread_use_mm(kvm->mm);
1862		mm_borrowed = true;
1863	}
1864
1865	/*
1866	 * It is theoretically possible for the page to be unmapped
1867	 * and the MMU notifier to invalidate the shared_info before
1868	 * we even get to use it. In that case, this looks like an
1869	 * infinite loop. It was tempting to do it via the userspace
1870	 * HVA instead... but that just *hides* the fact that it's
1871	 * an infinite loop, because if a fault occurs and it waits
1872	 * for the page to come back, it can *still* immediately
1873	 * fault and have to wait again, repeatedly.
1874	 *
1875	 * Conversely, the page could also have been reinstated by
1876	 * another thread before we even obtain the mutex above, so
1877	 * check again *first* before remapping it.
1878	 */
1879	do {
1880		struct gfn_to_pfn_cache *gpc = &kvm->arch.xen.shinfo_cache;
1881		int idx;
1882
1883		rc = kvm_xen_set_evtchn_fast(xe, kvm);
1884		if (rc != -EWOULDBLOCK)
1885			break;
1886
1887		idx = srcu_read_lock(&kvm->srcu);
1888		rc = kvm_gpc_refresh(gpc, PAGE_SIZE);
1889		srcu_read_unlock(&kvm->srcu, idx);
1890	} while(!rc);
1891
1892	if (mm_borrowed)
1893		kthread_unuse_mm(kvm->mm);
1894
1895	return rc;
1896}
1897
1898/* This is the version called from kvm_set_irq() as the .set function */
1899static int evtchn_set_fn(struct kvm_kernel_irq_routing_entry *e, struct kvm *kvm,
1900			 int irq_source_id, int level, bool line_status)
1901{
1902	if (!level)
1903		return -EINVAL;
1904
1905	return kvm_xen_set_evtchn(&e->xen_evtchn, kvm);
1906}
1907
1908/*
1909 * Set up an event channel interrupt from the KVM IRQ routing table.
1910 * Used for e.g. PIRQ from passed through physical devices.
1911 */
1912int kvm_xen_setup_evtchn(struct kvm *kvm,
1913			 struct kvm_kernel_irq_routing_entry *e,
1914			 const struct kvm_irq_routing_entry *ue)
1915
1916{
1917	struct kvm_vcpu *vcpu;
1918
1919	if (ue->u.xen_evtchn.port >= max_evtchn_port(kvm))
1920		return -EINVAL;
1921
1922	/* We only support 2 level event channels for now */
1923	if (ue->u.xen_evtchn.priority != KVM_IRQ_ROUTING_XEN_EVTCHN_PRIO_2LEVEL)
1924		return -EINVAL;
1925
1926	/*
1927	 * Xen gives us interesting mappings from vCPU index to APIC ID,
1928	 * which means kvm_get_vcpu_by_id() has to iterate over all vCPUs
1929	 * to find it. Do that once at setup time, instead of every time.
1930	 * But beware that on live update / live migration, the routing
1931	 * table might be reinstated before the vCPU threads have finished
1932	 * recreating their vCPUs.
1933	 */
1934	vcpu = kvm_get_vcpu_by_id(kvm, ue->u.xen_evtchn.vcpu);
1935	if (vcpu)
1936		e->xen_evtchn.vcpu_idx = vcpu->vcpu_idx;
1937	else
1938		e->xen_evtchn.vcpu_idx = -1;
1939
1940	e->xen_evtchn.port = ue->u.xen_evtchn.port;
1941	e->xen_evtchn.vcpu_id = ue->u.xen_evtchn.vcpu;
1942	e->xen_evtchn.priority = ue->u.xen_evtchn.priority;
1943	e->set = evtchn_set_fn;
1944
1945	return 0;
1946}
1947
1948/*
1949 * Explicit event sending from userspace with KVM_XEN_HVM_EVTCHN_SEND ioctl.
1950 */
1951int kvm_xen_hvm_evtchn_send(struct kvm *kvm, struct kvm_irq_routing_xen_evtchn *uxe)
1952{
1953	struct kvm_xen_evtchn e;
1954	int ret;
1955
1956	if (!uxe->port || uxe->port >= max_evtchn_port(kvm))
1957		return -EINVAL;
1958
1959	/* We only support 2 level event channels for now */
1960	if (uxe->priority != KVM_IRQ_ROUTING_XEN_EVTCHN_PRIO_2LEVEL)
1961		return -EINVAL;
1962
1963	e.port = uxe->port;
1964	e.vcpu_id = uxe->vcpu;
1965	e.vcpu_idx = -1;
1966	e.priority = uxe->priority;
1967
1968	ret = kvm_xen_set_evtchn(&e, kvm);
1969
1970	/*
1971	 * None of that 'return 1 if it actually got delivered' nonsense.
1972	 * We don't care if it was masked (-ENOTCONN) either.
1973	 */
1974	if (ret > 0 || ret == -ENOTCONN)
1975		ret = 0;
1976
1977	return ret;
1978}
1979
1980/*
1981 * Support for *outbound* event channel events via the EVTCHNOP_send hypercall.
1982 */
1983struct evtchnfd {
1984	u32 send_port;
1985	u32 type;
1986	union {
1987		struct kvm_xen_evtchn port;
1988		struct {
1989			u32 port; /* zero */
1990			struct eventfd_ctx *ctx;
1991		} eventfd;
1992	} deliver;
1993};
1994
1995/*
1996 * Update target vCPU or priority for a registered sending channel.
1997 */
1998static int kvm_xen_eventfd_update(struct kvm *kvm,
1999				  struct kvm_xen_hvm_attr *data)
2000{
2001	u32 port = data->u.evtchn.send_port;
2002	struct evtchnfd *evtchnfd;
2003	int ret;
2004
2005	/* Protect writes to evtchnfd as well as the idr lookup.  */
2006	mutex_lock(&kvm->arch.xen.xen_lock);
2007	evtchnfd = idr_find(&kvm->arch.xen.evtchn_ports, port);
2008
2009	ret = -ENOENT;
2010	if (!evtchnfd)
2011		goto out_unlock;
2012
2013	/* For an UPDATE, nothing may change except the priority/vcpu */
2014	ret = -EINVAL;
2015	if (evtchnfd->type != data->u.evtchn.type)
2016		goto out_unlock;
2017
2018	/*
2019	 * Port cannot change, and if it's zero that was an eventfd
2020	 * which can't be changed either.
2021	 */
2022	if (!evtchnfd->deliver.port.port ||
2023	    evtchnfd->deliver.port.port != data->u.evtchn.deliver.port.port)
2024		goto out_unlock;
2025
2026	/* We only support 2 level event channels for now */
2027	if (data->u.evtchn.deliver.port.priority != KVM_IRQ_ROUTING_XEN_EVTCHN_PRIO_2LEVEL)
2028		goto out_unlock;
2029
2030	evtchnfd->deliver.port.priority = data->u.evtchn.deliver.port.priority;
2031	if (evtchnfd->deliver.port.vcpu_id != data->u.evtchn.deliver.port.vcpu) {
2032		evtchnfd->deliver.port.vcpu_id = data->u.evtchn.deliver.port.vcpu;
2033		evtchnfd->deliver.port.vcpu_idx = -1;
2034	}
2035	ret = 0;
2036out_unlock:
2037	mutex_unlock(&kvm->arch.xen.xen_lock);
2038	return ret;
2039}
2040
2041/*
2042 * Configure the target (eventfd or local port delivery) for sending on
2043 * a given event channel.
2044 */
2045static int kvm_xen_eventfd_assign(struct kvm *kvm,
2046				  struct kvm_xen_hvm_attr *data)
2047{
2048	u32 port = data->u.evtchn.send_port;
2049	struct eventfd_ctx *eventfd = NULL;
2050	struct evtchnfd *evtchnfd;
2051	int ret = -EINVAL;
2052
2053	evtchnfd = kzalloc(sizeof(struct evtchnfd), GFP_KERNEL);
2054	if (!evtchnfd)
2055		return -ENOMEM;
2056
2057	switch(data->u.evtchn.type) {
2058	case EVTCHNSTAT_ipi:
2059		/* IPI  must map back to the same port# */
2060		if (data->u.evtchn.deliver.port.port != data->u.evtchn.send_port)
2061			goto out_noeventfd; /* -EINVAL */
2062		break;
2063
2064	case EVTCHNSTAT_interdomain:
2065		if (data->u.evtchn.deliver.port.port) {
2066			if (data->u.evtchn.deliver.port.port >= max_evtchn_port(kvm))
2067				goto out_noeventfd; /* -EINVAL */
2068		} else {
2069			eventfd = eventfd_ctx_fdget(data->u.evtchn.deliver.eventfd.fd);
2070			if (IS_ERR(eventfd)) {
2071				ret = PTR_ERR(eventfd);
2072				goto out_noeventfd;
2073			}
2074		}
2075		break;
2076
2077	case EVTCHNSTAT_virq:
2078	case EVTCHNSTAT_closed:
2079	case EVTCHNSTAT_unbound:
2080	case EVTCHNSTAT_pirq:
2081	default: /* Unknown event channel type */
2082		goto out; /* -EINVAL */
2083	}
2084
2085	evtchnfd->send_port = data->u.evtchn.send_port;
2086	evtchnfd->type = data->u.evtchn.type;
2087	if (eventfd) {
2088		evtchnfd->deliver.eventfd.ctx = eventfd;
2089	} else {
2090		/* We only support 2 level event channels for now */
2091		if (data->u.evtchn.deliver.port.priority != KVM_IRQ_ROUTING_XEN_EVTCHN_PRIO_2LEVEL)
2092			goto out; /* -EINVAL; */
2093
2094		evtchnfd->deliver.port.port = data->u.evtchn.deliver.port.port;
2095		evtchnfd->deliver.port.vcpu_id = data->u.evtchn.deliver.port.vcpu;
2096		evtchnfd->deliver.port.vcpu_idx = -1;
2097		evtchnfd->deliver.port.priority = data->u.evtchn.deliver.port.priority;
2098	}
2099
2100	mutex_lock(&kvm->arch.xen.xen_lock);
2101	ret = idr_alloc(&kvm->arch.xen.evtchn_ports, evtchnfd, port, port + 1,
2102			GFP_KERNEL);
2103	mutex_unlock(&kvm->arch.xen.xen_lock);
2104	if (ret >= 0)
2105		return 0;
2106
2107	if (ret == -ENOSPC)
2108		ret = -EEXIST;
2109out:
2110	if (eventfd)
2111		eventfd_ctx_put(eventfd);
2112out_noeventfd:
2113	kfree(evtchnfd);
2114	return ret;
2115}
2116
2117static int kvm_xen_eventfd_deassign(struct kvm *kvm, u32 port)
2118{
2119	struct evtchnfd *evtchnfd;
2120
2121	mutex_lock(&kvm->arch.xen.xen_lock);
2122	evtchnfd = idr_remove(&kvm->arch.xen.evtchn_ports, port);
2123	mutex_unlock(&kvm->arch.xen.xen_lock);
2124
2125	if (!evtchnfd)
2126		return -ENOENT;
2127
2128	synchronize_srcu(&kvm->srcu);
2129	if (!evtchnfd->deliver.port.port)
2130		eventfd_ctx_put(evtchnfd->deliver.eventfd.ctx);
2131	kfree(evtchnfd);
2132	return 0;
2133}
2134
2135static int kvm_xen_eventfd_reset(struct kvm *kvm)
2136{
2137	struct evtchnfd *evtchnfd, **all_evtchnfds;
2138	int i;
2139	int n = 0;
2140
2141	mutex_lock(&kvm->arch.xen.xen_lock);
2142
2143	/*
2144	 * Because synchronize_srcu() cannot be called inside the
2145	 * critical section, first collect all the evtchnfd objects
2146	 * in an array as they are removed from evtchn_ports.
2147	 */
2148	idr_for_each_entry(&kvm->arch.xen.evtchn_ports, evtchnfd, i)
2149		n++;
2150
2151	all_evtchnfds = kmalloc_array(n, sizeof(struct evtchnfd *), GFP_KERNEL);
2152	if (!all_evtchnfds) {
2153		mutex_unlock(&kvm->arch.xen.xen_lock);
2154		return -ENOMEM;
2155	}
2156
2157	n = 0;
2158	idr_for_each_entry(&kvm->arch.xen.evtchn_ports, evtchnfd, i) {
2159		all_evtchnfds[n++] = evtchnfd;
2160		idr_remove(&kvm->arch.xen.evtchn_ports, evtchnfd->send_port);
2161	}
2162	mutex_unlock(&kvm->arch.xen.xen_lock);
2163
2164	synchronize_srcu(&kvm->srcu);
2165
2166	while (n--) {
2167		evtchnfd = all_evtchnfds[n];
2168		if (!evtchnfd->deliver.port.port)
2169			eventfd_ctx_put(evtchnfd->deliver.eventfd.ctx);
2170		kfree(evtchnfd);
2171	}
2172	kfree(all_evtchnfds);
2173
2174	return 0;
2175}
2176
2177static int kvm_xen_setattr_evtchn(struct kvm *kvm, struct kvm_xen_hvm_attr *data)
2178{
2179	u32 port = data->u.evtchn.send_port;
2180
2181	if (data->u.evtchn.flags == KVM_XEN_EVTCHN_RESET)
2182		return kvm_xen_eventfd_reset(kvm);
2183
2184	if (!port || port >= max_evtchn_port(kvm))
2185		return -EINVAL;
2186
2187	if (data->u.evtchn.flags == KVM_XEN_EVTCHN_DEASSIGN)
2188		return kvm_xen_eventfd_deassign(kvm, port);
2189	if (data->u.evtchn.flags == KVM_XEN_EVTCHN_UPDATE)
2190		return kvm_xen_eventfd_update(kvm, data);
2191	if (data->u.evtchn.flags)
2192		return -EINVAL;
2193
2194	return kvm_xen_eventfd_assign(kvm, data);
2195}
2196
2197static bool kvm_xen_hcall_evtchn_send(struct kvm_vcpu *vcpu, u64 param, u64 *r)
2198{
2199	struct evtchnfd *evtchnfd;
2200	struct evtchn_send send;
2201	struct x86_exception e;
2202
2203	/* Sanity check: this structure is the same for 32-bit and 64-bit */
2204	BUILD_BUG_ON(sizeof(send) != 4);
2205	if (kvm_read_guest_virt(vcpu, param, &send, sizeof(send), &e)) {
2206		*r = -EFAULT;
2207		return true;
2208	}
2209
2210	/*
2211	 * evtchnfd is protected by kvm->srcu; the idr lookup instead
2212	 * is protected by RCU.
2213	 */
2214	rcu_read_lock();
2215	evtchnfd = idr_find(&vcpu->kvm->arch.xen.evtchn_ports, send.port);
2216	rcu_read_unlock();
2217	if (!evtchnfd)
2218		return false;
2219
2220	if (evtchnfd->deliver.port.port) {
2221		int ret = kvm_xen_set_evtchn(&evtchnfd->deliver.port, vcpu->kvm);
2222		if (ret < 0 && ret != -ENOTCONN)
2223			return false;
2224	} else {
2225		eventfd_signal(evtchnfd->deliver.eventfd.ctx);
2226	}
2227
2228	*r = 0;
2229	return true;
2230}
2231
2232void kvm_xen_init_vcpu(struct kvm_vcpu *vcpu)
2233{
2234	vcpu->arch.xen.vcpu_id = vcpu->vcpu_idx;
2235	vcpu->arch.xen.poll_evtchn = 0;
2236
2237	timer_setup(&vcpu->arch.xen.poll_timer, cancel_evtchn_poll, 0);
2238
2239	kvm_gpc_init(&vcpu->arch.xen.runstate_cache, vcpu->kvm);
2240	kvm_gpc_init(&vcpu->arch.xen.runstate2_cache, vcpu->kvm);
2241	kvm_gpc_init(&vcpu->arch.xen.vcpu_info_cache, vcpu->kvm);
2242	kvm_gpc_init(&vcpu->arch.xen.vcpu_time_info_cache, vcpu->kvm);
2243}
2244
2245void kvm_xen_destroy_vcpu(struct kvm_vcpu *vcpu)
2246{
2247	if (kvm_xen_timer_enabled(vcpu))
2248		kvm_xen_stop_timer(vcpu);
2249
2250	kvm_gpc_deactivate(&vcpu->arch.xen.runstate_cache);
2251	kvm_gpc_deactivate(&vcpu->arch.xen.runstate2_cache);
2252	kvm_gpc_deactivate(&vcpu->arch.xen.vcpu_info_cache);
2253	kvm_gpc_deactivate(&vcpu->arch.xen.vcpu_time_info_cache);
2254
2255	del_timer_sync(&vcpu->arch.xen.poll_timer);
2256}
2257
2258void kvm_xen_update_tsc_info(struct kvm_vcpu *vcpu)
2259{
2260	struct kvm_cpuid_entry2 *entry;
2261	u32 function;
2262
2263	if (!vcpu->arch.xen.cpuid.base)
2264		return;
2265
2266	function = vcpu->arch.xen.cpuid.base | XEN_CPUID_LEAF(3);
2267	if (function > vcpu->arch.xen.cpuid.limit)
2268		return;
2269
2270	entry = kvm_find_cpuid_entry_index(vcpu, function, 1);
2271	if (entry) {
2272		entry->ecx = vcpu->arch.hv_clock.tsc_to_system_mul;
2273		entry->edx = vcpu->arch.hv_clock.tsc_shift;
2274	}
2275
2276	entry = kvm_find_cpuid_entry_index(vcpu, function, 2);
2277	if (entry)
2278		entry->eax = vcpu->arch.hw_tsc_khz;
2279}
2280
2281void kvm_xen_init_vm(struct kvm *kvm)
2282{
2283	mutex_init(&kvm->arch.xen.xen_lock);
2284	idr_init(&kvm->arch.xen.evtchn_ports);
2285	kvm_gpc_init(&kvm->arch.xen.shinfo_cache, kvm);
2286}
2287
2288void kvm_xen_destroy_vm(struct kvm *kvm)
2289{
2290	struct evtchnfd *evtchnfd;
2291	int i;
2292
2293	kvm_gpc_deactivate(&kvm->arch.xen.shinfo_cache);
2294
2295	idr_for_each_entry(&kvm->arch.xen.evtchn_ports, evtchnfd, i) {
2296		if (!evtchnfd->deliver.port.port)
2297			eventfd_ctx_put(evtchnfd->deliver.eventfd.ctx);
2298		kfree(evtchnfd);
2299	}
2300	idr_destroy(&kvm->arch.xen.evtchn_ports);
2301
2302	if (kvm->arch.xen_hvm_config.msr)
2303		static_branch_slow_dec_deferred(&kvm_xen_enabled);
2304}
2305