1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * Kernel-based Virtual Machine driver for Linux
4 *
5 * derived from drivers/kvm/kvm_main.c
6 *
7 * Copyright (C) 2006 Qumranet, Inc.
8 * Copyright (C) 2008 Qumranet, Inc.
9 * Copyright IBM Corporation, 2008
10 * Copyright 2010 Red Hat, Inc. and/or its affiliates.
11 *
12 * Authors:
13 *   Avi Kivity   <avi@qumranet.com>
14 *   Yaniv Kamay  <yaniv@qumranet.com>
15 *   Amit Shah    <amit.shah@qumranet.com>
16 *   Ben-Ami Yassour <benami@il.ibm.com>
17 */
18#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
19
20#include <linux/kvm_host.h>
21#include "irq.h"
22#include "ioapic.h"
23#include "mmu.h"
24#include "i8254.h"
25#include "tss.h"
26#include "kvm_cache_regs.h"
27#include "kvm_emulate.h"
28#include "mmu/page_track.h"
29#include "x86.h"
30#include "cpuid.h"
31#include "pmu.h"
32#include "hyperv.h"
33#include "lapic.h"
34#include "xen.h"
35#include "smm.h"
36
37#include <linux/clocksource.h>
38#include <linux/interrupt.h>
39#include <linux/kvm.h>
40#include <linux/fs.h>
41#include <linux/vmalloc.h>
42#include <linux/export.h>
43#include <linux/moduleparam.h>
44#include <linux/mman.h>
45#include <linux/highmem.h>
46#include <linux/iommu.h>
47#include <linux/cpufreq.h>
48#include <linux/user-return-notifier.h>
49#include <linux/srcu.h>
50#include <linux/slab.h>
51#include <linux/perf_event.h>
52#include <linux/uaccess.h>
53#include <linux/hash.h>
54#include <linux/pci.h>
55#include <linux/timekeeper_internal.h>
56#include <linux/pvclock_gtod.h>
57#include <linux/kvm_irqfd.h>
58#include <linux/irqbypass.h>
59#include <linux/sched/stat.h>
60#include <linux/sched/isolation.h>
61#include <linux/mem_encrypt.h>
62#include <linux/entry-kvm.h>
63#include <linux/suspend.h>
64#include <linux/smp.h>
65
66#include <trace/events/ipi.h>
67#include <trace/events/kvm.h>
68
69#include <asm/debugreg.h>
70#include <asm/msr.h>
71#include <asm/desc.h>
72#include <asm/mce.h>
73#include <asm/pkru.h>
74#include <linux/kernel_stat.h>
75#include <asm/fpu/api.h>
76#include <asm/fpu/xcr.h>
77#include <asm/fpu/xstate.h>
78#include <asm/pvclock.h>
79#include <asm/div64.h>
80#include <asm/irq_remapping.h>
81#include <asm/mshyperv.h>
82#include <asm/hypervisor.h>
83#include <asm/tlbflush.h>
84#include <asm/intel_pt.h>
85#include <asm/emulate_prefix.h>
86#include <asm/sgx.h>
87#include <clocksource/hyperv_timer.h>
88
89#define CREATE_TRACE_POINTS
90#include "trace.h"
91
92#define MAX_IO_MSRS 256
93#define KVM_MAX_MCE_BANKS 32
94
95struct kvm_caps kvm_caps __read_mostly = {
96	.supported_mce_cap = MCG_CTL_P | MCG_SER_P,
97};
98EXPORT_SYMBOL_GPL(kvm_caps);
99
100#define  ERR_PTR_USR(e)  ((void __user *)ERR_PTR(e))
101
102#define emul_to_vcpu(ctxt) \
103	((struct kvm_vcpu *)(ctxt)->vcpu)
104
105/* EFER defaults:
106 * - enable syscall per default because its emulated by KVM
107 * - enable LME and LMA per default on 64 bit KVM
108 */
109#ifdef CONFIG_X86_64
110static
111u64 __read_mostly efer_reserved_bits = ~((u64)(EFER_SCE | EFER_LME | EFER_LMA));
112#else
113static u64 __read_mostly efer_reserved_bits = ~((u64)EFER_SCE);
114#endif
115
116static u64 __read_mostly cr4_reserved_bits = CR4_RESERVED_BITS;
117
118#define KVM_EXIT_HYPERCALL_VALID_MASK (1 << KVM_HC_MAP_GPA_RANGE)
119
120#define KVM_CAP_PMU_VALID_MASK KVM_PMU_CAP_DISABLE
121
122#define KVM_X2APIC_API_VALID_FLAGS (KVM_X2APIC_API_USE_32BIT_IDS | \
123                                    KVM_X2APIC_API_DISABLE_BROADCAST_QUIRK)
124
125static void update_cr8_intercept(struct kvm_vcpu *vcpu);
126static void process_nmi(struct kvm_vcpu *vcpu);
127static void __kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags);
128static void store_regs(struct kvm_vcpu *vcpu);
129static int sync_regs(struct kvm_vcpu *vcpu);
130static int kvm_vcpu_do_singlestep(struct kvm_vcpu *vcpu);
131
132static int __set_sregs2(struct kvm_vcpu *vcpu, struct kvm_sregs2 *sregs2);
133static void __get_sregs2(struct kvm_vcpu *vcpu, struct kvm_sregs2 *sregs2);
134
135static DEFINE_MUTEX(vendor_module_lock);
136struct kvm_x86_ops kvm_x86_ops __read_mostly;
137
138#define KVM_X86_OP(func)					     \
139	DEFINE_STATIC_CALL_NULL(kvm_x86_##func,			     \
140				*(((struct kvm_x86_ops *)0)->func));
141#define KVM_X86_OP_OPTIONAL KVM_X86_OP
142#define KVM_X86_OP_OPTIONAL_RET0 KVM_X86_OP
143#include <asm/kvm-x86-ops.h>
144EXPORT_STATIC_CALL_GPL(kvm_x86_get_cs_db_l_bits);
145EXPORT_STATIC_CALL_GPL(kvm_x86_cache_reg);
146
147static bool __read_mostly ignore_msrs = 0;
148module_param(ignore_msrs, bool, 0644);
149
150bool __read_mostly report_ignored_msrs = true;
151module_param(report_ignored_msrs, bool, 0644);
152EXPORT_SYMBOL_GPL(report_ignored_msrs);
153
154unsigned int min_timer_period_us = 200;
155module_param(min_timer_period_us, uint, 0644);
156
157static bool __read_mostly kvmclock_periodic_sync = true;
158module_param(kvmclock_periodic_sync, bool, 0444);
159
160/* tsc tolerance in parts per million - default to 1/2 of the NTP threshold */
161static u32 __read_mostly tsc_tolerance_ppm = 250;
162module_param(tsc_tolerance_ppm, uint, 0644);
163
164/*
165 * lapic timer advance (tscdeadline mode only) in nanoseconds.  '-1' enables
166 * adaptive tuning starting from default advancement of 1000ns.  '0' disables
167 * advancement entirely.  Any other value is used as-is and disables adaptive
168 * tuning, i.e. allows privileged userspace to set an exact advancement time.
169 */
170static int __read_mostly lapic_timer_advance_ns = -1;
171module_param(lapic_timer_advance_ns, int, 0644);
172
173static bool __read_mostly vector_hashing = true;
174module_param(vector_hashing, bool, 0444);
175
176bool __read_mostly enable_vmware_backdoor = false;
177module_param(enable_vmware_backdoor, bool, 0444);
178EXPORT_SYMBOL_GPL(enable_vmware_backdoor);
179
180/*
181 * Flags to manipulate forced emulation behavior (any non-zero value will
182 * enable forced emulation).
183 */
184#define KVM_FEP_CLEAR_RFLAGS_RF	BIT(1)
185static int __read_mostly force_emulation_prefix;
186module_param(force_emulation_prefix, int, 0644);
187
188int __read_mostly pi_inject_timer = -1;
189module_param(pi_inject_timer, bint, 0644);
190
191/* Enable/disable PMU virtualization */
192bool __read_mostly enable_pmu = true;
193EXPORT_SYMBOL_GPL(enable_pmu);
194module_param(enable_pmu, bool, 0444);
195
196bool __read_mostly eager_page_split = true;
197module_param(eager_page_split, bool, 0644);
198
199/* Enable/disable SMT_RSB bug mitigation */
200static bool __read_mostly mitigate_smt_rsb;
201module_param(mitigate_smt_rsb, bool, 0444);
202
203/*
204 * Restoring the host value for MSRs that are only consumed when running in
205 * usermode, e.g. SYSCALL MSRs and TSC_AUX, can be deferred until the CPU
206 * returns to userspace, i.e. the kernel can run with the guest's value.
207 */
208#define KVM_MAX_NR_USER_RETURN_MSRS 16
209
210struct kvm_user_return_msrs {
211	struct user_return_notifier urn;
212	bool registered;
213	struct kvm_user_return_msr_values {
214		u64 host;
215		u64 curr;
216	} values[KVM_MAX_NR_USER_RETURN_MSRS];
217};
218
219u32 __read_mostly kvm_nr_uret_msrs;
220EXPORT_SYMBOL_GPL(kvm_nr_uret_msrs);
221static u32 __read_mostly kvm_uret_msrs_list[KVM_MAX_NR_USER_RETURN_MSRS];
222static struct kvm_user_return_msrs __percpu *user_return_msrs;
223
224#define KVM_SUPPORTED_XCR0     (XFEATURE_MASK_FP | XFEATURE_MASK_SSE \
225				| XFEATURE_MASK_YMM | XFEATURE_MASK_BNDREGS \
226				| XFEATURE_MASK_BNDCSR | XFEATURE_MASK_AVX512 \
227				| XFEATURE_MASK_PKRU | XFEATURE_MASK_XTILE)
228
229u64 __read_mostly host_efer;
230EXPORT_SYMBOL_GPL(host_efer);
231
232bool __read_mostly allow_smaller_maxphyaddr = 0;
233EXPORT_SYMBOL_GPL(allow_smaller_maxphyaddr);
234
235bool __read_mostly enable_apicv = true;
236EXPORT_SYMBOL_GPL(enable_apicv);
237
238u64 __read_mostly host_xss;
239EXPORT_SYMBOL_GPL(host_xss);
240
241u64 __read_mostly host_arch_capabilities;
242EXPORT_SYMBOL_GPL(host_arch_capabilities);
243
244const struct _kvm_stats_desc kvm_vm_stats_desc[] = {
245	KVM_GENERIC_VM_STATS(),
246	STATS_DESC_COUNTER(VM, mmu_shadow_zapped),
247	STATS_DESC_COUNTER(VM, mmu_pte_write),
248	STATS_DESC_COUNTER(VM, mmu_pde_zapped),
249	STATS_DESC_COUNTER(VM, mmu_flooded),
250	STATS_DESC_COUNTER(VM, mmu_recycled),
251	STATS_DESC_COUNTER(VM, mmu_cache_miss),
252	STATS_DESC_ICOUNTER(VM, mmu_unsync),
253	STATS_DESC_ICOUNTER(VM, pages_4k),
254	STATS_DESC_ICOUNTER(VM, pages_2m),
255	STATS_DESC_ICOUNTER(VM, pages_1g),
256	STATS_DESC_ICOUNTER(VM, nx_lpage_splits),
257	STATS_DESC_PCOUNTER(VM, max_mmu_rmap_size),
258	STATS_DESC_PCOUNTER(VM, max_mmu_page_hash_collisions)
259};
260
261const struct kvm_stats_header kvm_vm_stats_header = {
262	.name_size = KVM_STATS_NAME_SIZE,
263	.num_desc = ARRAY_SIZE(kvm_vm_stats_desc),
264	.id_offset = sizeof(struct kvm_stats_header),
265	.desc_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE,
266	.data_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE +
267		       sizeof(kvm_vm_stats_desc),
268};
269
270const struct _kvm_stats_desc kvm_vcpu_stats_desc[] = {
271	KVM_GENERIC_VCPU_STATS(),
272	STATS_DESC_COUNTER(VCPU, pf_taken),
273	STATS_DESC_COUNTER(VCPU, pf_fixed),
274	STATS_DESC_COUNTER(VCPU, pf_emulate),
275	STATS_DESC_COUNTER(VCPU, pf_spurious),
276	STATS_DESC_COUNTER(VCPU, pf_fast),
277	STATS_DESC_COUNTER(VCPU, pf_mmio_spte_created),
278	STATS_DESC_COUNTER(VCPU, pf_guest),
279	STATS_DESC_COUNTER(VCPU, tlb_flush),
280	STATS_DESC_COUNTER(VCPU, invlpg),
281	STATS_DESC_COUNTER(VCPU, exits),
282	STATS_DESC_COUNTER(VCPU, io_exits),
283	STATS_DESC_COUNTER(VCPU, mmio_exits),
284	STATS_DESC_COUNTER(VCPU, signal_exits),
285	STATS_DESC_COUNTER(VCPU, irq_window_exits),
286	STATS_DESC_COUNTER(VCPU, nmi_window_exits),
287	STATS_DESC_COUNTER(VCPU, l1d_flush),
288	STATS_DESC_COUNTER(VCPU, halt_exits),
289	STATS_DESC_COUNTER(VCPU, request_irq_exits),
290	STATS_DESC_COUNTER(VCPU, irq_exits),
291	STATS_DESC_COUNTER(VCPU, host_state_reload),
292	STATS_DESC_COUNTER(VCPU, fpu_reload),
293	STATS_DESC_COUNTER(VCPU, insn_emulation),
294	STATS_DESC_COUNTER(VCPU, insn_emulation_fail),
295	STATS_DESC_COUNTER(VCPU, hypercalls),
296	STATS_DESC_COUNTER(VCPU, irq_injections),
297	STATS_DESC_COUNTER(VCPU, nmi_injections),
298	STATS_DESC_COUNTER(VCPU, req_event),
299	STATS_DESC_COUNTER(VCPU, nested_run),
300	STATS_DESC_COUNTER(VCPU, directed_yield_attempted),
301	STATS_DESC_COUNTER(VCPU, directed_yield_successful),
302	STATS_DESC_COUNTER(VCPU, preemption_reported),
303	STATS_DESC_COUNTER(VCPU, preemption_other),
304	STATS_DESC_IBOOLEAN(VCPU, guest_mode),
305	STATS_DESC_COUNTER(VCPU, notify_window_exits),
306};
307
308const struct kvm_stats_header kvm_vcpu_stats_header = {
309	.name_size = KVM_STATS_NAME_SIZE,
310	.num_desc = ARRAY_SIZE(kvm_vcpu_stats_desc),
311	.id_offset = sizeof(struct kvm_stats_header),
312	.desc_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE,
313	.data_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE +
314		       sizeof(kvm_vcpu_stats_desc),
315};
316
317u64 __read_mostly host_xcr0;
318
319static struct kmem_cache *x86_emulator_cache;
320
321/*
322 * When called, it means the previous get/set msr reached an invalid msr.
323 * Return true if we want to ignore/silent this failed msr access.
324 */
325static bool kvm_msr_ignored_check(u32 msr, u64 data, bool write)
326{
327	const char *op = write ? "wrmsr" : "rdmsr";
328
329	if (ignore_msrs) {
330		if (report_ignored_msrs)
331			kvm_pr_unimpl("ignored %s: 0x%x data 0x%llx\n",
332				      op, msr, data);
333		/* Mask the error */
334		return true;
335	} else {
336		kvm_debug_ratelimited("unhandled %s: 0x%x data 0x%llx\n",
337				      op, msr, data);
338		return false;
339	}
340}
341
342static struct kmem_cache *kvm_alloc_emulator_cache(void)
343{
344	unsigned int useroffset = offsetof(struct x86_emulate_ctxt, src);
345	unsigned int size = sizeof(struct x86_emulate_ctxt);
346
347	return kmem_cache_create_usercopy("x86_emulator", size,
348					  __alignof__(struct x86_emulate_ctxt),
349					  SLAB_ACCOUNT, useroffset,
350					  size - useroffset, NULL);
351}
352
353static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt);
354
355static inline void kvm_async_pf_hash_reset(struct kvm_vcpu *vcpu)
356{
357	int i;
358	for (i = 0; i < ASYNC_PF_PER_VCPU; i++)
359		vcpu->arch.apf.gfns[i] = ~0;
360}
361
362static void kvm_on_user_return(struct user_return_notifier *urn)
363{
364	unsigned slot;
365	struct kvm_user_return_msrs *msrs
366		= container_of(urn, struct kvm_user_return_msrs, urn);
367	struct kvm_user_return_msr_values *values;
368	unsigned long flags;
369
370	/*
371	 * Disabling irqs at this point since the following code could be
372	 * interrupted and executed through kvm_arch_hardware_disable()
373	 */
374	local_irq_save(flags);
375	if (msrs->registered) {
376		msrs->registered = false;
377		user_return_notifier_unregister(urn);
378	}
379	local_irq_restore(flags);
380	for (slot = 0; slot < kvm_nr_uret_msrs; ++slot) {
381		values = &msrs->values[slot];
382		if (values->host != values->curr) {
383			wrmsrl(kvm_uret_msrs_list[slot], values->host);
384			values->curr = values->host;
385		}
386	}
387}
388
389static int kvm_probe_user_return_msr(u32 msr)
390{
391	u64 val;
392	int ret;
393
394	preempt_disable();
395	ret = rdmsrl_safe(msr, &val);
396	if (ret)
397		goto out;
398	ret = wrmsrl_safe(msr, val);
399out:
400	preempt_enable();
401	return ret;
402}
403
404int kvm_add_user_return_msr(u32 msr)
405{
406	BUG_ON(kvm_nr_uret_msrs >= KVM_MAX_NR_USER_RETURN_MSRS);
407
408	if (kvm_probe_user_return_msr(msr))
409		return -1;
410
411	kvm_uret_msrs_list[kvm_nr_uret_msrs] = msr;
412	return kvm_nr_uret_msrs++;
413}
414EXPORT_SYMBOL_GPL(kvm_add_user_return_msr);
415
416int kvm_find_user_return_msr(u32 msr)
417{
418	int i;
419
420	for (i = 0; i < kvm_nr_uret_msrs; ++i) {
421		if (kvm_uret_msrs_list[i] == msr)
422			return i;
423	}
424	return -1;
425}
426EXPORT_SYMBOL_GPL(kvm_find_user_return_msr);
427
428static void kvm_user_return_msr_cpu_online(void)
429{
430	unsigned int cpu = smp_processor_id();
431	struct kvm_user_return_msrs *msrs = per_cpu_ptr(user_return_msrs, cpu);
432	u64 value;
433	int i;
434
435	for (i = 0; i < kvm_nr_uret_msrs; ++i) {
436		rdmsrl_safe(kvm_uret_msrs_list[i], &value);
437		msrs->values[i].host = value;
438		msrs->values[i].curr = value;
439	}
440}
441
442int kvm_set_user_return_msr(unsigned slot, u64 value, u64 mask)
443{
444	unsigned int cpu = smp_processor_id();
445	struct kvm_user_return_msrs *msrs = per_cpu_ptr(user_return_msrs, cpu);
446	int err;
447
448	value = (value & mask) | (msrs->values[slot].host & ~mask);
449	if (value == msrs->values[slot].curr)
450		return 0;
451	err = wrmsrl_safe(kvm_uret_msrs_list[slot], value);
452	if (err)
453		return 1;
454
455	msrs->values[slot].curr = value;
456	if (!msrs->registered) {
457		msrs->urn.on_user_return = kvm_on_user_return;
458		user_return_notifier_register(&msrs->urn);
459		msrs->registered = true;
460	}
461	return 0;
462}
463EXPORT_SYMBOL_GPL(kvm_set_user_return_msr);
464
465static void drop_user_return_notifiers(void)
466{
467	unsigned int cpu = smp_processor_id();
468	struct kvm_user_return_msrs *msrs = per_cpu_ptr(user_return_msrs, cpu);
469
470	if (msrs->registered)
471		kvm_on_user_return(&msrs->urn);
472}
473
474u64 kvm_get_apic_base(struct kvm_vcpu *vcpu)
475{
476	return vcpu->arch.apic_base;
477}
478
479enum lapic_mode kvm_get_apic_mode(struct kvm_vcpu *vcpu)
480{
481	return kvm_apic_mode(kvm_get_apic_base(vcpu));
482}
483EXPORT_SYMBOL_GPL(kvm_get_apic_mode);
484
485int kvm_set_apic_base(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
486{
487	enum lapic_mode old_mode = kvm_get_apic_mode(vcpu);
488	enum lapic_mode new_mode = kvm_apic_mode(msr_info->data);
489	u64 reserved_bits = kvm_vcpu_reserved_gpa_bits_raw(vcpu) | 0x2ff |
490		(guest_cpuid_has(vcpu, X86_FEATURE_X2APIC) ? 0 : X2APIC_ENABLE);
491
492	if ((msr_info->data & reserved_bits) != 0 || new_mode == LAPIC_MODE_INVALID)
493		return 1;
494	if (!msr_info->host_initiated) {
495		if (old_mode == LAPIC_MODE_X2APIC && new_mode == LAPIC_MODE_XAPIC)
496			return 1;
497		if (old_mode == LAPIC_MODE_DISABLED && new_mode == LAPIC_MODE_X2APIC)
498			return 1;
499	}
500
501	kvm_lapic_set_base(vcpu, msr_info->data);
502	kvm_recalculate_apic_map(vcpu->kvm);
503	return 0;
504}
505
506/*
507 * Handle a fault on a hardware virtualization (VMX or SVM) instruction.
508 *
509 * Hardware virtualization extension instructions may fault if a reboot turns
510 * off virtualization while processes are running.  Usually after catching the
511 * fault we just panic; during reboot instead the instruction is ignored.
512 */
513noinstr void kvm_spurious_fault(void)
514{
515	/* Fault while not rebooting.  We want the trace. */
516	BUG_ON(!kvm_rebooting);
517}
518EXPORT_SYMBOL_GPL(kvm_spurious_fault);
519
520#define EXCPT_BENIGN		0
521#define EXCPT_CONTRIBUTORY	1
522#define EXCPT_PF		2
523
524static int exception_class(int vector)
525{
526	switch (vector) {
527	case PF_VECTOR:
528		return EXCPT_PF;
529	case DE_VECTOR:
530	case TS_VECTOR:
531	case NP_VECTOR:
532	case SS_VECTOR:
533	case GP_VECTOR:
534		return EXCPT_CONTRIBUTORY;
535	default:
536		break;
537	}
538	return EXCPT_BENIGN;
539}
540
541#define EXCPT_FAULT		0
542#define EXCPT_TRAP		1
543#define EXCPT_ABORT		2
544#define EXCPT_INTERRUPT		3
545#define EXCPT_DB		4
546
547static int exception_type(int vector)
548{
549	unsigned int mask;
550
551	if (WARN_ON(vector > 31 || vector == NMI_VECTOR))
552		return EXCPT_INTERRUPT;
553
554	mask = 1 << vector;
555
556	/*
557	 * #DBs can be trap-like or fault-like, the caller must check other CPU
558	 * state, e.g. DR6, to determine whether a #DB is a trap or fault.
559	 */
560	if (mask & (1 << DB_VECTOR))
561		return EXCPT_DB;
562
563	if (mask & ((1 << BP_VECTOR) | (1 << OF_VECTOR)))
564		return EXCPT_TRAP;
565
566	if (mask & ((1 << DF_VECTOR) | (1 << MC_VECTOR)))
567		return EXCPT_ABORT;
568
569	/* Reserved exceptions will result in fault */
570	return EXCPT_FAULT;
571}
572
573void kvm_deliver_exception_payload(struct kvm_vcpu *vcpu,
574				   struct kvm_queued_exception *ex)
575{
576	if (!ex->has_payload)
577		return;
578
579	switch (ex->vector) {
580	case DB_VECTOR:
581		/*
582		 * "Certain debug exceptions may clear bit 0-3.  The
583		 * remaining contents of the DR6 register are never
584		 * cleared by the processor".
585		 */
586		vcpu->arch.dr6 &= ~DR_TRAP_BITS;
587		/*
588		 * In order to reflect the #DB exception payload in guest
589		 * dr6, three components need to be considered: active low
590		 * bit, FIXED_1 bits and active high bits (e.g. DR6_BD,
591		 * DR6_BS and DR6_BT)
592		 * DR6_ACTIVE_LOW contains the FIXED_1 and active low bits.
593		 * In the target guest dr6:
594		 * FIXED_1 bits should always be set.
595		 * Active low bits should be cleared if 1-setting in payload.
596		 * Active high bits should be set if 1-setting in payload.
597		 *
598		 * Note, the payload is compatible with the pending debug
599		 * exceptions/exit qualification under VMX, that active_low bits
600		 * are active high in payload.
601		 * So they need to be flipped for DR6.
602		 */
603		vcpu->arch.dr6 |= DR6_ACTIVE_LOW;
604		vcpu->arch.dr6 |= ex->payload;
605		vcpu->arch.dr6 ^= ex->payload & DR6_ACTIVE_LOW;
606
607		/*
608		 * The #DB payload is defined as compatible with the 'pending
609		 * debug exceptions' field under VMX, not DR6. While bit 12 is
610		 * defined in the 'pending debug exceptions' field (enabled
611		 * breakpoint), it is reserved and must be zero in DR6.
612		 */
613		vcpu->arch.dr6 &= ~BIT(12);
614		break;
615	case PF_VECTOR:
616		vcpu->arch.cr2 = ex->payload;
617		break;
618	}
619
620	ex->has_payload = false;
621	ex->payload = 0;
622}
623EXPORT_SYMBOL_GPL(kvm_deliver_exception_payload);
624
625static void kvm_queue_exception_vmexit(struct kvm_vcpu *vcpu, unsigned int vector,
626				       bool has_error_code, u32 error_code,
627				       bool has_payload, unsigned long payload)
628{
629	struct kvm_queued_exception *ex = &vcpu->arch.exception_vmexit;
630
631	ex->vector = vector;
632	ex->injected = false;
633	ex->pending = true;
634	ex->has_error_code = has_error_code;
635	ex->error_code = error_code;
636	ex->has_payload = has_payload;
637	ex->payload = payload;
638}
639
640/* Forcibly leave the nested mode in cases like a vCPU reset */
641static void kvm_leave_nested(struct kvm_vcpu *vcpu)
642{
643	kvm_x86_ops.nested_ops->leave_nested(vcpu);
644}
645
646static void kvm_multiple_exception(struct kvm_vcpu *vcpu,
647		unsigned nr, bool has_error, u32 error_code,
648	        bool has_payload, unsigned long payload, bool reinject)
649{
650	u32 prev_nr;
651	int class1, class2;
652
653	kvm_make_request(KVM_REQ_EVENT, vcpu);
654
655	/*
656	 * If the exception is destined for L2 and isn't being reinjected,
657	 * morph it to a VM-Exit if L1 wants to intercept the exception.  A
658	 * previously injected exception is not checked because it was checked
659	 * when it was original queued, and re-checking is incorrect if _L1_
660	 * injected the exception, in which case it's exempt from interception.
661	 */
662	if (!reinject && is_guest_mode(vcpu) &&
663	    kvm_x86_ops.nested_ops->is_exception_vmexit(vcpu, nr, error_code)) {
664		kvm_queue_exception_vmexit(vcpu, nr, has_error, error_code,
665					   has_payload, payload);
666		return;
667	}
668
669	if (!vcpu->arch.exception.pending && !vcpu->arch.exception.injected) {
670	queue:
671		if (reinject) {
672			/*
673			 * On VM-Entry, an exception can be pending if and only
674			 * if event injection was blocked by nested_run_pending.
675			 * In that case, however, vcpu_enter_guest() requests an
676			 * immediate exit, and the guest shouldn't proceed far
677			 * enough to need reinjection.
678			 */
679			WARN_ON_ONCE(kvm_is_exception_pending(vcpu));
680			vcpu->arch.exception.injected = true;
681			if (WARN_ON_ONCE(has_payload)) {
682				/*
683				 * A reinjected event has already
684				 * delivered its payload.
685				 */
686				has_payload = false;
687				payload = 0;
688			}
689		} else {
690			vcpu->arch.exception.pending = true;
691			vcpu->arch.exception.injected = false;
692		}
693		vcpu->arch.exception.has_error_code = has_error;
694		vcpu->arch.exception.vector = nr;
695		vcpu->arch.exception.error_code = error_code;
696		vcpu->arch.exception.has_payload = has_payload;
697		vcpu->arch.exception.payload = payload;
698		if (!is_guest_mode(vcpu))
699			kvm_deliver_exception_payload(vcpu,
700						      &vcpu->arch.exception);
701		return;
702	}
703
704	/* to check exception */
705	prev_nr = vcpu->arch.exception.vector;
706	if (prev_nr == DF_VECTOR) {
707		/* triple fault -> shutdown */
708		kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
709		return;
710	}
711	class1 = exception_class(prev_nr);
712	class2 = exception_class(nr);
713	if ((class1 == EXCPT_CONTRIBUTORY && class2 == EXCPT_CONTRIBUTORY) ||
714	    (class1 == EXCPT_PF && class2 != EXCPT_BENIGN)) {
715		/*
716		 * Synthesize #DF.  Clear the previously injected or pending
717		 * exception so as not to incorrectly trigger shutdown.
718		 */
719		vcpu->arch.exception.injected = false;
720		vcpu->arch.exception.pending = false;
721
722		kvm_queue_exception_e(vcpu, DF_VECTOR, 0);
723	} else {
724		/* replace previous exception with a new one in a hope
725		   that instruction re-execution will regenerate lost
726		   exception */
727		goto queue;
728	}
729}
730
731void kvm_queue_exception(struct kvm_vcpu *vcpu, unsigned nr)
732{
733	kvm_multiple_exception(vcpu, nr, false, 0, false, 0, false);
734}
735EXPORT_SYMBOL_GPL(kvm_queue_exception);
736
737void kvm_requeue_exception(struct kvm_vcpu *vcpu, unsigned nr)
738{
739	kvm_multiple_exception(vcpu, nr, false, 0, false, 0, true);
740}
741EXPORT_SYMBOL_GPL(kvm_requeue_exception);
742
743void kvm_queue_exception_p(struct kvm_vcpu *vcpu, unsigned nr,
744			   unsigned long payload)
745{
746	kvm_multiple_exception(vcpu, nr, false, 0, true, payload, false);
747}
748EXPORT_SYMBOL_GPL(kvm_queue_exception_p);
749
750static void kvm_queue_exception_e_p(struct kvm_vcpu *vcpu, unsigned nr,
751				    u32 error_code, unsigned long payload)
752{
753	kvm_multiple_exception(vcpu, nr, true, error_code,
754			       true, payload, false);
755}
756
757int kvm_complete_insn_gp(struct kvm_vcpu *vcpu, int err)
758{
759	if (err)
760		kvm_inject_gp(vcpu, 0);
761	else
762		return kvm_skip_emulated_instruction(vcpu);
763
764	return 1;
765}
766EXPORT_SYMBOL_GPL(kvm_complete_insn_gp);
767
768static int complete_emulated_insn_gp(struct kvm_vcpu *vcpu, int err)
769{
770	if (err) {
771		kvm_inject_gp(vcpu, 0);
772		return 1;
773	}
774
775	return kvm_emulate_instruction(vcpu, EMULTYPE_NO_DECODE | EMULTYPE_SKIP |
776				       EMULTYPE_COMPLETE_USER_EXIT);
777}
778
779void kvm_inject_page_fault(struct kvm_vcpu *vcpu, struct x86_exception *fault)
780{
781	++vcpu->stat.pf_guest;
782
783	/*
784	 * Async #PF in L2 is always forwarded to L1 as a VM-Exit regardless of
785	 * whether or not L1 wants to intercept "regular" #PF.
786	 */
787	if (is_guest_mode(vcpu) && fault->async_page_fault)
788		kvm_queue_exception_vmexit(vcpu, PF_VECTOR,
789					   true, fault->error_code,
790					   true, fault->address);
791	else
792		kvm_queue_exception_e_p(vcpu, PF_VECTOR, fault->error_code,
793					fault->address);
794}
795
796void kvm_inject_emulated_page_fault(struct kvm_vcpu *vcpu,
797				    struct x86_exception *fault)
798{
799	struct kvm_mmu *fault_mmu;
800	WARN_ON_ONCE(fault->vector != PF_VECTOR);
801
802	fault_mmu = fault->nested_page_fault ? vcpu->arch.mmu :
803					       vcpu->arch.walk_mmu;
804
805	/*
806	 * Invalidate the TLB entry for the faulting address, if it exists,
807	 * else the access will fault indefinitely (and to emulate hardware).
808	 */
809	if ((fault->error_code & PFERR_PRESENT_MASK) &&
810	    !(fault->error_code & PFERR_RSVD_MASK))
811		kvm_mmu_invalidate_addr(vcpu, fault_mmu, fault->address,
812					KVM_MMU_ROOT_CURRENT);
813
814	fault_mmu->inject_page_fault(vcpu, fault);
815}
816EXPORT_SYMBOL_GPL(kvm_inject_emulated_page_fault);
817
818void kvm_inject_nmi(struct kvm_vcpu *vcpu)
819{
820	atomic_inc(&vcpu->arch.nmi_queued);
821	kvm_make_request(KVM_REQ_NMI, vcpu);
822}
823
824void kvm_queue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
825{
826	kvm_multiple_exception(vcpu, nr, true, error_code, false, 0, false);
827}
828EXPORT_SYMBOL_GPL(kvm_queue_exception_e);
829
830void kvm_requeue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
831{
832	kvm_multiple_exception(vcpu, nr, true, error_code, false, 0, true);
833}
834EXPORT_SYMBOL_GPL(kvm_requeue_exception_e);
835
836/*
837 * Checks if cpl <= required_cpl; if true, return true.  Otherwise queue
838 * a #GP and return false.
839 */
840bool kvm_require_cpl(struct kvm_vcpu *vcpu, int required_cpl)
841{
842	if (static_call(kvm_x86_get_cpl)(vcpu) <= required_cpl)
843		return true;
844	kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
845	return false;
846}
847
848bool kvm_require_dr(struct kvm_vcpu *vcpu, int dr)
849{
850	if ((dr != 4 && dr != 5) || !kvm_is_cr4_bit_set(vcpu, X86_CR4_DE))
851		return true;
852
853	kvm_queue_exception(vcpu, UD_VECTOR);
854	return false;
855}
856EXPORT_SYMBOL_GPL(kvm_require_dr);
857
858static inline u64 pdptr_rsvd_bits(struct kvm_vcpu *vcpu)
859{
860	return vcpu->arch.reserved_gpa_bits | rsvd_bits(5, 8) | rsvd_bits(1, 2);
861}
862
863/*
864 * Load the pae pdptrs.  Return 1 if they are all valid, 0 otherwise.
865 */
866int load_pdptrs(struct kvm_vcpu *vcpu, unsigned long cr3)
867{
868	struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
869	gfn_t pdpt_gfn = cr3 >> PAGE_SHIFT;
870	gpa_t real_gpa;
871	int i;
872	int ret;
873	u64 pdpte[ARRAY_SIZE(mmu->pdptrs)];
874
875	/*
876	 * If the MMU is nested, CR3 holds an L2 GPA and needs to be translated
877	 * to an L1 GPA.
878	 */
879	real_gpa = kvm_translate_gpa(vcpu, mmu, gfn_to_gpa(pdpt_gfn),
880				     PFERR_USER_MASK | PFERR_WRITE_MASK, NULL);
881	if (real_gpa == INVALID_GPA)
882		return 0;
883
884	/* Note the offset, PDPTRs are 32 byte aligned when using PAE paging. */
885	ret = kvm_vcpu_read_guest_page(vcpu, gpa_to_gfn(real_gpa), pdpte,
886				       cr3 & GENMASK(11, 5), sizeof(pdpte));
887	if (ret < 0)
888		return 0;
889
890	for (i = 0; i < ARRAY_SIZE(pdpte); ++i) {
891		if ((pdpte[i] & PT_PRESENT_MASK) &&
892		    (pdpte[i] & pdptr_rsvd_bits(vcpu))) {
893			return 0;
894		}
895	}
896
897	/*
898	 * Marking VCPU_EXREG_PDPTR dirty doesn't work for !tdp_enabled.
899	 * Shadow page roots need to be reconstructed instead.
900	 */
901	if (!tdp_enabled && memcmp(mmu->pdptrs, pdpte, sizeof(mmu->pdptrs)))
902		kvm_mmu_free_roots(vcpu->kvm, mmu, KVM_MMU_ROOT_CURRENT);
903
904	memcpy(mmu->pdptrs, pdpte, sizeof(mmu->pdptrs));
905	kvm_register_mark_dirty(vcpu, VCPU_EXREG_PDPTR);
906	kvm_make_request(KVM_REQ_LOAD_MMU_PGD, vcpu);
907	vcpu->arch.pdptrs_from_userspace = false;
908
909	return 1;
910}
911EXPORT_SYMBOL_GPL(load_pdptrs);
912
913static bool kvm_is_valid_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
914{
915#ifdef CONFIG_X86_64
916	if (cr0 & 0xffffffff00000000UL)
917		return false;
918#endif
919
920	if ((cr0 & X86_CR0_NW) && !(cr0 & X86_CR0_CD))
921		return false;
922
923	if ((cr0 & X86_CR0_PG) && !(cr0 & X86_CR0_PE))
924		return false;
925
926	return static_call(kvm_x86_is_valid_cr0)(vcpu, cr0);
927}
928
929void kvm_post_set_cr0(struct kvm_vcpu *vcpu, unsigned long old_cr0, unsigned long cr0)
930{
931	/*
932	 * CR0.WP is incorporated into the MMU role, but only for non-nested,
933	 * indirect shadow MMUs.  If paging is disabled, no updates are needed
934	 * as there are no permission bits to emulate.  If TDP is enabled, the
935	 * MMU's metadata needs to be updated, e.g. so that emulating guest
936	 * translations does the right thing, but there's no need to unload the
937	 * root as CR0.WP doesn't affect SPTEs.
938	 */
939	if ((cr0 ^ old_cr0) == X86_CR0_WP) {
940		if (!(cr0 & X86_CR0_PG))
941			return;
942
943		if (tdp_enabled) {
944			kvm_init_mmu(vcpu);
945			return;
946		}
947	}
948
949	if ((cr0 ^ old_cr0) & X86_CR0_PG) {
950		kvm_clear_async_pf_completion_queue(vcpu);
951		kvm_async_pf_hash_reset(vcpu);
952
953		/*
954		 * Clearing CR0.PG is defined to flush the TLB from the guest's
955		 * perspective.
956		 */
957		if (!(cr0 & X86_CR0_PG))
958			kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu);
959	}
960
961	if ((cr0 ^ old_cr0) & KVM_MMU_CR0_ROLE_BITS)
962		kvm_mmu_reset_context(vcpu);
963
964	if (((cr0 ^ old_cr0) & X86_CR0_CD) &&
965	    kvm_mmu_honors_guest_mtrrs(vcpu->kvm) &&
966	    !kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_CD_NW_CLEARED))
967		kvm_zap_gfn_range(vcpu->kvm, 0, ~0ULL);
968}
969EXPORT_SYMBOL_GPL(kvm_post_set_cr0);
970
971int kvm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
972{
973	unsigned long old_cr0 = kvm_read_cr0(vcpu);
974
975	if (!kvm_is_valid_cr0(vcpu, cr0))
976		return 1;
977
978	cr0 |= X86_CR0_ET;
979
980	/* Write to CR0 reserved bits are ignored, even on Intel. */
981	cr0 &= ~CR0_RESERVED_BITS;
982
983#ifdef CONFIG_X86_64
984	if ((vcpu->arch.efer & EFER_LME) && !is_paging(vcpu) &&
985	    (cr0 & X86_CR0_PG)) {
986		int cs_db, cs_l;
987
988		if (!is_pae(vcpu))
989			return 1;
990		static_call(kvm_x86_get_cs_db_l_bits)(vcpu, &cs_db, &cs_l);
991		if (cs_l)
992			return 1;
993	}
994#endif
995	if (!(vcpu->arch.efer & EFER_LME) && (cr0 & X86_CR0_PG) &&
996	    is_pae(vcpu) && ((cr0 ^ old_cr0) & X86_CR0_PDPTR_BITS) &&
997	    !load_pdptrs(vcpu, kvm_read_cr3(vcpu)))
998		return 1;
999
1000	if (!(cr0 & X86_CR0_PG) &&
1001	    (is_64_bit_mode(vcpu) || kvm_is_cr4_bit_set(vcpu, X86_CR4_PCIDE)))
1002		return 1;
1003
1004	static_call(kvm_x86_set_cr0)(vcpu, cr0);
1005
1006	kvm_post_set_cr0(vcpu, old_cr0, cr0);
1007
1008	return 0;
1009}
1010EXPORT_SYMBOL_GPL(kvm_set_cr0);
1011
1012void kvm_lmsw(struct kvm_vcpu *vcpu, unsigned long msw)
1013{
1014	(void)kvm_set_cr0(vcpu, kvm_read_cr0_bits(vcpu, ~0x0eul) | (msw & 0x0f));
1015}
1016EXPORT_SYMBOL_GPL(kvm_lmsw);
1017
1018void kvm_load_guest_xsave_state(struct kvm_vcpu *vcpu)
1019{
1020	if (vcpu->arch.guest_state_protected)
1021		return;
1022
1023	if (kvm_is_cr4_bit_set(vcpu, X86_CR4_OSXSAVE)) {
1024
1025		if (vcpu->arch.xcr0 != host_xcr0)
1026			xsetbv(XCR_XFEATURE_ENABLED_MASK, vcpu->arch.xcr0);
1027
1028		if (guest_can_use(vcpu, X86_FEATURE_XSAVES) &&
1029		    vcpu->arch.ia32_xss != host_xss)
1030			wrmsrl(MSR_IA32_XSS, vcpu->arch.ia32_xss);
1031	}
1032
1033	if (cpu_feature_enabled(X86_FEATURE_PKU) &&
1034	    vcpu->arch.pkru != vcpu->arch.host_pkru &&
1035	    ((vcpu->arch.xcr0 & XFEATURE_MASK_PKRU) ||
1036	     kvm_is_cr4_bit_set(vcpu, X86_CR4_PKE)))
1037		write_pkru(vcpu->arch.pkru);
1038}
1039EXPORT_SYMBOL_GPL(kvm_load_guest_xsave_state);
1040
1041void kvm_load_host_xsave_state(struct kvm_vcpu *vcpu)
1042{
1043	if (vcpu->arch.guest_state_protected)
1044		return;
1045
1046	if (cpu_feature_enabled(X86_FEATURE_PKU) &&
1047	    ((vcpu->arch.xcr0 & XFEATURE_MASK_PKRU) ||
1048	     kvm_is_cr4_bit_set(vcpu, X86_CR4_PKE))) {
1049		vcpu->arch.pkru = rdpkru();
1050		if (vcpu->arch.pkru != vcpu->arch.host_pkru)
1051			write_pkru(vcpu->arch.host_pkru);
1052	}
1053
1054	if (kvm_is_cr4_bit_set(vcpu, X86_CR4_OSXSAVE)) {
1055
1056		if (vcpu->arch.xcr0 != host_xcr0)
1057			xsetbv(XCR_XFEATURE_ENABLED_MASK, host_xcr0);
1058
1059		if (guest_can_use(vcpu, X86_FEATURE_XSAVES) &&
1060		    vcpu->arch.ia32_xss != host_xss)
1061			wrmsrl(MSR_IA32_XSS, host_xss);
1062	}
1063
1064}
1065EXPORT_SYMBOL_GPL(kvm_load_host_xsave_state);
1066
1067#ifdef CONFIG_X86_64
1068static inline u64 kvm_guest_supported_xfd(struct kvm_vcpu *vcpu)
1069{
1070	return vcpu->arch.guest_supported_xcr0 & XFEATURE_MASK_USER_DYNAMIC;
1071}
1072#endif
1073
1074static int __kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr)
1075{
1076	u64 xcr0 = xcr;
1077	u64 old_xcr0 = vcpu->arch.xcr0;
1078	u64 valid_bits;
1079
1080	/* Only support XCR_XFEATURE_ENABLED_MASK(xcr0) now  */
1081	if (index != XCR_XFEATURE_ENABLED_MASK)
1082		return 1;
1083	if (!(xcr0 & XFEATURE_MASK_FP))
1084		return 1;
1085	if ((xcr0 & XFEATURE_MASK_YMM) && !(xcr0 & XFEATURE_MASK_SSE))
1086		return 1;
1087
1088	/*
1089	 * Do not allow the guest to set bits that we do not support
1090	 * saving.  However, xcr0 bit 0 is always set, even if the
1091	 * emulated CPU does not support XSAVE (see kvm_vcpu_reset()).
1092	 */
1093	valid_bits = vcpu->arch.guest_supported_xcr0 | XFEATURE_MASK_FP;
1094	if (xcr0 & ~valid_bits)
1095		return 1;
1096
1097	if ((!(xcr0 & XFEATURE_MASK_BNDREGS)) !=
1098	    (!(xcr0 & XFEATURE_MASK_BNDCSR)))
1099		return 1;
1100
1101	if (xcr0 & XFEATURE_MASK_AVX512) {
1102		if (!(xcr0 & XFEATURE_MASK_YMM))
1103			return 1;
1104		if ((xcr0 & XFEATURE_MASK_AVX512) != XFEATURE_MASK_AVX512)
1105			return 1;
1106	}
1107
1108	if ((xcr0 & XFEATURE_MASK_XTILE) &&
1109	    ((xcr0 & XFEATURE_MASK_XTILE) != XFEATURE_MASK_XTILE))
1110		return 1;
1111
1112	vcpu->arch.xcr0 = xcr0;
1113
1114	if ((xcr0 ^ old_xcr0) & XFEATURE_MASK_EXTEND)
1115		kvm_update_cpuid_runtime(vcpu);
1116	return 0;
1117}
1118
1119int kvm_emulate_xsetbv(struct kvm_vcpu *vcpu)
1120{
1121	/* Note, #UD due to CR4.OSXSAVE=0 has priority over the intercept. */
1122	if (static_call(kvm_x86_get_cpl)(vcpu) != 0 ||
1123	    __kvm_set_xcr(vcpu, kvm_rcx_read(vcpu), kvm_read_edx_eax(vcpu))) {
1124		kvm_inject_gp(vcpu, 0);
1125		return 1;
1126	}
1127
1128	return kvm_skip_emulated_instruction(vcpu);
1129}
1130EXPORT_SYMBOL_GPL(kvm_emulate_xsetbv);
1131
1132bool __kvm_is_valid_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
1133{
1134	if (cr4 & cr4_reserved_bits)
1135		return false;
1136
1137	if (cr4 & vcpu->arch.cr4_guest_rsvd_bits)
1138		return false;
1139
1140	return true;
1141}
1142EXPORT_SYMBOL_GPL(__kvm_is_valid_cr4);
1143
1144static bool kvm_is_valid_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
1145{
1146	return __kvm_is_valid_cr4(vcpu, cr4) &&
1147	       static_call(kvm_x86_is_valid_cr4)(vcpu, cr4);
1148}
1149
1150void kvm_post_set_cr4(struct kvm_vcpu *vcpu, unsigned long old_cr4, unsigned long cr4)
1151{
1152	if ((cr4 ^ old_cr4) & KVM_MMU_CR4_ROLE_BITS)
1153		kvm_mmu_reset_context(vcpu);
1154
1155	/*
1156	 * If CR4.PCIDE is changed 0 -> 1, there is no need to flush the TLB
1157	 * according to the SDM; however, stale prev_roots could be reused
1158	 * incorrectly in the future after a MOV to CR3 with NOFLUSH=1, so we
1159	 * free them all.  This is *not* a superset of KVM_REQ_TLB_FLUSH_GUEST
1160	 * or KVM_REQ_TLB_FLUSH_CURRENT, because the hardware TLB is not flushed,
1161	 * so fall through.
1162	 */
1163	if (!tdp_enabled &&
1164	    (cr4 & X86_CR4_PCIDE) && !(old_cr4 & X86_CR4_PCIDE))
1165		kvm_mmu_unload(vcpu);
1166
1167	/*
1168	 * The TLB has to be flushed for all PCIDs if any of the following
1169	 * (architecturally required) changes happen:
1170	 * - CR4.PCIDE is changed from 1 to 0
1171	 * - CR4.PGE is toggled
1172	 *
1173	 * This is a superset of KVM_REQ_TLB_FLUSH_CURRENT.
1174	 */
1175	if (((cr4 ^ old_cr4) & X86_CR4_PGE) ||
1176	    (!(cr4 & X86_CR4_PCIDE) && (old_cr4 & X86_CR4_PCIDE)))
1177		kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu);
1178
1179	/*
1180	 * The TLB has to be flushed for the current PCID if any of the
1181	 * following (architecturally required) changes happen:
1182	 * - CR4.SMEP is changed from 0 to 1
1183	 * - CR4.PAE is toggled
1184	 */
1185	else if (((cr4 ^ old_cr4) & X86_CR4_PAE) ||
1186		 ((cr4 & X86_CR4_SMEP) && !(old_cr4 & X86_CR4_SMEP)))
1187		kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu);
1188
1189}
1190EXPORT_SYMBOL_GPL(kvm_post_set_cr4);
1191
1192int kvm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
1193{
1194	unsigned long old_cr4 = kvm_read_cr4(vcpu);
1195
1196	if (!kvm_is_valid_cr4(vcpu, cr4))
1197		return 1;
1198
1199	if (is_long_mode(vcpu)) {
1200		if (!(cr4 & X86_CR4_PAE))
1201			return 1;
1202		if ((cr4 ^ old_cr4) & X86_CR4_LA57)
1203			return 1;
1204	} else if (is_paging(vcpu) && (cr4 & X86_CR4_PAE)
1205		   && ((cr4 ^ old_cr4) & X86_CR4_PDPTR_BITS)
1206		   && !load_pdptrs(vcpu, kvm_read_cr3(vcpu)))
1207		return 1;
1208
1209	if ((cr4 & X86_CR4_PCIDE) && !(old_cr4 & X86_CR4_PCIDE)) {
1210		/* PCID can not be enabled when cr3[11:0]!=000H or EFER.LMA=0 */
1211		if ((kvm_read_cr3(vcpu) & X86_CR3_PCID_MASK) || !is_long_mode(vcpu))
1212			return 1;
1213	}
1214
1215	static_call(kvm_x86_set_cr4)(vcpu, cr4);
1216
1217	kvm_post_set_cr4(vcpu, old_cr4, cr4);
1218
1219	return 0;
1220}
1221EXPORT_SYMBOL_GPL(kvm_set_cr4);
1222
1223static void kvm_invalidate_pcid(struct kvm_vcpu *vcpu, unsigned long pcid)
1224{
1225	struct kvm_mmu *mmu = vcpu->arch.mmu;
1226	unsigned long roots_to_free = 0;
1227	int i;
1228
1229	/*
1230	 * MOV CR3 and INVPCID are usually not intercepted when using TDP, but
1231	 * this is reachable when running EPT=1 and unrestricted_guest=0,  and
1232	 * also via the emulator.  KVM's TDP page tables are not in the scope of
1233	 * the invalidation, but the guest's TLB entries need to be flushed as
1234	 * the CPU may have cached entries in its TLB for the target PCID.
1235	 */
1236	if (unlikely(tdp_enabled)) {
1237		kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu);
1238		return;
1239	}
1240
1241	/*
1242	 * If neither the current CR3 nor any of the prev_roots use the given
1243	 * PCID, then nothing needs to be done here because a resync will
1244	 * happen anyway before switching to any other CR3.
1245	 */
1246	if (kvm_get_active_pcid(vcpu) == pcid) {
1247		kvm_make_request(KVM_REQ_MMU_SYNC, vcpu);
1248		kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu);
1249	}
1250
1251	/*
1252	 * If PCID is disabled, there is no need to free prev_roots even if the
1253	 * PCIDs for them are also 0, because MOV to CR3 always flushes the TLB
1254	 * with PCIDE=0.
1255	 */
1256	if (!kvm_is_cr4_bit_set(vcpu, X86_CR4_PCIDE))
1257		return;
1258
1259	for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
1260		if (kvm_get_pcid(vcpu, mmu->prev_roots[i].pgd) == pcid)
1261			roots_to_free |= KVM_MMU_ROOT_PREVIOUS(i);
1262
1263	kvm_mmu_free_roots(vcpu->kvm, mmu, roots_to_free);
1264}
1265
1266int kvm_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
1267{
1268	bool skip_tlb_flush = false;
1269	unsigned long pcid = 0;
1270#ifdef CONFIG_X86_64
1271	if (kvm_is_cr4_bit_set(vcpu, X86_CR4_PCIDE)) {
1272		skip_tlb_flush = cr3 & X86_CR3_PCID_NOFLUSH;
1273		cr3 &= ~X86_CR3_PCID_NOFLUSH;
1274		pcid = cr3 & X86_CR3_PCID_MASK;
1275	}
1276#endif
1277
1278	/* PDPTRs are always reloaded for PAE paging. */
1279	if (cr3 == kvm_read_cr3(vcpu) && !is_pae_paging(vcpu))
1280		goto handle_tlb_flush;
1281
1282	/*
1283	 * Do not condition the GPA check on long mode, this helper is used to
1284	 * stuff CR3, e.g. for RSM emulation, and there is no guarantee that
1285	 * the current vCPU mode is accurate.
1286	 */
1287	if (!kvm_vcpu_is_legal_cr3(vcpu, cr3))
1288		return 1;
1289
1290	if (is_pae_paging(vcpu) && !load_pdptrs(vcpu, cr3))
1291		return 1;
1292
1293	if (cr3 != kvm_read_cr3(vcpu))
1294		kvm_mmu_new_pgd(vcpu, cr3);
1295
1296	vcpu->arch.cr3 = cr3;
1297	kvm_register_mark_dirty(vcpu, VCPU_EXREG_CR3);
1298	/* Do not call post_set_cr3, we do not get here for confidential guests.  */
1299
1300handle_tlb_flush:
1301	/*
1302	 * A load of CR3 that flushes the TLB flushes only the current PCID,
1303	 * even if PCID is disabled, in which case PCID=0 is flushed.  It's a
1304	 * moot point in the end because _disabling_ PCID will flush all PCIDs,
1305	 * and it's impossible to use a non-zero PCID when PCID is disabled,
1306	 * i.e. only PCID=0 can be relevant.
1307	 */
1308	if (!skip_tlb_flush)
1309		kvm_invalidate_pcid(vcpu, pcid);
1310
1311	return 0;
1312}
1313EXPORT_SYMBOL_GPL(kvm_set_cr3);
1314
1315int kvm_set_cr8(struct kvm_vcpu *vcpu, unsigned long cr8)
1316{
1317	if (cr8 & CR8_RESERVED_BITS)
1318		return 1;
1319	if (lapic_in_kernel(vcpu))
1320		kvm_lapic_set_tpr(vcpu, cr8);
1321	else
1322		vcpu->arch.cr8 = cr8;
1323	return 0;
1324}
1325EXPORT_SYMBOL_GPL(kvm_set_cr8);
1326
1327unsigned long kvm_get_cr8(struct kvm_vcpu *vcpu)
1328{
1329	if (lapic_in_kernel(vcpu))
1330		return kvm_lapic_get_cr8(vcpu);
1331	else
1332		return vcpu->arch.cr8;
1333}
1334EXPORT_SYMBOL_GPL(kvm_get_cr8);
1335
1336static void kvm_update_dr0123(struct kvm_vcpu *vcpu)
1337{
1338	int i;
1339
1340	if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)) {
1341		for (i = 0; i < KVM_NR_DB_REGS; i++)
1342			vcpu->arch.eff_db[i] = vcpu->arch.db[i];
1343	}
1344}
1345
1346void kvm_update_dr7(struct kvm_vcpu *vcpu)
1347{
1348	unsigned long dr7;
1349
1350	if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)
1351		dr7 = vcpu->arch.guest_debug_dr7;
1352	else
1353		dr7 = vcpu->arch.dr7;
1354	static_call(kvm_x86_set_dr7)(vcpu, dr7);
1355	vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_BP_ENABLED;
1356	if (dr7 & DR7_BP_EN_MASK)
1357		vcpu->arch.switch_db_regs |= KVM_DEBUGREG_BP_ENABLED;
1358}
1359EXPORT_SYMBOL_GPL(kvm_update_dr7);
1360
1361static u64 kvm_dr6_fixed(struct kvm_vcpu *vcpu)
1362{
1363	u64 fixed = DR6_FIXED_1;
1364
1365	if (!guest_cpuid_has(vcpu, X86_FEATURE_RTM))
1366		fixed |= DR6_RTM;
1367
1368	if (!guest_cpuid_has(vcpu, X86_FEATURE_BUS_LOCK_DETECT))
1369		fixed |= DR6_BUS_LOCK;
1370	return fixed;
1371}
1372
1373int kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val)
1374{
1375	size_t size = ARRAY_SIZE(vcpu->arch.db);
1376
1377	switch (dr) {
1378	case 0 ... 3:
1379		vcpu->arch.db[array_index_nospec(dr, size)] = val;
1380		if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP))
1381			vcpu->arch.eff_db[dr] = val;
1382		break;
1383	case 4:
1384	case 6:
1385		if (!kvm_dr6_valid(val))
1386			return 1; /* #GP */
1387		vcpu->arch.dr6 = (val & DR6_VOLATILE) | kvm_dr6_fixed(vcpu);
1388		break;
1389	case 5:
1390	default: /* 7 */
1391		if (!kvm_dr7_valid(val))
1392			return 1; /* #GP */
1393		vcpu->arch.dr7 = (val & DR7_VOLATILE) | DR7_FIXED_1;
1394		kvm_update_dr7(vcpu);
1395		break;
1396	}
1397
1398	return 0;
1399}
1400EXPORT_SYMBOL_GPL(kvm_set_dr);
1401
1402unsigned long kvm_get_dr(struct kvm_vcpu *vcpu, int dr)
1403{
1404	size_t size = ARRAY_SIZE(vcpu->arch.db);
1405
1406	switch (dr) {
1407	case 0 ... 3:
1408		return vcpu->arch.db[array_index_nospec(dr, size)];
1409	case 4:
1410	case 6:
1411		return vcpu->arch.dr6;
1412	case 5:
1413	default: /* 7 */
1414		return vcpu->arch.dr7;
1415	}
1416}
1417EXPORT_SYMBOL_GPL(kvm_get_dr);
1418
1419int kvm_emulate_rdpmc(struct kvm_vcpu *vcpu)
1420{
1421	u32 ecx = kvm_rcx_read(vcpu);
1422	u64 data;
1423
1424	if (kvm_pmu_rdpmc(vcpu, ecx, &data)) {
1425		kvm_inject_gp(vcpu, 0);
1426		return 1;
1427	}
1428
1429	kvm_rax_write(vcpu, (u32)data);
1430	kvm_rdx_write(vcpu, data >> 32);
1431	return kvm_skip_emulated_instruction(vcpu);
1432}
1433EXPORT_SYMBOL_GPL(kvm_emulate_rdpmc);
1434
1435/*
1436 * The three MSR lists(msrs_to_save, emulated_msrs, msr_based_features) track
1437 * the set of MSRs that KVM exposes to userspace through KVM_GET_MSRS,
1438 * KVM_SET_MSRS, and KVM_GET_MSR_INDEX_LIST.  msrs_to_save holds MSRs that
1439 * require host support, i.e. should be probed via RDMSR.  emulated_msrs holds
1440 * MSRs that KVM emulates without strictly requiring host support.
1441 * msr_based_features holds MSRs that enumerate features, i.e. are effectively
1442 * CPUID leafs.  Note, msr_based_features isn't mutually exclusive with
1443 * msrs_to_save and emulated_msrs.
1444 */
1445
1446static const u32 msrs_to_save_base[] = {
1447	MSR_IA32_SYSENTER_CS, MSR_IA32_SYSENTER_ESP, MSR_IA32_SYSENTER_EIP,
1448	MSR_STAR,
1449#ifdef CONFIG_X86_64
1450	MSR_CSTAR, MSR_KERNEL_GS_BASE, MSR_SYSCALL_MASK, MSR_LSTAR,
1451#endif
1452	MSR_IA32_TSC, MSR_IA32_CR_PAT, MSR_VM_HSAVE_PA,
1453	MSR_IA32_FEAT_CTL, MSR_IA32_BNDCFGS, MSR_TSC_AUX,
1454	MSR_IA32_SPEC_CTRL, MSR_IA32_TSX_CTRL,
1455	MSR_IA32_RTIT_CTL, MSR_IA32_RTIT_STATUS, MSR_IA32_RTIT_CR3_MATCH,
1456	MSR_IA32_RTIT_OUTPUT_BASE, MSR_IA32_RTIT_OUTPUT_MASK,
1457	MSR_IA32_RTIT_ADDR0_A, MSR_IA32_RTIT_ADDR0_B,
1458	MSR_IA32_RTIT_ADDR1_A, MSR_IA32_RTIT_ADDR1_B,
1459	MSR_IA32_RTIT_ADDR2_A, MSR_IA32_RTIT_ADDR2_B,
1460	MSR_IA32_RTIT_ADDR3_A, MSR_IA32_RTIT_ADDR3_B,
1461	MSR_IA32_UMWAIT_CONTROL,
1462
1463	MSR_IA32_XFD, MSR_IA32_XFD_ERR,
1464};
1465
1466static const u32 msrs_to_save_pmu[] = {
1467	MSR_ARCH_PERFMON_FIXED_CTR0, MSR_ARCH_PERFMON_FIXED_CTR1,
1468	MSR_ARCH_PERFMON_FIXED_CTR0 + 2,
1469	MSR_CORE_PERF_FIXED_CTR_CTRL, MSR_CORE_PERF_GLOBAL_STATUS,
1470	MSR_CORE_PERF_GLOBAL_CTRL, MSR_CORE_PERF_GLOBAL_OVF_CTRL,
1471	MSR_IA32_PEBS_ENABLE, MSR_IA32_DS_AREA, MSR_PEBS_DATA_CFG,
1472
1473	/* This part of MSRs should match KVM_INTEL_PMC_MAX_GENERIC. */
1474	MSR_ARCH_PERFMON_PERFCTR0, MSR_ARCH_PERFMON_PERFCTR1,
1475	MSR_ARCH_PERFMON_PERFCTR0 + 2, MSR_ARCH_PERFMON_PERFCTR0 + 3,
1476	MSR_ARCH_PERFMON_PERFCTR0 + 4, MSR_ARCH_PERFMON_PERFCTR0 + 5,
1477	MSR_ARCH_PERFMON_PERFCTR0 + 6, MSR_ARCH_PERFMON_PERFCTR0 + 7,
1478	MSR_ARCH_PERFMON_EVENTSEL0, MSR_ARCH_PERFMON_EVENTSEL1,
1479	MSR_ARCH_PERFMON_EVENTSEL0 + 2, MSR_ARCH_PERFMON_EVENTSEL0 + 3,
1480	MSR_ARCH_PERFMON_EVENTSEL0 + 4, MSR_ARCH_PERFMON_EVENTSEL0 + 5,
1481	MSR_ARCH_PERFMON_EVENTSEL0 + 6, MSR_ARCH_PERFMON_EVENTSEL0 + 7,
1482
1483	MSR_K7_EVNTSEL0, MSR_K7_EVNTSEL1, MSR_K7_EVNTSEL2, MSR_K7_EVNTSEL3,
1484	MSR_K7_PERFCTR0, MSR_K7_PERFCTR1, MSR_K7_PERFCTR2, MSR_K7_PERFCTR3,
1485
1486	/* This part of MSRs should match KVM_AMD_PMC_MAX_GENERIC. */
1487	MSR_F15H_PERF_CTL0, MSR_F15H_PERF_CTL1, MSR_F15H_PERF_CTL2,
1488	MSR_F15H_PERF_CTL3, MSR_F15H_PERF_CTL4, MSR_F15H_PERF_CTL5,
1489	MSR_F15H_PERF_CTR0, MSR_F15H_PERF_CTR1, MSR_F15H_PERF_CTR2,
1490	MSR_F15H_PERF_CTR3, MSR_F15H_PERF_CTR4, MSR_F15H_PERF_CTR5,
1491
1492	MSR_AMD64_PERF_CNTR_GLOBAL_CTL,
1493	MSR_AMD64_PERF_CNTR_GLOBAL_STATUS,
1494	MSR_AMD64_PERF_CNTR_GLOBAL_STATUS_CLR,
1495};
1496
1497static u32 msrs_to_save[ARRAY_SIZE(msrs_to_save_base) +
1498			ARRAY_SIZE(msrs_to_save_pmu)];
1499static unsigned num_msrs_to_save;
1500
1501static const u32 emulated_msrs_all[] = {
1502	MSR_KVM_SYSTEM_TIME, MSR_KVM_WALL_CLOCK,
1503	MSR_KVM_SYSTEM_TIME_NEW, MSR_KVM_WALL_CLOCK_NEW,
1504
1505#ifdef CONFIG_KVM_HYPERV
1506	HV_X64_MSR_GUEST_OS_ID, HV_X64_MSR_HYPERCALL,
1507	HV_X64_MSR_TIME_REF_COUNT, HV_X64_MSR_REFERENCE_TSC,
1508	HV_X64_MSR_TSC_FREQUENCY, HV_X64_MSR_APIC_FREQUENCY,
1509	HV_X64_MSR_CRASH_P0, HV_X64_MSR_CRASH_P1, HV_X64_MSR_CRASH_P2,
1510	HV_X64_MSR_CRASH_P3, HV_X64_MSR_CRASH_P4, HV_X64_MSR_CRASH_CTL,
1511	HV_X64_MSR_RESET,
1512	HV_X64_MSR_VP_INDEX,
1513	HV_X64_MSR_VP_RUNTIME,
1514	HV_X64_MSR_SCONTROL,
1515	HV_X64_MSR_STIMER0_CONFIG,
1516	HV_X64_MSR_VP_ASSIST_PAGE,
1517	HV_X64_MSR_REENLIGHTENMENT_CONTROL, HV_X64_MSR_TSC_EMULATION_CONTROL,
1518	HV_X64_MSR_TSC_EMULATION_STATUS, HV_X64_MSR_TSC_INVARIANT_CONTROL,
1519	HV_X64_MSR_SYNDBG_OPTIONS,
1520	HV_X64_MSR_SYNDBG_CONTROL, HV_X64_MSR_SYNDBG_STATUS,
1521	HV_X64_MSR_SYNDBG_SEND_BUFFER, HV_X64_MSR_SYNDBG_RECV_BUFFER,
1522	HV_X64_MSR_SYNDBG_PENDING_BUFFER,
1523#endif
1524
1525	MSR_KVM_ASYNC_PF_EN, MSR_KVM_STEAL_TIME,
1526	MSR_KVM_PV_EOI_EN, MSR_KVM_ASYNC_PF_INT, MSR_KVM_ASYNC_PF_ACK,
1527
1528	MSR_IA32_TSC_ADJUST,
1529	MSR_IA32_TSC_DEADLINE,
1530	MSR_IA32_ARCH_CAPABILITIES,
1531	MSR_IA32_PERF_CAPABILITIES,
1532	MSR_IA32_MISC_ENABLE,
1533	MSR_IA32_MCG_STATUS,
1534	MSR_IA32_MCG_CTL,
1535	MSR_IA32_MCG_EXT_CTL,
1536	MSR_IA32_SMBASE,
1537	MSR_SMI_COUNT,
1538	MSR_PLATFORM_INFO,
1539	MSR_MISC_FEATURES_ENABLES,
1540	MSR_AMD64_VIRT_SPEC_CTRL,
1541	MSR_AMD64_TSC_RATIO,
1542	MSR_IA32_POWER_CTL,
1543	MSR_IA32_UCODE_REV,
1544
1545	/*
1546	 * KVM always supports the "true" VMX control MSRs, even if the host
1547	 * does not.  The VMX MSRs as a whole are considered "emulated" as KVM
1548	 * doesn't strictly require them to exist in the host (ignoring that
1549	 * KVM would refuse to load in the first place if the core set of MSRs
1550	 * aren't supported).
1551	 */
1552	MSR_IA32_VMX_BASIC,
1553	MSR_IA32_VMX_TRUE_PINBASED_CTLS,
1554	MSR_IA32_VMX_TRUE_PROCBASED_CTLS,
1555	MSR_IA32_VMX_TRUE_EXIT_CTLS,
1556	MSR_IA32_VMX_TRUE_ENTRY_CTLS,
1557	MSR_IA32_VMX_MISC,
1558	MSR_IA32_VMX_CR0_FIXED0,
1559	MSR_IA32_VMX_CR4_FIXED0,
1560	MSR_IA32_VMX_VMCS_ENUM,
1561	MSR_IA32_VMX_PROCBASED_CTLS2,
1562	MSR_IA32_VMX_EPT_VPID_CAP,
1563	MSR_IA32_VMX_VMFUNC,
1564
1565	MSR_K7_HWCR,
1566	MSR_KVM_POLL_CONTROL,
1567};
1568
1569static u32 emulated_msrs[ARRAY_SIZE(emulated_msrs_all)];
1570static unsigned num_emulated_msrs;
1571
1572/*
1573 * List of MSRs that control the existence of MSR-based features, i.e. MSRs
1574 * that are effectively CPUID leafs.  VMX MSRs are also included in the set of
1575 * feature MSRs, but are handled separately to allow expedited lookups.
1576 */
1577static const u32 msr_based_features_all_except_vmx[] = {
1578	MSR_AMD64_DE_CFG,
1579	MSR_IA32_UCODE_REV,
1580	MSR_IA32_ARCH_CAPABILITIES,
1581	MSR_IA32_PERF_CAPABILITIES,
1582};
1583
1584static u32 msr_based_features[ARRAY_SIZE(msr_based_features_all_except_vmx) +
1585			      (KVM_LAST_EMULATED_VMX_MSR - KVM_FIRST_EMULATED_VMX_MSR + 1)];
1586static unsigned int num_msr_based_features;
1587
1588/*
1589 * All feature MSRs except uCode revID, which tracks the currently loaded uCode
1590 * patch, are immutable once the vCPU model is defined.
1591 */
1592static bool kvm_is_immutable_feature_msr(u32 msr)
1593{
1594	int i;
1595
1596	if (msr >= KVM_FIRST_EMULATED_VMX_MSR && msr <= KVM_LAST_EMULATED_VMX_MSR)
1597		return true;
1598
1599	for (i = 0; i < ARRAY_SIZE(msr_based_features_all_except_vmx); i++) {
1600		if (msr == msr_based_features_all_except_vmx[i])
1601			return msr != MSR_IA32_UCODE_REV;
1602	}
1603
1604	return false;
1605}
1606
1607/*
1608 * Some IA32_ARCH_CAPABILITIES bits have dependencies on MSRs that KVM
1609 * does not yet virtualize. These include:
1610 *   10 - MISC_PACKAGE_CTRLS
1611 *   11 - ENERGY_FILTERING_CTL
1612 *   12 - DOITM
1613 *   18 - FB_CLEAR_CTRL
1614 *   21 - XAPIC_DISABLE_STATUS
1615 *   23 - OVERCLOCKING_STATUS
1616 */
1617
1618#define KVM_SUPPORTED_ARCH_CAP \
1619	(ARCH_CAP_RDCL_NO | ARCH_CAP_IBRS_ALL | ARCH_CAP_RSBA | \
1620	 ARCH_CAP_SKIP_VMENTRY_L1DFLUSH | ARCH_CAP_SSB_NO | ARCH_CAP_MDS_NO | \
1621	 ARCH_CAP_PSCHANGE_MC_NO | ARCH_CAP_TSX_CTRL_MSR | ARCH_CAP_TAA_NO | \
1622	 ARCH_CAP_SBDR_SSDP_NO | ARCH_CAP_FBSDP_NO | ARCH_CAP_PSDP_NO | \
1623	 ARCH_CAP_FB_CLEAR | ARCH_CAP_RRSBA | ARCH_CAP_PBRSB_NO | ARCH_CAP_GDS_NO | \
1624	 ARCH_CAP_RFDS_NO | ARCH_CAP_RFDS_CLEAR | ARCH_CAP_BHI_NO)
1625
1626static u64 kvm_get_arch_capabilities(void)
1627{
1628	u64 data = host_arch_capabilities & KVM_SUPPORTED_ARCH_CAP;
1629
1630	/*
1631	 * If nx_huge_pages is enabled, KVM's shadow paging will ensure that
1632	 * the nested hypervisor runs with NX huge pages.  If it is not,
1633	 * L1 is anyway vulnerable to ITLB_MULTIHIT exploits from other
1634	 * L1 guests, so it need not worry about its own (L2) guests.
1635	 */
1636	data |= ARCH_CAP_PSCHANGE_MC_NO;
1637
1638	/*
1639	 * If we're doing cache flushes (either "always" or "cond")
1640	 * we will do one whenever the guest does a vmlaunch/vmresume.
1641	 * If an outer hypervisor is doing the cache flush for us
1642	 * (ARCH_CAP_SKIP_VMENTRY_L1DFLUSH), we can safely pass that
1643	 * capability to the guest too, and if EPT is disabled we're not
1644	 * vulnerable.  Overall, only VMENTER_L1D_FLUSH_NEVER will
1645	 * require a nested hypervisor to do a flush of its own.
1646	 */
1647	if (l1tf_vmx_mitigation != VMENTER_L1D_FLUSH_NEVER)
1648		data |= ARCH_CAP_SKIP_VMENTRY_L1DFLUSH;
1649
1650	if (!boot_cpu_has_bug(X86_BUG_CPU_MELTDOWN))
1651		data |= ARCH_CAP_RDCL_NO;
1652	if (!boot_cpu_has_bug(X86_BUG_SPEC_STORE_BYPASS))
1653		data |= ARCH_CAP_SSB_NO;
1654	if (!boot_cpu_has_bug(X86_BUG_MDS))
1655		data |= ARCH_CAP_MDS_NO;
1656	if (!boot_cpu_has_bug(X86_BUG_RFDS))
1657		data |= ARCH_CAP_RFDS_NO;
1658
1659	if (!boot_cpu_has(X86_FEATURE_RTM)) {
1660		/*
1661		 * If RTM=0 because the kernel has disabled TSX, the host might
1662		 * have TAA_NO or TSX_CTRL.  Clear TAA_NO (the guest sees RTM=0
1663		 * and therefore knows that there cannot be TAA) but keep
1664		 * TSX_CTRL: some buggy userspaces leave it set on tsx=on hosts,
1665		 * and we want to allow migrating those guests to tsx=off hosts.
1666		 */
1667		data &= ~ARCH_CAP_TAA_NO;
1668	} else if (!boot_cpu_has_bug(X86_BUG_TAA)) {
1669		data |= ARCH_CAP_TAA_NO;
1670	} else {
1671		/*
1672		 * Nothing to do here; we emulate TSX_CTRL if present on the
1673		 * host so the guest can choose between disabling TSX or
1674		 * using VERW to clear CPU buffers.
1675		 */
1676	}
1677
1678	if (!boot_cpu_has_bug(X86_BUG_GDS) || gds_ucode_mitigated())
1679		data |= ARCH_CAP_GDS_NO;
1680
1681	return data;
1682}
1683
1684static int kvm_get_msr_feature(struct kvm_msr_entry *msr)
1685{
1686	switch (msr->index) {
1687	case MSR_IA32_ARCH_CAPABILITIES:
1688		msr->data = kvm_get_arch_capabilities();
1689		break;
1690	case MSR_IA32_PERF_CAPABILITIES:
1691		msr->data = kvm_caps.supported_perf_cap;
1692		break;
1693	case MSR_IA32_UCODE_REV:
1694		rdmsrl_safe(msr->index, &msr->data);
1695		break;
1696	default:
1697		return static_call(kvm_x86_get_msr_feature)(msr);
1698	}
1699	return 0;
1700}
1701
1702static int do_get_msr_feature(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
1703{
1704	struct kvm_msr_entry msr;
1705	int r;
1706
1707	/* Unconditionally clear the output for simplicity */
1708	msr.data = 0;
1709	msr.index = index;
1710	r = kvm_get_msr_feature(&msr);
1711
1712	if (r == KVM_MSR_RET_INVALID && kvm_msr_ignored_check(index, 0, false))
1713		r = 0;
1714
1715	*data = msr.data;
1716
1717	return r;
1718}
1719
1720static bool __kvm_valid_efer(struct kvm_vcpu *vcpu, u64 efer)
1721{
1722	if (efer & EFER_AUTOIBRS && !guest_cpuid_has(vcpu, X86_FEATURE_AUTOIBRS))
1723		return false;
1724
1725	if (efer & EFER_FFXSR && !guest_cpuid_has(vcpu, X86_FEATURE_FXSR_OPT))
1726		return false;
1727
1728	if (efer & EFER_SVME && !guest_cpuid_has(vcpu, X86_FEATURE_SVM))
1729		return false;
1730
1731	if (efer & (EFER_LME | EFER_LMA) &&
1732	    !guest_cpuid_has(vcpu, X86_FEATURE_LM))
1733		return false;
1734
1735	if (efer & EFER_NX && !guest_cpuid_has(vcpu, X86_FEATURE_NX))
1736		return false;
1737
1738	return true;
1739
1740}
1741bool kvm_valid_efer(struct kvm_vcpu *vcpu, u64 efer)
1742{
1743	if (efer & efer_reserved_bits)
1744		return false;
1745
1746	return __kvm_valid_efer(vcpu, efer);
1747}
1748EXPORT_SYMBOL_GPL(kvm_valid_efer);
1749
1750static int set_efer(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
1751{
1752	u64 old_efer = vcpu->arch.efer;
1753	u64 efer = msr_info->data;
1754	int r;
1755
1756	if (efer & efer_reserved_bits)
1757		return 1;
1758
1759	if (!msr_info->host_initiated) {
1760		if (!__kvm_valid_efer(vcpu, efer))
1761			return 1;
1762
1763		if (is_paging(vcpu) &&
1764		    (vcpu->arch.efer & EFER_LME) != (efer & EFER_LME))
1765			return 1;
1766	}
1767
1768	efer &= ~EFER_LMA;
1769	efer |= vcpu->arch.efer & EFER_LMA;
1770
1771	r = static_call(kvm_x86_set_efer)(vcpu, efer);
1772	if (r) {
1773		WARN_ON(r > 0);
1774		return r;
1775	}
1776
1777	if ((efer ^ old_efer) & KVM_MMU_EFER_ROLE_BITS)
1778		kvm_mmu_reset_context(vcpu);
1779
1780	if (!static_cpu_has(X86_FEATURE_XSAVES) &&
1781	    (efer & EFER_SVME))
1782		kvm_hv_xsaves_xsavec_maybe_warn(vcpu);
1783
1784	return 0;
1785}
1786
1787void kvm_enable_efer_bits(u64 mask)
1788{
1789       efer_reserved_bits &= ~mask;
1790}
1791EXPORT_SYMBOL_GPL(kvm_enable_efer_bits);
1792
1793bool kvm_msr_allowed(struct kvm_vcpu *vcpu, u32 index, u32 type)
1794{
1795	struct kvm_x86_msr_filter *msr_filter;
1796	struct msr_bitmap_range *ranges;
1797	struct kvm *kvm = vcpu->kvm;
1798	bool allowed;
1799	int idx;
1800	u32 i;
1801
1802	/* x2APIC MSRs do not support filtering. */
1803	if (index >= 0x800 && index <= 0x8ff)
1804		return true;
1805
1806	idx = srcu_read_lock(&kvm->srcu);
1807
1808	msr_filter = srcu_dereference(kvm->arch.msr_filter, &kvm->srcu);
1809	if (!msr_filter) {
1810		allowed = true;
1811		goto out;
1812	}
1813
1814	allowed = msr_filter->default_allow;
1815	ranges = msr_filter->ranges;
1816
1817	for (i = 0; i < msr_filter->count; i++) {
1818		u32 start = ranges[i].base;
1819		u32 end = start + ranges[i].nmsrs;
1820		u32 flags = ranges[i].flags;
1821		unsigned long *bitmap = ranges[i].bitmap;
1822
1823		if ((index >= start) && (index < end) && (flags & type)) {
1824			allowed = test_bit(index - start, bitmap);
1825			break;
1826		}
1827	}
1828
1829out:
1830	srcu_read_unlock(&kvm->srcu, idx);
1831
1832	return allowed;
1833}
1834EXPORT_SYMBOL_GPL(kvm_msr_allowed);
1835
1836/*
1837 * Write @data into the MSR specified by @index.  Select MSR specific fault
1838 * checks are bypassed if @host_initiated is %true.
1839 * Returns 0 on success, non-0 otherwise.
1840 * Assumes vcpu_load() was already called.
1841 */
1842static int __kvm_set_msr(struct kvm_vcpu *vcpu, u32 index, u64 data,
1843			 bool host_initiated)
1844{
1845	struct msr_data msr;
1846
1847	switch (index) {
1848	case MSR_FS_BASE:
1849	case MSR_GS_BASE:
1850	case MSR_KERNEL_GS_BASE:
1851	case MSR_CSTAR:
1852	case MSR_LSTAR:
1853		if (is_noncanonical_address(data, vcpu))
1854			return 1;
1855		break;
1856	case MSR_IA32_SYSENTER_EIP:
1857	case MSR_IA32_SYSENTER_ESP:
1858		/*
1859		 * IA32_SYSENTER_ESP and IA32_SYSENTER_EIP cause #GP if
1860		 * non-canonical address is written on Intel but not on
1861		 * AMD (which ignores the top 32-bits, because it does
1862		 * not implement 64-bit SYSENTER).
1863		 *
1864		 * 64-bit code should hence be able to write a non-canonical
1865		 * value on AMD.  Making the address canonical ensures that
1866		 * vmentry does not fail on Intel after writing a non-canonical
1867		 * value, and that something deterministic happens if the guest
1868		 * invokes 64-bit SYSENTER.
1869		 */
1870		data = __canonical_address(data, vcpu_virt_addr_bits(vcpu));
1871		break;
1872	case MSR_TSC_AUX:
1873		if (!kvm_is_supported_user_return_msr(MSR_TSC_AUX))
1874			return 1;
1875
1876		if (!host_initiated &&
1877		    !guest_cpuid_has(vcpu, X86_FEATURE_RDTSCP) &&
1878		    !guest_cpuid_has(vcpu, X86_FEATURE_RDPID))
1879			return 1;
1880
1881		/*
1882		 * Per Intel's SDM, bits 63:32 are reserved, but AMD's APM has
1883		 * incomplete and conflicting architectural behavior.  Current
1884		 * AMD CPUs completely ignore bits 63:32, i.e. they aren't
1885		 * reserved and always read as zeros.  Enforce Intel's reserved
1886		 * bits check if and only if the guest CPU is Intel, and clear
1887		 * the bits in all other cases.  This ensures cross-vendor
1888		 * migration will provide consistent behavior for the guest.
1889		 */
1890		if (guest_cpuid_is_intel(vcpu) && (data >> 32) != 0)
1891			return 1;
1892
1893		data = (u32)data;
1894		break;
1895	}
1896
1897	msr.data = data;
1898	msr.index = index;
1899	msr.host_initiated = host_initiated;
1900
1901	return static_call(kvm_x86_set_msr)(vcpu, &msr);
1902}
1903
1904static int kvm_set_msr_ignored_check(struct kvm_vcpu *vcpu,
1905				     u32 index, u64 data, bool host_initiated)
1906{
1907	int ret = __kvm_set_msr(vcpu, index, data, host_initiated);
1908
1909	if (ret == KVM_MSR_RET_INVALID)
1910		if (kvm_msr_ignored_check(index, data, true))
1911			ret = 0;
1912
1913	return ret;
1914}
1915
1916/*
1917 * Read the MSR specified by @index into @data.  Select MSR specific fault
1918 * checks are bypassed if @host_initiated is %true.
1919 * Returns 0 on success, non-0 otherwise.
1920 * Assumes vcpu_load() was already called.
1921 */
1922int __kvm_get_msr(struct kvm_vcpu *vcpu, u32 index, u64 *data,
1923		  bool host_initiated)
1924{
1925	struct msr_data msr;
1926	int ret;
1927
1928	switch (index) {
1929	case MSR_TSC_AUX:
1930		if (!kvm_is_supported_user_return_msr(MSR_TSC_AUX))
1931			return 1;
1932
1933		if (!host_initiated &&
1934		    !guest_cpuid_has(vcpu, X86_FEATURE_RDTSCP) &&
1935		    !guest_cpuid_has(vcpu, X86_FEATURE_RDPID))
1936			return 1;
1937		break;
1938	}
1939
1940	msr.index = index;
1941	msr.host_initiated = host_initiated;
1942
1943	ret = static_call(kvm_x86_get_msr)(vcpu, &msr);
1944	if (!ret)
1945		*data = msr.data;
1946	return ret;
1947}
1948
1949static int kvm_get_msr_ignored_check(struct kvm_vcpu *vcpu,
1950				     u32 index, u64 *data, bool host_initiated)
1951{
1952	int ret = __kvm_get_msr(vcpu, index, data, host_initiated);
1953
1954	if (ret == KVM_MSR_RET_INVALID) {
1955		/* Unconditionally clear *data for simplicity */
1956		*data = 0;
1957		if (kvm_msr_ignored_check(index, 0, false))
1958			ret = 0;
1959	}
1960
1961	return ret;
1962}
1963
1964static int kvm_get_msr_with_filter(struct kvm_vcpu *vcpu, u32 index, u64 *data)
1965{
1966	if (!kvm_msr_allowed(vcpu, index, KVM_MSR_FILTER_READ))
1967		return KVM_MSR_RET_FILTERED;
1968	return kvm_get_msr_ignored_check(vcpu, index, data, false);
1969}
1970
1971static int kvm_set_msr_with_filter(struct kvm_vcpu *vcpu, u32 index, u64 data)
1972{
1973	if (!kvm_msr_allowed(vcpu, index, KVM_MSR_FILTER_WRITE))
1974		return KVM_MSR_RET_FILTERED;
1975	return kvm_set_msr_ignored_check(vcpu, index, data, false);
1976}
1977
1978int kvm_get_msr(struct kvm_vcpu *vcpu, u32 index, u64 *data)
1979{
1980	return kvm_get_msr_ignored_check(vcpu, index, data, false);
1981}
1982EXPORT_SYMBOL_GPL(kvm_get_msr);
1983
1984int kvm_set_msr(struct kvm_vcpu *vcpu, u32 index, u64 data)
1985{
1986	return kvm_set_msr_ignored_check(vcpu, index, data, false);
1987}
1988EXPORT_SYMBOL_GPL(kvm_set_msr);
1989
1990static void complete_userspace_rdmsr(struct kvm_vcpu *vcpu)
1991{
1992	if (!vcpu->run->msr.error) {
1993		kvm_rax_write(vcpu, (u32)vcpu->run->msr.data);
1994		kvm_rdx_write(vcpu, vcpu->run->msr.data >> 32);
1995	}
1996}
1997
1998static int complete_emulated_msr_access(struct kvm_vcpu *vcpu)
1999{
2000	return complete_emulated_insn_gp(vcpu, vcpu->run->msr.error);
2001}
2002
2003static int complete_emulated_rdmsr(struct kvm_vcpu *vcpu)
2004{
2005	complete_userspace_rdmsr(vcpu);
2006	return complete_emulated_msr_access(vcpu);
2007}
2008
2009static int complete_fast_msr_access(struct kvm_vcpu *vcpu)
2010{
2011	return static_call(kvm_x86_complete_emulated_msr)(vcpu, vcpu->run->msr.error);
2012}
2013
2014static int complete_fast_rdmsr(struct kvm_vcpu *vcpu)
2015{
2016	complete_userspace_rdmsr(vcpu);
2017	return complete_fast_msr_access(vcpu);
2018}
2019
2020static u64 kvm_msr_reason(int r)
2021{
2022	switch (r) {
2023	case KVM_MSR_RET_INVALID:
2024		return KVM_MSR_EXIT_REASON_UNKNOWN;
2025	case KVM_MSR_RET_FILTERED:
2026		return KVM_MSR_EXIT_REASON_FILTER;
2027	default:
2028		return KVM_MSR_EXIT_REASON_INVAL;
2029	}
2030}
2031
2032static int kvm_msr_user_space(struct kvm_vcpu *vcpu, u32 index,
2033			      u32 exit_reason, u64 data,
2034			      int (*completion)(struct kvm_vcpu *vcpu),
2035			      int r)
2036{
2037	u64 msr_reason = kvm_msr_reason(r);
2038
2039	/* Check if the user wanted to know about this MSR fault */
2040	if (!(vcpu->kvm->arch.user_space_msr_mask & msr_reason))
2041		return 0;
2042
2043	vcpu->run->exit_reason = exit_reason;
2044	vcpu->run->msr.error = 0;
2045	memset(vcpu->run->msr.pad, 0, sizeof(vcpu->run->msr.pad));
2046	vcpu->run->msr.reason = msr_reason;
2047	vcpu->run->msr.index = index;
2048	vcpu->run->msr.data = data;
2049	vcpu->arch.complete_userspace_io = completion;
2050
2051	return 1;
2052}
2053
2054int kvm_emulate_rdmsr(struct kvm_vcpu *vcpu)
2055{
2056	u32 ecx = kvm_rcx_read(vcpu);
2057	u64 data;
2058	int r;
2059
2060	r = kvm_get_msr_with_filter(vcpu, ecx, &data);
2061
2062	if (!r) {
2063		trace_kvm_msr_read(ecx, data);
2064
2065		kvm_rax_write(vcpu, data & -1u);
2066		kvm_rdx_write(vcpu, (data >> 32) & -1u);
2067	} else {
2068		/* MSR read failed? See if we should ask user space */
2069		if (kvm_msr_user_space(vcpu, ecx, KVM_EXIT_X86_RDMSR, 0,
2070				       complete_fast_rdmsr, r))
2071			return 0;
2072		trace_kvm_msr_read_ex(ecx);
2073	}
2074
2075	return static_call(kvm_x86_complete_emulated_msr)(vcpu, r);
2076}
2077EXPORT_SYMBOL_GPL(kvm_emulate_rdmsr);
2078
2079int kvm_emulate_wrmsr(struct kvm_vcpu *vcpu)
2080{
2081	u32 ecx = kvm_rcx_read(vcpu);
2082	u64 data = kvm_read_edx_eax(vcpu);
2083	int r;
2084
2085	r = kvm_set_msr_with_filter(vcpu, ecx, data);
2086
2087	if (!r) {
2088		trace_kvm_msr_write(ecx, data);
2089	} else {
2090		/* MSR write failed? See if we should ask user space */
2091		if (kvm_msr_user_space(vcpu, ecx, KVM_EXIT_X86_WRMSR, data,
2092				       complete_fast_msr_access, r))
2093			return 0;
2094		/* Signal all other negative errors to userspace */
2095		if (r < 0)
2096			return r;
2097		trace_kvm_msr_write_ex(ecx, data);
2098	}
2099
2100	return static_call(kvm_x86_complete_emulated_msr)(vcpu, r);
2101}
2102EXPORT_SYMBOL_GPL(kvm_emulate_wrmsr);
2103
2104int kvm_emulate_as_nop(struct kvm_vcpu *vcpu)
2105{
2106	return kvm_skip_emulated_instruction(vcpu);
2107}
2108
2109int kvm_emulate_invd(struct kvm_vcpu *vcpu)
2110{
2111	/* Treat an INVD instruction as a NOP and just skip it. */
2112	return kvm_emulate_as_nop(vcpu);
2113}
2114EXPORT_SYMBOL_GPL(kvm_emulate_invd);
2115
2116int kvm_handle_invalid_op(struct kvm_vcpu *vcpu)
2117{
2118	kvm_queue_exception(vcpu, UD_VECTOR);
2119	return 1;
2120}
2121EXPORT_SYMBOL_GPL(kvm_handle_invalid_op);
2122
2123
2124static int kvm_emulate_monitor_mwait(struct kvm_vcpu *vcpu, const char *insn)
2125{
2126	if (!kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_MWAIT_NEVER_UD_FAULTS) &&
2127	    !guest_cpuid_has(vcpu, X86_FEATURE_MWAIT))
2128		return kvm_handle_invalid_op(vcpu);
2129
2130	pr_warn_once("%s instruction emulated as NOP!\n", insn);
2131	return kvm_emulate_as_nop(vcpu);
2132}
2133int kvm_emulate_mwait(struct kvm_vcpu *vcpu)
2134{
2135	return kvm_emulate_monitor_mwait(vcpu, "MWAIT");
2136}
2137EXPORT_SYMBOL_GPL(kvm_emulate_mwait);
2138
2139int kvm_emulate_monitor(struct kvm_vcpu *vcpu)
2140{
2141	return kvm_emulate_monitor_mwait(vcpu, "MONITOR");
2142}
2143EXPORT_SYMBOL_GPL(kvm_emulate_monitor);
2144
2145static inline bool kvm_vcpu_exit_request(struct kvm_vcpu *vcpu)
2146{
2147	xfer_to_guest_mode_prepare();
2148	return vcpu->mode == EXITING_GUEST_MODE || kvm_request_pending(vcpu) ||
2149		xfer_to_guest_mode_work_pending();
2150}
2151
2152/*
2153 * The fast path for frequent and performance sensitive wrmsr emulation,
2154 * i.e. the sending of IPI, sending IPI early in the VM-Exit flow reduces
2155 * the latency of virtual IPI by avoiding the expensive bits of transitioning
2156 * from guest to host, e.g. reacquiring KVM's SRCU lock. In contrast to the
2157 * other cases which must be called after interrupts are enabled on the host.
2158 */
2159static int handle_fastpath_set_x2apic_icr_irqoff(struct kvm_vcpu *vcpu, u64 data)
2160{
2161	if (!lapic_in_kernel(vcpu) || !apic_x2apic_mode(vcpu->arch.apic))
2162		return 1;
2163
2164	if (((data & APIC_SHORT_MASK) == APIC_DEST_NOSHORT) &&
2165	    ((data & APIC_DEST_MASK) == APIC_DEST_PHYSICAL) &&
2166	    ((data & APIC_MODE_MASK) == APIC_DM_FIXED) &&
2167	    ((u32)(data >> 32) != X2APIC_BROADCAST))
2168		return kvm_x2apic_icr_write(vcpu->arch.apic, data);
2169
2170	return 1;
2171}
2172
2173static int handle_fastpath_set_tscdeadline(struct kvm_vcpu *vcpu, u64 data)
2174{
2175	if (!kvm_can_use_hv_timer(vcpu))
2176		return 1;
2177
2178	kvm_set_lapic_tscdeadline_msr(vcpu, data);
2179	return 0;
2180}
2181
2182fastpath_t handle_fastpath_set_msr_irqoff(struct kvm_vcpu *vcpu)
2183{
2184	u32 msr = kvm_rcx_read(vcpu);
2185	u64 data;
2186	fastpath_t ret = EXIT_FASTPATH_NONE;
2187
2188	kvm_vcpu_srcu_read_lock(vcpu);
2189
2190	switch (msr) {
2191	case APIC_BASE_MSR + (APIC_ICR >> 4):
2192		data = kvm_read_edx_eax(vcpu);
2193		if (!handle_fastpath_set_x2apic_icr_irqoff(vcpu, data)) {
2194			kvm_skip_emulated_instruction(vcpu);
2195			ret = EXIT_FASTPATH_EXIT_HANDLED;
2196		}
2197		break;
2198	case MSR_IA32_TSC_DEADLINE:
2199		data = kvm_read_edx_eax(vcpu);
2200		if (!handle_fastpath_set_tscdeadline(vcpu, data)) {
2201			kvm_skip_emulated_instruction(vcpu);
2202			ret = EXIT_FASTPATH_REENTER_GUEST;
2203		}
2204		break;
2205	default:
2206		break;
2207	}
2208
2209	if (ret != EXIT_FASTPATH_NONE)
2210		trace_kvm_msr_write(msr, data);
2211
2212	kvm_vcpu_srcu_read_unlock(vcpu);
2213
2214	return ret;
2215}
2216EXPORT_SYMBOL_GPL(handle_fastpath_set_msr_irqoff);
2217
2218/*
2219 * Adapt set_msr() to msr_io()'s calling convention
2220 */
2221static int do_get_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
2222{
2223	return kvm_get_msr_ignored_check(vcpu, index, data, true);
2224}
2225
2226static int do_set_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
2227{
2228	u64 val;
2229
2230	/*
2231	 * Disallow writes to immutable feature MSRs after KVM_RUN.  KVM does
2232	 * not support modifying the guest vCPU model on the fly, e.g. changing
2233	 * the nVMX capabilities while L2 is running is nonsensical.  Ignore
2234	 * writes of the same value, e.g. to allow userspace to blindly stuff
2235	 * all MSRs when emulating RESET.
2236	 */
2237	if (kvm_vcpu_has_run(vcpu) && kvm_is_immutable_feature_msr(index)) {
2238		if (do_get_msr(vcpu, index, &val) || *data != val)
2239			return -EINVAL;
2240
2241		return 0;
2242	}
2243
2244	return kvm_set_msr_ignored_check(vcpu, index, *data, true);
2245}
2246
2247#ifdef CONFIG_X86_64
2248struct pvclock_clock {
2249	int vclock_mode;
2250	u64 cycle_last;
2251	u64 mask;
2252	u32 mult;
2253	u32 shift;
2254	u64 base_cycles;
2255	u64 offset;
2256};
2257
2258struct pvclock_gtod_data {
2259	seqcount_t	seq;
2260
2261	struct pvclock_clock clock; /* extract of a clocksource struct */
2262	struct pvclock_clock raw_clock; /* extract of a clocksource struct */
2263
2264	ktime_t		offs_boot;
2265	u64		wall_time_sec;
2266};
2267
2268static struct pvclock_gtod_data pvclock_gtod_data;
2269
2270static void update_pvclock_gtod(struct timekeeper *tk)
2271{
2272	struct pvclock_gtod_data *vdata = &pvclock_gtod_data;
2273
2274	write_seqcount_begin(&vdata->seq);
2275
2276	/* copy pvclock gtod data */
2277	vdata->clock.vclock_mode	= tk->tkr_mono.clock->vdso_clock_mode;
2278	vdata->clock.cycle_last		= tk->tkr_mono.cycle_last;
2279	vdata->clock.mask		= tk->tkr_mono.mask;
2280	vdata->clock.mult		= tk->tkr_mono.mult;
2281	vdata->clock.shift		= tk->tkr_mono.shift;
2282	vdata->clock.base_cycles	= tk->tkr_mono.xtime_nsec;
2283	vdata->clock.offset		= tk->tkr_mono.base;
2284
2285	vdata->raw_clock.vclock_mode	= tk->tkr_raw.clock->vdso_clock_mode;
2286	vdata->raw_clock.cycle_last	= tk->tkr_raw.cycle_last;
2287	vdata->raw_clock.mask		= tk->tkr_raw.mask;
2288	vdata->raw_clock.mult		= tk->tkr_raw.mult;
2289	vdata->raw_clock.shift		= tk->tkr_raw.shift;
2290	vdata->raw_clock.base_cycles	= tk->tkr_raw.xtime_nsec;
2291	vdata->raw_clock.offset		= tk->tkr_raw.base;
2292
2293	vdata->wall_time_sec            = tk->xtime_sec;
2294
2295	vdata->offs_boot		= tk->offs_boot;
2296
2297	write_seqcount_end(&vdata->seq);
2298}
2299
2300static s64 get_kvmclock_base_ns(void)
2301{
2302	/* Count up from boot time, but with the frequency of the raw clock.  */
2303	return ktime_to_ns(ktime_add(ktime_get_raw(), pvclock_gtod_data.offs_boot));
2304}
2305#else
2306static s64 get_kvmclock_base_ns(void)
2307{
2308	/* Master clock not used, so we can just use CLOCK_BOOTTIME.  */
2309	return ktime_get_boottime_ns();
2310}
2311#endif
2312
2313static void kvm_write_wall_clock(struct kvm *kvm, gpa_t wall_clock, int sec_hi_ofs)
2314{
2315	int version;
2316	int r;
2317	struct pvclock_wall_clock wc;
2318	u32 wc_sec_hi;
2319	u64 wall_nsec;
2320
2321	if (!wall_clock)
2322		return;
2323
2324	r = kvm_read_guest(kvm, wall_clock, &version, sizeof(version));
2325	if (r)
2326		return;
2327
2328	if (version & 1)
2329		++version;  /* first time write, random junk */
2330
2331	++version;
2332
2333	if (kvm_write_guest(kvm, wall_clock, &version, sizeof(version)))
2334		return;
2335
2336	wall_nsec = kvm_get_wall_clock_epoch(kvm);
2337
2338	wc.nsec = do_div(wall_nsec, NSEC_PER_SEC);
2339	wc.sec = (u32)wall_nsec; /* overflow in 2106 guest time */
2340	wc.version = version;
2341
2342	kvm_write_guest(kvm, wall_clock, &wc, sizeof(wc));
2343
2344	if (sec_hi_ofs) {
2345		wc_sec_hi = wall_nsec >> 32;
2346		kvm_write_guest(kvm, wall_clock + sec_hi_ofs,
2347				&wc_sec_hi, sizeof(wc_sec_hi));
2348	}
2349
2350	version++;
2351	kvm_write_guest(kvm, wall_clock, &version, sizeof(version));
2352}
2353
2354static void kvm_write_system_time(struct kvm_vcpu *vcpu, gpa_t system_time,
2355				  bool old_msr, bool host_initiated)
2356{
2357	struct kvm_arch *ka = &vcpu->kvm->arch;
2358
2359	if (vcpu->vcpu_id == 0 && !host_initiated) {
2360		if (ka->boot_vcpu_runs_old_kvmclock != old_msr)
2361			kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
2362
2363		ka->boot_vcpu_runs_old_kvmclock = old_msr;
2364	}
2365
2366	vcpu->arch.time = system_time;
2367	kvm_make_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu);
2368
2369	/* we verify if the enable bit is set... */
2370	if (system_time & 1)
2371		kvm_gpc_activate(&vcpu->arch.pv_time, system_time & ~1ULL,
2372				 sizeof(struct pvclock_vcpu_time_info));
2373	else
2374		kvm_gpc_deactivate(&vcpu->arch.pv_time);
2375
2376	return;
2377}
2378
2379static uint32_t div_frac(uint32_t dividend, uint32_t divisor)
2380{
2381	do_shl32_div32(dividend, divisor);
2382	return dividend;
2383}
2384
2385static void kvm_get_time_scale(uint64_t scaled_hz, uint64_t base_hz,
2386			       s8 *pshift, u32 *pmultiplier)
2387{
2388	uint64_t scaled64;
2389	int32_t  shift = 0;
2390	uint64_t tps64;
2391	uint32_t tps32;
2392
2393	tps64 = base_hz;
2394	scaled64 = scaled_hz;
2395	while (tps64 > scaled64*2 || tps64 & 0xffffffff00000000ULL) {
2396		tps64 >>= 1;
2397		shift--;
2398	}
2399
2400	tps32 = (uint32_t)tps64;
2401	while (tps32 <= scaled64 || scaled64 & 0xffffffff00000000ULL) {
2402		if (scaled64 & 0xffffffff00000000ULL || tps32 & 0x80000000)
2403			scaled64 >>= 1;
2404		else
2405			tps32 <<= 1;
2406		shift++;
2407	}
2408
2409	*pshift = shift;
2410	*pmultiplier = div_frac(scaled64, tps32);
2411}
2412
2413#ifdef CONFIG_X86_64
2414static atomic_t kvm_guest_has_master_clock = ATOMIC_INIT(0);
2415#endif
2416
2417static DEFINE_PER_CPU(unsigned long, cpu_tsc_khz);
2418static unsigned long max_tsc_khz;
2419
2420static u32 adjust_tsc_khz(u32 khz, s32 ppm)
2421{
2422	u64 v = (u64)khz * (1000000 + ppm);
2423	do_div(v, 1000000);
2424	return v;
2425}
2426
2427static void kvm_vcpu_write_tsc_multiplier(struct kvm_vcpu *vcpu, u64 l1_multiplier);
2428
2429static int set_tsc_khz(struct kvm_vcpu *vcpu, u32 user_tsc_khz, bool scale)
2430{
2431	u64 ratio;
2432
2433	/* Guest TSC same frequency as host TSC? */
2434	if (!scale) {
2435		kvm_vcpu_write_tsc_multiplier(vcpu, kvm_caps.default_tsc_scaling_ratio);
2436		return 0;
2437	}
2438
2439	/* TSC scaling supported? */
2440	if (!kvm_caps.has_tsc_control) {
2441		if (user_tsc_khz > tsc_khz) {
2442			vcpu->arch.tsc_catchup = 1;
2443			vcpu->arch.tsc_always_catchup = 1;
2444			return 0;
2445		} else {
2446			pr_warn_ratelimited("user requested TSC rate below hardware speed\n");
2447			return -1;
2448		}
2449	}
2450
2451	/* TSC scaling required  - calculate ratio */
2452	ratio = mul_u64_u32_div(1ULL << kvm_caps.tsc_scaling_ratio_frac_bits,
2453				user_tsc_khz, tsc_khz);
2454
2455	if (ratio == 0 || ratio >= kvm_caps.max_tsc_scaling_ratio) {
2456		pr_warn_ratelimited("Invalid TSC scaling ratio - virtual-tsc-khz=%u\n",
2457			            user_tsc_khz);
2458		return -1;
2459	}
2460
2461	kvm_vcpu_write_tsc_multiplier(vcpu, ratio);
2462	return 0;
2463}
2464
2465static int kvm_set_tsc_khz(struct kvm_vcpu *vcpu, u32 user_tsc_khz)
2466{
2467	u32 thresh_lo, thresh_hi;
2468	int use_scaling = 0;
2469
2470	/* tsc_khz can be zero if TSC calibration fails */
2471	if (user_tsc_khz == 0) {
2472		/* set tsc_scaling_ratio to a safe value */
2473		kvm_vcpu_write_tsc_multiplier(vcpu, kvm_caps.default_tsc_scaling_ratio);
2474		return -1;
2475	}
2476
2477	/* Compute a scale to convert nanoseconds in TSC cycles */
2478	kvm_get_time_scale(user_tsc_khz * 1000LL, NSEC_PER_SEC,
2479			   &vcpu->arch.virtual_tsc_shift,
2480			   &vcpu->arch.virtual_tsc_mult);
2481	vcpu->arch.virtual_tsc_khz = user_tsc_khz;
2482
2483	/*
2484	 * Compute the variation in TSC rate which is acceptable
2485	 * within the range of tolerance and decide if the
2486	 * rate being applied is within that bounds of the hardware
2487	 * rate.  If so, no scaling or compensation need be done.
2488	 */
2489	thresh_lo = adjust_tsc_khz(tsc_khz, -tsc_tolerance_ppm);
2490	thresh_hi = adjust_tsc_khz(tsc_khz, tsc_tolerance_ppm);
2491	if (user_tsc_khz < thresh_lo || user_tsc_khz > thresh_hi) {
2492		pr_debug("requested TSC rate %u falls outside tolerance [%u,%u]\n",
2493			 user_tsc_khz, thresh_lo, thresh_hi);
2494		use_scaling = 1;
2495	}
2496	return set_tsc_khz(vcpu, user_tsc_khz, use_scaling);
2497}
2498
2499static u64 compute_guest_tsc(struct kvm_vcpu *vcpu, s64 kernel_ns)
2500{
2501	u64 tsc = pvclock_scale_delta(kernel_ns-vcpu->arch.this_tsc_nsec,
2502				      vcpu->arch.virtual_tsc_mult,
2503				      vcpu->arch.virtual_tsc_shift);
2504	tsc += vcpu->arch.this_tsc_write;
2505	return tsc;
2506}
2507
2508#ifdef CONFIG_X86_64
2509static inline bool gtod_is_based_on_tsc(int mode)
2510{
2511	return mode == VDSO_CLOCKMODE_TSC || mode == VDSO_CLOCKMODE_HVCLOCK;
2512}
2513#endif
2514
2515static void kvm_track_tsc_matching(struct kvm_vcpu *vcpu, bool new_generation)
2516{
2517#ifdef CONFIG_X86_64
2518	struct kvm_arch *ka = &vcpu->kvm->arch;
2519	struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
2520
2521	/*
2522	 * To use the masterclock, the host clocksource must be based on TSC
2523	 * and all vCPUs must have matching TSCs.  Note, the count for matching
2524	 * vCPUs doesn't include the reference vCPU, hence "+1".
2525	 */
2526	bool use_master_clock = (ka->nr_vcpus_matched_tsc + 1 ==
2527				 atomic_read(&vcpu->kvm->online_vcpus)) &&
2528				gtod_is_based_on_tsc(gtod->clock.vclock_mode);
2529
2530	/*
2531	 * Request a masterclock update if the masterclock needs to be toggled
2532	 * on/off, or when starting a new generation and the masterclock is
2533	 * enabled (compute_guest_tsc() requires the masterclock snapshot to be
2534	 * taken _after_ the new generation is created).
2535	 */
2536	if ((ka->use_master_clock && new_generation) ||
2537	    (ka->use_master_clock != use_master_clock))
2538		kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
2539
2540	trace_kvm_track_tsc(vcpu->vcpu_id, ka->nr_vcpus_matched_tsc,
2541			    atomic_read(&vcpu->kvm->online_vcpus),
2542		            ka->use_master_clock, gtod->clock.vclock_mode);
2543#endif
2544}
2545
2546/*
2547 * Multiply tsc by a fixed point number represented by ratio.
2548 *
2549 * The most significant 64-N bits (mult) of ratio represent the
2550 * integral part of the fixed point number; the remaining N bits
2551 * (frac) represent the fractional part, ie. ratio represents a fixed
2552 * point number (mult + frac * 2^(-N)).
2553 *
2554 * N equals to kvm_caps.tsc_scaling_ratio_frac_bits.
2555 */
2556static inline u64 __scale_tsc(u64 ratio, u64 tsc)
2557{
2558	return mul_u64_u64_shr(tsc, ratio, kvm_caps.tsc_scaling_ratio_frac_bits);
2559}
2560
2561u64 kvm_scale_tsc(u64 tsc, u64 ratio)
2562{
2563	u64 _tsc = tsc;
2564
2565	if (ratio != kvm_caps.default_tsc_scaling_ratio)
2566		_tsc = __scale_tsc(ratio, tsc);
2567
2568	return _tsc;
2569}
2570
2571static u64 kvm_compute_l1_tsc_offset(struct kvm_vcpu *vcpu, u64 target_tsc)
2572{
2573	u64 tsc;
2574
2575	tsc = kvm_scale_tsc(rdtsc(), vcpu->arch.l1_tsc_scaling_ratio);
2576
2577	return target_tsc - tsc;
2578}
2579
2580u64 kvm_read_l1_tsc(struct kvm_vcpu *vcpu, u64 host_tsc)
2581{
2582	return vcpu->arch.l1_tsc_offset +
2583		kvm_scale_tsc(host_tsc, vcpu->arch.l1_tsc_scaling_ratio);
2584}
2585EXPORT_SYMBOL_GPL(kvm_read_l1_tsc);
2586
2587u64 kvm_calc_nested_tsc_offset(u64 l1_offset, u64 l2_offset, u64 l2_multiplier)
2588{
2589	u64 nested_offset;
2590
2591	if (l2_multiplier == kvm_caps.default_tsc_scaling_ratio)
2592		nested_offset = l1_offset;
2593	else
2594		nested_offset = mul_s64_u64_shr((s64) l1_offset, l2_multiplier,
2595						kvm_caps.tsc_scaling_ratio_frac_bits);
2596
2597	nested_offset += l2_offset;
2598	return nested_offset;
2599}
2600EXPORT_SYMBOL_GPL(kvm_calc_nested_tsc_offset);
2601
2602u64 kvm_calc_nested_tsc_multiplier(u64 l1_multiplier, u64 l2_multiplier)
2603{
2604	if (l2_multiplier != kvm_caps.default_tsc_scaling_ratio)
2605		return mul_u64_u64_shr(l1_multiplier, l2_multiplier,
2606				       kvm_caps.tsc_scaling_ratio_frac_bits);
2607
2608	return l1_multiplier;
2609}
2610EXPORT_SYMBOL_GPL(kvm_calc_nested_tsc_multiplier);
2611
2612static void kvm_vcpu_write_tsc_offset(struct kvm_vcpu *vcpu, u64 l1_offset)
2613{
2614	trace_kvm_write_tsc_offset(vcpu->vcpu_id,
2615				   vcpu->arch.l1_tsc_offset,
2616				   l1_offset);
2617
2618	vcpu->arch.l1_tsc_offset = l1_offset;
2619
2620	/*
2621	 * If we are here because L1 chose not to trap WRMSR to TSC then
2622	 * according to the spec this should set L1's TSC (as opposed to
2623	 * setting L1's offset for L2).
2624	 */
2625	if (is_guest_mode(vcpu))
2626		vcpu->arch.tsc_offset = kvm_calc_nested_tsc_offset(
2627			l1_offset,
2628			static_call(kvm_x86_get_l2_tsc_offset)(vcpu),
2629			static_call(kvm_x86_get_l2_tsc_multiplier)(vcpu));
2630	else
2631		vcpu->arch.tsc_offset = l1_offset;
2632
2633	static_call(kvm_x86_write_tsc_offset)(vcpu);
2634}
2635
2636static void kvm_vcpu_write_tsc_multiplier(struct kvm_vcpu *vcpu, u64 l1_multiplier)
2637{
2638	vcpu->arch.l1_tsc_scaling_ratio = l1_multiplier;
2639
2640	/* Userspace is changing the multiplier while L2 is active */
2641	if (is_guest_mode(vcpu))
2642		vcpu->arch.tsc_scaling_ratio = kvm_calc_nested_tsc_multiplier(
2643			l1_multiplier,
2644			static_call(kvm_x86_get_l2_tsc_multiplier)(vcpu));
2645	else
2646		vcpu->arch.tsc_scaling_ratio = l1_multiplier;
2647
2648	if (kvm_caps.has_tsc_control)
2649		static_call(kvm_x86_write_tsc_multiplier)(vcpu);
2650}
2651
2652static inline bool kvm_check_tsc_unstable(void)
2653{
2654#ifdef CONFIG_X86_64
2655	/*
2656	 * TSC is marked unstable when we're running on Hyper-V,
2657	 * 'TSC page' clocksource is good.
2658	 */
2659	if (pvclock_gtod_data.clock.vclock_mode == VDSO_CLOCKMODE_HVCLOCK)
2660		return false;
2661#endif
2662	return check_tsc_unstable();
2663}
2664
2665/*
2666 * Infers attempts to synchronize the guest's tsc from host writes. Sets the
2667 * offset for the vcpu and tracks the TSC matching generation that the vcpu
2668 * participates in.
2669 */
2670static void __kvm_synchronize_tsc(struct kvm_vcpu *vcpu, u64 offset, u64 tsc,
2671				  u64 ns, bool matched)
2672{
2673	struct kvm *kvm = vcpu->kvm;
2674
2675	lockdep_assert_held(&kvm->arch.tsc_write_lock);
2676
2677	/*
2678	 * We also track th most recent recorded KHZ, write and time to
2679	 * allow the matching interval to be extended at each write.
2680	 */
2681	kvm->arch.last_tsc_nsec = ns;
2682	kvm->arch.last_tsc_write = tsc;
2683	kvm->arch.last_tsc_khz = vcpu->arch.virtual_tsc_khz;
2684	kvm->arch.last_tsc_offset = offset;
2685
2686	vcpu->arch.last_guest_tsc = tsc;
2687
2688	kvm_vcpu_write_tsc_offset(vcpu, offset);
2689
2690	if (!matched) {
2691		/*
2692		 * We split periods of matched TSC writes into generations.
2693		 * For each generation, we track the original measured
2694		 * nanosecond time, offset, and write, so if TSCs are in
2695		 * sync, we can match exact offset, and if not, we can match
2696		 * exact software computation in compute_guest_tsc()
2697		 *
2698		 * These values are tracked in kvm->arch.cur_xxx variables.
2699		 */
2700		kvm->arch.cur_tsc_generation++;
2701		kvm->arch.cur_tsc_nsec = ns;
2702		kvm->arch.cur_tsc_write = tsc;
2703		kvm->arch.cur_tsc_offset = offset;
2704		kvm->arch.nr_vcpus_matched_tsc = 0;
2705	} else if (vcpu->arch.this_tsc_generation != kvm->arch.cur_tsc_generation) {
2706		kvm->arch.nr_vcpus_matched_tsc++;
2707	}
2708
2709	/* Keep track of which generation this VCPU has synchronized to */
2710	vcpu->arch.this_tsc_generation = kvm->arch.cur_tsc_generation;
2711	vcpu->arch.this_tsc_nsec = kvm->arch.cur_tsc_nsec;
2712	vcpu->arch.this_tsc_write = kvm->arch.cur_tsc_write;
2713
2714	kvm_track_tsc_matching(vcpu, !matched);
2715}
2716
2717static void kvm_synchronize_tsc(struct kvm_vcpu *vcpu, u64 *user_value)
2718{
2719	u64 data = user_value ? *user_value : 0;
2720	struct kvm *kvm = vcpu->kvm;
2721	u64 offset, ns, elapsed;
2722	unsigned long flags;
2723	bool matched = false;
2724	bool synchronizing = false;
2725
2726	raw_spin_lock_irqsave(&kvm->arch.tsc_write_lock, flags);
2727	offset = kvm_compute_l1_tsc_offset(vcpu, data);
2728	ns = get_kvmclock_base_ns();
2729	elapsed = ns - kvm->arch.last_tsc_nsec;
2730
2731	if (vcpu->arch.virtual_tsc_khz) {
2732		if (data == 0) {
2733			/*
2734			 * Force synchronization when creating a vCPU, or when
2735			 * userspace explicitly writes a zero value.
2736			 */
2737			synchronizing = true;
2738		} else if (kvm->arch.user_set_tsc) {
2739			u64 tsc_exp = kvm->arch.last_tsc_write +
2740						nsec_to_cycles(vcpu, elapsed);
2741			u64 tsc_hz = vcpu->arch.virtual_tsc_khz * 1000LL;
2742			/*
2743			 * Here lies UAPI baggage: when a user-initiated TSC write has
2744			 * a small delta (1 second) of virtual cycle time against the
2745			 * previously set vCPU, we assume that they were intended to be
2746			 * in sync and the delta was only due to the racy nature of the
2747			 * legacy API.
2748			 *
2749			 * This trick falls down when restoring a guest which genuinely
2750			 * has been running for less time than the 1 second of imprecision
2751			 * which we allow for in the legacy API. In this case, the first
2752			 * value written by userspace (on any vCPU) should not be subject
2753			 * to this 'correction' to make it sync up with values that only
2754			 * come from the kernel's default vCPU creation. Make the 1-second
2755			 * slop hack only trigger if the user_set_tsc flag is already set.
2756			 */
2757			synchronizing = data < tsc_exp + tsc_hz &&
2758					data + tsc_hz > tsc_exp;
2759		}
2760	}
2761
2762	if (user_value)
2763		kvm->arch.user_set_tsc = true;
2764
2765	/*
2766	 * For a reliable TSC, we can match TSC offsets, and for an unstable
2767	 * TSC, we add elapsed time in this computation.  We could let the
2768	 * compensation code attempt to catch up if we fall behind, but
2769	 * it's better to try to match offsets from the beginning.
2770         */
2771	if (synchronizing &&
2772	    vcpu->arch.virtual_tsc_khz == kvm->arch.last_tsc_khz) {
2773		if (!kvm_check_tsc_unstable()) {
2774			offset = kvm->arch.cur_tsc_offset;
2775		} else {
2776			u64 delta = nsec_to_cycles(vcpu, elapsed);
2777			data += delta;
2778			offset = kvm_compute_l1_tsc_offset(vcpu, data);
2779		}
2780		matched = true;
2781	}
2782
2783	__kvm_synchronize_tsc(vcpu, offset, data, ns, matched);
2784	raw_spin_unlock_irqrestore(&kvm->arch.tsc_write_lock, flags);
2785}
2786
2787static inline void adjust_tsc_offset_guest(struct kvm_vcpu *vcpu,
2788					   s64 adjustment)
2789{
2790	u64 tsc_offset = vcpu->arch.l1_tsc_offset;
2791	kvm_vcpu_write_tsc_offset(vcpu, tsc_offset + adjustment);
2792}
2793
2794static inline void adjust_tsc_offset_host(struct kvm_vcpu *vcpu, s64 adjustment)
2795{
2796	if (vcpu->arch.l1_tsc_scaling_ratio != kvm_caps.default_tsc_scaling_ratio)
2797		WARN_ON(adjustment < 0);
2798	adjustment = kvm_scale_tsc((u64) adjustment,
2799				   vcpu->arch.l1_tsc_scaling_ratio);
2800	adjust_tsc_offset_guest(vcpu, adjustment);
2801}
2802
2803#ifdef CONFIG_X86_64
2804
2805static u64 read_tsc(void)
2806{
2807	u64 ret = (u64)rdtsc_ordered();
2808	u64 last = pvclock_gtod_data.clock.cycle_last;
2809
2810	if (likely(ret >= last))
2811		return ret;
2812
2813	/*
2814	 * GCC likes to generate cmov here, but this branch is extremely
2815	 * predictable (it's just a function of time and the likely is
2816	 * very likely) and there's a data dependence, so force GCC
2817	 * to generate a branch instead.  I don't barrier() because
2818	 * we don't actually need a barrier, and if this function
2819	 * ever gets inlined it will generate worse code.
2820	 */
2821	asm volatile ("");
2822	return last;
2823}
2824
2825static inline u64 vgettsc(struct pvclock_clock *clock, u64 *tsc_timestamp,
2826			  int *mode)
2827{
2828	u64 tsc_pg_val;
2829	long v;
2830
2831	switch (clock->vclock_mode) {
2832	case VDSO_CLOCKMODE_HVCLOCK:
2833		if (hv_read_tsc_page_tsc(hv_get_tsc_page(),
2834					 tsc_timestamp, &tsc_pg_val)) {
2835			/* TSC page valid */
2836			*mode = VDSO_CLOCKMODE_HVCLOCK;
2837			v = (tsc_pg_val - clock->cycle_last) &
2838				clock->mask;
2839		} else {
2840			/* TSC page invalid */
2841			*mode = VDSO_CLOCKMODE_NONE;
2842		}
2843		break;
2844	case VDSO_CLOCKMODE_TSC:
2845		*mode = VDSO_CLOCKMODE_TSC;
2846		*tsc_timestamp = read_tsc();
2847		v = (*tsc_timestamp - clock->cycle_last) &
2848			clock->mask;
2849		break;
2850	default:
2851		*mode = VDSO_CLOCKMODE_NONE;
2852	}
2853
2854	if (*mode == VDSO_CLOCKMODE_NONE)
2855		*tsc_timestamp = v = 0;
2856
2857	return v * clock->mult;
2858}
2859
2860/*
2861 * As with get_kvmclock_base_ns(), this counts from boot time, at the
2862 * frequency of CLOCK_MONOTONIC_RAW (hence adding gtos->offs_boot).
2863 */
2864static int do_kvmclock_base(s64 *t, u64 *tsc_timestamp)
2865{
2866	struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
2867	unsigned long seq;
2868	int mode;
2869	u64 ns;
2870
2871	do {
2872		seq = read_seqcount_begin(&gtod->seq);
2873		ns = gtod->raw_clock.base_cycles;
2874		ns += vgettsc(&gtod->raw_clock, tsc_timestamp, &mode);
2875		ns >>= gtod->raw_clock.shift;
2876		ns += ktime_to_ns(ktime_add(gtod->raw_clock.offset, gtod->offs_boot));
2877	} while (unlikely(read_seqcount_retry(&gtod->seq, seq)));
2878	*t = ns;
2879
2880	return mode;
2881}
2882
2883/*
2884 * This calculates CLOCK_MONOTONIC at the time of the TSC snapshot, with
2885 * no boot time offset.
2886 */
2887static int do_monotonic(s64 *t, u64 *tsc_timestamp)
2888{
2889	struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
2890	unsigned long seq;
2891	int mode;
2892	u64 ns;
2893
2894	do {
2895		seq = read_seqcount_begin(&gtod->seq);
2896		ns = gtod->clock.base_cycles;
2897		ns += vgettsc(&gtod->clock, tsc_timestamp, &mode);
2898		ns >>= gtod->clock.shift;
2899		ns += ktime_to_ns(gtod->clock.offset);
2900	} while (unlikely(read_seqcount_retry(&gtod->seq, seq)));
2901	*t = ns;
2902
2903	return mode;
2904}
2905
2906static int do_realtime(struct timespec64 *ts, u64 *tsc_timestamp)
2907{
2908	struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
2909	unsigned long seq;
2910	int mode;
2911	u64 ns;
2912
2913	do {
2914		seq = read_seqcount_begin(&gtod->seq);
2915		ts->tv_sec = gtod->wall_time_sec;
2916		ns = gtod->clock.base_cycles;
2917		ns += vgettsc(&gtod->clock, tsc_timestamp, &mode);
2918		ns >>= gtod->clock.shift;
2919	} while (unlikely(read_seqcount_retry(&gtod->seq, seq)));
2920
2921	ts->tv_sec += __iter_div_u64_rem(ns, NSEC_PER_SEC, &ns);
2922	ts->tv_nsec = ns;
2923
2924	return mode;
2925}
2926
2927/*
2928 * Calculates the kvmclock_base_ns (CLOCK_MONOTONIC_RAW + boot time) and
2929 * reports the TSC value from which it do so. Returns true if host is
2930 * using TSC based clocksource.
2931 */
2932static bool kvm_get_time_and_clockread(s64 *kernel_ns, u64 *tsc_timestamp)
2933{
2934	/* checked again under seqlock below */
2935	if (!gtod_is_based_on_tsc(pvclock_gtod_data.clock.vclock_mode))
2936		return false;
2937
2938	return gtod_is_based_on_tsc(do_kvmclock_base(kernel_ns,
2939						     tsc_timestamp));
2940}
2941
2942/*
2943 * Calculates CLOCK_MONOTONIC and reports the TSC value from which it did
2944 * so. Returns true if host is using TSC based clocksource.
2945 */
2946bool kvm_get_monotonic_and_clockread(s64 *kernel_ns, u64 *tsc_timestamp)
2947{
2948	/* checked again under seqlock below */
2949	if (!gtod_is_based_on_tsc(pvclock_gtod_data.clock.vclock_mode))
2950		return false;
2951
2952	return gtod_is_based_on_tsc(do_monotonic(kernel_ns,
2953						 tsc_timestamp));
2954}
2955
2956/*
2957 * Calculates CLOCK_REALTIME and reports the TSC value from which it did
2958 * so. Returns true if host is using TSC based clocksource.
2959 *
2960 * DO NOT USE this for anything related to migration. You want CLOCK_TAI
2961 * for that.
2962 */
2963static bool kvm_get_walltime_and_clockread(struct timespec64 *ts,
2964					   u64 *tsc_timestamp)
2965{
2966	/* checked again under seqlock below */
2967	if (!gtod_is_based_on_tsc(pvclock_gtod_data.clock.vclock_mode))
2968		return false;
2969
2970	return gtod_is_based_on_tsc(do_realtime(ts, tsc_timestamp));
2971}
2972#endif
2973
2974/*
2975 *
2976 * Assuming a stable TSC across physical CPUS, and a stable TSC
2977 * across virtual CPUs, the following condition is possible.
2978 * Each numbered line represents an event visible to both
2979 * CPUs at the next numbered event.
2980 *
2981 * "timespecX" represents host monotonic time. "tscX" represents
2982 * RDTSC value.
2983 *
2984 * 		VCPU0 on CPU0		|	VCPU1 on CPU1
2985 *
2986 * 1.  read timespec0,tsc0
2987 * 2.					| timespec1 = timespec0 + N
2988 * 					| tsc1 = tsc0 + M
2989 * 3. transition to guest		| transition to guest
2990 * 4. ret0 = timespec0 + (rdtsc - tsc0) |
2991 * 5.				        | ret1 = timespec1 + (rdtsc - tsc1)
2992 * 				        | ret1 = timespec0 + N + (rdtsc - (tsc0 + M))
2993 *
2994 * Since ret0 update is visible to VCPU1 at time 5, to obey monotonicity:
2995 *
2996 * 	- ret0 < ret1
2997 *	- timespec0 + (rdtsc - tsc0) < timespec0 + N + (rdtsc - (tsc0 + M))
2998 *		...
2999 *	- 0 < N - M => M < N
3000 *
3001 * That is, when timespec0 != timespec1, M < N. Unfortunately that is not
3002 * always the case (the difference between two distinct xtime instances
3003 * might be smaller then the difference between corresponding TSC reads,
3004 * when updating guest vcpus pvclock areas).
3005 *
3006 * To avoid that problem, do not allow visibility of distinct
3007 * system_timestamp/tsc_timestamp values simultaneously: use a master
3008 * copy of host monotonic time values. Update that master copy
3009 * in lockstep.
3010 *
3011 * Rely on synchronization of host TSCs and guest TSCs for monotonicity.
3012 *
3013 */
3014
3015static void pvclock_update_vm_gtod_copy(struct kvm *kvm)
3016{
3017#ifdef CONFIG_X86_64
3018	struct kvm_arch *ka = &kvm->arch;
3019	int vclock_mode;
3020	bool host_tsc_clocksource, vcpus_matched;
3021
3022	lockdep_assert_held(&kvm->arch.tsc_write_lock);
3023	vcpus_matched = (ka->nr_vcpus_matched_tsc + 1 ==
3024			atomic_read(&kvm->online_vcpus));
3025
3026	/*
3027	 * If the host uses TSC clock, then passthrough TSC as stable
3028	 * to the guest.
3029	 */
3030	host_tsc_clocksource = kvm_get_time_and_clockread(
3031					&ka->master_kernel_ns,
3032					&ka->master_cycle_now);
3033
3034	ka->use_master_clock = host_tsc_clocksource && vcpus_matched
3035				&& !ka->backwards_tsc_observed
3036				&& !ka->boot_vcpu_runs_old_kvmclock;
3037
3038	if (ka->use_master_clock)
3039		atomic_set(&kvm_guest_has_master_clock, 1);
3040
3041	vclock_mode = pvclock_gtod_data.clock.vclock_mode;
3042	trace_kvm_update_master_clock(ka->use_master_clock, vclock_mode,
3043					vcpus_matched);
3044#endif
3045}
3046
3047static void kvm_make_mclock_inprogress_request(struct kvm *kvm)
3048{
3049	kvm_make_all_cpus_request(kvm, KVM_REQ_MCLOCK_INPROGRESS);
3050}
3051
3052static void __kvm_start_pvclock_update(struct kvm *kvm)
3053{
3054	raw_spin_lock_irq(&kvm->arch.tsc_write_lock);
3055	write_seqcount_begin(&kvm->arch.pvclock_sc);
3056}
3057
3058static void kvm_start_pvclock_update(struct kvm *kvm)
3059{
3060	kvm_make_mclock_inprogress_request(kvm);
3061
3062	/* no guest entries from this point */
3063	__kvm_start_pvclock_update(kvm);
3064}
3065
3066static void kvm_end_pvclock_update(struct kvm *kvm)
3067{
3068	struct kvm_arch *ka = &kvm->arch;
3069	struct kvm_vcpu *vcpu;
3070	unsigned long i;
3071
3072	write_seqcount_end(&ka->pvclock_sc);
3073	raw_spin_unlock_irq(&ka->tsc_write_lock);
3074	kvm_for_each_vcpu(i, vcpu, kvm)
3075		kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
3076
3077	/* guest entries allowed */
3078	kvm_for_each_vcpu(i, vcpu, kvm)
3079		kvm_clear_request(KVM_REQ_MCLOCK_INPROGRESS, vcpu);
3080}
3081
3082static void kvm_update_masterclock(struct kvm *kvm)
3083{
3084	kvm_hv_request_tsc_page_update(kvm);
3085	kvm_start_pvclock_update(kvm);
3086	pvclock_update_vm_gtod_copy(kvm);
3087	kvm_end_pvclock_update(kvm);
3088}
3089
3090/*
3091 * Use the kernel's tsc_khz directly if the TSC is constant, otherwise use KVM's
3092 * per-CPU value (which may be zero if a CPU is going offline).  Note, tsc_khz
3093 * can change during boot even if the TSC is constant, as it's possible for KVM
3094 * to be loaded before TSC calibration completes.  Ideally, KVM would get a
3095 * notification when calibration completes, but practically speaking calibration
3096 * will complete before userspace is alive enough to create VMs.
3097 */
3098static unsigned long get_cpu_tsc_khz(void)
3099{
3100	if (static_cpu_has(X86_FEATURE_CONSTANT_TSC))
3101		return tsc_khz;
3102	else
3103		return __this_cpu_read(cpu_tsc_khz);
3104}
3105
3106/* Called within read_seqcount_begin/retry for kvm->pvclock_sc.  */
3107static void __get_kvmclock(struct kvm *kvm, struct kvm_clock_data *data)
3108{
3109	struct kvm_arch *ka = &kvm->arch;
3110	struct pvclock_vcpu_time_info hv_clock;
3111
3112	/* both __this_cpu_read() and rdtsc() should be on the same cpu */
3113	get_cpu();
3114
3115	data->flags = 0;
3116	if (ka->use_master_clock &&
3117	    (static_cpu_has(X86_FEATURE_CONSTANT_TSC) || __this_cpu_read(cpu_tsc_khz))) {
3118#ifdef CONFIG_X86_64
3119		struct timespec64 ts;
3120
3121		if (kvm_get_walltime_and_clockread(&ts, &data->host_tsc)) {
3122			data->realtime = ts.tv_nsec + NSEC_PER_SEC * ts.tv_sec;
3123			data->flags |= KVM_CLOCK_REALTIME | KVM_CLOCK_HOST_TSC;
3124		} else
3125#endif
3126		data->host_tsc = rdtsc();
3127
3128		data->flags |= KVM_CLOCK_TSC_STABLE;
3129		hv_clock.tsc_timestamp = ka->master_cycle_now;
3130		hv_clock.system_time = ka->master_kernel_ns + ka->kvmclock_offset;
3131		kvm_get_time_scale(NSEC_PER_SEC, get_cpu_tsc_khz() * 1000LL,
3132				   &hv_clock.tsc_shift,
3133				   &hv_clock.tsc_to_system_mul);
3134		data->clock = __pvclock_read_cycles(&hv_clock, data->host_tsc);
3135	} else {
3136		data->clock = get_kvmclock_base_ns() + ka->kvmclock_offset;
3137	}
3138
3139	put_cpu();
3140}
3141
3142static void get_kvmclock(struct kvm *kvm, struct kvm_clock_data *data)
3143{
3144	struct kvm_arch *ka = &kvm->arch;
3145	unsigned seq;
3146
3147	do {
3148		seq = read_seqcount_begin(&ka->pvclock_sc);
3149		__get_kvmclock(kvm, data);
3150	} while (read_seqcount_retry(&ka->pvclock_sc, seq));
3151}
3152
3153u64 get_kvmclock_ns(struct kvm *kvm)
3154{
3155	struct kvm_clock_data data;
3156
3157	get_kvmclock(kvm, &data);
3158	return data.clock;
3159}
3160
3161static void kvm_setup_guest_pvclock(struct kvm_vcpu *v,
3162				    struct gfn_to_pfn_cache *gpc,
3163				    unsigned int offset,
3164				    bool force_tsc_unstable)
3165{
3166	struct kvm_vcpu_arch *vcpu = &v->arch;
3167	struct pvclock_vcpu_time_info *guest_hv_clock;
3168	unsigned long flags;
3169
3170	read_lock_irqsave(&gpc->lock, flags);
3171	while (!kvm_gpc_check(gpc, offset + sizeof(*guest_hv_clock))) {
3172		read_unlock_irqrestore(&gpc->lock, flags);
3173
3174		if (kvm_gpc_refresh(gpc, offset + sizeof(*guest_hv_clock)))
3175			return;
3176
3177		read_lock_irqsave(&gpc->lock, flags);
3178	}
3179
3180	guest_hv_clock = (void *)(gpc->khva + offset);
3181
3182	/*
3183	 * This VCPU is paused, but it's legal for a guest to read another
3184	 * VCPU's kvmclock, so we really have to follow the specification where
3185	 * it says that version is odd if data is being modified, and even after
3186	 * it is consistent.
3187	 */
3188
3189	guest_hv_clock->version = vcpu->hv_clock.version = (guest_hv_clock->version + 1) | 1;
3190	smp_wmb();
3191
3192	/* retain PVCLOCK_GUEST_STOPPED if set in guest copy */
3193	vcpu->hv_clock.flags |= (guest_hv_clock->flags & PVCLOCK_GUEST_STOPPED);
3194
3195	if (vcpu->pvclock_set_guest_stopped_request) {
3196		vcpu->hv_clock.flags |= PVCLOCK_GUEST_STOPPED;
3197		vcpu->pvclock_set_guest_stopped_request = false;
3198	}
3199
3200	memcpy(guest_hv_clock, &vcpu->hv_clock, sizeof(*guest_hv_clock));
3201
3202	if (force_tsc_unstable)
3203		guest_hv_clock->flags &= ~PVCLOCK_TSC_STABLE_BIT;
3204
3205	smp_wmb();
3206
3207	guest_hv_clock->version = ++vcpu->hv_clock.version;
3208
3209	kvm_gpc_mark_dirty_in_slot(gpc);
3210	read_unlock_irqrestore(&gpc->lock, flags);
3211
3212	trace_kvm_pvclock_update(v->vcpu_id, &vcpu->hv_clock);
3213}
3214
3215static int kvm_guest_time_update(struct kvm_vcpu *v)
3216{
3217	unsigned long flags, tgt_tsc_khz;
3218	unsigned seq;
3219	struct kvm_vcpu_arch *vcpu = &v->arch;
3220	struct kvm_arch *ka = &v->kvm->arch;
3221	s64 kernel_ns;
3222	u64 tsc_timestamp, host_tsc;
3223	u8 pvclock_flags;
3224	bool use_master_clock;
3225#ifdef CONFIG_KVM_XEN
3226	/*
3227	 * For Xen guests we may need to override PVCLOCK_TSC_STABLE_BIT as unless
3228	 * explicitly told to use TSC as its clocksource Xen will not set this bit.
3229	 * This default behaviour led to bugs in some guest kernels which cause
3230	 * problems if they observe PVCLOCK_TSC_STABLE_BIT in the pvclock flags.
3231	 */
3232	bool xen_pvclock_tsc_unstable =
3233		ka->xen_hvm_config.flags & KVM_XEN_HVM_CONFIG_PVCLOCK_TSC_UNSTABLE;
3234#endif
3235
3236	kernel_ns = 0;
3237	host_tsc = 0;
3238
3239	/*
3240	 * If the host uses TSC clock, then passthrough TSC as stable
3241	 * to the guest.
3242	 */
3243	do {
3244		seq = read_seqcount_begin(&ka->pvclock_sc);
3245		use_master_clock = ka->use_master_clock;
3246		if (use_master_clock) {
3247			host_tsc = ka->master_cycle_now;
3248			kernel_ns = ka->master_kernel_ns;
3249		}
3250	} while (read_seqcount_retry(&ka->pvclock_sc, seq));
3251
3252	/* Keep irq disabled to prevent changes to the clock */
3253	local_irq_save(flags);
3254	tgt_tsc_khz = get_cpu_tsc_khz();
3255	if (unlikely(tgt_tsc_khz == 0)) {
3256		local_irq_restore(flags);
3257		kvm_make_request(KVM_REQ_CLOCK_UPDATE, v);
3258		return 1;
3259	}
3260	if (!use_master_clock) {
3261		host_tsc = rdtsc();
3262		kernel_ns = get_kvmclock_base_ns();
3263	}
3264
3265	tsc_timestamp = kvm_read_l1_tsc(v, host_tsc);
3266
3267	/*
3268	 * We may have to catch up the TSC to match elapsed wall clock
3269	 * time for two reasons, even if kvmclock is used.
3270	 *   1) CPU could have been running below the maximum TSC rate
3271	 *   2) Broken TSC compensation resets the base at each VCPU
3272	 *      entry to avoid unknown leaps of TSC even when running
3273	 *      again on the same CPU.  This may cause apparent elapsed
3274	 *      time to disappear, and the guest to stand still or run
3275	 *	very slowly.
3276	 */
3277	if (vcpu->tsc_catchup) {
3278		u64 tsc = compute_guest_tsc(v, kernel_ns);
3279		if (tsc > tsc_timestamp) {
3280			adjust_tsc_offset_guest(v, tsc - tsc_timestamp);
3281			tsc_timestamp = tsc;
3282		}
3283	}
3284
3285	local_irq_restore(flags);
3286
3287	/* With all the info we got, fill in the values */
3288
3289	if (kvm_caps.has_tsc_control)
3290		tgt_tsc_khz = kvm_scale_tsc(tgt_tsc_khz,
3291					    v->arch.l1_tsc_scaling_ratio);
3292
3293	if (unlikely(vcpu->hw_tsc_khz != tgt_tsc_khz)) {
3294		kvm_get_time_scale(NSEC_PER_SEC, tgt_tsc_khz * 1000LL,
3295				   &vcpu->hv_clock.tsc_shift,
3296				   &vcpu->hv_clock.tsc_to_system_mul);
3297		vcpu->hw_tsc_khz = tgt_tsc_khz;
3298		kvm_xen_update_tsc_info(v);
3299	}
3300
3301	vcpu->hv_clock.tsc_timestamp = tsc_timestamp;
3302	vcpu->hv_clock.system_time = kernel_ns + v->kvm->arch.kvmclock_offset;
3303	vcpu->last_guest_tsc = tsc_timestamp;
3304
3305	/* If the host uses TSC clocksource, then it is stable */
3306	pvclock_flags = 0;
3307	if (use_master_clock)
3308		pvclock_flags |= PVCLOCK_TSC_STABLE_BIT;
3309
3310	vcpu->hv_clock.flags = pvclock_flags;
3311
3312	if (vcpu->pv_time.active)
3313		kvm_setup_guest_pvclock(v, &vcpu->pv_time, 0, false);
3314#ifdef CONFIG_KVM_XEN
3315	if (vcpu->xen.vcpu_info_cache.active)
3316		kvm_setup_guest_pvclock(v, &vcpu->xen.vcpu_info_cache,
3317					offsetof(struct compat_vcpu_info, time),
3318					xen_pvclock_tsc_unstable);
3319	if (vcpu->xen.vcpu_time_info_cache.active)
3320		kvm_setup_guest_pvclock(v, &vcpu->xen.vcpu_time_info_cache, 0,
3321					xen_pvclock_tsc_unstable);
3322#endif
3323	kvm_hv_setup_tsc_page(v->kvm, &vcpu->hv_clock);
3324	return 0;
3325}
3326
3327/*
3328 * The pvclock_wall_clock ABI tells the guest the wall clock time at
3329 * which it started (i.e. its epoch, when its kvmclock was zero).
3330 *
3331 * In fact those clocks are subtly different; wall clock frequency is
3332 * adjusted by NTP and has leap seconds, while the kvmclock is a
3333 * simple function of the TSC without any such adjustment.
3334 *
3335 * Perhaps the ABI should have exposed CLOCK_TAI and a ratio between
3336 * that and kvmclock, but even that would be subject to change over
3337 * time.
3338 *
3339 * Attempt to calculate the epoch at a given moment using the *same*
3340 * TSC reading via kvm_get_walltime_and_clockread() to obtain both
3341 * wallclock and kvmclock times, and subtracting one from the other.
3342 *
3343 * Fall back to using their values at slightly different moments by
3344 * calling ktime_get_real_ns() and get_kvmclock_ns() separately.
3345 */
3346uint64_t kvm_get_wall_clock_epoch(struct kvm *kvm)
3347{
3348#ifdef CONFIG_X86_64
3349	struct pvclock_vcpu_time_info hv_clock;
3350	struct kvm_arch *ka = &kvm->arch;
3351	unsigned long seq, local_tsc_khz;
3352	struct timespec64 ts;
3353	uint64_t host_tsc;
3354
3355	do {
3356		seq = read_seqcount_begin(&ka->pvclock_sc);
3357
3358		local_tsc_khz = 0;
3359		if (!ka->use_master_clock)
3360			break;
3361
3362		/*
3363		 * The TSC read and the call to get_cpu_tsc_khz() must happen
3364		 * on the same CPU.
3365		 */
3366		get_cpu();
3367
3368		local_tsc_khz = get_cpu_tsc_khz();
3369
3370		if (local_tsc_khz &&
3371		    !kvm_get_walltime_and_clockread(&ts, &host_tsc))
3372			local_tsc_khz = 0; /* Fall back to old method */
3373
3374		put_cpu();
3375
3376		/*
3377		 * These values must be snapshotted within the seqcount loop.
3378		 * After that, it's just mathematics which can happen on any
3379		 * CPU at any time.
3380		 */
3381		hv_clock.tsc_timestamp = ka->master_cycle_now;
3382		hv_clock.system_time = ka->master_kernel_ns + ka->kvmclock_offset;
3383
3384	} while (read_seqcount_retry(&ka->pvclock_sc, seq));
3385
3386	/*
3387	 * If the conditions were right, and obtaining the wallclock+TSC was
3388	 * successful, calculate the KVM clock at the corresponding time and
3389	 * subtract one from the other to get the guest's epoch in nanoseconds
3390	 * since 1970-01-01.
3391	 */
3392	if (local_tsc_khz) {
3393		kvm_get_time_scale(NSEC_PER_SEC, local_tsc_khz * NSEC_PER_USEC,
3394				   &hv_clock.tsc_shift,
3395				   &hv_clock.tsc_to_system_mul);
3396		return ts.tv_nsec + NSEC_PER_SEC * ts.tv_sec -
3397			__pvclock_read_cycles(&hv_clock, host_tsc);
3398	}
3399#endif
3400	return ktime_get_real_ns() - get_kvmclock_ns(kvm);
3401}
3402
3403/*
3404 * kvmclock updates which are isolated to a given vcpu, such as
3405 * vcpu->cpu migration, should not allow system_timestamp from
3406 * the rest of the vcpus to remain static. Otherwise ntp frequency
3407 * correction applies to one vcpu's system_timestamp but not
3408 * the others.
3409 *
3410 * So in those cases, request a kvmclock update for all vcpus.
3411 * We need to rate-limit these requests though, as they can
3412 * considerably slow guests that have a large number of vcpus.
3413 * The time for a remote vcpu to update its kvmclock is bound
3414 * by the delay we use to rate-limit the updates.
3415 */
3416
3417#define KVMCLOCK_UPDATE_DELAY msecs_to_jiffies(100)
3418
3419static void kvmclock_update_fn(struct work_struct *work)
3420{
3421	unsigned long i;
3422	struct delayed_work *dwork = to_delayed_work(work);
3423	struct kvm_arch *ka = container_of(dwork, struct kvm_arch,
3424					   kvmclock_update_work);
3425	struct kvm *kvm = container_of(ka, struct kvm, arch);
3426	struct kvm_vcpu *vcpu;
3427
3428	kvm_for_each_vcpu(i, vcpu, kvm) {
3429		kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
3430		kvm_vcpu_kick(vcpu);
3431	}
3432}
3433
3434static void kvm_gen_kvmclock_update(struct kvm_vcpu *v)
3435{
3436	struct kvm *kvm = v->kvm;
3437
3438	kvm_make_request(KVM_REQ_CLOCK_UPDATE, v);
3439	schedule_delayed_work(&kvm->arch.kvmclock_update_work,
3440					KVMCLOCK_UPDATE_DELAY);
3441}
3442
3443#define KVMCLOCK_SYNC_PERIOD (300 * HZ)
3444
3445static void kvmclock_sync_fn(struct work_struct *work)
3446{
3447	struct delayed_work *dwork = to_delayed_work(work);
3448	struct kvm_arch *ka = container_of(dwork, struct kvm_arch,
3449					   kvmclock_sync_work);
3450	struct kvm *kvm = container_of(ka, struct kvm, arch);
3451
3452	schedule_delayed_work(&kvm->arch.kvmclock_update_work, 0);
3453	schedule_delayed_work(&kvm->arch.kvmclock_sync_work,
3454					KVMCLOCK_SYNC_PERIOD);
3455}
3456
3457/* These helpers are safe iff @msr is known to be an MCx bank MSR. */
3458static bool is_mci_control_msr(u32 msr)
3459{
3460	return (msr & 3) == 0;
3461}
3462static bool is_mci_status_msr(u32 msr)
3463{
3464	return (msr & 3) == 1;
3465}
3466
3467/*
3468 * On AMD, HWCR[McStatusWrEn] controls whether setting MCi_STATUS results in #GP.
3469 */
3470static bool can_set_mci_status(struct kvm_vcpu *vcpu)
3471{
3472	/* McStatusWrEn enabled? */
3473	if (guest_cpuid_is_amd_compatible(vcpu))
3474		return !!(vcpu->arch.msr_hwcr & BIT_ULL(18));
3475
3476	return false;
3477}
3478
3479static int set_msr_mce(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
3480{
3481	u64 mcg_cap = vcpu->arch.mcg_cap;
3482	unsigned bank_num = mcg_cap & 0xff;
3483	u32 msr = msr_info->index;
3484	u64 data = msr_info->data;
3485	u32 offset, last_msr;
3486
3487	switch (msr) {
3488	case MSR_IA32_MCG_STATUS:
3489		vcpu->arch.mcg_status = data;
3490		break;
3491	case MSR_IA32_MCG_CTL:
3492		if (!(mcg_cap & MCG_CTL_P) &&
3493		    (data || !msr_info->host_initiated))
3494			return 1;
3495		if (data != 0 && data != ~(u64)0)
3496			return 1;
3497		vcpu->arch.mcg_ctl = data;
3498		break;
3499	case MSR_IA32_MC0_CTL2 ... MSR_IA32_MCx_CTL2(KVM_MAX_MCE_BANKS) - 1:
3500		last_msr = MSR_IA32_MCx_CTL2(bank_num) - 1;
3501		if (msr > last_msr)
3502			return 1;
3503
3504		if (!(mcg_cap & MCG_CMCI_P) && (data || !msr_info->host_initiated))
3505			return 1;
3506		/* An attempt to write a 1 to a reserved bit raises #GP */
3507		if (data & ~(MCI_CTL2_CMCI_EN | MCI_CTL2_CMCI_THRESHOLD_MASK))
3508			return 1;
3509		offset = array_index_nospec(msr - MSR_IA32_MC0_CTL2,
3510					    last_msr + 1 - MSR_IA32_MC0_CTL2);
3511		vcpu->arch.mci_ctl2_banks[offset] = data;
3512		break;
3513	case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1:
3514		last_msr = MSR_IA32_MCx_CTL(bank_num) - 1;
3515		if (msr > last_msr)
3516			return 1;
3517
3518		/*
3519		 * Only 0 or all 1s can be written to IA32_MCi_CTL, all other
3520		 * values are architecturally undefined.  But, some Linux
3521		 * kernels clear bit 10 in bank 4 to workaround a BIOS/GART TLB
3522		 * issue on AMD K8s, allow bit 10 to be clear when setting all
3523		 * other bits in order to avoid an uncaught #GP in the guest.
3524		 *
3525		 * UNIXWARE clears bit 0 of MC1_CTL to ignore correctable,
3526		 * single-bit ECC data errors.
3527		 */
3528		if (is_mci_control_msr(msr) &&
3529		    data != 0 && (data | (1 << 10) | 1) != ~(u64)0)
3530			return 1;
3531
3532		/*
3533		 * All CPUs allow writing 0 to MCi_STATUS MSRs to clear the MSR.
3534		 * AMD-based CPUs allow non-zero values, but if and only if
3535		 * HWCR[McStatusWrEn] is set.
3536		 */
3537		if (!msr_info->host_initiated && is_mci_status_msr(msr) &&
3538		    data != 0 && !can_set_mci_status(vcpu))
3539			return 1;
3540
3541		offset = array_index_nospec(msr - MSR_IA32_MC0_CTL,
3542					    last_msr + 1 - MSR_IA32_MC0_CTL);
3543		vcpu->arch.mce_banks[offset] = data;
3544		break;
3545	default:
3546		return 1;
3547	}
3548	return 0;
3549}
3550
3551static inline bool kvm_pv_async_pf_enabled(struct kvm_vcpu *vcpu)
3552{
3553	u64 mask = KVM_ASYNC_PF_ENABLED | KVM_ASYNC_PF_DELIVERY_AS_INT;
3554
3555	return (vcpu->arch.apf.msr_en_val & mask) == mask;
3556}
3557
3558static int kvm_pv_enable_async_pf(struct kvm_vcpu *vcpu, u64 data)
3559{
3560	gpa_t gpa = data & ~0x3f;
3561
3562	/* Bits 4:5 are reserved, Should be zero */
3563	if (data & 0x30)
3564		return 1;
3565
3566	if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_VMEXIT) &&
3567	    (data & KVM_ASYNC_PF_DELIVERY_AS_PF_VMEXIT))
3568		return 1;
3569
3570	if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT) &&
3571	    (data & KVM_ASYNC_PF_DELIVERY_AS_INT))
3572		return 1;
3573
3574	if (!lapic_in_kernel(vcpu))
3575		return data ? 1 : 0;
3576
3577	vcpu->arch.apf.msr_en_val = data;
3578
3579	if (!kvm_pv_async_pf_enabled(vcpu)) {
3580		kvm_clear_async_pf_completion_queue(vcpu);
3581		kvm_async_pf_hash_reset(vcpu);
3582		return 0;
3583	}
3584
3585	if (kvm_gfn_to_hva_cache_init(vcpu->kvm, &vcpu->arch.apf.data, gpa,
3586					sizeof(u64)))
3587		return 1;
3588
3589	vcpu->arch.apf.send_user_only = !(data & KVM_ASYNC_PF_SEND_ALWAYS);
3590	vcpu->arch.apf.delivery_as_pf_vmexit = data & KVM_ASYNC_PF_DELIVERY_AS_PF_VMEXIT;
3591
3592	kvm_async_pf_wakeup_all(vcpu);
3593
3594	return 0;
3595}
3596
3597static int kvm_pv_enable_async_pf_int(struct kvm_vcpu *vcpu, u64 data)
3598{
3599	/* Bits 8-63 are reserved */
3600	if (data >> 8)
3601		return 1;
3602
3603	if (!lapic_in_kernel(vcpu))
3604		return 1;
3605
3606	vcpu->arch.apf.msr_int_val = data;
3607
3608	vcpu->arch.apf.vec = data & KVM_ASYNC_PF_VEC_MASK;
3609
3610	return 0;
3611}
3612
3613static void kvmclock_reset(struct kvm_vcpu *vcpu)
3614{
3615	kvm_gpc_deactivate(&vcpu->arch.pv_time);
3616	vcpu->arch.time = 0;
3617}
3618
3619static void kvm_vcpu_flush_tlb_all(struct kvm_vcpu *vcpu)
3620{
3621	++vcpu->stat.tlb_flush;
3622	static_call(kvm_x86_flush_tlb_all)(vcpu);
3623
3624	/* Flushing all ASIDs flushes the current ASID... */
3625	kvm_clear_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu);
3626}
3627
3628static void kvm_vcpu_flush_tlb_guest(struct kvm_vcpu *vcpu)
3629{
3630	++vcpu->stat.tlb_flush;
3631
3632	if (!tdp_enabled) {
3633		/*
3634		 * A TLB flush on behalf of the guest is equivalent to
3635		 * INVPCID(all), toggling CR4.PGE, etc., which requires
3636		 * a forced sync of the shadow page tables.  Ensure all the
3637		 * roots are synced and the guest TLB in hardware is clean.
3638		 */
3639		kvm_mmu_sync_roots(vcpu);
3640		kvm_mmu_sync_prev_roots(vcpu);
3641	}
3642
3643	static_call(kvm_x86_flush_tlb_guest)(vcpu);
3644
3645	/*
3646	 * Flushing all "guest" TLB is always a superset of Hyper-V's fine
3647	 * grained flushing.
3648	 */
3649	kvm_hv_vcpu_purge_flush_tlb(vcpu);
3650}
3651
3652
3653static inline void kvm_vcpu_flush_tlb_current(struct kvm_vcpu *vcpu)
3654{
3655	++vcpu->stat.tlb_flush;
3656	static_call(kvm_x86_flush_tlb_current)(vcpu);
3657}
3658
3659/*
3660 * Service "local" TLB flush requests, which are specific to the current MMU
3661 * context.  In addition to the generic event handling in vcpu_enter_guest(),
3662 * TLB flushes that are targeted at an MMU context also need to be serviced
3663 * prior before nested VM-Enter/VM-Exit.
3664 */
3665void kvm_service_local_tlb_flush_requests(struct kvm_vcpu *vcpu)
3666{
3667	if (kvm_check_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu))
3668		kvm_vcpu_flush_tlb_current(vcpu);
3669
3670	if (kvm_check_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu))
3671		kvm_vcpu_flush_tlb_guest(vcpu);
3672}
3673EXPORT_SYMBOL_GPL(kvm_service_local_tlb_flush_requests);
3674
3675static void record_steal_time(struct kvm_vcpu *vcpu)
3676{
3677	struct gfn_to_hva_cache *ghc = &vcpu->arch.st.cache;
3678	struct kvm_steal_time __user *st;
3679	struct kvm_memslots *slots;
3680	gpa_t gpa = vcpu->arch.st.msr_val & KVM_STEAL_VALID_BITS;
3681	u64 steal;
3682	u32 version;
3683
3684	if (kvm_xen_msr_enabled(vcpu->kvm)) {
3685		kvm_xen_runstate_set_running(vcpu);
3686		return;
3687	}
3688
3689	if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED))
3690		return;
3691
3692	if (WARN_ON_ONCE(current->mm != vcpu->kvm->mm))
3693		return;
3694
3695	slots = kvm_memslots(vcpu->kvm);
3696
3697	if (unlikely(slots->generation != ghc->generation ||
3698		     gpa != ghc->gpa ||
3699		     kvm_is_error_hva(ghc->hva) || !ghc->memslot)) {
3700		/* We rely on the fact that it fits in a single page. */
3701		BUILD_BUG_ON((sizeof(*st) - 1) & KVM_STEAL_VALID_BITS);
3702
3703		if (kvm_gfn_to_hva_cache_init(vcpu->kvm, ghc, gpa, sizeof(*st)) ||
3704		    kvm_is_error_hva(ghc->hva) || !ghc->memslot)
3705			return;
3706	}
3707
3708	st = (struct kvm_steal_time __user *)ghc->hva;
3709	/*
3710	 * Doing a TLB flush here, on the guest's behalf, can avoid
3711	 * expensive IPIs.
3712	 */
3713	if (guest_pv_has(vcpu, KVM_FEATURE_PV_TLB_FLUSH)) {
3714		u8 st_preempted = 0;
3715		int err = -EFAULT;
3716
3717		if (!user_access_begin(st, sizeof(*st)))
3718			return;
3719
3720		asm volatile("1: xchgb %0, %2\n"
3721			     "xor %1, %1\n"
3722			     "2:\n"
3723			     _ASM_EXTABLE_UA(1b, 2b)
3724			     : "+q" (st_preempted),
3725			       "+&r" (err),
3726			       "+m" (st->preempted));
3727		if (err)
3728			goto out;
3729
3730		user_access_end();
3731
3732		vcpu->arch.st.preempted = 0;
3733
3734		trace_kvm_pv_tlb_flush(vcpu->vcpu_id,
3735				       st_preempted & KVM_VCPU_FLUSH_TLB);
3736		if (st_preempted & KVM_VCPU_FLUSH_TLB)
3737			kvm_vcpu_flush_tlb_guest(vcpu);
3738
3739		if (!user_access_begin(st, sizeof(*st)))
3740			goto dirty;
3741	} else {
3742		if (!user_access_begin(st, sizeof(*st)))
3743			return;
3744
3745		unsafe_put_user(0, &st->preempted, out);
3746		vcpu->arch.st.preempted = 0;
3747	}
3748
3749	unsafe_get_user(version, &st->version, out);
3750	if (version & 1)
3751		version += 1;  /* first time write, random junk */
3752
3753	version += 1;
3754	unsafe_put_user(version, &st->version, out);
3755
3756	smp_wmb();
3757
3758	unsafe_get_user(steal, &st->steal, out);
3759	steal += current->sched_info.run_delay -
3760		vcpu->arch.st.last_steal;
3761	vcpu->arch.st.last_steal = current->sched_info.run_delay;
3762	unsafe_put_user(steal, &st->steal, out);
3763
3764	version += 1;
3765	unsafe_put_user(version, &st->version, out);
3766
3767 out:
3768	user_access_end();
3769 dirty:
3770	mark_page_dirty_in_slot(vcpu->kvm, ghc->memslot, gpa_to_gfn(ghc->gpa));
3771}
3772
3773static bool kvm_is_msr_to_save(u32 msr_index)
3774{
3775	unsigned int i;
3776
3777	for (i = 0; i < num_msrs_to_save; i++) {
3778		if (msrs_to_save[i] == msr_index)
3779			return true;
3780	}
3781
3782	return false;
3783}
3784
3785int kvm_set_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
3786{
3787	u32 msr = msr_info->index;
3788	u64 data = msr_info->data;
3789
3790	if (msr && msr == vcpu->kvm->arch.xen_hvm_config.msr)
3791		return kvm_xen_write_hypercall_page(vcpu, data);
3792
3793	switch (msr) {
3794	case MSR_AMD64_NB_CFG:
3795	case MSR_IA32_UCODE_WRITE:
3796	case MSR_VM_HSAVE_PA:
3797	case MSR_AMD64_PATCH_LOADER:
3798	case MSR_AMD64_BU_CFG2:
3799	case MSR_AMD64_DC_CFG:
3800	case MSR_AMD64_TW_CFG:
3801	case MSR_F15H_EX_CFG:
3802		break;
3803
3804	case MSR_IA32_UCODE_REV:
3805		if (msr_info->host_initiated)
3806			vcpu->arch.microcode_version = data;
3807		break;
3808	case MSR_IA32_ARCH_CAPABILITIES:
3809		if (!msr_info->host_initiated)
3810			return 1;
3811		vcpu->arch.arch_capabilities = data;
3812		break;
3813	case MSR_IA32_PERF_CAPABILITIES:
3814		if (!msr_info->host_initiated)
3815			return 1;
3816		if (data & ~kvm_caps.supported_perf_cap)
3817			return 1;
3818
3819		/*
3820		 * Note, this is not just a performance optimization!  KVM
3821		 * disallows changing feature MSRs after the vCPU has run; PMU
3822		 * refresh will bug the VM if called after the vCPU has run.
3823		 */
3824		if (vcpu->arch.perf_capabilities == data)
3825			break;
3826
3827		vcpu->arch.perf_capabilities = data;
3828		kvm_pmu_refresh(vcpu);
3829		break;
3830	case MSR_IA32_PRED_CMD: {
3831		u64 reserved_bits = ~(PRED_CMD_IBPB | PRED_CMD_SBPB);
3832
3833		if (!msr_info->host_initiated) {
3834			if ((!guest_has_pred_cmd_msr(vcpu)))
3835				return 1;
3836
3837			if (!guest_cpuid_has(vcpu, X86_FEATURE_SPEC_CTRL) &&
3838			    !guest_cpuid_has(vcpu, X86_FEATURE_AMD_IBPB))
3839				reserved_bits |= PRED_CMD_IBPB;
3840
3841			if (!guest_cpuid_has(vcpu, X86_FEATURE_SBPB))
3842				reserved_bits |= PRED_CMD_SBPB;
3843		}
3844
3845		if (!boot_cpu_has(X86_FEATURE_IBPB))
3846			reserved_bits |= PRED_CMD_IBPB;
3847
3848		if (!boot_cpu_has(X86_FEATURE_SBPB))
3849			reserved_bits |= PRED_CMD_SBPB;
3850
3851		if (data & reserved_bits)
3852			return 1;
3853
3854		if (!data)
3855			break;
3856
3857		wrmsrl(MSR_IA32_PRED_CMD, data);
3858		break;
3859	}
3860	case MSR_IA32_FLUSH_CMD:
3861		if (!msr_info->host_initiated &&
3862		    !guest_cpuid_has(vcpu, X86_FEATURE_FLUSH_L1D))
3863			return 1;
3864
3865		if (!boot_cpu_has(X86_FEATURE_FLUSH_L1D) || (data & ~L1D_FLUSH))
3866			return 1;
3867		if (!data)
3868			break;
3869
3870		wrmsrl(MSR_IA32_FLUSH_CMD, L1D_FLUSH);
3871		break;
3872	case MSR_EFER:
3873		return set_efer(vcpu, msr_info);
3874	case MSR_K7_HWCR:
3875		data &= ~(u64)0x40;	/* ignore flush filter disable */
3876		data &= ~(u64)0x100;	/* ignore ignne emulation enable */
3877		data &= ~(u64)0x8;	/* ignore TLB cache disable */
3878
3879		/*
3880		 * Allow McStatusWrEn and TscFreqSel. (Linux guests from v3.2
3881		 * through at least v6.6 whine if TscFreqSel is clear,
3882		 * depending on F/M/S.
3883		 */
3884		if (data & ~(BIT_ULL(18) | BIT_ULL(24))) {
3885			kvm_pr_unimpl_wrmsr(vcpu, msr, data);
3886			return 1;
3887		}
3888		vcpu->arch.msr_hwcr = data;
3889		break;
3890	case MSR_FAM10H_MMIO_CONF_BASE:
3891		if (data != 0) {
3892			kvm_pr_unimpl_wrmsr(vcpu, msr, data);
3893			return 1;
3894		}
3895		break;
3896	case MSR_IA32_CR_PAT:
3897		if (!kvm_pat_valid(data))
3898			return 1;
3899
3900		vcpu->arch.pat = data;
3901		break;
3902	case MTRRphysBase_MSR(0) ... MSR_MTRRfix4K_F8000:
3903	case MSR_MTRRdefType:
3904		return kvm_mtrr_set_msr(vcpu, msr, data);
3905	case MSR_IA32_APICBASE:
3906		return kvm_set_apic_base(vcpu, msr_info);
3907	case APIC_BASE_MSR ... APIC_BASE_MSR + 0xff:
3908		return kvm_x2apic_msr_write(vcpu, msr, data);
3909	case MSR_IA32_TSC_DEADLINE:
3910		kvm_set_lapic_tscdeadline_msr(vcpu, data);
3911		break;
3912	case MSR_IA32_TSC_ADJUST:
3913		if (guest_cpuid_has(vcpu, X86_FEATURE_TSC_ADJUST)) {
3914			if (!msr_info->host_initiated) {
3915				s64 adj = data - vcpu->arch.ia32_tsc_adjust_msr;
3916				adjust_tsc_offset_guest(vcpu, adj);
3917				/* Before back to guest, tsc_timestamp must be adjusted
3918				 * as well, otherwise guest's percpu pvclock time could jump.
3919				 */
3920				kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
3921			}
3922			vcpu->arch.ia32_tsc_adjust_msr = data;
3923		}
3924		break;
3925	case MSR_IA32_MISC_ENABLE: {
3926		u64 old_val = vcpu->arch.ia32_misc_enable_msr;
3927
3928		if (!msr_info->host_initiated) {
3929			/* RO bits */
3930			if ((old_val ^ data) & MSR_IA32_MISC_ENABLE_PMU_RO_MASK)
3931				return 1;
3932
3933			/* R bits, i.e. writes are ignored, but don't fault. */
3934			data = data & ~MSR_IA32_MISC_ENABLE_EMON;
3935			data |= old_val & MSR_IA32_MISC_ENABLE_EMON;
3936		}
3937
3938		if (!kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_MISC_ENABLE_NO_MWAIT) &&
3939		    ((old_val ^ data)  & MSR_IA32_MISC_ENABLE_MWAIT)) {
3940			if (!guest_cpuid_has(vcpu, X86_FEATURE_XMM3))
3941				return 1;
3942			vcpu->arch.ia32_misc_enable_msr = data;
3943			kvm_update_cpuid_runtime(vcpu);
3944		} else {
3945			vcpu->arch.ia32_misc_enable_msr = data;
3946		}
3947		break;
3948	}
3949	case MSR_IA32_SMBASE:
3950		if (!IS_ENABLED(CONFIG_KVM_SMM) || !msr_info->host_initiated)
3951			return 1;
3952		vcpu->arch.smbase = data;
3953		break;
3954	case MSR_IA32_POWER_CTL:
3955		vcpu->arch.msr_ia32_power_ctl = data;
3956		break;
3957	case MSR_IA32_TSC:
3958		if (msr_info->host_initiated) {
3959			kvm_synchronize_tsc(vcpu, &data);
3960		} else {
3961			u64 adj = kvm_compute_l1_tsc_offset(vcpu, data) - vcpu->arch.l1_tsc_offset;
3962			adjust_tsc_offset_guest(vcpu, adj);
3963			vcpu->arch.ia32_tsc_adjust_msr += adj;
3964		}
3965		break;
3966	case MSR_IA32_XSS:
3967		if (!msr_info->host_initiated &&
3968		    !guest_cpuid_has(vcpu, X86_FEATURE_XSAVES))
3969			return 1;
3970		/*
3971		 * KVM supports exposing PT to the guest, but does not support
3972		 * IA32_XSS[bit 8]. Guests have to use RDMSR/WRMSR rather than
3973		 * XSAVES/XRSTORS to save/restore PT MSRs.
3974		 */
3975		if (data & ~kvm_caps.supported_xss)
3976			return 1;
3977		vcpu->arch.ia32_xss = data;
3978		kvm_update_cpuid_runtime(vcpu);
3979		break;
3980	case MSR_SMI_COUNT:
3981		if (!msr_info->host_initiated)
3982			return 1;
3983		vcpu->arch.smi_count = data;
3984		break;
3985	case MSR_KVM_WALL_CLOCK_NEW:
3986		if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE2))
3987			return 1;
3988
3989		vcpu->kvm->arch.wall_clock = data;
3990		kvm_write_wall_clock(vcpu->kvm, data, 0);
3991		break;
3992	case MSR_KVM_WALL_CLOCK:
3993		if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE))
3994			return 1;
3995
3996		vcpu->kvm->arch.wall_clock = data;
3997		kvm_write_wall_clock(vcpu->kvm, data, 0);
3998		break;
3999	case MSR_KVM_SYSTEM_TIME_NEW:
4000		if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE2))
4001			return 1;
4002
4003		kvm_write_system_time(vcpu, data, false, msr_info->host_initiated);
4004		break;
4005	case MSR_KVM_SYSTEM_TIME:
4006		if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE))
4007			return 1;
4008
4009		kvm_write_system_time(vcpu, data, true,  msr_info->host_initiated);
4010		break;
4011	case MSR_KVM_ASYNC_PF_EN:
4012		if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF))
4013			return 1;
4014
4015		if (kvm_pv_enable_async_pf(vcpu, data))
4016			return 1;
4017		break;
4018	case MSR_KVM_ASYNC_PF_INT:
4019		if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT))
4020			return 1;
4021
4022		if (kvm_pv_enable_async_pf_int(vcpu, data))
4023			return 1;
4024		break;
4025	case MSR_KVM_ASYNC_PF_ACK:
4026		if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT))
4027			return 1;
4028		if (data & 0x1) {
4029			vcpu->arch.apf.pageready_pending = false;
4030			kvm_check_async_pf_completion(vcpu);
4031		}
4032		break;
4033	case MSR_KVM_STEAL_TIME:
4034		if (!guest_pv_has(vcpu, KVM_FEATURE_STEAL_TIME))
4035			return 1;
4036
4037		if (unlikely(!sched_info_on()))
4038			return 1;
4039
4040		if (data & KVM_STEAL_RESERVED_MASK)
4041			return 1;
4042
4043		vcpu->arch.st.msr_val = data;
4044
4045		if (!(data & KVM_MSR_ENABLED))
4046			break;
4047
4048		kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu);
4049
4050		break;
4051	case MSR_KVM_PV_EOI_EN:
4052		if (!guest_pv_has(vcpu, KVM_FEATURE_PV_EOI))
4053			return 1;
4054
4055		if (kvm_lapic_set_pv_eoi(vcpu, data, sizeof(u8)))
4056			return 1;
4057		break;
4058
4059	case MSR_KVM_POLL_CONTROL:
4060		if (!guest_pv_has(vcpu, KVM_FEATURE_POLL_CONTROL))
4061			return 1;
4062
4063		/* only enable bit supported */
4064		if (data & (-1ULL << 1))
4065			return 1;
4066
4067		vcpu->arch.msr_kvm_poll_control = data;
4068		break;
4069
4070	case MSR_IA32_MCG_CTL:
4071	case MSR_IA32_MCG_STATUS:
4072	case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1:
4073	case MSR_IA32_MC0_CTL2 ... MSR_IA32_MCx_CTL2(KVM_MAX_MCE_BANKS) - 1:
4074		return set_msr_mce(vcpu, msr_info);
4075
4076	case MSR_K7_PERFCTR0 ... MSR_K7_PERFCTR3:
4077	case MSR_P6_PERFCTR0 ... MSR_P6_PERFCTR1:
4078	case MSR_K7_EVNTSEL0 ... MSR_K7_EVNTSEL3:
4079	case MSR_P6_EVNTSEL0 ... MSR_P6_EVNTSEL1:
4080		if (kvm_pmu_is_valid_msr(vcpu, msr))
4081			return kvm_pmu_set_msr(vcpu, msr_info);
4082
4083		if (data)
4084			kvm_pr_unimpl_wrmsr(vcpu, msr, data);
4085		break;
4086	case MSR_K7_CLK_CTL:
4087		/*
4088		 * Ignore all writes to this no longer documented MSR.
4089		 * Writes are only relevant for old K7 processors,
4090		 * all pre-dating SVM, but a recommended workaround from
4091		 * AMD for these chips. It is possible to specify the
4092		 * affected processor models on the command line, hence
4093		 * the need to ignore the workaround.
4094		 */
4095		break;
4096#ifdef CONFIG_KVM_HYPERV
4097	case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
4098	case HV_X64_MSR_SYNDBG_CONTROL ... HV_X64_MSR_SYNDBG_PENDING_BUFFER:
4099	case HV_X64_MSR_SYNDBG_OPTIONS:
4100	case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4:
4101	case HV_X64_MSR_CRASH_CTL:
4102	case HV_X64_MSR_STIMER0_CONFIG ... HV_X64_MSR_STIMER3_COUNT:
4103	case HV_X64_MSR_REENLIGHTENMENT_CONTROL:
4104	case HV_X64_MSR_TSC_EMULATION_CONTROL:
4105	case HV_X64_MSR_TSC_EMULATION_STATUS:
4106	case HV_X64_MSR_TSC_INVARIANT_CONTROL:
4107		return kvm_hv_set_msr_common(vcpu, msr, data,
4108					     msr_info->host_initiated);
4109#endif
4110	case MSR_IA32_BBL_CR_CTL3:
4111		/* Drop writes to this legacy MSR -- see rdmsr
4112		 * counterpart for further detail.
4113		 */
4114		kvm_pr_unimpl_wrmsr(vcpu, msr, data);
4115		break;
4116	case MSR_AMD64_OSVW_ID_LENGTH:
4117		if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW))
4118			return 1;
4119		vcpu->arch.osvw.length = data;
4120		break;
4121	case MSR_AMD64_OSVW_STATUS:
4122		if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW))
4123			return 1;
4124		vcpu->arch.osvw.status = data;
4125		break;
4126	case MSR_PLATFORM_INFO:
4127		if (!msr_info->host_initiated ||
4128		    (!(data & MSR_PLATFORM_INFO_CPUID_FAULT) &&
4129		     cpuid_fault_enabled(vcpu)))
4130			return 1;
4131		vcpu->arch.msr_platform_info = data;
4132		break;
4133	case MSR_MISC_FEATURES_ENABLES:
4134		if (data & ~MSR_MISC_FEATURES_ENABLES_CPUID_FAULT ||
4135		    (data & MSR_MISC_FEATURES_ENABLES_CPUID_FAULT &&
4136		     !supports_cpuid_fault(vcpu)))
4137			return 1;
4138		vcpu->arch.msr_misc_features_enables = data;
4139		break;
4140#ifdef CONFIG_X86_64
4141	case MSR_IA32_XFD:
4142		if (!msr_info->host_initiated &&
4143		    !guest_cpuid_has(vcpu, X86_FEATURE_XFD))
4144			return 1;
4145
4146		if (data & ~kvm_guest_supported_xfd(vcpu))
4147			return 1;
4148
4149		fpu_update_guest_xfd(&vcpu->arch.guest_fpu, data);
4150		break;
4151	case MSR_IA32_XFD_ERR:
4152		if (!msr_info->host_initiated &&
4153		    !guest_cpuid_has(vcpu, X86_FEATURE_XFD))
4154			return 1;
4155
4156		if (data & ~kvm_guest_supported_xfd(vcpu))
4157			return 1;
4158
4159		vcpu->arch.guest_fpu.xfd_err = data;
4160		break;
4161#endif
4162	default:
4163		if (kvm_pmu_is_valid_msr(vcpu, msr))
4164			return kvm_pmu_set_msr(vcpu, msr_info);
4165
4166		/*
4167		 * Userspace is allowed to write '0' to MSRs that KVM reports
4168		 * as to-be-saved, even if an MSRs isn't fully supported.
4169		 */
4170		if (msr_info->host_initiated && !data &&
4171		    kvm_is_msr_to_save(msr))
4172			break;
4173
4174		return KVM_MSR_RET_INVALID;
4175	}
4176	return 0;
4177}
4178EXPORT_SYMBOL_GPL(kvm_set_msr_common);
4179
4180static int get_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata, bool host)
4181{
4182	u64 data;
4183	u64 mcg_cap = vcpu->arch.mcg_cap;
4184	unsigned bank_num = mcg_cap & 0xff;
4185	u32 offset, last_msr;
4186
4187	switch (msr) {
4188	case MSR_IA32_P5_MC_ADDR:
4189	case MSR_IA32_P5_MC_TYPE:
4190		data = 0;
4191		break;
4192	case MSR_IA32_MCG_CAP:
4193		data = vcpu->arch.mcg_cap;
4194		break;
4195	case MSR_IA32_MCG_CTL:
4196		if (!(mcg_cap & MCG_CTL_P) && !host)
4197			return 1;
4198		data = vcpu->arch.mcg_ctl;
4199		break;
4200	case MSR_IA32_MCG_STATUS:
4201		data = vcpu->arch.mcg_status;
4202		break;
4203	case MSR_IA32_MC0_CTL2 ... MSR_IA32_MCx_CTL2(KVM_MAX_MCE_BANKS) - 1:
4204		last_msr = MSR_IA32_MCx_CTL2(bank_num) - 1;
4205		if (msr > last_msr)
4206			return 1;
4207
4208		if (!(mcg_cap & MCG_CMCI_P) && !host)
4209			return 1;
4210		offset = array_index_nospec(msr - MSR_IA32_MC0_CTL2,
4211					    last_msr + 1 - MSR_IA32_MC0_CTL2);
4212		data = vcpu->arch.mci_ctl2_banks[offset];
4213		break;
4214	case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1:
4215		last_msr = MSR_IA32_MCx_CTL(bank_num) - 1;
4216		if (msr > last_msr)
4217			return 1;
4218
4219		offset = array_index_nospec(msr - MSR_IA32_MC0_CTL,
4220					    last_msr + 1 - MSR_IA32_MC0_CTL);
4221		data = vcpu->arch.mce_banks[offset];
4222		break;
4223	default:
4224		return 1;
4225	}
4226	*pdata = data;
4227	return 0;
4228}
4229
4230int kvm_get_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
4231{
4232	switch (msr_info->index) {
4233	case MSR_IA32_PLATFORM_ID:
4234	case MSR_IA32_EBL_CR_POWERON:
4235	case MSR_IA32_LASTBRANCHFROMIP:
4236	case MSR_IA32_LASTBRANCHTOIP:
4237	case MSR_IA32_LASTINTFROMIP:
4238	case MSR_IA32_LASTINTTOIP:
4239	case MSR_AMD64_SYSCFG:
4240	case MSR_K8_TSEG_ADDR:
4241	case MSR_K8_TSEG_MASK:
4242	case MSR_VM_HSAVE_PA:
4243	case MSR_K8_INT_PENDING_MSG:
4244	case MSR_AMD64_NB_CFG:
4245	case MSR_FAM10H_MMIO_CONF_BASE:
4246	case MSR_AMD64_BU_CFG2:
4247	case MSR_IA32_PERF_CTL:
4248	case MSR_AMD64_DC_CFG:
4249	case MSR_AMD64_TW_CFG:
4250	case MSR_F15H_EX_CFG:
4251	/*
4252	 * Intel Sandy Bridge CPUs must support the RAPL (running average power
4253	 * limit) MSRs. Just return 0, as we do not want to expose the host
4254	 * data here. Do not conditionalize this on CPUID, as KVM does not do
4255	 * so for existing CPU-specific MSRs.
4256	 */
4257	case MSR_RAPL_POWER_UNIT:
4258	case MSR_PP0_ENERGY_STATUS:	/* Power plane 0 (core) */
4259	case MSR_PP1_ENERGY_STATUS:	/* Power plane 1 (graphics uncore) */
4260	case MSR_PKG_ENERGY_STATUS:	/* Total package */
4261	case MSR_DRAM_ENERGY_STATUS:	/* DRAM controller */
4262		msr_info->data = 0;
4263		break;
4264	case MSR_K7_EVNTSEL0 ... MSR_K7_EVNTSEL3:
4265	case MSR_K7_PERFCTR0 ... MSR_K7_PERFCTR3:
4266	case MSR_P6_PERFCTR0 ... MSR_P6_PERFCTR1:
4267	case MSR_P6_EVNTSEL0 ... MSR_P6_EVNTSEL1:
4268		if (kvm_pmu_is_valid_msr(vcpu, msr_info->index))
4269			return kvm_pmu_get_msr(vcpu, msr_info);
4270		msr_info->data = 0;
4271		break;
4272	case MSR_IA32_UCODE_REV:
4273		msr_info->data = vcpu->arch.microcode_version;
4274		break;
4275	case MSR_IA32_ARCH_CAPABILITIES:
4276		if (!msr_info->host_initiated &&
4277		    !guest_cpuid_has(vcpu, X86_FEATURE_ARCH_CAPABILITIES))
4278			return 1;
4279		msr_info->data = vcpu->arch.arch_capabilities;
4280		break;
4281	case MSR_IA32_PERF_CAPABILITIES:
4282		if (!msr_info->host_initiated &&
4283		    !guest_cpuid_has(vcpu, X86_FEATURE_PDCM))
4284			return 1;
4285		msr_info->data = vcpu->arch.perf_capabilities;
4286		break;
4287	case MSR_IA32_POWER_CTL:
4288		msr_info->data = vcpu->arch.msr_ia32_power_ctl;
4289		break;
4290	case MSR_IA32_TSC: {
4291		/*
4292		 * Intel SDM states that MSR_IA32_TSC read adds the TSC offset
4293		 * even when not intercepted. AMD manual doesn't explicitly
4294		 * state this but appears to behave the same.
4295		 *
4296		 * On userspace reads and writes, however, we unconditionally
4297		 * return L1's TSC value to ensure backwards-compatible
4298		 * behavior for migration.
4299		 */
4300		u64 offset, ratio;
4301
4302		if (msr_info->host_initiated) {
4303			offset = vcpu->arch.l1_tsc_offset;
4304			ratio = vcpu->arch.l1_tsc_scaling_ratio;
4305		} else {
4306			offset = vcpu->arch.tsc_offset;
4307			ratio = vcpu->arch.tsc_scaling_ratio;
4308		}
4309
4310		msr_info->data = kvm_scale_tsc(rdtsc(), ratio) + offset;
4311		break;
4312	}
4313	case MSR_IA32_CR_PAT:
4314		msr_info->data = vcpu->arch.pat;
4315		break;
4316	case MSR_MTRRcap:
4317	case MTRRphysBase_MSR(0) ... MSR_MTRRfix4K_F8000:
4318	case MSR_MTRRdefType:
4319		return kvm_mtrr_get_msr(vcpu, msr_info->index, &msr_info->data);
4320	case 0xcd: /* fsb frequency */
4321		msr_info->data = 3;
4322		break;
4323		/*
4324		 * MSR_EBC_FREQUENCY_ID
4325		 * Conservative value valid for even the basic CPU models.
4326		 * Models 0,1: 000 in bits 23:21 indicating a bus speed of
4327		 * 100MHz, model 2 000 in bits 18:16 indicating 100MHz,
4328		 * and 266MHz for model 3, or 4. Set Core Clock
4329		 * Frequency to System Bus Frequency Ratio to 1 (bits
4330		 * 31:24) even though these are only valid for CPU
4331		 * models > 2, however guests may end up dividing or
4332		 * multiplying by zero otherwise.
4333		 */
4334	case MSR_EBC_FREQUENCY_ID:
4335		msr_info->data = 1 << 24;
4336		break;
4337	case MSR_IA32_APICBASE:
4338		msr_info->data = kvm_get_apic_base(vcpu);
4339		break;
4340	case APIC_BASE_MSR ... APIC_BASE_MSR + 0xff:
4341		return kvm_x2apic_msr_read(vcpu, msr_info->index, &msr_info->data);
4342	case MSR_IA32_TSC_DEADLINE:
4343		msr_info->data = kvm_get_lapic_tscdeadline_msr(vcpu);
4344		break;
4345	case MSR_IA32_TSC_ADJUST:
4346		msr_info->data = (u64)vcpu->arch.ia32_tsc_adjust_msr;
4347		break;
4348	case MSR_IA32_MISC_ENABLE:
4349		msr_info->data = vcpu->arch.ia32_misc_enable_msr;
4350		break;
4351	case MSR_IA32_SMBASE:
4352		if (!IS_ENABLED(CONFIG_KVM_SMM) || !msr_info->host_initiated)
4353			return 1;
4354		msr_info->data = vcpu->arch.smbase;
4355		break;
4356	case MSR_SMI_COUNT:
4357		msr_info->data = vcpu->arch.smi_count;
4358		break;
4359	case MSR_IA32_PERF_STATUS:
4360		/* TSC increment by tick */
4361		msr_info->data = 1000ULL;
4362		/* CPU multiplier */
4363		msr_info->data |= (((uint64_t)4ULL) << 40);
4364		break;
4365	case MSR_EFER:
4366		msr_info->data = vcpu->arch.efer;
4367		break;
4368	case MSR_KVM_WALL_CLOCK:
4369		if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE))
4370			return 1;
4371
4372		msr_info->data = vcpu->kvm->arch.wall_clock;
4373		break;
4374	case MSR_KVM_WALL_CLOCK_NEW:
4375		if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE2))
4376			return 1;
4377
4378		msr_info->data = vcpu->kvm->arch.wall_clock;
4379		break;
4380	case MSR_KVM_SYSTEM_TIME:
4381		if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE))
4382			return 1;
4383
4384		msr_info->data = vcpu->arch.time;
4385		break;
4386	case MSR_KVM_SYSTEM_TIME_NEW:
4387		if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE2))
4388			return 1;
4389
4390		msr_info->data = vcpu->arch.time;
4391		break;
4392	case MSR_KVM_ASYNC_PF_EN:
4393		if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF))
4394			return 1;
4395
4396		msr_info->data = vcpu->arch.apf.msr_en_val;
4397		break;
4398	case MSR_KVM_ASYNC_PF_INT:
4399		if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT))
4400			return 1;
4401
4402		msr_info->data = vcpu->arch.apf.msr_int_val;
4403		break;
4404	case MSR_KVM_ASYNC_PF_ACK:
4405		if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT))
4406			return 1;
4407
4408		msr_info->data = 0;
4409		break;
4410	case MSR_KVM_STEAL_TIME:
4411		if (!guest_pv_has(vcpu, KVM_FEATURE_STEAL_TIME))
4412			return 1;
4413
4414		msr_info->data = vcpu->arch.st.msr_val;
4415		break;
4416	case MSR_KVM_PV_EOI_EN:
4417		if (!guest_pv_has(vcpu, KVM_FEATURE_PV_EOI))
4418			return 1;
4419
4420		msr_info->data = vcpu->arch.pv_eoi.msr_val;
4421		break;
4422	case MSR_KVM_POLL_CONTROL:
4423		if (!guest_pv_has(vcpu, KVM_FEATURE_POLL_CONTROL))
4424			return 1;
4425
4426		msr_info->data = vcpu->arch.msr_kvm_poll_control;
4427		break;
4428	case MSR_IA32_P5_MC_ADDR:
4429	case MSR_IA32_P5_MC_TYPE:
4430	case MSR_IA32_MCG_CAP:
4431	case MSR_IA32_MCG_CTL:
4432	case MSR_IA32_MCG_STATUS:
4433	case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1:
4434	case MSR_IA32_MC0_CTL2 ... MSR_IA32_MCx_CTL2(KVM_MAX_MCE_BANKS) - 1:
4435		return get_msr_mce(vcpu, msr_info->index, &msr_info->data,
4436				   msr_info->host_initiated);
4437	case MSR_IA32_XSS:
4438		if (!msr_info->host_initiated &&
4439		    !guest_cpuid_has(vcpu, X86_FEATURE_XSAVES))
4440			return 1;
4441		msr_info->data = vcpu->arch.ia32_xss;
4442		break;
4443	case MSR_K7_CLK_CTL:
4444		/*
4445		 * Provide expected ramp-up count for K7. All other
4446		 * are set to zero, indicating minimum divisors for
4447		 * every field.
4448		 *
4449		 * This prevents guest kernels on AMD host with CPU
4450		 * type 6, model 8 and higher from exploding due to
4451		 * the rdmsr failing.
4452		 */
4453		msr_info->data = 0x20000000;
4454		break;
4455#ifdef CONFIG_KVM_HYPERV
4456	case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
4457	case HV_X64_MSR_SYNDBG_CONTROL ... HV_X64_MSR_SYNDBG_PENDING_BUFFER:
4458	case HV_X64_MSR_SYNDBG_OPTIONS:
4459	case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4:
4460	case HV_X64_MSR_CRASH_CTL:
4461	case HV_X64_MSR_STIMER0_CONFIG ... HV_X64_MSR_STIMER3_COUNT:
4462	case HV_X64_MSR_REENLIGHTENMENT_CONTROL:
4463	case HV_X64_MSR_TSC_EMULATION_CONTROL:
4464	case HV_X64_MSR_TSC_EMULATION_STATUS:
4465	case HV_X64_MSR_TSC_INVARIANT_CONTROL:
4466		return kvm_hv_get_msr_common(vcpu,
4467					     msr_info->index, &msr_info->data,
4468					     msr_info->host_initiated);
4469#endif
4470	case MSR_IA32_BBL_CR_CTL3:
4471		/* This legacy MSR exists but isn't fully documented in current
4472		 * silicon.  It is however accessed by winxp in very narrow
4473		 * scenarios where it sets bit #19, itself documented as
4474		 * a "reserved" bit.  Best effort attempt to source coherent
4475		 * read data here should the balance of the register be
4476		 * interpreted by the guest:
4477		 *
4478		 * L2 cache control register 3: 64GB range, 256KB size,
4479		 * enabled, latency 0x1, configured
4480		 */
4481		msr_info->data = 0xbe702111;
4482		break;
4483	case MSR_AMD64_OSVW_ID_LENGTH:
4484		if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW))
4485			return 1;
4486		msr_info->data = vcpu->arch.osvw.length;
4487		break;
4488	case MSR_AMD64_OSVW_STATUS:
4489		if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW))
4490			return 1;
4491		msr_info->data = vcpu->arch.osvw.status;
4492		break;
4493	case MSR_PLATFORM_INFO:
4494		if (!msr_info->host_initiated &&
4495		    !vcpu->kvm->arch.guest_can_read_msr_platform_info)
4496			return 1;
4497		msr_info->data = vcpu->arch.msr_platform_info;
4498		break;
4499	case MSR_MISC_FEATURES_ENABLES:
4500		msr_info->data = vcpu->arch.msr_misc_features_enables;
4501		break;
4502	case MSR_K7_HWCR:
4503		msr_info->data = vcpu->arch.msr_hwcr;
4504		break;
4505#ifdef CONFIG_X86_64
4506	case MSR_IA32_XFD:
4507		if (!msr_info->host_initiated &&
4508		    !guest_cpuid_has(vcpu, X86_FEATURE_XFD))
4509			return 1;
4510
4511		msr_info->data = vcpu->arch.guest_fpu.fpstate->xfd;
4512		break;
4513	case MSR_IA32_XFD_ERR:
4514		if (!msr_info->host_initiated &&
4515		    !guest_cpuid_has(vcpu, X86_FEATURE_XFD))
4516			return 1;
4517
4518		msr_info->data = vcpu->arch.guest_fpu.xfd_err;
4519		break;
4520#endif
4521	default:
4522		if (kvm_pmu_is_valid_msr(vcpu, msr_info->index))
4523			return kvm_pmu_get_msr(vcpu, msr_info);
4524
4525		/*
4526		 * Userspace is allowed to read MSRs that KVM reports as
4527		 * to-be-saved, even if an MSR isn't fully supported.
4528		 */
4529		if (msr_info->host_initiated &&
4530		    kvm_is_msr_to_save(msr_info->index)) {
4531			msr_info->data = 0;
4532			break;
4533		}
4534
4535		return KVM_MSR_RET_INVALID;
4536	}
4537	return 0;
4538}
4539EXPORT_SYMBOL_GPL(kvm_get_msr_common);
4540
4541/*
4542 * Read or write a bunch of msrs. All parameters are kernel addresses.
4543 *
4544 * @return number of msrs set successfully.
4545 */
4546static int __msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs *msrs,
4547		    struct kvm_msr_entry *entries,
4548		    int (*do_msr)(struct kvm_vcpu *vcpu,
4549				  unsigned index, u64 *data))
4550{
4551	int i;
4552
4553	for (i = 0; i < msrs->nmsrs; ++i)
4554		if (do_msr(vcpu, entries[i].index, &entries[i].data))
4555			break;
4556
4557	return i;
4558}
4559
4560/*
4561 * Read or write a bunch of msrs. Parameters are user addresses.
4562 *
4563 * @return number of msrs set successfully.
4564 */
4565static int msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs __user *user_msrs,
4566		  int (*do_msr)(struct kvm_vcpu *vcpu,
4567				unsigned index, u64 *data),
4568		  int writeback)
4569{
4570	struct kvm_msrs msrs;
4571	struct kvm_msr_entry *entries;
4572	unsigned size;
4573	int r;
4574
4575	r = -EFAULT;
4576	if (copy_from_user(&msrs, user_msrs, sizeof(msrs)))
4577		goto out;
4578
4579	r = -E2BIG;
4580	if (msrs.nmsrs >= MAX_IO_MSRS)
4581		goto out;
4582
4583	size = sizeof(struct kvm_msr_entry) * msrs.nmsrs;
4584	entries = memdup_user(user_msrs->entries, size);
4585	if (IS_ERR(entries)) {
4586		r = PTR_ERR(entries);
4587		goto out;
4588	}
4589
4590	r = __msr_io(vcpu, &msrs, entries, do_msr);
4591
4592	if (writeback && copy_to_user(user_msrs->entries, entries, size))
4593		r = -EFAULT;
4594
4595	kfree(entries);
4596out:
4597	return r;
4598}
4599
4600static inline bool kvm_can_mwait_in_guest(void)
4601{
4602	return boot_cpu_has(X86_FEATURE_MWAIT) &&
4603		!boot_cpu_has_bug(X86_BUG_MONITOR) &&
4604		boot_cpu_has(X86_FEATURE_ARAT);
4605}
4606
4607#ifdef CONFIG_KVM_HYPERV
4608static int kvm_ioctl_get_supported_hv_cpuid(struct kvm_vcpu *vcpu,
4609					    struct kvm_cpuid2 __user *cpuid_arg)
4610{
4611	struct kvm_cpuid2 cpuid;
4612	int r;
4613
4614	r = -EFAULT;
4615	if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
4616		return r;
4617
4618	r = kvm_get_hv_cpuid(vcpu, &cpuid, cpuid_arg->entries);
4619	if (r)
4620		return r;
4621
4622	r = -EFAULT;
4623	if (copy_to_user(cpuid_arg, &cpuid, sizeof(cpuid)))
4624		return r;
4625
4626	return 0;
4627}
4628#endif
4629
4630static bool kvm_is_vm_type_supported(unsigned long type)
4631{
4632	return type == KVM_X86_DEFAULT_VM ||
4633	       (type == KVM_X86_SW_PROTECTED_VM &&
4634		IS_ENABLED(CONFIG_KVM_SW_PROTECTED_VM) && tdp_mmu_enabled);
4635}
4636
4637int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext)
4638{
4639	int r = 0;
4640
4641	switch (ext) {
4642	case KVM_CAP_IRQCHIP:
4643	case KVM_CAP_HLT:
4644	case KVM_CAP_MMU_SHADOW_CACHE_CONTROL:
4645	case KVM_CAP_SET_TSS_ADDR:
4646	case KVM_CAP_EXT_CPUID:
4647	case KVM_CAP_EXT_EMUL_CPUID:
4648	case KVM_CAP_CLOCKSOURCE:
4649	case KVM_CAP_PIT:
4650	case KVM_CAP_NOP_IO_DELAY:
4651	case KVM_CAP_MP_STATE:
4652	case KVM_CAP_SYNC_MMU:
4653	case KVM_CAP_USER_NMI:
4654	case KVM_CAP_REINJECT_CONTROL:
4655	case KVM_CAP_IRQ_INJECT_STATUS:
4656	case KVM_CAP_IOEVENTFD:
4657	case KVM_CAP_IOEVENTFD_NO_LENGTH:
4658	case KVM_CAP_PIT2:
4659	case KVM_CAP_PIT_STATE2:
4660	case KVM_CAP_SET_IDENTITY_MAP_ADDR:
4661	case KVM_CAP_VCPU_EVENTS:
4662#ifdef CONFIG_KVM_HYPERV
4663	case KVM_CAP_HYPERV:
4664	case KVM_CAP_HYPERV_VAPIC:
4665	case KVM_CAP_HYPERV_SPIN:
4666	case KVM_CAP_HYPERV_TIME:
4667	case KVM_CAP_HYPERV_SYNIC:
4668	case KVM_CAP_HYPERV_SYNIC2:
4669	case KVM_CAP_HYPERV_VP_INDEX:
4670	case KVM_CAP_HYPERV_EVENTFD:
4671	case KVM_CAP_HYPERV_TLBFLUSH:
4672	case KVM_CAP_HYPERV_SEND_IPI:
4673	case KVM_CAP_HYPERV_CPUID:
4674	case KVM_CAP_HYPERV_ENFORCE_CPUID:
4675	case KVM_CAP_SYS_HYPERV_CPUID:
4676#endif
4677	case KVM_CAP_PCI_SEGMENT:
4678	case KVM_CAP_DEBUGREGS:
4679	case KVM_CAP_X86_ROBUST_SINGLESTEP:
4680	case KVM_CAP_XSAVE:
4681	case KVM_CAP_ASYNC_PF:
4682	case KVM_CAP_ASYNC_PF_INT:
4683	case KVM_CAP_GET_TSC_KHZ:
4684	case KVM_CAP_KVMCLOCK_CTRL:
4685	case KVM_CAP_READONLY_MEM:
4686	case KVM_CAP_IOAPIC_POLARITY_IGNORED:
4687	case KVM_CAP_TSC_DEADLINE_TIMER:
4688	case KVM_CAP_DISABLE_QUIRKS:
4689	case KVM_CAP_SET_BOOT_CPU_ID:
4690 	case KVM_CAP_SPLIT_IRQCHIP:
4691	case KVM_CAP_IMMEDIATE_EXIT:
4692	case KVM_CAP_PMU_EVENT_FILTER:
4693	case KVM_CAP_PMU_EVENT_MASKED_EVENTS:
4694	case KVM_CAP_GET_MSR_FEATURES:
4695	case KVM_CAP_MSR_PLATFORM_INFO:
4696	case KVM_CAP_EXCEPTION_PAYLOAD:
4697	case KVM_CAP_X86_TRIPLE_FAULT_EVENT:
4698	case KVM_CAP_SET_GUEST_DEBUG:
4699	case KVM_CAP_LAST_CPU:
4700	case KVM_CAP_X86_USER_SPACE_MSR:
4701	case KVM_CAP_X86_MSR_FILTER:
4702	case KVM_CAP_ENFORCE_PV_FEATURE_CPUID:
4703#ifdef CONFIG_X86_SGX_KVM
4704	case KVM_CAP_SGX_ATTRIBUTE:
4705#endif
4706	case KVM_CAP_VM_COPY_ENC_CONTEXT_FROM:
4707	case KVM_CAP_VM_MOVE_ENC_CONTEXT_FROM:
4708	case KVM_CAP_SREGS2:
4709	case KVM_CAP_EXIT_ON_EMULATION_FAILURE:
4710	case KVM_CAP_VCPU_ATTRIBUTES:
4711	case KVM_CAP_SYS_ATTRIBUTES:
4712	case KVM_CAP_VAPIC:
4713	case KVM_CAP_ENABLE_CAP:
4714	case KVM_CAP_VM_DISABLE_NX_HUGE_PAGES:
4715	case KVM_CAP_IRQFD_RESAMPLE:
4716	case KVM_CAP_MEMORY_FAULT_INFO:
4717		r = 1;
4718		break;
4719	case KVM_CAP_EXIT_HYPERCALL:
4720		r = KVM_EXIT_HYPERCALL_VALID_MASK;
4721		break;
4722	case KVM_CAP_SET_GUEST_DEBUG2:
4723		return KVM_GUESTDBG_VALID_MASK;
4724#ifdef CONFIG_KVM_XEN
4725	case KVM_CAP_XEN_HVM:
4726		r = KVM_XEN_HVM_CONFIG_HYPERCALL_MSR |
4727		    KVM_XEN_HVM_CONFIG_INTERCEPT_HCALL |
4728		    KVM_XEN_HVM_CONFIG_SHARED_INFO |
4729		    KVM_XEN_HVM_CONFIG_EVTCHN_2LEVEL |
4730		    KVM_XEN_HVM_CONFIG_EVTCHN_SEND |
4731		    KVM_XEN_HVM_CONFIG_PVCLOCK_TSC_UNSTABLE |
4732		    KVM_XEN_HVM_CONFIG_SHARED_INFO_HVA;
4733		if (sched_info_on())
4734			r |= KVM_XEN_HVM_CONFIG_RUNSTATE |
4735			     KVM_XEN_HVM_CONFIG_RUNSTATE_UPDATE_FLAG;
4736		break;
4737#endif
4738	case KVM_CAP_SYNC_REGS:
4739		r = KVM_SYNC_X86_VALID_FIELDS;
4740		break;
4741	case KVM_CAP_ADJUST_CLOCK:
4742		r = KVM_CLOCK_VALID_FLAGS;
4743		break;
4744	case KVM_CAP_X86_DISABLE_EXITS:
4745		r = KVM_X86_DISABLE_EXITS_PAUSE;
4746
4747		if (!mitigate_smt_rsb) {
4748			r |= KVM_X86_DISABLE_EXITS_HLT |
4749			     KVM_X86_DISABLE_EXITS_CSTATE;
4750
4751			if (kvm_can_mwait_in_guest())
4752				r |= KVM_X86_DISABLE_EXITS_MWAIT;
4753		}
4754		break;
4755	case KVM_CAP_X86_SMM:
4756		if (!IS_ENABLED(CONFIG_KVM_SMM))
4757			break;
4758
4759		/* SMBASE is usually relocated above 1M on modern chipsets,
4760		 * and SMM handlers might indeed rely on 4G segment limits,
4761		 * so do not report SMM to be available if real mode is
4762		 * emulated via vm86 mode.  Still, do not go to great lengths
4763		 * to avoid userspace's usage of the feature, because it is a
4764		 * fringe case that is not enabled except via specific settings
4765		 * of the module parameters.
4766		 */
4767		r = static_call(kvm_x86_has_emulated_msr)(kvm, MSR_IA32_SMBASE);
4768		break;
4769	case KVM_CAP_NR_VCPUS:
4770		r = min_t(unsigned int, num_online_cpus(), KVM_MAX_VCPUS);
4771		break;
4772	case KVM_CAP_MAX_VCPUS:
4773		r = KVM_MAX_VCPUS;
4774		break;
4775	case KVM_CAP_MAX_VCPU_ID:
4776		r = KVM_MAX_VCPU_IDS;
4777		break;
4778	case KVM_CAP_PV_MMU:	/* obsolete */
4779		r = 0;
4780		break;
4781	case KVM_CAP_MCE:
4782		r = KVM_MAX_MCE_BANKS;
4783		break;
4784	case KVM_CAP_XCRS:
4785		r = boot_cpu_has(X86_FEATURE_XSAVE);
4786		break;
4787	case KVM_CAP_TSC_CONTROL:
4788	case KVM_CAP_VM_TSC_CONTROL:
4789		r = kvm_caps.has_tsc_control;
4790		break;
4791	case KVM_CAP_X2APIC_API:
4792		r = KVM_X2APIC_API_VALID_FLAGS;
4793		break;
4794	case KVM_CAP_NESTED_STATE:
4795		r = kvm_x86_ops.nested_ops->get_state ?
4796			kvm_x86_ops.nested_ops->get_state(NULL, NULL, 0) : 0;
4797		break;
4798#ifdef CONFIG_KVM_HYPERV
4799	case KVM_CAP_HYPERV_DIRECT_TLBFLUSH:
4800		r = kvm_x86_ops.enable_l2_tlb_flush != NULL;
4801		break;
4802	case KVM_CAP_HYPERV_ENLIGHTENED_VMCS:
4803		r = kvm_x86_ops.nested_ops->enable_evmcs != NULL;
4804		break;
4805#endif
4806	case KVM_CAP_SMALLER_MAXPHYADDR:
4807		r = (int) allow_smaller_maxphyaddr;
4808		break;
4809	case KVM_CAP_STEAL_TIME:
4810		r = sched_info_on();
4811		break;
4812	case KVM_CAP_X86_BUS_LOCK_EXIT:
4813		if (kvm_caps.has_bus_lock_exit)
4814			r = KVM_BUS_LOCK_DETECTION_OFF |
4815			    KVM_BUS_LOCK_DETECTION_EXIT;
4816		else
4817			r = 0;
4818		break;
4819	case KVM_CAP_XSAVE2: {
4820		r = xstate_required_size(kvm_get_filtered_xcr0(), false);
4821		if (r < sizeof(struct kvm_xsave))
4822			r = sizeof(struct kvm_xsave);
4823		break;
4824	}
4825	case KVM_CAP_PMU_CAPABILITY:
4826		r = enable_pmu ? KVM_CAP_PMU_VALID_MASK : 0;
4827		break;
4828	case KVM_CAP_DISABLE_QUIRKS2:
4829		r = KVM_X86_VALID_QUIRKS;
4830		break;
4831	case KVM_CAP_X86_NOTIFY_VMEXIT:
4832		r = kvm_caps.has_notify_vmexit;
4833		break;
4834	case KVM_CAP_VM_TYPES:
4835		r = BIT(KVM_X86_DEFAULT_VM);
4836		if (kvm_is_vm_type_supported(KVM_X86_SW_PROTECTED_VM))
4837			r |= BIT(KVM_X86_SW_PROTECTED_VM);
4838		break;
4839	default:
4840		break;
4841	}
4842	return r;
4843}
4844
4845static inline void __user *kvm_get_attr_addr(struct kvm_device_attr *attr)
4846{
4847	void __user *uaddr = (void __user*)(unsigned long)attr->addr;
4848
4849	if ((u64)(unsigned long)uaddr != attr->addr)
4850		return ERR_PTR_USR(-EFAULT);
4851	return uaddr;
4852}
4853
4854static int kvm_x86_dev_get_attr(struct kvm_device_attr *attr)
4855{
4856	u64 __user *uaddr = kvm_get_attr_addr(attr);
4857
4858	if (attr->group)
4859		return -ENXIO;
4860
4861	if (IS_ERR(uaddr))
4862		return PTR_ERR(uaddr);
4863
4864	switch (attr->attr) {
4865	case KVM_X86_XCOMP_GUEST_SUPP:
4866		if (put_user(kvm_caps.supported_xcr0, uaddr))
4867			return -EFAULT;
4868		return 0;
4869	default:
4870		return -ENXIO;
4871	}
4872}
4873
4874static int kvm_x86_dev_has_attr(struct kvm_device_attr *attr)
4875{
4876	if (attr->group)
4877		return -ENXIO;
4878
4879	switch (attr->attr) {
4880	case KVM_X86_XCOMP_GUEST_SUPP:
4881		return 0;
4882	default:
4883		return -ENXIO;
4884	}
4885}
4886
4887long kvm_arch_dev_ioctl(struct file *filp,
4888			unsigned int ioctl, unsigned long arg)
4889{
4890	void __user *argp = (void __user *)arg;
4891	long r;
4892
4893	switch (ioctl) {
4894	case KVM_GET_MSR_INDEX_LIST: {
4895		struct kvm_msr_list __user *user_msr_list = argp;
4896		struct kvm_msr_list msr_list;
4897		unsigned n;
4898
4899		r = -EFAULT;
4900		if (copy_from_user(&msr_list, user_msr_list, sizeof(msr_list)))
4901			goto out;
4902		n = msr_list.nmsrs;
4903		msr_list.nmsrs = num_msrs_to_save + num_emulated_msrs;
4904		if (copy_to_user(user_msr_list, &msr_list, sizeof(msr_list)))
4905			goto out;
4906		r = -E2BIG;
4907		if (n < msr_list.nmsrs)
4908			goto out;
4909		r = -EFAULT;
4910		if (copy_to_user(user_msr_list->indices, &msrs_to_save,
4911				 num_msrs_to_save * sizeof(u32)))
4912			goto out;
4913		if (copy_to_user(user_msr_list->indices + num_msrs_to_save,
4914				 &emulated_msrs,
4915				 num_emulated_msrs * sizeof(u32)))
4916			goto out;
4917		r = 0;
4918		break;
4919	}
4920	case KVM_GET_SUPPORTED_CPUID:
4921	case KVM_GET_EMULATED_CPUID: {
4922		struct kvm_cpuid2 __user *cpuid_arg = argp;
4923		struct kvm_cpuid2 cpuid;
4924
4925		r = -EFAULT;
4926		if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
4927			goto out;
4928
4929		r = kvm_dev_ioctl_get_cpuid(&cpuid, cpuid_arg->entries,
4930					    ioctl);
4931		if (r)
4932			goto out;
4933
4934		r = -EFAULT;
4935		if (copy_to_user(cpuid_arg, &cpuid, sizeof(cpuid)))
4936			goto out;
4937		r = 0;
4938		break;
4939	}
4940	case KVM_X86_GET_MCE_CAP_SUPPORTED:
4941		r = -EFAULT;
4942		if (copy_to_user(argp, &kvm_caps.supported_mce_cap,
4943				 sizeof(kvm_caps.supported_mce_cap)))
4944			goto out;
4945		r = 0;
4946		break;
4947	case KVM_GET_MSR_FEATURE_INDEX_LIST: {
4948		struct kvm_msr_list __user *user_msr_list = argp;
4949		struct kvm_msr_list msr_list;
4950		unsigned int n;
4951
4952		r = -EFAULT;
4953		if (copy_from_user(&msr_list, user_msr_list, sizeof(msr_list)))
4954			goto out;
4955		n = msr_list.nmsrs;
4956		msr_list.nmsrs = num_msr_based_features;
4957		if (copy_to_user(user_msr_list, &msr_list, sizeof(msr_list)))
4958			goto out;
4959		r = -E2BIG;
4960		if (n < msr_list.nmsrs)
4961			goto out;
4962		r = -EFAULT;
4963		if (copy_to_user(user_msr_list->indices, &msr_based_features,
4964				 num_msr_based_features * sizeof(u32)))
4965			goto out;
4966		r = 0;
4967		break;
4968	}
4969	case KVM_GET_MSRS:
4970		r = msr_io(NULL, argp, do_get_msr_feature, 1);
4971		break;
4972#ifdef CONFIG_KVM_HYPERV
4973	case KVM_GET_SUPPORTED_HV_CPUID:
4974		r = kvm_ioctl_get_supported_hv_cpuid(NULL, argp);
4975		break;
4976#endif
4977	case KVM_GET_DEVICE_ATTR: {
4978		struct kvm_device_attr attr;
4979		r = -EFAULT;
4980		if (copy_from_user(&attr, (void __user *)arg, sizeof(attr)))
4981			break;
4982		r = kvm_x86_dev_get_attr(&attr);
4983		break;
4984	}
4985	case KVM_HAS_DEVICE_ATTR: {
4986		struct kvm_device_attr attr;
4987		r = -EFAULT;
4988		if (copy_from_user(&attr, (void __user *)arg, sizeof(attr)))
4989			break;
4990		r = kvm_x86_dev_has_attr(&attr);
4991		break;
4992	}
4993	default:
4994		r = -EINVAL;
4995		break;
4996	}
4997out:
4998	return r;
4999}
5000
5001static void wbinvd_ipi(void *garbage)
5002{
5003	wbinvd();
5004}
5005
5006static bool need_emulate_wbinvd(struct kvm_vcpu *vcpu)
5007{
5008	return kvm_arch_has_noncoherent_dma(vcpu->kvm);
5009}
5010
5011void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
5012{
5013	/* Address WBINVD may be executed by guest */
5014	if (need_emulate_wbinvd(vcpu)) {
5015		if (static_call(kvm_x86_has_wbinvd_exit)())
5016			cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask);
5017		else if (vcpu->cpu != -1 && vcpu->cpu != cpu)
5018			smp_call_function_single(vcpu->cpu,
5019					wbinvd_ipi, NULL, 1);
5020	}
5021
5022	static_call(kvm_x86_vcpu_load)(vcpu, cpu);
5023
5024	/* Save host pkru register if supported */
5025	vcpu->arch.host_pkru = read_pkru();
5026
5027	/* Apply any externally detected TSC adjustments (due to suspend) */
5028	if (unlikely(vcpu->arch.tsc_offset_adjustment)) {
5029		adjust_tsc_offset_host(vcpu, vcpu->arch.tsc_offset_adjustment);
5030		vcpu->arch.tsc_offset_adjustment = 0;
5031		kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
5032	}
5033
5034	if (unlikely(vcpu->cpu != cpu) || kvm_check_tsc_unstable()) {
5035		s64 tsc_delta = !vcpu->arch.last_host_tsc ? 0 :
5036				rdtsc() - vcpu->arch.last_host_tsc;
5037		if (tsc_delta < 0)
5038			mark_tsc_unstable("KVM discovered backwards TSC");
5039
5040		if (kvm_check_tsc_unstable()) {
5041			u64 offset = kvm_compute_l1_tsc_offset(vcpu,
5042						vcpu->arch.last_guest_tsc);
5043			kvm_vcpu_write_tsc_offset(vcpu, offset);
5044			vcpu->arch.tsc_catchup = 1;
5045		}
5046
5047		if (kvm_lapic_hv_timer_in_use(vcpu))
5048			kvm_lapic_restart_hv_timer(vcpu);
5049
5050		/*
5051		 * On a host with synchronized TSC, there is no need to update
5052		 * kvmclock on vcpu->cpu migration
5053		 */
5054		if (!vcpu->kvm->arch.use_master_clock || vcpu->cpu == -1)
5055			kvm_make_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu);
5056		if (vcpu->cpu != cpu)
5057			kvm_make_request(KVM_REQ_MIGRATE_TIMER, vcpu);
5058		vcpu->cpu = cpu;
5059	}
5060
5061	kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu);
5062}
5063
5064static void kvm_steal_time_set_preempted(struct kvm_vcpu *vcpu)
5065{
5066	struct gfn_to_hva_cache *ghc = &vcpu->arch.st.cache;
5067	struct kvm_steal_time __user *st;
5068	struct kvm_memslots *slots;
5069	static const u8 preempted = KVM_VCPU_PREEMPTED;
5070	gpa_t gpa = vcpu->arch.st.msr_val & KVM_STEAL_VALID_BITS;
5071
5072	/*
5073	 * The vCPU can be marked preempted if and only if the VM-Exit was on
5074	 * an instruction boundary and will not trigger guest emulation of any
5075	 * kind (see vcpu_run).  Vendor specific code controls (conservatively)
5076	 * when this is true, for example allowing the vCPU to be marked
5077	 * preempted if and only if the VM-Exit was due to a host interrupt.
5078	 */
5079	if (!vcpu->arch.at_instruction_boundary) {
5080		vcpu->stat.preemption_other++;
5081		return;
5082	}
5083
5084	vcpu->stat.preemption_reported++;
5085	if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED))
5086		return;
5087
5088	if (vcpu->arch.st.preempted)
5089		return;
5090
5091	/* This happens on process exit */
5092	if (unlikely(current->mm != vcpu->kvm->mm))
5093		return;
5094
5095	slots = kvm_memslots(vcpu->kvm);
5096
5097	if (unlikely(slots->generation != ghc->generation ||
5098		     gpa != ghc->gpa ||
5099		     kvm_is_error_hva(ghc->hva) || !ghc->memslot))
5100		return;
5101
5102	st = (struct kvm_steal_time __user *)ghc->hva;
5103	BUILD_BUG_ON(sizeof(st->preempted) != sizeof(preempted));
5104
5105	if (!copy_to_user_nofault(&st->preempted, &preempted, sizeof(preempted)))
5106		vcpu->arch.st.preempted = KVM_VCPU_PREEMPTED;
5107
5108	mark_page_dirty_in_slot(vcpu->kvm, ghc->memslot, gpa_to_gfn(ghc->gpa));
5109}
5110
5111void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
5112{
5113	int idx;
5114
5115	if (vcpu->preempted) {
5116		vcpu->arch.preempted_in_kernel = kvm_arch_vcpu_in_kernel(vcpu);
5117
5118		/*
5119		 * Take the srcu lock as memslots will be accessed to check the gfn
5120		 * cache generation against the memslots generation.
5121		 */
5122		idx = srcu_read_lock(&vcpu->kvm->srcu);
5123		if (kvm_xen_msr_enabled(vcpu->kvm))
5124			kvm_xen_runstate_set_preempted(vcpu);
5125		else
5126			kvm_steal_time_set_preempted(vcpu);
5127		srcu_read_unlock(&vcpu->kvm->srcu, idx);
5128	}
5129
5130	static_call(kvm_x86_vcpu_put)(vcpu);
5131	vcpu->arch.last_host_tsc = rdtsc();
5132}
5133
5134static int kvm_vcpu_ioctl_get_lapic(struct kvm_vcpu *vcpu,
5135				    struct kvm_lapic_state *s)
5136{
5137	static_call_cond(kvm_x86_sync_pir_to_irr)(vcpu);
5138
5139	return kvm_apic_get_state(vcpu, s);
5140}
5141
5142static int kvm_vcpu_ioctl_set_lapic(struct kvm_vcpu *vcpu,
5143				    struct kvm_lapic_state *s)
5144{
5145	int r;
5146
5147	r = kvm_apic_set_state(vcpu, s);
5148	if (r)
5149		return r;
5150	update_cr8_intercept(vcpu);
5151
5152	return 0;
5153}
5154
5155static int kvm_cpu_accept_dm_intr(struct kvm_vcpu *vcpu)
5156{
5157	/*
5158	 * We can accept userspace's request for interrupt injection
5159	 * as long as we have a place to store the interrupt number.
5160	 * The actual injection will happen when the CPU is able to
5161	 * deliver the interrupt.
5162	 */
5163	if (kvm_cpu_has_extint(vcpu))
5164		return false;
5165
5166	/* Acknowledging ExtINT does not happen if LINT0 is masked.  */
5167	return (!lapic_in_kernel(vcpu) ||
5168		kvm_apic_accept_pic_intr(vcpu));
5169}
5170
5171static int kvm_vcpu_ready_for_interrupt_injection(struct kvm_vcpu *vcpu)
5172{
5173	/*
5174	 * Do not cause an interrupt window exit if an exception
5175	 * is pending or an event needs reinjection; userspace
5176	 * might want to inject the interrupt manually using KVM_SET_REGS
5177	 * or KVM_SET_SREGS.  For that to work, we must be at an
5178	 * instruction boundary and with no events half-injected.
5179	 */
5180	return (kvm_arch_interrupt_allowed(vcpu) &&
5181		kvm_cpu_accept_dm_intr(vcpu) &&
5182		!kvm_event_needs_reinjection(vcpu) &&
5183		!kvm_is_exception_pending(vcpu));
5184}
5185
5186static int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu,
5187				    struct kvm_interrupt *irq)
5188{
5189	if (irq->irq >= KVM_NR_INTERRUPTS)
5190		return -EINVAL;
5191
5192	if (!irqchip_in_kernel(vcpu->kvm)) {
5193		kvm_queue_interrupt(vcpu, irq->irq, false);
5194		kvm_make_request(KVM_REQ_EVENT, vcpu);
5195		return 0;
5196	}
5197
5198	/*
5199	 * With in-kernel LAPIC, we only use this to inject EXTINT, so
5200	 * fail for in-kernel 8259.
5201	 */
5202	if (pic_in_kernel(vcpu->kvm))
5203		return -ENXIO;
5204
5205	if (vcpu->arch.pending_external_vector != -1)
5206		return -EEXIST;
5207
5208	vcpu->arch.pending_external_vector = irq->irq;
5209	kvm_make_request(KVM_REQ_EVENT, vcpu);
5210	return 0;
5211}
5212
5213static int kvm_vcpu_ioctl_nmi(struct kvm_vcpu *vcpu)
5214{
5215	kvm_inject_nmi(vcpu);
5216
5217	return 0;
5218}
5219
5220static int vcpu_ioctl_tpr_access_reporting(struct kvm_vcpu *vcpu,
5221					   struct kvm_tpr_access_ctl *tac)
5222{
5223	if (tac->flags)
5224		return -EINVAL;
5225	vcpu->arch.tpr_access_reporting = !!tac->enabled;
5226	return 0;
5227}
5228
5229static int kvm_vcpu_ioctl_x86_setup_mce(struct kvm_vcpu *vcpu,
5230					u64 mcg_cap)
5231{
5232	int r;
5233	unsigned bank_num = mcg_cap & 0xff, bank;
5234
5235	r = -EINVAL;
5236	if (!bank_num || bank_num > KVM_MAX_MCE_BANKS)
5237		goto out;
5238	if (mcg_cap & ~(kvm_caps.supported_mce_cap | 0xff | 0xff0000))
5239		goto out;
5240	r = 0;
5241	vcpu->arch.mcg_cap = mcg_cap;
5242	/* Init IA32_MCG_CTL to all 1s */
5243	if (mcg_cap & MCG_CTL_P)
5244		vcpu->arch.mcg_ctl = ~(u64)0;
5245	/* Init IA32_MCi_CTL to all 1s, IA32_MCi_CTL2 to all 0s */
5246	for (bank = 0; bank < bank_num; bank++) {
5247		vcpu->arch.mce_banks[bank*4] = ~(u64)0;
5248		if (mcg_cap & MCG_CMCI_P)
5249			vcpu->arch.mci_ctl2_banks[bank] = 0;
5250	}
5251
5252	kvm_apic_after_set_mcg_cap(vcpu);
5253
5254	static_call(kvm_x86_setup_mce)(vcpu);
5255out:
5256	return r;
5257}
5258
5259/*
5260 * Validate this is an UCNA (uncorrectable no action) error by checking the
5261 * MCG_STATUS and MCi_STATUS registers:
5262 * - none of the bits for Machine Check Exceptions are set
5263 * - both the VAL (valid) and UC (uncorrectable) bits are set
5264 * MCI_STATUS_PCC - Processor Context Corrupted
5265 * MCI_STATUS_S - Signaled as a Machine Check Exception
5266 * MCI_STATUS_AR - Software recoverable Action Required
5267 */
5268static bool is_ucna(struct kvm_x86_mce *mce)
5269{
5270	return	!mce->mcg_status &&
5271		!(mce->status & (MCI_STATUS_PCC | MCI_STATUS_S | MCI_STATUS_AR)) &&
5272		(mce->status & MCI_STATUS_VAL) &&
5273		(mce->status & MCI_STATUS_UC);
5274}
5275
5276static int kvm_vcpu_x86_set_ucna(struct kvm_vcpu *vcpu, struct kvm_x86_mce *mce, u64* banks)
5277{
5278	u64 mcg_cap = vcpu->arch.mcg_cap;
5279
5280	banks[1] = mce->status;
5281	banks[2] = mce->addr;
5282	banks[3] = mce->misc;
5283	vcpu->arch.mcg_status = mce->mcg_status;
5284
5285	if (!(mcg_cap & MCG_CMCI_P) ||
5286	    !(vcpu->arch.mci_ctl2_banks[mce->bank] & MCI_CTL2_CMCI_EN))
5287		return 0;
5288
5289	if (lapic_in_kernel(vcpu))
5290		kvm_apic_local_deliver(vcpu->arch.apic, APIC_LVTCMCI);
5291
5292	return 0;
5293}
5294
5295static int kvm_vcpu_ioctl_x86_set_mce(struct kvm_vcpu *vcpu,
5296				      struct kvm_x86_mce *mce)
5297{
5298	u64 mcg_cap = vcpu->arch.mcg_cap;
5299	unsigned bank_num = mcg_cap & 0xff;
5300	u64 *banks = vcpu->arch.mce_banks;
5301
5302	if (mce->bank >= bank_num || !(mce->status & MCI_STATUS_VAL))
5303		return -EINVAL;
5304
5305	banks += array_index_nospec(4 * mce->bank, 4 * bank_num);
5306
5307	if (is_ucna(mce))
5308		return kvm_vcpu_x86_set_ucna(vcpu, mce, banks);
5309
5310	/*
5311	 * if IA32_MCG_CTL is not all 1s, the uncorrected error
5312	 * reporting is disabled
5313	 */
5314	if ((mce->status & MCI_STATUS_UC) && (mcg_cap & MCG_CTL_P) &&
5315	    vcpu->arch.mcg_ctl != ~(u64)0)
5316		return 0;
5317	/*
5318	 * if IA32_MCi_CTL is not all 1s, the uncorrected error
5319	 * reporting is disabled for the bank
5320	 */
5321	if ((mce->status & MCI_STATUS_UC) && banks[0] != ~(u64)0)
5322		return 0;
5323	if (mce->status & MCI_STATUS_UC) {
5324		if ((vcpu->arch.mcg_status & MCG_STATUS_MCIP) ||
5325		    !kvm_is_cr4_bit_set(vcpu, X86_CR4_MCE)) {
5326			kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
5327			return 0;
5328		}
5329		if (banks[1] & MCI_STATUS_VAL)
5330			mce->status |= MCI_STATUS_OVER;
5331		banks[2] = mce->addr;
5332		banks[3] = mce->misc;
5333		vcpu->arch.mcg_status = mce->mcg_status;
5334		banks[1] = mce->status;
5335		kvm_queue_exception(vcpu, MC_VECTOR);
5336	} else if (!(banks[1] & MCI_STATUS_VAL)
5337		   || !(banks[1] & MCI_STATUS_UC)) {
5338		if (banks[1] & MCI_STATUS_VAL)
5339			mce->status |= MCI_STATUS_OVER;
5340		banks[2] = mce->addr;
5341		banks[3] = mce->misc;
5342		banks[1] = mce->status;
5343	} else
5344		banks[1] |= MCI_STATUS_OVER;
5345	return 0;
5346}
5347
5348static void kvm_vcpu_ioctl_x86_get_vcpu_events(struct kvm_vcpu *vcpu,
5349					       struct kvm_vcpu_events *events)
5350{
5351	struct kvm_queued_exception *ex;
5352
5353	process_nmi(vcpu);
5354
5355#ifdef CONFIG_KVM_SMM
5356	if (kvm_check_request(KVM_REQ_SMI, vcpu))
5357		process_smi(vcpu);
5358#endif
5359
5360	/*
5361	 * KVM's ABI only allows for one exception to be migrated.  Luckily,
5362	 * the only time there can be two queued exceptions is if there's a
5363	 * non-exiting _injected_ exception, and a pending exiting exception.
5364	 * In that case, ignore the VM-Exiting exception as it's an extension
5365	 * of the injected exception.
5366	 */
5367	if (vcpu->arch.exception_vmexit.pending &&
5368	    !vcpu->arch.exception.pending &&
5369	    !vcpu->arch.exception.injected)
5370		ex = &vcpu->arch.exception_vmexit;
5371	else
5372		ex = &vcpu->arch.exception;
5373
5374	/*
5375	 * In guest mode, payload delivery should be deferred if the exception
5376	 * will be intercepted by L1, e.g. KVM should not modifying CR2 if L1
5377	 * intercepts #PF, ditto for DR6 and #DBs.  If the per-VM capability,
5378	 * KVM_CAP_EXCEPTION_PAYLOAD, is not set, userspace may or may not
5379	 * propagate the payload and so it cannot be safely deferred.  Deliver
5380	 * the payload if the capability hasn't been requested.
5381	 */
5382	if (!vcpu->kvm->arch.exception_payload_enabled &&
5383	    ex->pending && ex->has_payload)
5384		kvm_deliver_exception_payload(vcpu, ex);
5385
5386	memset(events, 0, sizeof(*events));
5387
5388	/*
5389	 * The API doesn't provide the instruction length for software
5390	 * exceptions, so don't report them. As long as the guest RIP
5391	 * isn't advanced, we should expect to encounter the exception
5392	 * again.
5393	 */
5394	if (!kvm_exception_is_soft(ex->vector)) {
5395		events->exception.injected = ex->injected;
5396		events->exception.pending = ex->pending;
5397		/*
5398		 * For ABI compatibility, deliberately conflate
5399		 * pending and injected exceptions when
5400		 * KVM_CAP_EXCEPTION_PAYLOAD isn't enabled.
5401		 */
5402		if (!vcpu->kvm->arch.exception_payload_enabled)
5403			events->exception.injected |= ex->pending;
5404	}
5405	events->exception.nr = ex->vector;
5406	events->exception.has_error_code = ex->has_error_code;
5407	events->exception.error_code = ex->error_code;
5408	events->exception_has_payload = ex->has_payload;
5409	events->exception_payload = ex->payload;
5410
5411	events->interrupt.injected =
5412		vcpu->arch.interrupt.injected && !vcpu->arch.interrupt.soft;
5413	events->interrupt.nr = vcpu->arch.interrupt.nr;
5414	events->interrupt.shadow = static_call(kvm_x86_get_interrupt_shadow)(vcpu);
5415
5416	events->nmi.injected = vcpu->arch.nmi_injected;
5417	events->nmi.pending = kvm_get_nr_pending_nmis(vcpu);
5418	events->nmi.masked = static_call(kvm_x86_get_nmi_mask)(vcpu);
5419
5420	/* events->sipi_vector is never valid when reporting to user space */
5421
5422#ifdef CONFIG_KVM_SMM
5423	events->smi.smm = is_smm(vcpu);
5424	events->smi.pending = vcpu->arch.smi_pending;
5425	events->smi.smm_inside_nmi =
5426		!!(vcpu->arch.hflags & HF_SMM_INSIDE_NMI_MASK);
5427#endif
5428	events->smi.latched_init = kvm_lapic_latched_init(vcpu);
5429
5430	events->flags = (KVM_VCPUEVENT_VALID_NMI_PENDING
5431			 | KVM_VCPUEVENT_VALID_SHADOW
5432			 | KVM_VCPUEVENT_VALID_SMM);
5433	if (vcpu->kvm->arch.exception_payload_enabled)
5434		events->flags |= KVM_VCPUEVENT_VALID_PAYLOAD;
5435	if (vcpu->kvm->arch.triple_fault_event) {
5436		events->triple_fault.pending = kvm_test_request(KVM_REQ_TRIPLE_FAULT, vcpu);
5437		events->flags |= KVM_VCPUEVENT_VALID_TRIPLE_FAULT;
5438	}
5439}
5440
5441static int kvm_vcpu_ioctl_x86_set_vcpu_events(struct kvm_vcpu *vcpu,
5442					      struct kvm_vcpu_events *events)
5443{
5444	if (events->flags & ~(KVM_VCPUEVENT_VALID_NMI_PENDING
5445			      | KVM_VCPUEVENT_VALID_SIPI_VECTOR
5446			      | KVM_VCPUEVENT_VALID_SHADOW
5447			      | KVM_VCPUEVENT_VALID_SMM
5448			      | KVM_VCPUEVENT_VALID_PAYLOAD
5449			      | KVM_VCPUEVENT_VALID_TRIPLE_FAULT))
5450		return -EINVAL;
5451
5452	if (events->flags & KVM_VCPUEVENT_VALID_PAYLOAD) {
5453		if (!vcpu->kvm->arch.exception_payload_enabled)
5454			return -EINVAL;
5455		if (events->exception.pending)
5456			events->exception.injected = 0;
5457		else
5458			events->exception_has_payload = 0;
5459	} else {
5460		events->exception.pending = 0;
5461		events->exception_has_payload = 0;
5462	}
5463
5464	if ((events->exception.injected || events->exception.pending) &&
5465	    (events->exception.nr > 31 || events->exception.nr == NMI_VECTOR))
5466		return -EINVAL;
5467
5468	/* INITs are latched while in SMM */
5469	if (events->flags & KVM_VCPUEVENT_VALID_SMM &&
5470	    (events->smi.smm || events->smi.pending) &&
5471	    vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED)
5472		return -EINVAL;
5473
5474	process_nmi(vcpu);
5475
5476	/*
5477	 * Flag that userspace is stuffing an exception, the next KVM_RUN will
5478	 * morph the exception to a VM-Exit if appropriate.  Do this only for
5479	 * pending exceptions, already-injected exceptions are not subject to
5480	 * intercpetion.  Note, userspace that conflates pending and injected
5481	 * is hosed, and will incorrectly convert an injected exception into a
5482	 * pending exception, which in turn may cause a spurious VM-Exit.
5483	 */
5484	vcpu->arch.exception_from_userspace = events->exception.pending;
5485
5486	vcpu->arch.exception_vmexit.pending = false;
5487
5488	vcpu->arch.exception.injected = events->exception.injected;
5489	vcpu->arch.exception.pending = events->exception.pending;
5490	vcpu->arch.exception.vector = events->exception.nr;
5491	vcpu->arch.exception.has_error_code = events->exception.has_error_code;
5492	vcpu->arch.exception.error_code = events->exception.error_code;
5493	vcpu->arch.exception.has_payload = events->exception_has_payload;
5494	vcpu->arch.exception.payload = events->exception_payload;
5495
5496	vcpu->arch.interrupt.injected = events->interrupt.injected;
5497	vcpu->arch.interrupt.nr = events->interrupt.nr;
5498	vcpu->arch.interrupt.soft = events->interrupt.soft;
5499	if (events->flags & KVM_VCPUEVENT_VALID_SHADOW)
5500		static_call(kvm_x86_set_interrupt_shadow)(vcpu,
5501						events->interrupt.shadow);
5502
5503	vcpu->arch.nmi_injected = events->nmi.injected;
5504	if (events->flags & KVM_VCPUEVENT_VALID_NMI_PENDING) {
5505		vcpu->arch.nmi_pending = 0;
5506		atomic_set(&vcpu->arch.nmi_queued, events->nmi.pending);
5507		if (events->nmi.pending)
5508			kvm_make_request(KVM_REQ_NMI, vcpu);
5509	}
5510	static_call(kvm_x86_set_nmi_mask)(vcpu, events->nmi.masked);
5511
5512	if (events->flags & KVM_VCPUEVENT_VALID_SIPI_VECTOR &&
5513	    lapic_in_kernel(vcpu))
5514		vcpu->arch.apic->sipi_vector = events->sipi_vector;
5515
5516	if (events->flags & KVM_VCPUEVENT_VALID_SMM) {
5517#ifdef CONFIG_KVM_SMM
5518		if (!!(vcpu->arch.hflags & HF_SMM_MASK) != events->smi.smm) {
5519			kvm_leave_nested(vcpu);
5520			kvm_smm_changed(vcpu, events->smi.smm);
5521		}
5522
5523		vcpu->arch.smi_pending = events->smi.pending;
5524
5525		if (events->smi.smm) {
5526			if (events->smi.smm_inside_nmi)
5527				vcpu->arch.hflags |= HF_SMM_INSIDE_NMI_MASK;
5528			else
5529				vcpu->arch.hflags &= ~HF_SMM_INSIDE_NMI_MASK;
5530		}
5531
5532#else
5533		if (events->smi.smm || events->smi.pending ||
5534		    events->smi.smm_inside_nmi)
5535			return -EINVAL;
5536#endif
5537
5538		if (lapic_in_kernel(vcpu)) {
5539			if (events->smi.latched_init)
5540				set_bit(KVM_APIC_INIT, &vcpu->arch.apic->pending_events);
5541			else
5542				clear_bit(KVM_APIC_INIT, &vcpu->arch.apic->pending_events);
5543		}
5544	}
5545
5546	if (events->flags & KVM_VCPUEVENT_VALID_TRIPLE_FAULT) {
5547		if (!vcpu->kvm->arch.triple_fault_event)
5548			return -EINVAL;
5549		if (events->triple_fault.pending)
5550			kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
5551		else
5552			kvm_clear_request(KVM_REQ_TRIPLE_FAULT, vcpu);
5553	}
5554
5555	kvm_make_request(KVM_REQ_EVENT, vcpu);
5556
5557	return 0;
5558}
5559
5560static void kvm_vcpu_ioctl_x86_get_debugregs(struct kvm_vcpu *vcpu,
5561					     struct kvm_debugregs *dbgregs)
5562{
5563	unsigned int i;
5564
5565	memset(dbgregs, 0, sizeof(*dbgregs));
5566
5567	BUILD_BUG_ON(ARRAY_SIZE(vcpu->arch.db) != ARRAY_SIZE(dbgregs->db));
5568	for (i = 0; i < ARRAY_SIZE(vcpu->arch.db); i++)
5569		dbgregs->db[i] = vcpu->arch.db[i];
5570
5571	dbgregs->dr6 = vcpu->arch.dr6;
5572	dbgregs->dr7 = vcpu->arch.dr7;
5573}
5574
5575static int kvm_vcpu_ioctl_x86_set_debugregs(struct kvm_vcpu *vcpu,
5576					    struct kvm_debugregs *dbgregs)
5577{
5578	unsigned int i;
5579
5580	if (dbgregs->flags)
5581		return -EINVAL;
5582
5583	if (!kvm_dr6_valid(dbgregs->dr6))
5584		return -EINVAL;
5585	if (!kvm_dr7_valid(dbgregs->dr7))
5586		return -EINVAL;
5587
5588	for (i = 0; i < ARRAY_SIZE(vcpu->arch.db); i++)
5589		vcpu->arch.db[i] = dbgregs->db[i];
5590
5591	kvm_update_dr0123(vcpu);
5592	vcpu->arch.dr6 = dbgregs->dr6;
5593	vcpu->arch.dr7 = dbgregs->dr7;
5594	kvm_update_dr7(vcpu);
5595
5596	return 0;
5597}
5598
5599
5600static void kvm_vcpu_ioctl_x86_get_xsave2(struct kvm_vcpu *vcpu,
5601					  u8 *state, unsigned int size)
5602{
5603	/*
5604	 * Only copy state for features that are enabled for the guest.  The
5605	 * state itself isn't problematic, but setting bits in the header for
5606	 * features that are supported in *this* host but not exposed to the
5607	 * guest can result in KVM_SET_XSAVE failing when live migrating to a
5608	 * compatible host without the features that are NOT exposed to the
5609	 * guest.
5610	 *
5611	 * FP+SSE can always be saved/restored via KVM_{G,S}ET_XSAVE, even if
5612	 * XSAVE/XCRO are not exposed to the guest, and even if XSAVE isn't
5613	 * supported by the host.
5614	 */
5615	u64 supported_xcr0 = vcpu->arch.guest_supported_xcr0 |
5616			     XFEATURE_MASK_FPSSE;
5617
5618	if (fpstate_is_confidential(&vcpu->arch.guest_fpu))
5619		return;
5620
5621	fpu_copy_guest_fpstate_to_uabi(&vcpu->arch.guest_fpu, state, size,
5622				       supported_xcr0, vcpu->arch.pkru);
5623}
5624
5625static void kvm_vcpu_ioctl_x86_get_xsave(struct kvm_vcpu *vcpu,
5626					 struct kvm_xsave *guest_xsave)
5627{
5628	kvm_vcpu_ioctl_x86_get_xsave2(vcpu, (void *)guest_xsave->region,
5629				      sizeof(guest_xsave->region));
5630}
5631
5632static int kvm_vcpu_ioctl_x86_set_xsave(struct kvm_vcpu *vcpu,
5633					struct kvm_xsave *guest_xsave)
5634{
5635	if (fpstate_is_confidential(&vcpu->arch.guest_fpu))
5636		return 0;
5637
5638	return fpu_copy_uabi_to_guest_fpstate(&vcpu->arch.guest_fpu,
5639					      guest_xsave->region,
5640					      kvm_caps.supported_xcr0,
5641					      &vcpu->arch.pkru);
5642}
5643
5644static void kvm_vcpu_ioctl_x86_get_xcrs(struct kvm_vcpu *vcpu,
5645					struct kvm_xcrs *guest_xcrs)
5646{
5647	if (!boot_cpu_has(X86_FEATURE_XSAVE)) {
5648		guest_xcrs->nr_xcrs = 0;
5649		return;
5650	}
5651
5652	guest_xcrs->nr_xcrs = 1;
5653	guest_xcrs->flags = 0;
5654	guest_xcrs->xcrs[0].xcr = XCR_XFEATURE_ENABLED_MASK;
5655	guest_xcrs->xcrs[0].value = vcpu->arch.xcr0;
5656}
5657
5658static int kvm_vcpu_ioctl_x86_set_xcrs(struct kvm_vcpu *vcpu,
5659				       struct kvm_xcrs *guest_xcrs)
5660{
5661	int i, r = 0;
5662
5663	if (!boot_cpu_has(X86_FEATURE_XSAVE))
5664		return -EINVAL;
5665
5666	if (guest_xcrs->nr_xcrs > KVM_MAX_XCRS || guest_xcrs->flags)
5667		return -EINVAL;
5668
5669	for (i = 0; i < guest_xcrs->nr_xcrs; i++)
5670		/* Only support XCR0 currently */
5671		if (guest_xcrs->xcrs[i].xcr == XCR_XFEATURE_ENABLED_MASK) {
5672			r = __kvm_set_xcr(vcpu, XCR_XFEATURE_ENABLED_MASK,
5673				guest_xcrs->xcrs[i].value);
5674			break;
5675		}
5676	if (r)
5677		r = -EINVAL;
5678	return r;
5679}
5680
5681/*
5682 * kvm_set_guest_paused() indicates to the guest kernel that it has been
5683 * stopped by the hypervisor.  This function will be called from the host only.
5684 * EINVAL is returned when the host attempts to set the flag for a guest that
5685 * does not support pv clocks.
5686 */
5687static int kvm_set_guest_paused(struct kvm_vcpu *vcpu)
5688{
5689	if (!vcpu->arch.pv_time.active)
5690		return -EINVAL;
5691	vcpu->arch.pvclock_set_guest_stopped_request = true;
5692	kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
5693	return 0;
5694}
5695
5696static int kvm_arch_tsc_has_attr(struct kvm_vcpu *vcpu,
5697				 struct kvm_device_attr *attr)
5698{
5699	int r;
5700
5701	switch (attr->attr) {
5702	case KVM_VCPU_TSC_OFFSET:
5703		r = 0;
5704		break;
5705	default:
5706		r = -ENXIO;
5707	}
5708
5709	return r;
5710}
5711
5712static int kvm_arch_tsc_get_attr(struct kvm_vcpu *vcpu,
5713				 struct kvm_device_attr *attr)
5714{
5715	u64 __user *uaddr = kvm_get_attr_addr(attr);
5716	int r;
5717
5718	if (IS_ERR(uaddr))
5719		return PTR_ERR(uaddr);
5720
5721	switch (attr->attr) {
5722	case KVM_VCPU_TSC_OFFSET:
5723		r = -EFAULT;
5724		if (put_user(vcpu->arch.l1_tsc_offset, uaddr))
5725			break;
5726		r = 0;
5727		break;
5728	default:
5729		r = -ENXIO;
5730	}
5731
5732	return r;
5733}
5734
5735static int kvm_arch_tsc_set_attr(struct kvm_vcpu *vcpu,
5736				 struct kvm_device_attr *attr)
5737{
5738	u64 __user *uaddr = kvm_get_attr_addr(attr);
5739	struct kvm *kvm = vcpu->kvm;
5740	int r;
5741
5742	if (IS_ERR(uaddr))
5743		return PTR_ERR(uaddr);
5744
5745	switch (attr->attr) {
5746	case KVM_VCPU_TSC_OFFSET: {
5747		u64 offset, tsc, ns;
5748		unsigned long flags;
5749		bool matched;
5750
5751		r = -EFAULT;
5752		if (get_user(offset, uaddr))
5753			break;
5754
5755		raw_spin_lock_irqsave(&kvm->arch.tsc_write_lock, flags);
5756
5757		matched = (vcpu->arch.virtual_tsc_khz &&
5758			   kvm->arch.last_tsc_khz == vcpu->arch.virtual_tsc_khz &&
5759			   kvm->arch.last_tsc_offset == offset);
5760
5761		tsc = kvm_scale_tsc(rdtsc(), vcpu->arch.l1_tsc_scaling_ratio) + offset;
5762		ns = get_kvmclock_base_ns();
5763
5764		kvm->arch.user_set_tsc = true;
5765		__kvm_synchronize_tsc(vcpu, offset, tsc, ns, matched);
5766		raw_spin_unlock_irqrestore(&kvm->arch.tsc_write_lock, flags);
5767
5768		r = 0;
5769		break;
5770	}
5771	default:
5772		r = -ENXIO;
5773	}
5774
5775	return r;
5776}
5777
5778static int kvm_vcpu_ioctl_device_attr(struct kvm_vcpu *vcpu,
5779				      unsigned int ioctl,
5780				      void __user *argp)
5781{
5782	struct kvm_device_attr attr;
5783	int r;
5784
5785	if (copy_from_user(&attr, argp, sizeof(attr)))
5786		return -EFAULT;
5787
5788	if (attr.group != KVM_VCPU_TSC_CTRL)
5789		return -ENXIO;
5790
5791	switch (ioctl) {
5792	case KVM_HAS_DEVICE_ATTR:
5793		r = kvm_arch_tsc_has_attr(vcpu, &attr);
5794		break;
5795	case KVM_GET_DEVICE_ATTR:
5796		r = kvm_arch_tsc_get_attr(vcpu, &attr);
5797		break;
5798	case KVM_SET_DEVICE_ATTR:
5799		r = kvm_arch_tsc_set_attr(vcpu, &attr);
5800		break;
5801	}
5802
5803	return r;
5804}
5805
5806static int kvm_vcpu_ioctl_enable_cap(struct kvm_vcpu *vcpu,
5807				     struct kvm_enable_cap *cap)
5808{
5809	if (cap->flags)
5810		return -EINVAL;
5811
5812	switch (cap->cap) {
5813#ifdef CONFIG_KVM_HYPERV
5814	case KVM_CAP_HYPERV_SYNIC2:
5815		if (cap->args[0])
5816			return -EINVAL;
5817		fallthrough;
5818
5819	case KVM_CAP_HYPERV_SYNIC:
5820		if (!irqchip_in_kernel(vcpu->kvm))
5821			return -EINVAL;
5822		return kvm_hv_activate_synic(vcpu, cap->cap ==
5823					     KVM_CAP_HYPERV_SYNIC2);
5824	case KVM_CAP_HYPERV_ENLIGHTENED_VMCS:
5825		{
5826			int r;
5827			uint16_t vmcs_version;
5828			void __user *user_ptr;
5829
5830			if (!kvm_x86_ops.nested_ops->enable_evmcs)
5831				return -ENOTTY;
5832			r = kvm_x86_ops.nested_ops->enable_evmcs(vcpu, &vmcs_version);
5833			if (!r) {
5834				user_ptr = (void __user *)(uintptr_t)cap->args[0];
5835				if (copy_to_user(user_ptr, &vmcs_version,
5836						 sizeof(vmcs_version)))
5837					r = -EFAULT;
5838			}
5839			return r;
5840		}
5841	case KVM_CAP_HYPERV_DIRECT_TLBFLUSH:
5842		if (!kvm_x86_ops.enable_l2_tlb_flush)
5843			return -ENOTTY;
5844
5845		return static_call(kvm_x86_enable_l2_tlb_flush)(vcpu);
5846
5847	case KVM_CAP_HYPERV_ENFORCE_CPUID:
5848		return kvm_hv_set_enforce_cpuid(vcpu, cap->args[0]);
5849#endif
5850
5851	case KVM_CAP_ENFORCE_PV_FEATURE_CPUID:
5852		vcpu->arch.pv_cpuid.enforce = cap->args[0];
5853		if (vcpu->arch.pv_cpuid.enforce)
5854			kvm_update_pv_runtime(vcpu);
5855
5856		return 0;
5857	default:
5858		return -EINVAL;
5859	}
5860}
5861
5862long kvm_arch_vcpu_ioctl(struct file *filp,
5863			 unsigned int ioctl, unsigned long arg)
5864{
5865	struct kvm_vcpu *vcpu = filp->private_data;
5866	void __user *argp = (void __user *)arg;
5867	int r;
5868	union {
5869		struct kvm_sregs2 *sregs2;
5870		struct kvm_lapic_state *lapic;
5871		struct kvm_xsave *xsave;
5872		struct kvm_xcrs *xcrs;
5873		void *buffer;
5874	} u;
5875
5876	vcpu_load(vcpu);
5877
5878	u.buffer = NULL;
5879	switch (ioctl) {
5880	case KVM_GET_LAPIC: {
5881		r = -EINVAL;
5882		if (!lapic_in_kernel(vcpu))
5883			goto out;
5884		u.lapic = kzalloc(sizeof(struct kvm_lapic_state),
5885				GFP_KERNEL_ACCOUNT);
5886
5887		r = -ENOMEM;
5888		if (!u.lapic)
5889			goto out;
5890		r = kvm_vcpu_ioctl_get_lapic(vcpu, u.lapic);
5891		if (r)
5892			goto out;
5893		r = -EFAULT;
5894		if (copy_to_user(argp, u.lapic, sizeof(struct kvm_lapic_state)))
5895			goto out;
5896		r = 0;
5897		break;
5898	}
5899	case KVM_SET_LAPIC: {
5900		r = -EINVAL;
5901		if (!lapic_in_kernel(vcpu))
5902			goto out;
5903		u.lapic = memdup_user(argp, sizeof(*u.lapic));
5904		if (IS_ERR(u.lapic)) {
5905			r = PTR_ERR(u.lapic);
5906			goto out_nofree;
5907		}
5908
5909		r = kvm_vcpu_ioctl_set_lapic(vcpu, u.lapic);
5910		break;
5911	}
5912	case KVM_INTERRUPT: {
5913		struct kvm_interrupt irq;
5914
5915		r = -EFAULT;
5916		if (copy_from_user(&irq, argp, sizeof(irq)))
5917			goto out;
5918		r = kvm_vcpu_ioctl_interrupt(vcpu, &irq);
5919		break;
5920	}
5921	case KVM_NMI: {
5922		r = kvm_vcpu_ioctl_nmi(vcpu);
5923		break;
5924	}
5925	case KVM_SMI: {
5926		r = kvm_inject_smi(vcpu);
5927		break;
5928	}
5929	case KVM_SET_CPUID: {
5930		struct kvm_cpuid __user *cpuid_arg = argp;
5931		struct kvm_cpuid cpuid;
5932
5933		r = -EFAULT;
5934		if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
5935			goto out;
5936		r = kvm_vcpu_ioctl_set_cpuid(vcpu, &cpuid, cpuid_arg->entries);
5937		break;
5938	}
5939	case KVM_SET_CPUID2: {
5940		struct kvm_cpuid2 __user *cpuid_arg = argp;
5941		struct kvm_cpuid2 cpuid;
5942
5943		r = -EFAULT;
5944		if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
5945			goto out;
5946		r = kvm_vcpu_ioctl_set_cpuid2(vcpu, &cpuid,
5947					      cpuid_arg->entries);
5948		break;
5949	}
5950	case KVM_GET_CPUID2: {
5951		struct kvm_cpuid2 __user *cpuid_arg = argp;
5952		struct kvm_cpuid2 cpuid;
5953
5954		r = -EFAULT;
5955		if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
5956			goto out;
5957		r = kvm_vcpu_ioctl_get_cpuid2(vcpu, &cpuid,
5958					      cpuid_arg->entries);
5959		if (r)
5960			goto out;
5961		r = -EFAULT;
5962		if (copy_to_user(cpuid_arg, &cpuid, sizeof(cpuid)))
5963			goto out;
5964		r = 0;
5965		break;
5966	}
5967	case KVM_GET_MSRS: {
5968		int idx = srcu_read_lock(&vcpu->kvm->srcu);
5969		r = msr_io(vcpu, argp, do_get_msr, 1);
5970		srcu_read_unlock(&vcpu->kvm->srcu, idx);
5971		break;
5972	}
5973	case KVM_SET_MSRS: {
5974		int idx = srcu_read_lock(&vcpu->kvm->srcu);
5975		r = msr_io(vcpu, argp, do_set_msr, 0);
5976		srcu_read_unlock(&vcpu->kvm->srcu, idx);
5977		break;
5978	}
5979	case KVM_TPR_ACCESS_REPORTING: {
5980		struct kvm_tpr_access_ctl tac;
5981
5982		r = -EFAULT;
5983		if (copy_from_user(&tac, argp, sizeof(tac)))
5984			goto out;
5985		r = vcpu_ioctl_tpr_access_reporting(vcpu, &tac);
5986		if (r)
5987			goto out;
5988		r = -EFAULT;
5989		if (copy_to_user(argp, &tac, sizeof(tac)))
5990			goto out;
5991		r = 0;
5992		break;
5993	};
5994	case KVM_SET_VAPIC_ADDR: {
5995		struct kvm_vapic_addr va;
5996		int idx;
5997
5998		r = -EINVAL;
5999		if (!lapic_in_kernel(vcpu))
6000			goto out;
6001		r = -EFAULT;
6002		if (copy_from_user(&va, argp, sizeof(va)))
6003			goto out;
6004		idx = srcu_read_lock(&vcpu->kvm->srcu);
6005		r = kvm_lapic_set_vapic_addr(vcpu, va.vapic_addr);
6006		srcu_read_unlock(&vcpu->kvm->srcu, idx);
6007		break;
6008	}
6009	case KVM_X86_SETUP_MCE: {
6010		u64 mcg_cap;
6011
6012		r = -EFAULT;
6013		if (copy_from_user(&mcg_cap, argp, sizeof(mcg_cap)))
6014			goto out;
6015		r = kvm_vcpu_ioctl_x86_setup_mce(vcpu, mcg_cap);
6016		break;
6017	}
6018	case KVM_X86_SET_MCE: {
6019		struct kvm_x86_mce mce;
6020
6021		r = -EFAULT;
6022		if (copy_from_user(&mce, argp, sizeof(mce)))
6023			goto out;
6024		r = kvm_vcpu_ioctl_x86_set_mce(vcpu, &mce);
6025		break;
6026	}
6027	case KVM_GET_VCPU_EVENTS: {
6028		struct kvm_vcpu_events events;
6029
6030		kvm_vcpu_ioctl_x86_get_vcpu_events(vcpu, &events);
6031
6032		r = -EFAULT;
6033		if (copy_to_user(argp, &events, sizeof(struct kvm_vcpu_events)))
6034			break;
6035		r = 0;
6036		break;
6037	}
6038	case KVM_SET_VCPU_EVENTS: {
6039		struct kvm_vcpu_events events;
6040
6041		r = -EFAULT;
6042		if (copy_from_user(&events, argp, sizeof(struct kvm_vcpu_events)))
6043			break;
6044
6045		r = kvm_vcpu_ioctl_x86_set_vcpu_events(vcpu, &events);
6046		break;
6047	}
6048	case KVM_GET_DEBUGREGS: {
6049		struct kvm_debugregs dbgregs;
6050
6051		kvm_vcpu_ioctl_x86_get_debugregs(vcpu, &dbgregs);
6052
6053		r = -EFAULT;
6054		if (copy_to_user(argp, &dbgregs,
6055				 sizeof(struct kvm_debugregs)))
6056			break;
6057		r = 0;
6058		break;
6059	}
6060	case KVM_SET_DEBUGREGS: {
6061		struct kvm_debugregs dbgregs;
6062
6063		r = -EFAULT;
6064		if (copy_from_user(&dbgregs, argp,
6065				   sizeof(struct kvm_debugregs)))
6066			break;
6067
6068		r = kvm_vcpu_ioctl_x86_set_debugregs(vcpu, &dbgregs);
6069		break;
6070	}
6071	case KVM_GET_XSAVE: {
6072		r = -EINVAL;
6073		if (vcpu->arch.guest_fpu.uabi_size > sizeof(struct kvm_xsave))
6074			break;
6075
6076		u.xsave = kzalloc(sizeof(struct kvm_xsave), GFP_KERNEL_ACCOUNT);
6077		r = -ENOMEM;
6078		if (!u.xsave)
6079			break;
6080
6081		kvm_vcpu_ioctl_x86_get_xsave(vcpu, u.xsave);
6082
6083		r = -EFAULT;
6084		if (copy_to_user(argp, u.xsave, sizeof(struct kvm_xsave)))
6085			break;
6086		r = 0;
6087		break;
6088	}
6089	case KVM_SET_XSAVE: {
6090		int size = vcpu->arch.guest_fpu.uabi_size;
6091
6092		u.xsave = memdup_user(argp, size);
6093		if (IS_ERR(u.xsave)) {
6094			r = PTR_ERR(u.xsave);
6095			goto out_nofree;
6096		}
6097
6098		r = kvm_vcpu_ioctl_x86_set_xsave(vcpu, u.xsave);
6099		break;
6100	}
6101
6102	case KVM_GET_XSAVE2: {
6103		int size = vcpu->arch.guest_fpu.uabi_size;
6104
6105		u.xsave = kzalloc(size, GFP_KERNEL_ACCOUNT);
6106		r = -ENOMEM;
6107		if (!u.xsave)
6108			break;
6109
6110		kvm_vcpu_ioctl_x86_get_xsave2(vcpu, u.buffer, size);
6111
6112		r = -EFAULT;
6113		if (copy_to_user(argp, u.xsave, size))
6114			break;
6115
6116		r = 0;
6117		break;
6118	}
6119
6120	case KVM_GET_XCRS: {
6121		u.xcrs = kzalloc(sizeof(struct kvm_xcrs), GFP_KERNEL_ACCOUNT);
6122		r = -ENOMEM;
6123		if (!u.xcrs)
6124			break;
6125
6126		kvm_vcpu_ioctl_x86_get_xcrs(vcpu, u.xcrs);
6127
6128		r = -EFAULT;
6129		if (copy_to_user(argp, u.xcrs,
6130				 sizeof(struct kvm_xcrs)))
6131			break;
6132		r = 0;
6133		break;
6134	}
6135	case KVM_SET_XCRS: {
6136		u.xcrs = memdup_user(argp, sizeof(*u.xcrs));
6137		if (IS_ERR(u.xcrs)) {
6138			r = PTR_ERR(u.xcrs);
6139			goto out_nofree;
6140		}
6141
6142		r = kvm_vcpu_ioctl_x86_set_xcrs(vcpu, u.xcrs);
6143		break;
6144	}
6145	case KVM_SET_TSC_KHZ: {
6146		u32 user_tsc_khz;
6147
6148		r = -EINVAL;
6149		user_tsc_khz = (u32)arg;
6150
6151		if (kvm_caps.has_tsc_control &&
6152		    user_tsc_khz >= kvm_caps.max_guest_tsc_khz)
6153			goto out;
6154
6155		if (user_tsc_khz == 0)
6156			user_tsc_khz = tsc_khz;
6157
6158		if (!kvm_set_tsc_khz(vcpu, user_tsc_khz))
6159			r = 0;
6160
6161		goto out;
6162	}
6163	case KVM_GET_TSC_KHZ: {
6164		r = vcpu->arch.virtual_tsc_khz;
6165		goto out;
6166	}
6167	case KVM_KVMCLOCK_CTRL: {
6168		r = kvm_set_guest_paused(vcpu);
6169		goto out;
6170	}
6171	case KVM_ENABLE_CAP: {
6172		struct kvm_enable_cap cap;
6173
6174		r = -EFAULT;
6175		if (copy_from_user(&cap, argp, sizeof(cap)))
6176			goto out;
6177		r = kvm_vcpu_ioctl_enable_cap(vcpu, &cap);
6178		break;
6179	}
6180	case KVM_GET_NESTED_STATE: {
6181		struct kvm_nested_state __user *user_kvm_nested_state = argp;
6182		u32 user_data_size;
6183
6184		r = -EINVAL;
6185		if (!kvm_x86_ops.nested_ops->get_state)
6186			break;
6187
6188		BUILD_BUG_ON(sizeof(user_data_size) != sizeof(user_kvm_nested_state->size));
6189		r = -EFAULT;
6190		if (get_user(user_data_size, &user_kvm_nested_state->size))
6191			break;
6192
6193		r = kvm_x86_ops.nested_ops->get_state(vcpu, user_kvm_nested_state,
6194						     user_data_size);
6195		if (r < 0)
6196			break;
6197
6198		if (r > user_data_size) {
6199			if (put_user(r, &user_kvm_nested_state->size))
6200				r = -EFAULT;
6201			else
6202				r = -E2BIG;
6203			break;
6204		}
6205
6206		r = 0;
6207		break;
6208	}
6209	case KVM_SET_NESTED_STATE: {
6210		struct kvm_nested_state __user *user_kvm_nested_state = argp;
6211		struct kvm_nested_state kvm_state;
6212		int idx;
6213
6214		r = -EINVAL;
6215		if (!kvm_x86_ops.nested_ops->set_state)
6216			break;
6217
6218		r = -EFAULT;
6219		if (copy_from_user(&kvm_state, user_kvm_nested_state, sizeof(kvm_state)))
6220			break;
6221
6222		r = -EINVAL;
6223		if (kvm_state.size < sizeof(kvm_state))
6224			break;
6225
6226		if (kvm_state.flags &
6227		    ~(KVM_STATE_NESTED_RUN_PENDING | KVM_STATE_NESTED_GUEST_MODE
6228		      | KVM_STATE_NESTED_EVMCS | KVM_STATE_NESTED_MTF_PENDING
6229		      | KVM_STATE_NESTED_GIF_SET))
6230			break;
6231
6232		/* nested_run_pending implies guest_mode.  */
6233		if ((kvm_state.flags & KVM_STATE_NESTED_RUN_PENDING)
6234		    && !(kvm_state.flags & KVM_STATE_NESTED_GUEST_MODE))
6235			break;
6236
6237		idx = srcu_read_lock(&vcpu->kvm->srcu);
6238		r = kvm_x86_ops.nested_ops->set_state(vcpu, user_kvm_nested_state, &kvm_state);
6239		srcu_read_unlock(&vcpu->kvm->srcu, idx);
6240		break;
6241	}
6242#ifdef CONFIG_KVM_HYPERV
6243	case KVM_GET_SUPPORTED_HV_CPUID:
6244		r = kvm_ioctl_get_supported_hv_cpuid(vcpu, argp);
6245		break;
6246#endif
6247#ifdef CONFIG_KVM_XEN
6248	case KVM_XEN_VCPU_GET_ATTR: {
6249		struct kvm_xen_vcpu_attr xva;
6250
6251		r = -EFAULT;
6252		if (copy_from_user(&xva, argp, sizeof(xva)))
6253			goto out;
6254		r = kvm_xen_vcpu_get_attr(vcpu, &xva);
6255		if (!r && copy_to_user(argp, &xva, sizeof(xva)))
6256			r = -EFAULT;
6257		break;
6258	}
6259	case KVM_XEN_VCPU_SET_ATTR: {
6260		struct kvm_xen_vcpu_attr xva;
6261
6262		r = -EFAULT;
6263		if (copy_from_user(&xva, argp, sizeof(xva)))
6264			goto out;
6265		r = kvm_xen_vcpu_set_attr(vcpu, &xva);
6266		break;
6267	}
6268#endif
6269	case KVM_GET_SREGS2: {
6270		u.sregs2 = kzalloc(sizeof(struct kvm_sregs2), GFP_KERNEL);
6271		r = -ENOMEM;
6272		if (!u.sregs2)
6273			goto out;
6274		__get_sregs2(vcpu, u.sregs2);
6275		r = -EFAULT;
6276		if (copy_to_user(argp, u.sregs2, sizeof(struct kvm_sregs2)))
6277			goto out;
6278		r = 0;
6279		break;
6280	}
6281	case KVM_SET_SREGS2: {
6282		u.sregs2 = memdup_user(argp, sizeof(struct kvm_sregs2));
6283		if (IS_ERR(u.sregs2)) {
6284			r = PTR_ERR(u.sregs2);
6285			u.sregs2 = NULL;
6286			goto out;
6287		}
6288		r = __set_sregs2(vcpu, u.sregs2);
6289		break;
6290	}
6291	case KVM_HAS_DEVICE_ATTR:
6292	case KVM_GET_DEVICE_ATTR:
6293	case KVM_SET_DEVICE_ATTR:
6294		r = kvm_vcpu_ioctl_device_attr(vcpu, ioctl, argp);
6295		break;
6296	default:
6297		r = -EINVAL;
6298	}
6299out:
6300	kfree(u.buffer);
6301out_nofree:
6302	vcpu_put(vcpu);
6303	return r;
6304}
6305
6306vm_fault_t kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf)
6307{
6308	return VM_FAULT_SIGBUS;
6309}
6310
6311static int kvm_vm_ioctl_set_tss_addr(struct kvm *kvm, unsigned long addr)
6312{
6313	int ret;
6314
6315	if (addr > (unsigned int)(-3 * PAGE_SIZE))
6316		return -EINVAL;
6317	ret = static_call(kvm_x86_set_tss_addr)(kvm, addr);
6318	return ret;
6319}
6320
6321static int kvm_vm_ioctl_set_identity_map_addr(struct kvm *kvm,
6322					      u64 ident_addr)
6323{
6324	return static_call(kvm_x86_set_identity_map_addr)(kvm, ident_addr);
6325}
6326
6327static int kvm_vm_ioctl_set_nr_mmu_pages(struct kvm *kvm,
6328					 unsigned long kvm_nr_mmu_pages)
6329{
6330	if (kvm_nr_mmu_pages < KVM_MIN_ALLOC_MMU_PAGES)
6331		return -EINVAL;
6332
6333	mutex_lock(&kvm->slots_lock);
6334
6335	kvm_mmu_change_mmu_pages(kvm, kvm_nr_mmu_pages);
6336	kvm->arch.n_requested_mmu_pages = kvm_nr_mmu_pages;
6337
6338	mutex_unlock(&kvm->slots_lock);
6339	return 0;
6340}
6341
6342static int kvm_vm_ioctl_get_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
6343{
6344	struct kvm_pic *pic = kvm->arch.vpic;
6345	int r;
6346
6347	r = 0;
6348	switch (chip->chip_id) {
6349	case KVM_IRQCHIP_PIC_MASTER:
6350		memcpy(&chip->chip.pic, &pic->pics[0],
6351			sizeof(struct kvm_pic_state));
6352		break;
6353	case KVM_IRQCHIP_PIC_SLAVE:
6354		memcpy(&chip->chip.pic, &pic->pics[1],
6355			sizeof(struct kvm_pic_state));
6356		break;
6357	case KVM_IRQCHIP_IOAPIC:
6358		kvm_get_ioapic(kvm, &chip->chip.ioapic);
6359		break;
6360	default:
6361		r = -EINVAL;
6362		break;
6363	}
6364	return r;
6365}
6366
6367static int kvm_vm_ioctl_set_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
6368{
6369	struct kvm_pic *pic = kvm->arch.vpic;
6370	int r;
6371
6372	r = 0;
6373	switch (chip->chip_id) {
6374	case KVM_IRQCHIP_PIC_MASTER:
6375		spin_lock(&pic->lock);
6376		memcpy(&pic->pics[0], &chip->chip.pic,
6377			sizeof(struct kvm_pic_state));
6378		spin_unlock(&pic->lock);
6379		break;
6380	case KVM_IRQCHIP_PIC_SLAVE:
6381		spin_lock(&pic->lock);
6382		memcpy(&pic->pics[1], &chip->chip.pic,
6383			sizeof(struct kvm_pic_state));
6384		spin_unlock(&pic->lock);
6385		break;
6386	case KVM_IRQCHIP_IOAPIC:
6387		kvm_set_ioapic(kvm, &chip->chip.ioapic);
6388		break;
6389	default:
6390		r = -EINVAL;
6391		break;
6392	}
6393	kvm_pic_update_irq(pic);
6394	return r;
6395}
6396
6397static int kvm_vm_ioctl_get_pit(struct kvm *kvm, struct kvm_pit_state *ps)
6398{
6399	struct kvm_kpit_state *kps = &kvm->arch.vpit->pit_state;
6400
6401	BUILD_BUG_ON(sizeof(*ps) != sizeof(kps->channels));
6402
6403	mutex_lock(&kps->lock);
6404	memcpy(ps, &kps->channels, sizeof(*ps));
6405	mutex_unlock(&kps->lock);
6406	return 0;
6407}
6408
6409static int kvm_vm_ioctl_set_pit(struct kvm *kvm, struct kvm_pit_state *ps)
6410{
6411	int i;
6412	struct kvm_pit *pit = kvm->arch.vpit;
6413
6414	mutex_lock(&pit->pit_state.lock);
6415	memcpy(&pit->pit_state.channels, ps, sizeof(*ps));
6416	for (i = 0; i < 3; i++)
6417		kvm_pit_load_count(pit, i, ps->channels[i].count, 0);
6418	mutex_unlock(&pit->pit_state.lock);
6419	return 0;
6420}
6421
6422static int kvm_vm_ioctl_get_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
6423{
6424	mutex_lock(&kvm->arch.vpit->pit_state.lock);
6425	memcpy(ps->channels, &kvm->arch.vpit->pit_state.channels,
6426		sizeof(ps->channels));
6427	ps->flags = kvm->arch.vpit->pit_state.flags;
6428	mutex_unlock(&kvm->arch.vpit->pit_state.lock);
6429	memset(&ps->reserved, 0, sizeof(ps->reserved));
6430	return 0;
6431}
6432
6433static int kvm_vm_ioctl_set_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
6434{
6435	int start = 0;
6436	int i;
6437	u32 prev_legacy, cur_legacy;
6438	struct kvm_pit *pit = kvm->arch.vpit;
6439
6440	mutex_lock(&pit->pit_state.lock);
6441	prev_legacy = pit->pit_state.flags & KVM_PIT_FLAGS_HPET_LEGACY;
6442	cur_legacy = ps->flags & KVM_PIT_FLAGS_HPET_LEGACY;
6443	if (!prev_legacy && cur_legacy)
6444		start = 1;
6445	memcpy(&pit->pit_state.channels, &ps->channels,
6446	       sizeof(pit->pit_state.channels));
6447	pit->pit_state.flags = ps->flags;
6448	for (i = 0; i < 3; i++)
6449		kvm_pit_load_count(pit, i, pit->pit_state.channels[i].count,
6450				   start && i == 0);
6451	mutex_unlock(&pit->pit_state.lock);
6452	return 0;
6453}
6454
6455static int kvm_vm_ioctl_reinject(struct kvm *kvm,
6456				 struct kvm_reinject_control *control)
6457{
6458	struct kvm_pit *pit = kvm->arch.vpit;
6459
6460	/* pit->pit_state.lock was overloaded to prevent userspace from getting
6461	 * an inconsistent state after running multiple KVM_REINJECT_CONTROL
6462	 * ioctls in parallel.  Use a separate lock if that ioctl isn't rare.
6463	 */
6464	mutex_lock(&pit->pit_state.lock);
6465	kvm_pit_set_reinject(pit, control->pit_reinject);
6466	mutex_unlock(&pit->pit_state.lock);
6467
6468	return 0;
6469}
6470
6471void kvm_arch_sync_dirty_log(struct kvm *kvm, struct kvm_memory_slot *memslot)
6472{
6473
6474	/*
6475	 * Flush all CPUs' dirty log buffers to the  dirty_bitmap.  Called
6476	 * before reporting dirty_bitmap to userspace.  KVM flushes the buffers
6477	 * on all VM-Exits, thus we only need to kick running vCPUs to force a
6478	 * VM-Exit.
6479	 */
6480	struct kvm_vcpu *vcpu;
6481	unsigned long i;
6482
6483	if (!kvm_x86_ops.cpu_dirty_log_size)
6484		return;
6485
6486	kvm_for_each_vcpu(i, vcpu, kvm)
6487		kvm_vcpu_kick(vcpu);
6488}
6489
6490int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_event,
6491			bool line_status)
6492{
6493	if (!irqchip_in_kernel(kvm))
6494		return -ENXIO;
6495
6496	irq_event->status = kvm_set_irq(kvm, KVM_USERSPACE_IRQ_SOURCE_ID,
6497					irq_event->irq, irq_event->level,
6498					line_status);
6499	return 0;
6500}
6501
6502int kvm_vm_ioctl_enable_cap(struct kvm *kvm,
6503			    struct kvm_enable_cap *cap)
6504{
6505	int r;
6506
6507	if (cap->flags)
6508		return -EINVAL;
6509
6510	switch (cap->cap) {
6511	case KVM_CAP_DISABLE_QUIRKS2:
6512		r = -EINVAL;
6513		if (cap->args[0] & ~KVM_X86_VALID_QUIRKS)
6514			break;
6515		fallthrough;
6516	case KVM_CAP_DISABLE_QUIRKS:
6517		kvm->arch.disabled_quirks = cap->args[0];
6518		r = 0;
6519		break;
6520	case KVM_CAP_SPLIT_IRQCHIP: {
6521		mutex_lock(&kvm->lock);
6522		r = -EINVAL;
6523		if (cap->args[0] > MAX_NR_RESERVED_IOAPIC_PINS)
6524			goto split_irqchip_unlock;
6525		r = -EEXIST;
6526		if (irqchip_in_kernel(kvm))
6527			goto split_irqchip_unlock;
6528		if (kvm->created_vcpus)
6529			goto split_irqchip_unlock;
6530		r = kvm_setup_empty_irq_routing(kvm);
6531		if (r)
6532			goto split_irqchip_unlock;
6533		/* Pairs with irqchip_in_kernel. */
6534		smp_wmb();
6535		kvm->arch.irqchip_mode = KVM_IRQCHIP_SPLIT;
6536		kvm->arch.nr_reserved_ioapic_pins = cap->args[0];
6537		kvm_clear_apicv_inhibit(kvm, APICV_INHIBIT_REASON_ABSENT);
6538		r = 0;
6539split_irqchip_unlock:
6540		mutex_unlock(&kvm->lock);
6541		break;
6542	}
6543	case KVM_CAP_X2APIC_API:
6544		r = -EINVAL;
6545		if (cap->args[0] & ~KVM_X2APIC_API_VALID_FLAGS)
6546			break;
6547
6548		if (cap->args[0] & KVM_X2APIC_API_USE_32BIT_IDS)
6549			kvm->arch.x2apic_format = true;
6550		if (cap->args[0] & KVM_X2APIC_API_DISABLE_BROADCAST_QUIRK)
6551			kvm->arch.x2apic_broadcast_quirk_disabled = true;
6552
6553		r = 0;
6554		break;
6555	case KVM_CAP_X86_DISABLE_EXITS:
6556		r = -EINVAL;
6557		if (cap->args[0] & ~KVM_X86_DISABLE_VALID_EXITS)
6558			break;
6559
6560		if (cap->args[0] & KVM_X86_DISABLE_EXITS_PAUSE)
6561			kvm->arch.pause_in_guest = true;
6562
6563#define SMT_RSB_MSG "This processor is affected by the Cross-Thread Return Predictions vulnerability. " \
6564		    "KVM_CAP_X86_DISABLE_EXITS should only be used with SMT disabled or trusted guests."
6565
6566		if (!mitigate_smt_rsb) {
6567			if (boot_cpu_has_bug(X86_BUG_SMT_RSB) && cpu_smt_possible() &&
6568			    (cap->args[0] & ~KVM_X86_DISABLE_EXITS_PAUSE))
6569				pr_warn_once(SMT_RSB_MSG);
6570
6571			if ((cap->args[0] & KVM_X86_DISABLE_EXITS_MWAIT) &&
6572			    kvm_can_mwait_in_guest())
6573				kvm->arch.mwait_in_guest = true;
6574			if (cap->args[0] & KVM_X86_DISABLE_EXITS_HLT)
6575				kvm->arch.hlt_in_guest = true;
6576			if (cap->args[0] & KVM_X86_DISABLE_EXITS_CSTATE)
6577				kvm->arch.cstate_in_guest = true;
6578		}
6579
6580		r = 0;
6581		break;
6582	case KVM_CAP_MSR_PLATFORM_INFO:
6583		kvm->arch.guest_can_read_msr_platform_info = cap->args[0];
6584		r = 0;
6585		break;
6586	case KVM_CAP_EXCEPTION_PAYLOAD:
6587		kvm->arch.exception_payload_enabled = cap->args[0];
6588		r = 0;
6589		break;
6590	case KVM_CAP_X86_TRIPLE_FAULT_EVENT:
6591		kvm->arch.triple_fault_event = cap->args[0];
6592		r = 0;
6593		break;
6594	case KVM_CAP_X86_USER_SPACE_MSR:
6595		r = -EINVAL;
6596		if (cap->args[0] & ~KVM_MSR_EXIT_REASON_VALID_MASK)
6597			break;
6598		kvm->arch.user_space_msr_mask = cap->args[0];
6599		r = 0;
6600		break;
6601	case KVM_CAP_X86_BUS_LOCK_EXIT:
6602		r = -EINVAL;
6603		if (cap->args[0] & ~KVM_BUS_LOCK_DETECTION_VALID_MODE)
6604			break;
6605
6606		if ((cap->args[0] & KVM_BUS_LOCK_DETECTION_OFF) &&
6607		    (cap->args[0] & KVM_BUS_LOCK_DETECTION_EXIT))
6608			break;
6609
6610		if (kvm_caps.has_bus_lock_exit &&
6611		    cap->args[0] & KVM_BUS_LOCK_DETECTION_EXIT)
6612			kvm->arch.bus_lock_detection_enabled = true;
6613		r = 0;
6614		break;
6615#ifdef CONFIG_X86_SGX_KVM
6616	case KVM_CAP_SGX_ATTRIBUTE: {
6617		unsigned long allowed_attributes = 0;
6618
6619		r = sgx_set_attribute(&allowed_attributes, cap->args[0]);
6620		if (r)
6621			break;
6622
6623		/* KVM only supports the PROVISIONKEY privileged attribute. */
6624		if ((allowed_attributes & SGX_ATTR_PROVISIONKEY) &&
6625		    !(allowed_attributes & ~SGX_ATTR_PROVISIONKEY))
6626			kvm->arch.sgx_provisioning_allowed = true;
6627		else
6628			r = -EINVAL;
6629		break;
6630	}
6631#endif
6632	case KVM_CAP_VM_COPY_ENC_CONTEXT_FROM:
6633		r = -EINVAL;
6634		if (!kvm_x86_ops.vm_copy_enc_context_from)
6635			break;
6636
6637		r = static_call(kvm_x86_vm_copy_enc_context_from)(kvm, cap->args[0]);
6638		break;
6639	case KVM_CAP_VM_MOVE_ENC_CONTEXT_FROM:
6640		r = -EINVAL;
6641		if (!kvm_x86_ops.vm_move_enc_context_from)
6642			break;
6643
6644		r = static_call(kvm_x86_vm_move_enc_context_from)(kvm, cap->args[0]);
6645		break;
6646	case KVM_CAP_EXIT_HYPERCALL:
6647		if (cap->args[0] & ~KVM_EXIT_HYPERCALL_VALID_MASK) {
6648			r = -EINVAL;
6649			break;
6650		}
6651		kvm->arch.hypercall_exit_enabled = cap->args[0];
6652		r = 0;
6653		break;
6654	case KVM_CAP_EXIT_ON_EMULATION_FAILURE:
6655		r = -EINVAL;
6656		if (cap->args[0] & ~1)
6657			break;
6658		kvm->arch.exit_on_emulation_error = cap->args[0];
6659		r = 0;
6660		break;
6661	case KVM_CAP_PMU_CAPABILITY:
6662		r = -EINVAL;
6663		if (!enable_pmu || (cap->args[0] & ~KVM_CAP_PMU_VALID_MASK))
6664			break;
6665
6666		mutex_lock(&kvm->lock);
6667		if (!kvm->created_vcpus) {
6668			kvm->arch.enable_pmu = !(cap->args[0] & KVM_PMU_CAP_DISABLE);
6669			r = 0;
6670		}
6671		mutex_unlock(&kvm->lock);
6672		break;
6673	case KVM_CAP_MAX_VCPU_ID:
6674		r = -EINVAL;
6675		if (cap->args[0] > KVM_MAX_VCPU_IDS)
6676			break;
6677
6678		mutex_lock(&kvm->lock);
6679		if (kvm->arch.max_vcpu_ids == cap->args[0]) {
6680			r = 0;
6681		} else if (!kvm->arch.max_vcpu_ids) {
6682			kvm->arch.max_vcpu_ids = cap->args[0];
6683			r = 0;
6684		}
6685		mutex_unlock(&kvm->lock);
6686		break;
6687	case KVM_CAP_X86_NOTIFY_VMEXIT:
6688		r = -EINVAL;
6689		if ((u32)cap->args[0] & ~KVM_X86_NOTIFY_VMEXIT_VALID_BITS)
6690			break;
6691		if (!kvm_caps.has_notify_vmexit)
6692			break;
6693		if (!((u32)cap->args[0] & KVM_X86_NOTIFY_VMEXIT_ENABLED))
6694			break;
6695		mutex_lock(&kvm->lock);
6696		if (!kvm->created_vcpus) {
6697			kvm->arch.notify_window = cap->args[0] >> 32;
6698			kvm->arch.notify_vmexit_flags = (u32)cap->args[0];
6699			r = 0;
6700		}
6701		mutex_unlock(&kvm->lock);
6702		break;
6703	case KVM_CAP_VM_DISABLE_NX_HUGE_PAGES:
6704		r = -EINVAL;
6705
6706		/*
6707		 * Since the risk of disabling NX hugepages is a guest crashing
6708		 * the system, ensure the userspace process has permission to
6709		 * reboot the system.
6710		 *
6711		 * Note that unlike the reboot() syscall, the process must have
6712		 * this capability in the root namespace because exposing
6713		 * /dev/kvm into a container does not limit the scope of the
6714		 * iTLB multihit bug to that container. In other words,
6715		 * this must use capable(), not ns_capable().
6716		 */
6717		if (!capable(CAP_SYS_BOOT)) {
6718			r = -EPERM;
6719			break;
6720		}
6721
6722		if (cap->args[0])
6723			break;
6724
6725		mutex_lock(&kvm->lock);
6726		if (!kvm->created_vcpus) {
6727			kvm->arch.disable_nx_huge_pages = true;
6728			r = 0;
6729		}
6730		mutex_unlock(&kvm->lock);
6731		break;
6732	default:
6733		r = -EINVAL;
6734		break;
6735	}
6736	return r;
6737}
6738
6739static struct kvm_x86_msr_filter *kvm_alloc_msr_filter(bool default_allow)
6740{
6741	struct kvm_x86_msr_filter *msr_filter;
6742
6743	msr_filter = kzalloc(sizeof(*msr_filter), GFP_KERNEL_ACCOUNT);
6744	if (!msr_filter)
6745		return NULL;
6746
6747	msr_filter->default_allow = default_allow;
6748	return msr_filter;
6749}
6750
6751static void kvm_free_msr_filter(struct kvm_x86_msr_filter *msr_filter)
6752{
6753	u32 i;
6754
6755	if (!msr_filter)
6756		return;
6757
6758	for (i = 0; i < msr_filter->count; i++)
6759		kfree(msr_filter->ranges[i].bitmap);
6760
6761	kfree(msr_filter);
6762}
6763
6764static int kvm_add_msr_filter(struct kvm_x86_msr_filter *msr_filter,
6765			      struct kvm_msr_filter_range *user_range)
6766{
6767	unsigned long *bitmap;
6768	size_t bitmap_size;
6769
6770	if (!user_range->nmsrs)
6771		return 0;
6772
6773	if (user_range->flags & ~KVM_MSR_FILTER_RANGE_VALID_MASK)
6774		return -EINVAL;
6775
6776	if (!user_range->flags)
6777		return -EINVAL;
6778
6779	bitmap_size = BITS_TO_LONGS(user_range->nmsrs) * sizeof(long);
6780	if (!bitmap_size || bitmap_size > KVM_MSR_FILTER_MAX_BITMAP_SIZE)
6781		return -EINVAL;
6782
6783	bitmap = memdup_user((__user u8*)user_range->bitmap, bitmap_size);
6784	if (IS_ERR(bitmap))
6785		return PTR_ERR(bitmap);
6786
6787	msr_filter->ranges[msr_filter->count] = (struct msr_bitmap_range) {
6788		.flags = user_range->flags,
6789		.base = user_range->base,
6790		.nmsrs = user_range->nmsrs,
6791		.bitmap = bitmap,
6792	};
6793
6794	msr_filter->count++;
6795	return 0;
6796}
6797
6798static int kvm_vm_ioctl_set_msr_filter(struct kvm *kvm,
6799				       struct kvm_msr_filter *filter)
6800{
6801	struct kvm_x86_msr_filter *new_filter, *old_filter;
6802	bool default_allow;
6803	bool empty = true;
6804	int r;
6805	u32 i;
6806
6807	if (filter->flags & ~KVM_MSR_FILTER_VALID_MASK)
6808		return -EINVAL;
6809
6810	for (i = 0; i < ARRAY_SIZE(filter->ranges); i++)
6811		empty &= !filter->ranges[i].nmsrs;
6812
6813	default_allow = !(filter->flags & KVM_MSR_FILTER_DEFAULT_DENY);
6814	if (empty && !default_allow)
6815		return -EINVAL;
6816
6817	new_filter = kvm_alloc_msr_filter(default_allow);
6818	if (!new_filter)
6819		return -ENOMEM;
6820
6821	for (i = 0; i < ARRAY_SIZE(filter->ranges); i++) {
6822		r = kvm_add_msr_filter(new_filter, &filter->ranges[i]);
6823		if (r) {
6824			kvm_free_msr_filter(new_filter);
6825			return r;
6826		}
6827	}
6828
6829	mutex_lock(&kvm->lock);
6830	old_filter = rcu_replace_pointer(kvm->arch.msr_filter, new_filter,
6831					 mutex_is_locked(&kvm->lock));
6832	mutex_unlock(&kvm->lock);
6833	synchronize_srcu(&kvm->srcu);
6834
6835	kvm_free_msr_filter(old_filter);
6836
6837	kvm_make_all_cpus_request(kvm, KVM_REQ_MSR_FILTER_CHANGED);
6838
6839	return 0;
6840}
6841
6842#ifdef CONFIG_KVM_COMPAT
6843/* for KVM_X86_SET_MSR_FILTER */
6844struct kvm_msr_filter_range_compat {
6845	__u32 flags;
6846	__u32 nmsrs;
6847	__u32 base;
6848	__u32 bitmap;
6849};
6850
6851struct kvm_msr_filter_compat {
6852	__u32 flags;
6853	struct kvm_msr_filter_range_compat ranges[KVM_MSR_FILTER_MAX_RANGES];
6854};
6855
6856#define KVM_X86_SET_MSR_FILTER_COMPAT _IOW(KVMIO, 0xc6, struct kvm_msr_filter_compat)
6857
6858long kvm_arch_vm_compat_ioctl(struct file *filp, unsigned int ioctl,
6859			      unsigned long arg)
6860{
6861	void __user *argp = (void __user *)arg;
6862	struct kvm *kvm = filp->private_data;
6863	long r = -ENOTTY;
6864
6865	switch (ioctl) {
6866	case KVM_X86_SET_MSR_FILTER_COMPAT: {
6867		struct kvm_msr_filter __user *user_msr_filter = argp;
6868		struct kvm_msr_filter_compat filter_compat;
6869		struct kvm_msr_filter filter;
6870		int i;
6871
6872		if (copy_from_user(&filter_compat, user_msr_filter,
6873				   sizeof(filter_compat)))
6874			return -EFAULT;
6875
6876		filter.flags = filter_compat.flags;
6877		for (i = 0; i < ARRAY_SIZE(filter.ranges); i++) {
6878			struct kvm_msr_filter_range_compat *cr;
6879
6880			cr = &filter_compat.ranges[i];
6881			filter.ranges[i] = (struct kvm_msr_filter_range) {
6882				.flags = cr->flags,
6883				.nmsrs = cr->nmsrs,
6884				.base = cr->base,
6885				.bitmap = (__u8 *)(ulong)cr->bitmap,
6886			};
6887		}
6888
6889		r = kvm_vm_ioctl_set_msr_filter(kvm, &filter);
6890		break;
6891	}
6892	}
6893
6894	return r;
6895}
6896#endif
6897
6898#ifdef CONFIG_HAVE_KVM_PM_NOTIFIER
6899static int kvm_arch_suspend_notifier(struct kvm *kvm)
6900{
6901	struct kvm_vcpu *vcpu;
6902	unsigned long i;
6903	int ret = 0;
6904
6905	mutex_lock(&kvm->lock);
6906	kvm_for_each_vcpu(i, vcpu, kvm) {
6907		if (!vcpu->arch.pv_time.active)
6908			continue;
6909
6910		ret = kvm_set_guest_paused(vcpu);
6911		if (ret) {
6912			kvm_err("Failed to pause guest VCPU%d: %d\n",
6913				vcpu->vcpu_id, ret);
6914			break;
6915		}
6916	}
6917	mutex_unlock(&kvm->lock);
6918
6919	return ret ? NOTIFY_BAD : NOTIFY_DONE;
6920}
6921
6922int kvm_arch_pm_notifier(struct kvm *kvm, unsigned long state)
6923{
6924	switch (state) {
6925	case PM_HIBERNATION_PREPARE:
6926	case PM_SUSPEND_PREPARE:
6927		return kvm_arch_suspend_notifier(kvm);
6928	}
6929
6930	return NOTIFY_DONE;
6931}
6932#endif /* CONFIG_HAVE_KVM_PM_NOTIFIER */
6933
6934static int kvm_vm_ioctl_get_clock(struct kvm *kvm, void __user *argp)
6935{
6936	struct kvm_clock_data data = { 0 };
6937
6938	get_kvmclock(kvm, &data);
6939	if (copy_to_user(argp, &data, sizeof(data)))
6940		return -EFAULT;
6941
6942	return 0;
6943}
6944
6945static int kvm_vm_ioctl_set_clock(struct kvm *kvm, void __user *argp)
6946{
6947	struct kvm_arch *ka = &kvm->arch;
6948	struct kvm_clock_data data;
6949	u64 now_raw_ns;
6950
6951	if (copy_from_user(&data, argp, sizeof(data)))
6952		return -EFAULT;
6953
6954	/*
6955	 * Only KVM_CLOCK_REALTIME is used, but allow passing the
6956	 * result of KVM_GET_CLOCK back to KVM_SET_CLOCK.
6957	 */
6958	if (data.flags & ~KVM_CLOCK_VALID_FLAGS)
6959		return -EINVAL;
6960
6961	kvm_hv_request_tsc_page_update(kvm);
6962	kvm_start_pvclock_update(kvm);
6963	pvclock_update_vm_gtod_copy(kvm);
6964
6965	/*
6966	 * This pairs with kvm_guest_time_update(): when masterclock is
6967	 * in use, we use master_kernel_ns + kvmclock_offset to set
6968	 * unsigned 'system_time' so if we use get_kvmclock_ns() (which
6969	 * is slightly ahead) here we risk going negative on unsigned
6970	 * 'system_time' when 'data.clock' is very small.
6971	 */
6972	if (data.flags & KVM_CLOCK_REALTIME) {
6973		u64 now_real_ns = ktime_get_real_ns();
6974
6975		/*
6976		 * Avoid stepping the kvmclock backwards.
6977		 */
6978		if (now_real_ns > data.realtime)
6979			data.clock += now_real_ns - data.realtime;
6980	}
6981
6982	if (ka->use_master_clock)
6983		now_raw_ns = ka->master_kernel_ns;
6984	else
6985		now_raw_ns = get_kvmclock_base_ns();
6986	ka->kvmclock_offset = data.clock - now_raw_ns;
6987	kvm_end_pvclock_update(kvm);
6988	return 0;
6989}
6990
6991int kvm_arch_vm_ioctl(struct file *filp, unsigned int ioctl, unsigned long arg)
6992{
6993	struct kvm *kvm = filp->private_data;
6994	void __user *argp = (void __user *)arg;
6995	int r = -ENOTTY;
6996	/*
6997	 * This union makes it completely explicit to gcc-3.x
6998	 * that these two variables' stack usage should be
6999	 * combined, not added together.
7000	 */
7001	union {
7002		struct kvm_pit_state ps;
7003		struct kvm_pit_state2 ps2;
7004		struct kvm_pit_config pit_config;
7005	} u;
7006
7007	switch (ioctl) {
7008	case KVM_SET_TSS_ADDR:
7009		r = kvm_vm_ioctl_set_tss_addr(kvm, arg);
7010		break;
7011	case KVM_SET_IDENTITY_MAP_ADDR: {
7012		u64 ident_addr;
7013
7014		mutex_lock(&kvm->lock);
7015		r = -EINVAL;
7016		if (kvm->created_vcpus)
7017			goto set_identity_unlock;
7018		r = -EFAULT;
7019		if (copy_from_user(&ident_addr, argp, sizeof(ident_addr)))
7020			goto set_identity_unlock;
7021		r = kvm_vm_ioctl_set_identity_map_addr(kvm, ident_addr);
7022set_identity_unlock:
7023		mutex_unlock(&kvm->lock);
7024		break;
7025	}
7026	case KVM_SET_NR_MMU_PAGES:
7027		r = kvm_vm_ioctl_set_nr_mmu_pages(kvm, arg);
7028		break;
7029	case KVM_CREATE_IRQCHIP: {
7030		mutex_lock(&kvm->lock);
7031
7032		r = -EEXIST;
7033		if (irqchip_in_kernel(kvm))
7034			goto create_irqchip_unlock;
7035
7036		r = -EINVAL;
7037		if (kvm->created_vcpus)
7038			goto create_irqchip_unlock;
7039
7040		r = kvm_pic_init(kvm);
7041		if (r)
7042			goto create_irqchip_unlock;
7043
7044		r = kvm_ioapic_init(kvm);
7045		if (r) {
7046			kvm_pic_destroy(kvm);
7047			goto create_irqchip_unlock;
7048		}
7049
7050		r = kvm_setup_default_irq_routing(kvm);
7051		if (r) {
7052			kvm_ioapic_destroy(kvm);
7053			kvm_pic_destroy(kvm);
7054			goto create_irqchip_unlock;
7055		}
7056		/* Write kvm->irq_routing before enabling irqchip_in_kernel. */
7057		smp_wmb();
7058		kvm->arch.irqchip_mode = KVM_IRQCHIP_KERNEL;
7059		kvm_clear_apicv_inhibit(kvm, APICV_INHIBIT_REASON_ABSENT);
7060	create_irqchip_unlock:
7061		mutex_unlock(&kvm->lock);
7062		break;
7063	}
7064	case KVM_CREATE_PIT:
7065		u.pit_config.flags = KVM_PIT_SPEAKER_DUMMY;
7066		goto create_pit;
7067	case KVM_CREATE_PIT2:
7068		r = -EFAULT;
7069		if (copy_from_user(&u.pit_config, argp,
7070				   sizeof(struct kvm_pit_config)))
7071			goto out;
7072	create_pit:
7073		mutex_lock(&kvm->lock);
7074		r = -EEXIST;
7075		if (kvm->arch.vpit)
7076			goto create_pit_unlock;
7077		r = -ENOENT;
7078		if (!pic_in_kernel(kvm))
7079			goto create_pit_unlock;
7080		r = -ENOMEM;
7081		kvm->arch.vpit = kvm_create_pit(kvm, u.pit_config.flags);
7082		if (kvm->arch.vpit)
7083			r = 0;
7084	create_pit_unlock:
7085		mutex_unlock(&kvm->lock);
7086		break;
7087	case KVM_GET_IRQCHIP: {
7088		/* 0: PIC master, 1: PIC slave, 2: IOAPIC */
7089		struct kvm_irqchip *chip;
7090
7091		chip = memdup_user(argp, sizeof(*chip));
7092		if (IS_ERR(chip)) {
7093			r = PTR_ERR(chip);
7094			goto out;
7095		}
7096
7097		r = -ENXIO;
7098		if (!irqchip_kernel(kvm))
7099			goto get_irqchip_out;
7100		r = kvm_vm_ioctl_get_irqchip(kvm, chip);
7101		if (r)
7102			goto get_irqchip_out;
7103		r = -EFAULT;
7104		if (copy_to_user(argp, chip, sizeof(*chip)))
7105			goto get_irqchip_out;
7106		r = 0;
7107	get_irqchip_out:
7108		kfree(chip);
7109		break;
7110	}
7111	case KVM_SET_IRQCHIP: {
7112		/* 0: PIC master, 1: PIC slave, 2: IOAPIC */
7113		struct kvm_irqchip *chip;
7114
7115		chip = memdup_user(argp, sizeof(*chip));
7116		if (IS_ERR(chip)) {
7117			r = PTR_ERR(chip);
7118			goto out;
7119		}
7120
7121		r = -ENXIO;
7122		if (!irqchip_kernel(kvm))
7123			goto set_irqchip_out;
7124		r = kvm_vm_ioctl_set_irqchip(kvm, chip);
7125	set_irqchip_out:
7126		kfree(chip);
7127		break;
7128	}
7129	case KVM_GET_PIT: {
7130		r = -EFAULT;
7131		if (copy_from_user(&u.ps, argp, sizeof(struct kvm_pit_state)))
7132			goto out;
7133		r = -ENXIO;
7134		if (!kvm->arch.vpit)
7135			goto out;
7136		r = kvm_vm_ioctl_get_pit(kvm, &u.ps);
7137		if (r)
7138			goto out;
7139		r = -EFAULT;
7140		if (copy_to_user(argp, &u.ps, sizeof(struct kvm_pit_state)))
7141			goto out;
7142		r = 0;
7143		break;
7144	}
7145	case KVM_SET_PIT: {
7146		r = -EFAULT;
7147		if (copy_from_user(&u.ps, argp, sizeof(u.ps)))
7148			goto out;
7149		mutex_lock(&kvm->lock);
7150		r = -ENXIO;
7151		if (!kvm->arch.vpit)
7152			goto set_pit_out;
7153		r = kvm_vm_ioctl_set_pit(kvm, &u.ps);
7154set_pit_out:
7155		mutex_unlock(&kvm->lock);
7156		break;
7157	}
7158	case KVM_GET_PIT2: {
7159		r = -ENXIO;
7160		if (!kvm->arch.vpit)
7161			goto out;
7162		r = kvm_vm_ioctl_get_pit2(kvm, &u.ps2);
7163		if (r)
7164			goto out;
7165		r = -EFAULT;
7166		if (copy_to_user(argp, &u.ps2, sizeof(u.ps2)))
7167			goto out;
7168		r = 0;
7169		break;
7170	}
7171	case KVM_SET_PIT2: {
7172		r = -EFAULT;
7173		if (copy_from_user(&u.ps2, argp, sizeof(u.ps2)))
7174			goto out;
7175		mutex_lock(&kvm->lock);
7176		r = -ENXIO;
7177		if (!kvm->arch.vpit)
7178			goto set_pit2_out;
7179		r = kvm_vm_ioctl_set_pit2(kvm, &u.ps2);
7180set_pit2_out:
7181		mutex_unlock(&kvm->lock);
7182		break;
7183	}
7184	case KVM_REINJECT_CONTROL: {
7185		struct kvm_reinject_control control;
7186		r =  -EFAULT;
7187		if (copy_from_user(&control, argp, sizeof(control)))
7188			goto out;
7189		r = -ENXIO;
7190		if (!kvm->arch.vpit)
7191			goto out;
7192		r = kvm_vm_ioctl_reinject(kvm, &control);
7193		break;
7194	}
7195	case KVM_SET_BOOT_CPU_ID:
7196		r = 0;
7197		mutex_lock(&kvm->lock);
7198		if (kvm->created_vcpus)
7199			r = -EBUSY;
7200		else
7201			kvm->arch.bsp_vcpu_id = arg;
7202		mutex_unlock(&kvm->lock);
7203		break;
7204#ifdef CONFIG_KVM_XEN
7205	case KVM_XEN_HVM_CONFIG: {
7206		struct kvm_xen_hvm_config xhc;
7207		r = -EFAULT;
7208		if (copy_from_user(&xhc, argp, sizeof(xhc)))
7209			goto out;
7210		r = kvm_xen_hvm_config(kvm, &xhc);
7211		break;
7212	}
7213	case KVM_XEN_HVM_GET_ATTR: {
7214		struct kvm_xen_hvm_attr xha;
7215
7216		r = -EFAULT;
7217		if (copy_from_user(&xha, argp, sizeof(xha)))
7218			goto out;
7219		r = kvm_xen_hvm_get_attr(kvm, &xha);
7220		if (!r && copy_to_user(argp, &xha, sizeof(xha)))
7221			r = -EFAULT;
7222		break;
7223	}
7224	case KVM_XEN_HVM_SET_ATTR: {
7225		struct kvm_xen_hvm_attr xha;
7226
7227		r = -EFAULT;
7228		if (copy_from_user(&xha, argp, sizeof(xha)))
7229			goto out;
7230		r = kvm_xen_hvm_set_attr(kvm, &xha);
7231		break;
7232	}
7233	case KVM_XEN_HVM_EVTCHN_SEND: {
7234		struct kvm_irq_routing_xen_evtchn uxe;
7235
7236		r = -EFAULT;
7237		if (copy_from_user(&uxe, argp, sizeof(uxe)))
7238			goto out;
7239		r = kvm_xen_hvm_evtchn_send(kvm, &uxe);
7240		break;
7241	}
7242#endif
7243	case KVM_SET_CLOCK:
7244		r = kvm_vm_ioctl_set_clock(kvm, argp);
7245		break;
7246	case KVM_GET_CLOCK:
7247		r = kvm_vm_ioctl_get_clock(kvm, argp);
7248		break;
7249	case KVM_SET_TSC_KHZ: {
7250		u32 user_tsc_khz;
7251
7252		r = -EINVAL;
7253		user_tsc_khz = (u32)arg;
7254
7255		if (kvm_caps.has_tsc_control &&
7256		    user_tsc_khz >= kvm_caps.max_guest_tsc_khz)
7257			goto out;
7258
7259		if (user_tsc_khz == 0)
7260			user_tsc_khz = tsc_khz;
7261
7262		WRITE_ONCE(kvm->arch.default_tsc_khz, user_tsc_khz);
7263		r = 0;
7264
7265		goto out;
7266	}
7267	case KVM_GET_TSC_KHZ: {
7268		r = READ_ONCE(kvm->arch.default_tsc_khz);
7269		goto out;
7270	}
7271	case KVM_MEMORY_ENCRYPT_OP: {
7272		r = -ENOTTY;
7273		if (!kvm_x86_ops.mem_enc_ioctl)
7274			goto out;
7275
7276		r = static_call(kvm_x86_mem_enc_ioctl)(kvm, argp);
7277		break;
7278	}
7279	case KVM_MEMORY_ENCRYPT_REG_REGION: {
7280		struct kvm_enc_region region;
7281
7282		r = -EFAULT;
7283		if (copy_from_user(&region, argp, sizeof(region)))
7284			goto out;
7285
7286		r = -ENOTTY;
7287		if (!kvm_x86_ops.mem_enc_register_region)
7288			goto out;
7289
7290		r = static_call(kvm_x86_mem_enc_register_region)(kvm, &region);
7291		break;
7292	}
7293	case KVM_MEMORY_ENCRYPT_UNREG_REGION: {
7294		struct kvm_enc_region region;
7295
7296		r = -EFAULT;
7297		if (copy_from_user(&region, argp, sizeof(region)))
7298			goto out;
7299
7300		r = -ENOTTY;
7301		if (!kvm_x86_ops.mem_enc_unregister_region)
7302			goto out;
7303
7304		r = static_call(kvm_x86_mem_enc_unregister_region)(kvm, &region);
7305		break;
7306	}
7307#ifdef CONFIG_KVM_HYPERV
7308	case KVM_HYPERV_EVENTFD: {
7309		struct kvm_hyperv_eventfd hvevfd;
7310
7311		r = -EFAULT;
7312		if (copy_from_user(&hvevfd, argp, sizeof(hvevfd)))
7313			goto out;
7314		r = kvm_vm_ioctl_hv_eventfd(kvm, &hvevfd);
7315		break;
7316	}
7317#endif
7318	case KVM_SET_PMU_EVENT_FILTER:
7319		r = kvm_vm_ioctl_set_pmu_event_filter(kvm, argp);
7320		break;
7321	case KVM_X86_SET_MSR_FILTER: {
7322		struct kvm_msr_filter __user *user_msr_filter = argp;
7323		struct kvm_msr_filter filter;
7324
7325		if (copy_from_user(&filter, user_msr_filter, sizeof(filter)))
7326			return -EFAULT;
7327
7328		r = kvm_vm_ioctl_set_msr_filter(kvm, &filter);
7329		break;
7330	}
7331	default:
7332		r = -ENOTTY;
7333	}
7334out:
7335	return r;
7336}
7337
7338static void kvm_probe_feature_msr(u32 msr_index)
7339{
7340	struct kvm_msr_entry msr = {
7341		.index = msr_index,
7342	};
7343
7344	if (kvm_get_msr_feature(&msr))
7345		return;
7346
7347	msr_based_features[num_msr_based_features++] = msr_index;
7348}
7349
7350static void kvm_probe_msr_to_save(u32 msr_index)
7351{
7352	u32 dummy[2];
7353
7354	if (rdmsr_safe(msr_index, &dummy[0], &dummy[1]))
7355		return;
7356
7357	/*
7358	 * Even MSRs that are valid in the host may not be exposed to guests in
7359	 * some cases.
7360	 */
7361	switch (msr_index) {
7362	case MSR_IA32_BNDCFGS:
7363		if (!kvm_mpx_supported())
7364			return;
7365		break;
7366	case MSR_TSC_AUX:
7367		if (!kvm_cpu_cap_has(X86_FEATURE_RDTSCP) &&
7368		    !kvm_cpu_cap_has(X86_FEATURE_RDPID))
7369			return;
7370		break;
7371	case MSR_IA32_UMWAIT_CONTROL:
7372		if (!kvm_cpu_cap_has(X86_FEATURE_WAITPKG))
7373			return;
7374		break;
7375	case MSR_IA32_RTIT_CTL:
7376	case MSR_IA32_RTIT_STATUS:
7377		if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT))
7378			return;
7379		break;
7380	case MSR_IA32_RTIT_CR3_MATCH:
7381		if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT) ||
7382		    !intel_pt_validate_hw_cap(PT_CAP_cr3_filtering))
7383			return;
7384		break;
7385	case MSR_IA32_RTIT_OUTPUT_BASE:
7386	case MSR_IA32_RTIT_OUTPUT_MASK:
7387		if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT) ||
7388		    (!intel_pt_validate_hw_cap(PT_CAP_topa_output) &&
7389		     !intel_pt_validate_hw_cap(PT_CAP_single_range_output)))
7390			return;
7391		break;
7392	case MSR_IA32_RTIT_ADDR0_A ... MSR_IA32_RTIT_ADDR3_B:
7393		if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT) ||
7394		    (msr_index - MSR_IA32_RTIT_ADDR0_A >=
7395		     intel_pt_validate_hw_cap(PT_CAP_num_address_ranges) * 2))
7396			return;
7397		break;
7398	case MSR_ARCH_PERFMON_PERFCTR0 ... MSR_ARCH_PERFMON_PERFCTR_MAX:
7399		if (msr_index - MSR_ARCH_PERFMON_PERFCTR0 >=
7400		    kvm_pmu_cap.num_counters_gp)
7401			return;
7402		break;
7403	case MSR_ARCH_PERFMON_EVENTSEL0 ... MSR_ARCH_PERFMON_EVENTSEL_MAX:
7404		if (msr_index - MSR_ARCH_PERFMON_EVENTSEL0 >=
7405		    kvm_pmu_cap.num_counters_gp)
7406			return;
7407		break;
7408	case MSR_ARCH_PERFMON_FIXED_CTR0 ... MSR_ARCH_PERFMON_FIXED_CTR_MAX:
7409		if (msr_index - MSR_ARCH_PERFMON_FIXED_CTR0 >=
7410		    kvm_pmu_cap.num_counters_fixed)
7411			return;
7412		break;
7413	case MSR_AMD64_PERF_CNTR_GLOBAL_CTL:
7414	case MSR_AMD64_PERF_CNTR_GLOBAL_STATUS:
7415	case MSR_AMD64_PERF_CNTR_GLOBAL_STATUS_CLR:
7416		if (!kvm_cpu_cap_has(X86_FEATURE_PERFMON_V2))
7417			return;
7418		break;
7419	case MSR_IA32_XFD:
7420	case MSR_IA32_XFD_ERR:
7421		if (!kvm_cpu_cap_has(X86_FEATURE_XFD))
7422			return;
7423		break;
7424	case MSR_IA32_TSX_CTRL:
7425		if (!(kvm_get_arch_capabilities() & ARCH_CAP_TSX_CTRL_MSR))
7426			return;
7427		break;
7428	default:
7429		break;
7430	}
7431
7432	msrs_to_save[num_msrs_to_save++] = msr_index;
7433}
7434
7435static void kvm_init_msr_lists(void)
7436{
7437	unsigned i;
7438
7439	BUILD_BUG_ON_MSG(KVM_PMC_MAX_FIXED != 3,
7440			 "Please update the fixed PMCs in msrs_to_save_pmu[]");
7441
7442	num_msrs_to_save = 0;
7443	num_emulated_msrs = 0;
7444	num_msr_based_features = 0;
7445
7446	for (i = 0; i < ARRAY_SIZE(msrs_to_save_base); i++)
7447		kvm_probe_msr_to_save(msrs_to_save_base[i]);
7448
7449	if (enable_pmu) {
7450		for (i = 0; i < ARRAY_SIZE(msrs_to_save_pmu); i++)
7451			kvm_probe_msr_to_save(msrs_to_save_pmu[i]);
7452	}
7453
7454	for (i = 0; i < ARRAY_SIZE(emulated_msrs_all); i++) {
7455		if (!static_call(kvm_x86_has_emulated_msr)(NULL, emulated_msrs_all[i]))
7456			continue;
7457
7458		emulated_msrs[num_emulated_msrs++] = emulated_msrs_all[i];
7459	}
7460
7461	for (i = KVM_FIRST_EMULATED_VMX_MSR; i <= KVM_LAST_EMULATED_VMX_MSR; i++)
7462		kvm_probe_feature_msr(i);
7463
7464	for (i = 0; i < ARRAY_SIZE(msr_based_features_all_except_vmx); i++)
7465		kvm_probe_feature_msr(msr_based_features_all_except_vmx[i]);
7466}
7467
7468static int vcpu_mmio_write(struct kvm_vcpu *vcpu, gpa_t addr, int len,
7469			   const void *v)
7470{
7471	int handled = 0;
7472	int n;
7473
7474	do {
7475		n = min(len, 8);
7476		if (!(lapic_in_kernel(vcpu) &&
7477		      !kvm_iodevice_write(vcpu, &vcpu->arch.apic->dev, addr, n, v))
7478		    && kvm_io_bus_write(vcpu, KVM_MMIO_BUS, addr, n, v))
7479			break;
7480		handled += n;
7481		addr += n;
7482		len -= n;
7483		v += n;
7484	} while (len);
7485
7486	return handled;
7487}
7488
7489static int vcpu_mmio_read(struct kvm_vcpu *vcpu, gpa_t addr, int len, void *v)
7490{
7491	int handled = 0;
7492	int n;
7493
7494	do {
7495		n = min(len, 8);
7496		if (!(lapic_in_kernel(vcpu) &&
7497		      !kvm_iodevice_read(vcpu, &vcpu->arch.apic->dev,
7498					 addr, n, v))
7499		    && kvm_io_bus_read(vcpu, KVM_MMIO_BUS, addr, n, v))
7500			break;
7501		trace_kvm_mmio(KVM_TRACE_MMIO_READ, n, addr, v);
7502		handled += n;
7503		addr += n;
7504		len -= n;
7505		v += n;
7506	} while (len);
7507
7508	return handled;
7509}
7510
7511void kvm_set_segment(struct kvm_vcpu *vcpu,
7512		     struct kvm_segment *var, int seg)
7513{
7514	static_call(kvm_x86_set_segment)(vcpu, var, seg);
7515}
7516
7517void kvm_get_segment(struct kvm_vcpu *vcpu,
7518		     struct kvm_segment *var, int seg)
7519{
7520	static_call(kvm_x86_get_segment)(vcpu, var, seg);
7521}
7522
7523gpa_t translate_nested_gpa(struct kvm_vcpu *vcpu, gpa_t gpa, u64 access,
7524			   struct x86_exception *exception)
7525{
7526	struct kvm_mmu *mmu = vcpu->arch.mmu;
7527	gpa_t t_gpa;
7528
7529	BUG_ON(!mmu_is_nested(vcpu));
7530
7531	/* NPT walks are always user-walks */
7532	access |= PFERR_USER_MASK;
7533	t_gpa  = mmu->gva_to_gpa(vcpu, mmu, gpa, access, exception);
7534
7535	return t_gpa;
7536}
7537
7538gpa_t kvm_mmu_gva_to_gpa_read(struct kvm_vcpu *vcpu, gva_t gva,
7539			      struct x86_exception *exception)
7540{
7541	struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
7542
7543	u64 access = (static_call(kvm_x86_get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0;
7544	return mmu->gva_to_gpa(vcpu, mmu, gva, access, exception);
7545}
7546EXPORT_SYMBOL_GPL(kvm_mmu_gva_to_gpa_read);
7547
7548gpa_t kvm_mmu_gva_to_gpa_write(struct kvm_vcpu *vcpu, gva_t gva,
7549			       struct x86_exception *exception)
7550{
7551	struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
7552
7553	u64 access = (static_call(kvm_x86_get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0;
7554	access |= PFERR_WRITE_MASK;
7555	return mmu->gva_to_gpa(vcpu, mmu, gva, access, exception);
7556}
7557EXPORT_SYMBOL_GPL(kvm_mmu_gva_to_gpa_write);
7558
7559/* uses this to access any guest's mapped memory without checking CPL */
7560gpa_t kvm_mmu_gva_to_gpa_system(struct kvm_vcpu *vcpu, gva_t gva,
7561				struct x86_exception *exception)
7562{
7563	struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
7564
7565	return mmu->gva_to_gpa(vcpu, mmu, gva, 0, exception);
7566}
7567
7568static int kvm_read_guest_virt_helper(gva_t addr, void *val, unsigned int bytes,
7569				      struct kvm_vcpu *vcpu, u64 access,
7570				      struct x86_exception *exception)
7571{
7572	struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
7573	void *data = val;
7574	int r = X86EMUL_CONTINUE;
7575
7576	while (bytes) {
7577		gpa_t gpa = mmu->gva_to_gpa(vcpu, mmu, addr, access, exception);
7578		unsigned offset = addr & (PAGE_SIZE-1);
7579		unsigned toread = min(bytes, (unsigned)PAGE_SIZE - offset);
7580		int ret;
7581
7582		if (gpa == INVALID_GPA)
7583			return X86EMUL_PROPAGATE_FAULT;
7584		ret = kvm_vcpu_read_guest_page(vcpu, gpa >> PAGE_SHIFT, data,
7585					       offset, toread);
7586		if (ret < 0) {
7587			r = X86EMUL_IO_NEEDED;
7588			goto out;
7589		}
7590
7591		bytes -= toread;
7592		data += toread;
7593		addr += toread;
7594	}
7595out:
7596	return r;
7597}
7598
7599/* used for instruction fetching */
7600static int kvm_fetch_guest_virt(struct x86_emulate_ctxt *ctxt,
7601				gva_t addr, void *val, unsigned int bytes,
7602				struct x86_exception *exception)
7603{
7604	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
7605	struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
7606	u64 access = (static_call(kvm_x86_get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0;
7607	unsigned offset;
7608	int ret;
7609
7610	/* Inline kvm_read_guest_virt_helper for speed.  */
7611	gpa_t gpa = mmu->gva_to_gpa(vcpu, mmu, addr, access|PFERR_FETCH_MASK,
7612				    exception);
7613	if (unlikely(gpa == INVALID_GPA))
7614		return X86EMUL_PROPAGATE_FAULT;
7615
7616	offset = addr & (PAGE_SIZE-1);
7617	if (WARN_ON(offset + bytes > PAGE_SIZE))
7618		bytes = (unsigned)PAGE_SIZE - offset;
7619	ret = kvm_vcpu_read_guest_page(vcpu, gpa >> PAGE_SHIFT, val,
7620				       offset, bytes);
7621	if (unlikely(ret < 0))
7622		return X86EMUL_IO_NEEDED;
7623
7624	return X86EMUL_CONTINUE;
7625}
7626
7627int kvm_read_guest_virt(struct kvm_vcpu *vcpu,
7628			       gva_t addr, void *val, unsigned int bytes,
7629			       struct x86_exception *exception)
7630{
7631	u64 access = (static_call(kvm_x86_get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0;
7632
7633	/*
7634	 * FIXME: this should call handle_emulation_failure if X86EMUL_IO_NEEDED
7635	 * is returned, but our callers are not ready for that and they blindly
7636	 * call kvm_inject_page_fault.  Ensure that they at least do not leak
7637	 * uninitialized kernel stack memory into cr2 and error code.
7638	 */
7639	memset(exception, 0, sizeof(*exception));
7640	return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, access,
7641					  exception);
7642}
7643EXPORT_SYMBOL_GPL(kvm_read_guest_virt);
7644
7645static int emulator_read_std(struct x86_emulate_ctxt *ctxt,
7646			     gva_t addr, void *val, unsigned int bytes,
7647			     struct x86_exception *exception, bool system)
7648{
7649	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
7650	u64 access = 0;
7651
7652	if (system)
7653		access |= PFERR_IMPLICIT_ACCESS;
7654	else if (static_call(kvm_x86_get_cpl)(vcpu) == 3)
7655		access |= PFERR_USER_MASK;
7656
7657	return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, access, exception);
7658}
7659
7660static int kvm_write_guest_virt_helper(gva_t addr, void *val, unsigned int bytes,
7661				      struct kvm_vcpu *vcpu, u64 access,
7662				      struct x86_exception *exception)
7663{
7664	struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
7665	void *data = val;
7666	int r = X86EMUL_CONTINUE;
7667
7668	while (bytes) {
7669		gpa_t gpa = mmu->gva_to_gpa(vcpu, mmu, addr, access, exception);
7670		unsigned offset = addr & (PAGE_SIZE-1);
7671		unsigned towrite = min(bytes, (unsigned)PAGE_SIZE - offset);
7672		int ret;
7673
7674		if (gpa == INVALID_GPA)
7675			return X86EMUL_PROPAGATE_FAULT;
7676		ret = kvm_vcpu_write_guest(vcpu, gpa, data, towrite);
7677		if (ret < 0) {
7678			r = X86EMUL_IO_NEEDED;
7679			goto out;
7680		}
7681
7682		bytes -= towrite;
7683		data += towrite;
7684		addr += towrite;
7685	}
7686out:
7687	return r;
7688}
7689
7690static int emulator_write_std(struct x86_emulate_ctxt *ctxt, gva_t addr, void *val,
7691			      unsigned int bytes, struct x86_exception *exception,
7692			      bool system)
7693{
7694	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
7695	u64 access = PFERR_WRITE_MASK;
7696
7697	if (system)
7698		access |= PFERR_IMPLICIT_ACCESS;
7699	else if (static_call(kvm_x86_get_cpl)(vcpu) == 3)
7700		access |= PFERR_USER_MASK;
7701
7702	return kvm_write_guest_virt_helper(addr, val, bytes, vcpu,
7703					   access, exception);
7704}
7705
7706int kvm_write_guest_virt_system(struct kvm_vcpu *vcpu, gva_t addr, void *val,
7707				unsigned int bytes, struct x86_exception *exception)
7708{
7709	/* kvm_write_guest_virt_system can pull in tons of pages. */
7710	vcpu->arch.l1tf_flush_l1d = true;
7711
7712	return kvm_write_guest_virt_helper(addr, val, bytes, vcpu,
7713					   PFERR_WRITE_MASK, exception);
7714}
7715EXPORT_SYMBOL_GPL(kvm_write_guest_virt_system);
7716
7717static int kvm_check_emulate_insn(struct kvm_vcpu *vcpu, int emul_type,
7718				  void *insn, int insn_len)
7719{
7720	return static_call(kvm_x86_check_emulate_instruction)(vcpu, emul_type,
7721							      insn, insn_len);
7722}
7723
7724int handle_ud(struct kvm_vcpu *vcpu)
7725{
7726	static const char kvm_emulate_prefix[] = { __KVM_EMULATE_PREFIX };
7727	int fep_flags = READ_ONCE(force_emulation_prefix);
7728	int emul_type = EMULTYPE_TRAP_UD;
7729	char sig[5]; /* ud2; .ascii "kvm" */
7730	struct x86_exception e;
7731	int r;
7732
7733	r = kvm_check_emulate_insn(vcpu, emul_type, NULL, 0);
7734	if (r != X86EMUL_CONTINUE)
7735		return 1;
7736
7737	if (fep_flags &&
7738	    kvm_read_guest_virt(vcpu, kvm_get_linear_rip(vcpu),
7739				sig, sizeof(sig), &e) == 0 &&
7740	    memcmp(sig, kvm_emulate_prefix, sizeof(sig)) == 0) {
7741		if (fep_flags & KVM_FEP_CLEAR_RFLAGS_RF)
7742			kvm_set_rflags(vcpu, kvm_get_rflags(vcpu) & ~X86_EFLAGS_RF);
7743		kvm_rip_write(vcpu, kvm_rip_read(vcpu) + sizeof(sig));
7744		emul_type = EMULTYPE_TRAP_UD_FORCED;
7745	}
7746
7747	return kvm_emulate_instruction(vcpu, emul_type);
7748}
7749EXPORT_SYMBOL_GPL(handle_ud);
7750
7751static int vcpu_is_mmio_gpa(struct kvm_vcpu *vcpu, unsigned long gva,
7752			    gpa_t gpa, bool write)
7753{
7754	/* For APIC access vmexit */
7755	if ((gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
7756		return 1;
7757
7758	if (vcpu_match_mmio_gpa(vcpu, gpa)) {
7759		trace_vcpu_match_mmio(gva, gpa, write, true);
7760		return 1;
7761	}
7762
7763	return 0;
7764}
7765
7766static int vcpu_mmio_gva_to_gpa(struct kvm_vcpu *vcpu, unsigned long gva,
7767				gpa_t *gpa, struct x86_exception *exception,
7768				bool write)
7769{
7770	struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
7771	u64 access = ((static_call(kvm_x86_get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0)
7772		| (write ? PFERR_WRITE_MASK : 0);
7773
7774	/*
7775	 * currently PKRU is only applied to ept enabled guest so
7776	 * there is no pkey in EPT page table for L1 guest or EPT
7777	 * shadow page table for L2 guest.
7778	 */
7779	if (vcpu_match_mmio_gva(vcpu, gva) && (!is_paging(vcpu) ||
7780	    !permission_fault(vcpu, vcpu->arch.walk_mmu,
7781			      vcpu->arch.mmio_access, 0, access))) {
7782		*gpa = vcpu->arch.mmio_gfn << PAGE_SHIFT |
7783					(gva & (PAGE_SIZE - 1));
7784		trace_vcpu_match_mmio(gva, *gpa, write, false);
7785		return 1;
7786	}
7787
7788	*gpa = mmu->gva_to_gpa(vcpu, mmu, gva, access, exception);
7789
7790	if (*gpa == INVALID_GPA)
7791		return -1;
7792
7793	return vcpu_is_mmio_gpa(vcpu, gva, *gpa, write);
7794}
7795
7796int emulator_write_phys(struct kvm_vcpu *vcpu, gpa_t gpa,
7797			const void *val, int bytes)
7798{
7799	int ret;
7800
7801	ret = kvm_vcpu_write_guest(vcpu, gpa, val, bytes);
7802	if (ret < 0)
7803		return 0;
7804	kvm_page_track_write(vcpu, gpa, val, bytes);
7805	return 1;
7806}
7807
7808struct read_write_emulator_ops {
7809	int (*read_write_prepare)(struct kvm_vcpu *vcpu, void *val,
7810				  int bytes);
7811	int (*read_write_emulate)(struct kvm_vcpu *vcpu, gpa_t gpa,
7812				  void *val, int bytes);
7813	int (*read_write_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa,
7814			       int bytes, void *val);
7815	int (*read_write_exit_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa,
7816				    void *val, int bytes);
7817	bool write;
7818};
7819
7820static int read_prepare(struct kvm_vcpu *vcpu, void *val, int bytes)
7821{
7822	if (vcpu->mmio_read_completed) {
7823		trace_kvm_mmio(KVM_TRACE_MMIO_READ, bytes,
7824			       vcpu->mmio_fragments[0].gpa, val);
7825		vcpu->mmio_read_completed = 0;
7826		return 1;
7827	}
7828
7829	return 0;
7830}
7831
7832static int read_emulate(struct kvm_vcpu *vcpu, gpa_t gpa,
7833			void *val, int bytes)
7834{
7835	return !kvm_vcpu_read_guest(vcpu, gpa, val, bytes);
7836}
7837
7838static int write_emulate(struct kvm_vcpu *vcpu, gpa_t gpa,
7839			 void *val, int bytes)
7840{
7841	return emulator_write_phys(vcpu, gpa, val, bytes);
7842}
7843
7844static int write_mmio(struct kvm_vcpu *vcpu, gpa_t gpa, int bytes, void *val)
7845{
7846	trace_kvm_mmio(KVM_TRACE_MMIO_WRITE, bytes, gpa, val);
7847	return vcpu_mmio_write(vcpu, gpa, bytes, val);
7848}
7849
7850static int read_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa,
7851			  void *val, int bytes)
7852{
7853	trace_kvm_mmio(KVM_TRACE_MMIO_READ_UNSATISFIED, bytes, gpa, NULL);
7854	return X86EMUL_IO_NEEDED;
7855}
7856
7857static int write_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa,
7858			   void *val, int bytes)
7859{
7860	struct kvm_mmio_fragment *frag = &vcpu->mmio_fragments[0];
7861
7862	memcpy(vcpu->run->mmio.data, frag->data, min(8u, frag->len));
7863	return X86EMUL_CONTINUE;
7864}
7865
7866static const struct read_write_emulator_ops read_emultor = {
7867	.read_write_prepare = read_prepare,
7868	.read_write_emulate = read_emulate,
7869	.read_write_mmio = vcpu_mmio_read,
7870	.read_write_exit_mmio = read_exit_mmio,
7871};
7872
7873static const struct read_write_emulator_ops write_emultor = {
7874	.read_write_emulate = write_emulate,
7875	.read_write_mmio = write_mmio,
7876	.read_write_exit_mmio = write_exit_mmio,
7877	.write = true,
7878};
7879
7880static int emulator_read_write_onepage(unsigned long addr, void *val,
7881				       unsigned int bytes,
7882				       struct x86_exception *exception,
7883				       struct kvm_vcpu *vcpu,
7884				       const struct read_write_emulator_ops *ops)
7885{
7886	gpa_t gpa;
7887	int handled, ret;
7888	bool write = ops->write;
7889	struct kvm_mmio_fragment *frag;
7890	struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
7891
7892	/*
7893	 * If the exit was due to a NPF we may already have a GPA.
7894	 * If the GPA is present, use it to avoid the GVA to GPA table walk.
7895	 * Note, this cannot be used on string operations since string
7896	 * operation using rep will only have the initial GPA from the NPF
7897	 * occurred.
7898	 */
7899	if (ctxt->gpa_available && emulator_can_use_gpa(ctxt) &&
7900	    (addr & ~PAGE_MASK) == (ctxt->gpa_val & ~PAGE_MASK)) {
7901		gpa = ctxt->gpa_val;
7902		ret = vcpu_is_mmio_gpa(vcpu, addr, gpa, write);
7903	} else {
7904		ret = vcpu_mmio_gva_to_gpa(vcpu, addr, &gpa, exception, write);
7905		if (ret < 0)
7906			return X86EMUL_PROPAGATE_FAULT;
7907	}
7908
7909	if (!ret && ops->read_write_emulate(vcpu, gpa, val, bytes))
7910		return X86EMUL_CONTINUE;
7911
7912	/*
7913	 * Is this MMIO handled locally?
7914	 */
7915	handled = ops->read_write_mmio(vcpu, gpa, bytes, val);
7916	if (handled == bytes)
7917		return X86EMUL_CONTINUE;
7918
7919	gpa += handled;
7920	bytes -= handled;
7921	val += handled;
7922
7923	WARN_ON(vcpu->mmio_nr_fragments >= KVM_MAX_MMIO_FRAGMENTS);
7924	frag = &vcpu->mmio_fragments[vcpu->mmio_nr_fragments++];
7925	frag->gpa = gpa;
7926	frag->data = val;
7927	frag->len = bytes;
7928	return X86EMUL_CONTINUE;
7929}
7930
7931static int emulator_read_write(struct x86_emulate_ctxt *ctxt,
7932			unsigned long addr,
7933			void *val, unsigned int bytes,
7934			struct x86_exception *exception,
7935			const struct read_write_emulator_ops *ops)
7936{
7937	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
7938	gpa_t gpa;
7939	int rc;
7940
7941	if (ops->read_write_prepare &&
7942		  ops->read_write_prepare(vcpu, val, bytes))
7943		return X86EMUL_CONTINUE;
7944
7945	vcpu->mmio_nr_fragments = 0;
7946
7947	/* Crossing a page boundary? */
7948	if (((addr + bytes - 1) ^ addr) & PAGE_MASK) {
7949		int now;
7950
7951		now = -addr & ~PAGE_MASK;
7952		rc = emulator_read_write_onepage(addr, val, now, exception,
7953						 vcpu, ops);
7954
7955		if (rc != X86EMUL_CONTINUE)
7956			return rc;
7957		addr += now;
7958		if (ctxt->mode != X86EMUL_MODE_PROT64)
7959			addr = (u32)addr;
7960		val += now;
7961		bytes -= now;
7962	}
7963
7964	rc = emulator_read_write_onepage(addr, val, bytes, exception,
7965					 vcpu, ops);
7966	if (rc != X86EMUL_CONTINUE)
7967		return rc;
7968
7969	if (!vcpu->mmio_nr_fragments)
7970		return rc;
7971
7972	gpa = vcpu->mmio_fragments[0].gpa;
7973
7974	vcpu->mmio_needed = 1;
7975	vcpu->mmio_cur_fragment = 0;
7976
7977	vcpu->run->mmio.len = min(8u, vcpu->mmio_fragments[0].len);
7978	vcpu->run->mmio.is_write = vcpu->mmio_is_write = ops->write;
7979	vcpu->run->exit_reason = KVM_EXIT_MMIO;
7980	vcpu->run->mmio.phys_addr = gpa;
7981
7982	return ops->read_write_exit_mmio(vcpu, gpa, val, bytes);
7983}
7984
7985static int emulator_read_emulated(struct x86_emulate_ctxt *ctxt,
7986				  unsigned long addr,
7987				  void *val,
7988				  unsigned int bytes,
7989				  struct x86_exception *exception)
7990{
7991	return emulator_read_write(ctxt, addr, val, bytes,
7992				   exception, &read_emultor);
7993}
7994
7995static int emulator_write_emulated(struct x86_emulate_ctxt *ctxt,
7996			    unsigned long addr,
7997			    const void *val,
7998			    unsigned int bytes,
7999			    struct x86_exception *exception)
8000{
8001	return emulator_read_write(ctxt, addr, (void *)val, bytes,
8002				   exception, &write_emultor);
8003}
8004
8005#define emulator_try_cmpxchg_user(t, ptr, old, new) \
8006	(__try_cmpxchg_user((t __user *)(ptr), (t *)(old), *(t *)(new), efault ## t))
8007
8008static int emulator_cmpxchg_emulated(struct x86_emulate_ctxt *ctxt,
8009				     unsigned long addr,
8010				     const void *old,
8011				     const void *new,
8012				     unsigned int bytes,
8013				     struct x86_exception *exception)
8014{
8015	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
8016	u64 page_line_mask;
8017	unsigned long hva;
8018	gpa_t gpa;
8019	int r;
8020
8021	/* guests cmpxchg8b have to be emulated atomically */
8022	if (bytes > 8 || (bytes & (bytes - 1)))
8023		goto emul_write;
8024
8025	gpa = kvm_mmu_gva_to_gpa_write(vcpu, addr, NULL);
8026
8027	if (gpa == INVALID_GPA ||
8028	    (gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
8029		goto emul_write;
8030
8031	/*
8032	 * Emulate the atomic as a straight write to avoid #AC if SLD is
8033	 * enabled in the host and the access splits a cache line.
8034	 */
8035	if (boot_cpu_has(X86_FEATURE_SPLIT_LOCK_DETECT))
8036		page_line_mask = ~(cache_line_size() - 1);
8037	else
8038		page_line_mask = PAGE_MASK;
8039
8040	if (((gpa + bytes - 1) & page_line_mask) != (gpa & page_line_mask))
8041		goto emul_write;
8042
8043	hva = kvm_vcpu_gfn_to_hva(vcpu, gpa_to_gfn(gpa));
8044	if (kvm_is_error_hva(hva))
8045		goto emul_write;
8046
8047	hva += offset_in_page(gpa);
8048
8049	switch (bytes) {
8050	case 1:
8051		r = emulator_try_cmpxchg_user(u8, hva, old, new);
8052		break;
8053	case 2:
8054		r = emulator_try_cmpxchg_user(u16, hva, old, new);
8055		break;
8056	case 4:
8057		r = emulator_try_cmpxchg_user(u32, hva, old, new);
8058		break;
8059	case 8:
8060		r = emulator_try_cmpxchg_user(u64, hva, old, new);
8061		break;
8062	default:
8063		BUG();
8064	}
8065
8066	if (r < 0)
8067		return X86EMUL_UNHANDLEABLE;
8068
8069	/*
8070	 * Mark the page dirty _before_ checking whether or not the CMPXCHG was
8071	 * successful, as the old value is written back on failure.  Note, for
8072	 * live migration, this is unnecessarily conservative as CMPXCHG writes
8073	 * back the original value and the access is atomic, but KVM's ABI is
8074	 * that all writes are dirty logged, regardless of the value written.
8075	 */
8076	kvm_vcpu_mark_page_dirty(vcpu, gpa_to_gfn(gpa));
8077
8078	if (r)
8079		return X86EMUL_CMPXCHG_FAILED;
8080
8081	kvm_page_track_write(vcpu, gpa, new, bytes);
8082
8083	return X86EMUL_CONTINUE;
8084
8085emul_write:
8086	pr_warn_once("emulating exchange as write\n");
8087
8088	return emulator_write_emulated(ctxt, addr, new, bytes, exception);
8089}
8090
8091static int emulator_pio_in_out(struct kvm_vcpu *vcpu, int size,
8092			       unsigned short port, void *data,
8093			       unsigned int count, bool in)
8094{
8095	unsigned i;
8096	int r;
8097
8098	WARN_ON_ONCE(vcpu->arch.pio.count);
8099	for (i = 0; i < count; i++) {
8100		if (in)
8101			r = kvm_io_bus_read(vcpu, KVM_PIO_BUS, port, size, data);
8102		else
8103			r = kvm_io_bus_write(vcpu, KVM_PIO_BUS, port, size, data);
8104
8105		if (r) {
8106			if (i == 0)
8107				goto userspace_io;
8108
8109			/*
8110			 * Userspace must have unregistered the device while PIO
8111			 * was running.  Drop writes / read as 0.
8112			 */
8113			if (in)
8114				memset(data, 0, size * (count - i));
8115			break;
8116		}
8117
8118		data += size;
8119	}
8120	return 1;
8121
8122userspace_io:
8123	vcpu->arch.pio.port = port;
8124	vcpu->arch.pio.in = in;
8125	vcpu->arch.pio.count = count;
8126	vcpu->arch.pio.size = size;
8127
8128	if (in)
8129		memset(vcpu->arch.pio_data, 0, size * count);
8130	else
8131		memcpy(vcpu->arch.pio_data, data, size * count);
8132
8133	vcpu->run->exit_reason = KVM_EXIT_IO;
8134	vcpu->run->io.direction = in ? KVM_EXIT_IO_IN : KVM_EXIT_IO_OUT;
8135	vcpu->run->io.size = size;
8136	vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE;
8137	vcpu->run->io.count = count;
8138	vcpu->run->io.port = port;
8139	return 0;
8140}
8141
8142static int emulator_pio_in(struct kvm_vcpu *vcpu, int size,
8143      			   unsigned short port, void *val, unsigned int count)
8144{
8145	int r = emulator_pio_in_out(vcpu, size, port, val, count, true);
8146	if (r)
8147		trace_kvm_pio(KVM_PIO_IN, port, size, count, val);
8148
8149	return r;
8150}
8151
8152static void complete_emulator_pio_in(struct kvm_vcpu *vcpu, void *val)
8153{
8154	int size = vcpu->arch.pio.size;
8155	unsigned int count = vcpu->arch.pio.count;
8156	memcpy(val, vcpu->arch.pio_data, size * count);
8157	trace_kvm_pio(KVM_PIO_IN, vcpu->arch.pio.port, size, count, vcpu->arch.pio_data);
8158	vcpu->arch.pio.count = 0;
8159}
8160
8161static int emulator_pio_in_emulated(struct x86_emulate_ctxt *ctxt,
8162				    int size, unsigned short port, void *val,
8163				    unsigned int count)
8164{
8165	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
8166	if (vcpu->arch.pio.count) {
8167		/*
8168		 * Complete a previous iteration that required userspace I/O.
8169		 * Note, @count isn't guaranteed to match pio.count as userspace
8170		 * can modify ECX before rerunning the vCPU.  Ignore any such
8171		 * shenanigans as KVM doesn't support modifying the rep count,
8172		 * and the emulator ensures @count doesn't overflow the buffer.
8173		 */
8174		complete_emulator_pio_in(vcpu, val);
8175		return 1;
8176	}
8177
8178	return emulator_pio_in(vcpu, size, port, val, count);
8179}
8180
8181static int emulator_pio_out(struct kvm_vcpu *vcpu, int size,
8182			    unsigned short port, const void *val,
8183			    unsigned int count)
8184{
8185	trace_kvm_pio(KVM_PIO_OUT, port, size, count, val);
8186	return emulator_pio_in_out(vcpu, size, port, (void *)val, count, false);
8187}
8188
8189static int emulator_pio_out_emulated(struct x86_emulate_ctxt *ctxt,
8190				     int size, unsigned short port,
8191				     const void *val, unsigned int count)
8192{
8193	return emulator_pio_out(emul_to_vcpu(ctxt), size, port, val, count);
8194}
8195
8196static unsigned long get_segment_base(struct kvm_vcpu *vcpu, int seg)
8197{
8198	return static_call(kvm_x86_get_segment_base)(vcpu, seg);
8199}
8200
8201static void emulator_invlpg(struct x86_emulate_ctxt *ctxt, ulong address)
8202{
8203	kvm_mmu_invlpg(emul_to_vcpu(ctxt), address);
8204}
8205
8206static int kvm_emulate_wbinvd_noskip(struct kvm_vcpu *vcpu)
8207{
8208	if (!need_emulate_wbinvd(vcpu))
8209		return X86EMUL_CONTINUE;
8210
8211	if (static_call(kvm_x86_has_wbinvd_exit)()) {
8212		int cpu = get_cpu();
8213
8214		cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask);
8215		on_each_cpu_mask(vcpu->arch.wbinvd_dirty_mask,
8216				wbinvd_ipi, NULL, 1);
8217		put_cpu();
8218		cpumask_clear(vcpu->arch.wbinvd_dirty_mask);
8219	} else
8220		wbinvd();
8221	return X86EMUL_CONTINUE;
8222}
8223
8224int kvm_emulate_wbinvd(struct kvm_vcpu *vcpu)
8225{
8226	kvm_emulate_wbinvd_noskip(vcpu);
8227	return kvm_skip_emulated_instruction(vcpu);
8228}
8229EXPORT_SYMBOL_GPL(kvm_emulate_wbinvd);
8230
8231
8232
8233static void emulator_wbinvd(struct x86_emulate_ctxt *ctxt)
8234{
8235	kvm_emulate_wbinvd_noskip(emul_to_vcpu(ctxt));
8236}
8237
8238static unsigned long emulator_get_dr(struct x86_emulate_ctxt *ctxt, int dr)
8239{
8240	return kvm_get_dr(emul_to_vcpu(ctxt), dr);
8241}
8242
8243static int emulator_set_dr(struct x86_emulate_ctxt *ctxt, int dr,
8244			   unsigned long value)
8245{
8246
8247	return kvm_set_dr(emul_to_vcpu(ctxt), dr, value);
8248}
8249
8250static u64 mk_cr_64(u64 curr_cr, u32 new_val)
8251{
8252	return (curr_cr & ~((1ULL << 32) - 1)) | new_val;
8253}
8254
8255static unsigned long emulator_get_cr(struct x86_emulate_ctxt *ctxt, int cr)
8256{
8257	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
8258	unsigned long value;
8259
8260	switch (cr) {
8261	case 0:
8262		value = kvm_read_cr0(vcpu);
8263		break;
8264	case 2:
8265		value = vcpu->arch.cr2;
8266		break;
8267	case 3:
8268		value = kvm_read_cr3(vcpu);
8269		break;
8270	case 4:
8271		value = kvm_read_cr4(vcpu);
8272		break;
8273	case 8:
8274		value = kvm_get_cr8(vcpu);
8275		break;
8276	default:
8277		kvm_err("%s: unexpected cr %u\n", __func__, cr);
8278		return 0;
8279	}
8280
8281	return value;
8282}
8283
8284static int emulator_set_cr(struct x86_emulate_ctxt *ctxt, int cr, ulong val)
8285{
8286	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
8287	int res = 0;
8288
8289	switch (cr) {
8290	case 0:
8291		res = kvm_set_cr0(vcpu, mk_cr_64(kvm_read_cr0(vcpu), val));
8292		break;
8293	case 2:
8294		vcpu->arch.cr2 = val;
8295		break;
8296	case 3:
8297		res = kvm_set_cr3(vcpu, val);
8298		break;
8299	case 4:
8300		res = kvm_set_cr4(vcpu, mk_cr_64(kvm_read_cr4(vcpu), val));
8301		break;
8302	case 8:
8303		res = kvm_set_cr8(vcpu, val);
8304		break;
8305	default:
8306		kvm_err("%s: unexpected cr %u\n", __func__, cr);
8307		res = -1;
8308	}
8309
8310	return res;
8311}
8312
8313static int emulator_get_cpl(struct x86_emulate_ctxt *ctxt)
8314{
8315	return static_call(kvm_x86_get_cpl)(emul_to_vcpu(ctxt));
8316}
8317
8318static void emulator_get_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
8319{
8320	static_call(kvm_x86_get_gdt)(emul_to_vcpu(ctxt), dt);
8321}
8322
8323static void emulator_get_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
8324{
8325	static_call(kvm_x86_get_idt)(emul_to_vcpu(ctxt), dt);
8326}
8327
8328static void emulator_set_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
8329{
8330	static_call(kvm_x86_set_gdt)(emul_to_vcpu(ctxt), dt);
8331}
8332
8333static void emulator_set_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
8334{
8335	static_call(kvm_x86_set_idt)(emul_to_vcpu(ctxt), dt);
8336}
8337
8338static unsigned long emulator_get_cached_segment_base(
8339	struct x86_emulate_ctxt *ctxt, int seg)
8340{
8341	return get_segment_base(emul_to_vcpu(ctxt), seg);
8342}
8343
8344static bool emulator_get_segment(struct x86_emulate_ctxt *ctxt, u16 *selector,
8345				 struct desc_struct *desc, u32 *base3,
8346				 int seg)
8347{
8348	struct kvm_segment var;
8349
8350	kvm_get_segment(emul_to_vcpu(ctxt), &var, seg);
8351	*selector = var.selector;
8352
8353	if (var.unusable) {
8354		memset(desc, 0, sizeof(*desc));
8355		if (base3)
8356			*base3 = 0;
8357		return false;
8358	}
8359
8360	if (var.g)
8361		var.limit >>= 12;
8362	set_desc_limit(desc, var.limit);
8363	set_desc_base(desc, (unsigned long)var.base);
8364#ifdef CONFIG_X86_64
8365	if (base3)
8366		*base3 = var.base >> 32;
8367#endif
8368	desc->type = var.type;
8369	desc->s = var.s;
8370	desc->dpl = var.dpl;
8371	desc->p = var.present;
8372	desc->avl = var.avl;
8373	desc->l = var.l;
8374	desc->d = var.db;
8375	desc->g = var.g;
8376
8377	return true;
8378}
8379
8380static void emulator_set_segment(struct x86_emulate_ctxt *ctxt, u16 selector,
8381				 struct desc_struct *desc, u32 base3,
8382				 int seg)
8383{
8384	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
8385	struct kvm_segment var;
8386
8387	var.selector = selector;
8388	var.base = get_desc_base(desc);
8389#ifdef CONFIG_X86_64
8390	var.base |= ((u64)base3) << 32;
8391#endif
8392	var.limit = get_desc_limit(desc);
8393	if (desc->g)
8394		var.limit = (var.limit << 12) | 0xfff;
8395	var.type = desc->type;
8396	var.dpl = desc->dpl;
8397	var.db = desc->d;
8398	var.s = desc->s;
8399	var.l = desc->l;
8400	var.g = desc->g;
8401	var.avl = desc->avl;
8402	var.present = desc->p;
8403	var.unusable = !var.present;
8404	var.padding = 0;
8405
8406	kvm_set_segment(vcpu, &var, seg);
8407	return;
8408}
8409
8410static int emulator_get_msr_with_filter(struct x86_emulate_ctxt *ctxt,
8411					u32 msr_index, u64 *pdata)
8412{
8413	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
8414	int r;
8415
8416	r = kvm_get_msr_with_filter(vcpu, msr_index, pdata);
8417	if (r < 0)
8418		return X86EMUL_UNHANDLEABLE;
8419
8420	if (r) {
8421		if (kvm_msr_user_space(vcpu, msr_index, KVM_EXIT_X86_RDMSR, 0,
8422				       complete_emulated_rdmsr, r))
8423			return X86EMUL_IO_NEEDED;
8424
8425		trace_kvm_msr_read_ex(msr_index);
8426		return X86EMUL_PROPAGATE_FAULT;
8427	}
8428
8429	trace_kvm_msr_read(msr_index, *pdata);
8430	return X86EMUL_CONTINUE;
8431}
8432
8433static int emulator_set_msr_with_filter(struct x86_emulate_ctxt *ctxt,
8434					u32 msr_index, u64 data)
8435{
8436	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
8437	int r;
8438
8439	r = kvm_set_msr_with_filter(vcpu, msr_index, data);
8440	if (r < 0)
8441		return X86EMUL_UNHANDLEABLE;
8442
8443	if (r) {
8444		if (kvm_msr_user_space(vcpu, msr_index, KVM_EXIT_X86_WRMSR, data,
8445				       complete_emulated_msr_access, r))
8446			return X86EMUL_IO_NEEDED;
8447
8448		trace_kvm_msr_write_ex(msr_index, data);
8449		return X86EMUL_PROPAGATE_FAULT;
8450	}
8451
8452	trace_kvm_msr_write(msr_index, data);
8453	return X86EMUL_CONTINUE;
8454}
8455
8456static int emulator_get_msr(struct x86_emulate_ctxt *ctxt,
8457			    u32 msr_index, u64 *pdata)
8458{
8459	return kvm_get_msr(emul_to_vcpu(ctxt), msr_index, pdata);
8460}
8461
8462static int emulator_check_rdpmc_early(struct x86_emulate_ctxt *ctxt, u32 pmc)
8463{
8464	return kvm_pmu_check_rdpmc_early(emul_to_vcpu(ctxt), pmc);
8465}
8466
8467static int emulator_read_pmc(struct x86_emulate_ctxt *ctxt,
8468			     u32 pmc, u64 *pdata)
8469{
8470	return kvm_pmu_rdpmc(emul_to_vcpu(ctxt), pmc, pdata);
8471}
8472
8473static void emulator_halt(struct x86_emulate_ctxt *ctxt)
8474{
8475	emul_to_vcpu(ctxt)->arch.halt_request = 1;
8476}
8477
8478static int emulator_intercept(struct x86_emulate_ctxt *ctxt,
8479			      struct x86_instruction_info *info,
8480			      enum x86_intercept_stage stage)
8481{
8482	return static_call(kvm_x86_check_intercept)(emul_to_vcpu(ctxt), info, stage,
8483					    &ctxt->exception);
8484}
8485
8486static bool emulator_get_cpuid(struct x86_emulate_ctxt *ctxt,
8487			      u32 *eax, u32 *ebx, u32 *ecx, u32 *edx,
8488			      bool exact_only)
8489{
8490	return kvm_cpuid(emul_to_vcpu(ctxt), eax, ebx, ecx, edx, exact_only);
8491}
8492
8493static bool emulator_guest_has_movbe(struct x86_emulate_ctxt *ctxt)
8494{
8495	return guest_cpuid_has(emul_to_vcpu(ctxt), X86_FEATURE_MOVBE);
8496}
8497
8498static bool emulator_guest_has_fxsr(struct x86_emulate_ctxt *ctxt)
8499{
8500	return guest_cpuid_has(emul_to_vcpu(ctxt), X86_FEATURE_FXSR);
8501}
8502
8503static bool emulator_guest_has_rdpid(struct x86_emulate_ctxt *ctxt)
8504{
8505	return guest_cpuid_has(emul_to_vcpu(ctxt), X86_FEATURE_RDPID);
8506}
8507
8508static ulong emulator_read_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg)
8509{
8510	return kvm_register_read_raw(emul_to_vcpu(ctxt), reg);
8511}
8512
8513static void emulator_write_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg, ulong val)
8514{
8515	kvm_register_write_raw(emul_to_vcpu(ctxt), reg, val);
8516}
8517
8518static void emulator_set_nmi_mask(struct x86_emulate_ctxt *ctxt, bool masked)
8519{
8520	static_call(kvm_x86_set_nmi_mask)(emul_to_vcpu(ctxt), masked);
8521}
8522
8523static bool emulator_is_smm(struct x86_emulate_ctxt *ctxt)
8524{
8525	return is_smm(emul_to_vcpu(ctxt));
8526}
8527
8528static bool emulator_is_guest_mode(struct x86_emulate_ctxt *ctxt)
8529{
8530	return is_guest_mode(emul_to_vcpu(ctxt));
8531}
8532
8533#ifndef CONFIG_KVM_SMM
8534static int emulator_leave_smm(struct x86_emulate_ctxt *ctxt)
8535{
8536	WARN_ON_ONCE(1);
8537	return X86EMUL_UNHANDLEABLE;
8538}
8539#endif
8540
8541static void emulator_triple_fault(struct x86_emulate_ctxt *ctxt)
8542{
8543	kvm_make_request(KVM_REQ_TRIPLE_FAULT, emul_to_vcpu(ctxt));
8544}
8545
8546static int emulator_set_xcr(struct x86_emulate_ctxt *ctxt, u32 index, u64 xcr)
8547{
8548	return __kvm_set_xcr(emul_to_vcpu(ctxt), index, xcr);
8549}
8550
8551static void emulator_vm_bugged(struct x86_emulate_ctxt *ctxt)
8552{
8553	struct kvm *kvm = emul_to_vcpu(ctxt)->kvm;
8554
8555	if (!kvm->vm_bugged)
8556		kvm_vm_bugged(kvm);
8557}
8558
8559static gva_t emulator_get_untagged_addr(struct x86_emulate_ctxt *ctxt,
8560					gva_t addr, unsigned int flags)
8561{
8562	if (!kvm_x86_ops.get_untagged_addr)
8563		return addr;
8564
8565	return static_call(kvm_x86_get_untagged_addr)(emul_to_vcpu(ctxt), addr, flags);
8566}
8567
8568static const struct x86_emulate_ops emulate_ops = {
8569	.vm_bugged           = emulator_vm_bugged,
8570	.read_gpr            = emulator_read_gpr,
8571	.write_gpr           = emulator_write_gpr,
8572	.read_std            = emulator_read_std,
8573	.write_std           = emulator_write_std,
8574	.fetch               = kvm_fetch_guest_virt,
8575	.read_emulated       = emulator_read_emulated,
8576	.write_emulated      = emulator_write_emulated,
8577	.cmpxchg_emulated    = emulator_cmpxchg_emulated,
8578	.invlpg              = emulator_invlpg,
8579	.pio_in_emulated     = emulator_pio_in_emulated,
8580	.pio_out_emulated    = emulator_pio_out_emulated,
8581	.get_segment         = emulator_get_segment,
8582	.set_segment         = emulator_set_segment,
8583	.get_cached_segment_base = emulator_get_cached_segment_base,
8584	.get_gdt             = emulator_get_gdt,
8585	.get_idt	     = emulator_get_idt,
8586	.set_gdt             = emulator_set_gdt,
8587	.set_idt	     = emulator_set_idt,
8588	.get_cr              = emulator_get_cr,
8589	.set_cr              = emulator_set_cr,
8590	.cpl                 = emulator_get_cpl,
8591	.get_dr              = emulator_get_dr,
8592	.set_dr              = emulator_set_dr,
8593	.set_msr_with_filter = emulator_set_msr_with_filter,
8594	.get_msr_with_filter = emulator_get_msr_with_filter,
8595	.get_msr             = emulator_get_msr,
8596	.check_rdpmc_early   = emulator_check_rdpmc_early,
8597	.read_pmc            = emulator_read_pmc,
8598	.halt                = emulator_halt,
8599	.wbinvd              = emulator_wbinvd,
8600	.fix_hypercall       = emulator_fix_hypercall,
8601	.intercept           = emulator_intercept,
8602	.get_cpuid           = emulator_get_cpuid,
8603	.guest_has_movbe     = emulator_guest_has_movbe,
8604	.guest_has_fxsr      = emulator_guest_has_fxsr,
8605	.guest_has_rdpid     = emulator_guest_has_rdpid,
8606	.set_nmi_mask        = emulator_set_nmi_mask,
8607	.is_smm              = emulator_is_smm,
8608	.is_guest_mode       = emulator_is_guest_mode,
8609	.leave_smm           = emulator_leave_smm,
8610	.triple_fault        = emulator_triple_fault,
8611	.set_xcr             = emulator_set_xcr,
8612	.get_untagged_addr   = emulator_get_untagged_addr,
8613};
8614
8615static void toggle_interruptibility(struct kvm_vcpu *vcpu, u32 mask)
8616{
8617	u32 int_shadow = static_call(kvm_x86_get_interrupt_shadow)(vcpu);
8618	/*
8619	 * an sti; sti; sequence only disable interrupts for the first
8620	 * instruction. So, if the last instruction, be it emulated or
8621	 * not, left the system with the INT_STI flag enabled, it
8622	 * means that the last instruction is an sti. We should not
8623	 * leave the flag on in this case. The same goes for mov ss
8624	 */
8625	if (int_shadow & mask)
8626		mask = 0;
8627	if (unlikely(int_shadow || mask)) {
8628		static_call(kvm_x86_set_interrupt_shadow)(vcpu, mask);
8629		if (!mask)
8630			kvm_make_request(KVM_REQ_EVENT, vcpu);
8631	}
8632}
8633
8634static void inject_emulated_exception(struct kvm_vcpu *vcpu)
8635{
8636	struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
8637
8638	if (ctxt->exception.vector == PF_VECTOR)
8639		kvm_inject_emulated_page_fault(vcpu, &ctxt->exception);
8640	else if (ctxt->exception.error_code_valid)
8641		kvm_queue_exception_e(vcpu, ctxt->exception.vector,
8642				      ctxt->exception.error_code);
8643	else
8644		kvm_queue_exception(vcpu, ctxt->exception.vector);
8645}
8646
8647static struct x86_emulate_ctxt *alloc_emulate_ctxt(struct kvm_vcpu *vcpu)
8648{
8649	struct x86_emulate_ctxt *ctxt;
8650
8651	ctxt = kmem_cache_zalloc(x86_emulator_cache, GFP_KERNEL_ACCOUNT);
8652	if (!ctxt) {
8653		pr_err("failed to allocate vcpu's emulator\n");
8654		return NULL;
8655	}
8656
8657	ctxt->vcpu = vcpu;
8658	ctxt->ops = &emulate_ops;
8659	vcpu->arch.emulate_ctxt = ctxt;
8660
8661	return ctxt;
8662}
8663
8664static void init_emulate_ctxt(struct kvm_vcpu *vcpu)
8665{
8666	struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
8667	int cs_db, cs_l;
8668
8669	static_call(kvm_x86_get_cs_db_l_bits)(vcpu, &cs_db, &cs_l);
8670
8671	ctxt->gpa_available = false;
8672	ctxt->eflags = kvm_get_rflags(vcpu);
8673	ctxt->tf = (ctxt->eflags & X86_EFLAGS_TF) != 0;
8674
8675	ctxt->eip = kvm_rip_read(vcpu);
8676	ctxt->mode = (!is_protmode(vcpu))		? X86EMUL_MODE_REAL :
8677		     (ctxt->eflags & X86_EFLAGS_VM)	? X86EMUL_MODE_VM86 :
8678		     (cs_l && is_long_mode(vcpu))	? X86EMUL_MODE_PROT64 :
8679		     cs_db				? X86EMUL_MODE_PROT32 :
8680							  X86EMUL_MODE_PROT16;
8681	ctxt->interruptibility = 0;
8682	ctxt->have_exception = false;
8683	ctxt->exception.vector = -1;
8684	ctxt->perm_ok = false;
8685
8686	init_decode_cache(ctxt);
8687	vcpu->arch.emulate_regs_need_sync_from_vcpu = false;
8688}
8689
8690void kvm_inject_realmode_interrupt(struct kvm_vcpu *vcpu, int irq, int inc_eip)
8691{
8692	struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
8693	int ret;
8694
8695	init_emulate_ctxt(vcpu);
8696
8697	ctxt->op_bytes = 2;
8698	ctxt->ad_bytes = 2;
8699	ctxt->_eip = ctxt->eip + inc_eip;
8700	ret = emulate_int_real(ctxt, irq);
8701
8702	if (ret != X86EMUL_CONTINUE) {
8703		kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
8704	} else {
8705		ctxt->eip = ctxt->_eip;
8706		kvm_rip_write(vcpu, ctxt->eip);
8707		kvm_set_rflags(vcpu, ctxt->eflags);
8708	}
8709}
8710EXPORT_SYMBOL_GPL(kvm_inject_realmode_interrupt);
8711
8712static void prepare_emulation_failure_exit(struct kvm_vcpu *vcpu, u64 *data,
8713					   u8 ndata, u8 *insn_bytes, u8 insn_size)
8714{
8715	struct kvm_run *run = vcpu->run;
8716	u64 info[5];
8717	u8 info_start;
8718
8719	/*
8720	 * Zero the whole array used to retrieve the exit info, as casting to
8721	 * u32 for select entries will leave some chunks uninitialized.
8722	 */
8723	memset(&info, 0, sizeof(info));
8724
8725	static_call(kvm_x86_get_exit_info)(vcpu, (u32 *)&info[0], &info[1],
8726					   &info[2], (u32 *)&info[3],
8727					   (u32 *)&info[4]);
8728
8729	run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
8730	run->emulation_failure.suberror = KVM_INTERNAL_ERROR_EMULATION;
8731
8732	/*
8733	 * There's currently space for 13 entries, but 5 are used for the exit
8734	 * reason and info.  Restrict to 4 to reduce the maintenance burden
8735	 * when expanding kvm_run.emulation_failure in the future.
8736	 */
8737	if (WARN_ON_ONCE(ndata > 4))
8738		ndata = 4;
8739
8740	/* Always include the flags as a 'data' entry. */
8741	info_start = 1;
8742	run->emulation_failure.flags = 0;
8743
8744	if (insn_size) {
8745		BUILD_BUG_ON((sizeof(run->emulation_failure.insn_size) +
8746			      sizeof(run->emulation_failure.insn_bytes) != 16));
8747		info_start += 2;
8748		run->emulation_failure.flags |=
8749			KVM_INTERNAL_ERROR_EMULATION_FLAG_INSTRUCTION_BYTES;
8750		run->emulation_failure.insn_size = insn_size;
8751		memset(run->emulation_failure.insn_bytes, 0x90,
8752		       sizeof(run->emulation_failure.insn_bytes));
8753		memcpy(run->emulation_failure.insn_bytes, insn_bytes, insn_size);
8754	}
8755
8756	memcpy(&run->internal.data[info_start], info, sizeof(info));
8757	memcpy(&run->internal.data[info_start + ARRAY_SIZE(info)], data,
8758	       ndata * sizeof(data[0]));
8759
8760	run->emulation_failure.ndata = info_start + ARRAY_SIZE(info) + ndata;
8761}
8762
8763static void prepare_emulation_ctxt_failure_exit(struct kvm_vcpu *vcpu)
8764{
8765	struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
8766
8767	prepare_emulation_failure_exit(vcpu, NULL, 0, ctxt->fetch.data,
8768				       ctxt->fetch.end - ctxt->fetch.data);
8769}
8770
8771void __kvm_prepare_emulation_failure_exit(struct kvm_vcpu *vcpu, u64 *data,
8772					  u8 ndata)
8773{
8774	prepare_emulation_failure_exit(vcpu, data, ndata, NULL, 0);
8775}
8776EXPORT_SYMBOL_GPL(__kvm_prepare_emulation_failure_exit);
8777
8778void kvm_prepare_emulation_failure_exit(struct kvm_vcpu *vcpu)
8779{
8780	__kvm_prepare_emulation_failure_exit(vcpu, NULL, 0);
8781}
8782EXPORT_SYMBOL_GPL(kvm_prepare_emulation_failure_exit);
8783
8784static int handle_emulation_failure(struct kvm_vcpu *vcpu, int emulation_type)
8785{
8786	struct kvm *kvm = vcpu->kvm;
8787
8788	++vcpu->stat.insn_emulation_fail;
8789	trace_kvm_emulate_insn_failed(vcpu);
8790
8791	if (emulation_type & EMULTYPE_VMWARE_GP) {
8792		kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
8793		return 1;
8794	}
8795
8796	if (kvm->arch.exit_on_emulation_error ||
8797	    (emulation_type & EMULTYPE_SKIP)) {
8798		prepare_emulation_ctxt_failure_exit(vcpu);
8799		return 0;
8800	}
8801
8802	kvm_queue_exception(vcpu, UD_VECTOR);
8803
8804	if (!is_guest_mode(vcpu) && static_call(kvm_x86_get_cpl)(vcpu) == 0) {
8805		prepare_emulation_ctxt_failure_exit(vcpu);
8806		return 0;
8807	}
8808
8809	return 1;
8810}
8811
8812static bool reexecute_instruction(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa,
8813				  int emulation_type)
8814{
8815	gpa_t gpa = cr2_or_gpa;
8816	kvm_pfn_t pfn;
8817
8818	if (!(emulation_type & EMULTYPE_ALLOW_RETRY_PF))
8819		return false;
8820
8821	if (WARN_ON_ONCE(is_guest_mode(vcpu)) ||
8822	    WARN_ON_ONCE(!(emulation_type & EMULTYPE_PF)))
8823		return false;
8824
8825	if (!vcpu->arch.mmu->root_role.direct) {
8826		/*
8827		 * Write permission should be allowed since only
8828		 * write access need to be emulated.
8829		 */
8830		gpa = kvm_mmu_gva_to_gpa_write(vcpu, cr2_or_gpa, NULL);
8831
8832		/*
8833		 * If the mapping is invalid in guest, let cpu retry
8834		 * it to generate fault.
8835		 */
8836		if (gpa == INVALID_GPA)
8837			return true;
8838	}
8839
8840	/*
8841	 * Do not retry the unhandleable instruction if it faults on the
8842	 * readonly host memory, otherwise it will goto a infinite loop:
8843	 * retry instruction -> write #PF -> emulation fail -> retry
8844	 * instruction -> ...
8845	 */
8846	pfn = gfn_to_pfn(vcpu->kvm, gpa_to_gfn(gpa));
8847
8848	/*
8849	 * If the instruction failed on the error pfn, it can not be fixed,
8850	 * report the error to userspace.
8851	 */
8852	if (is_error_noslot_pfn(pfn))
8853		return false;
8854
8855	kvm_release_pfn_clean(pfn);
8856
8857	/*
8858	 * If emulation may have been triggered by a write to a shadowed page
8859	 * table, unprotect the gfn (zap any relevant SPTEs) and re-enter the
8860	 * guest to let the CPU re-execute the instruction in the hope that the
8861	 * CPU can cleanly execute the instruction that KVM failed to emulate.
8862	 */
8863	if (vcpu->kvm->arch.indirect_shadow_pages)
8864		kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
8865
8866	/*
8867	 * If the failed instruction faulted on an access to page tables that
8868	 * are used to translate any part of the instruction, KVM can't resolve
8869	 * the issue by unprotecting the gfn, as zapping the shadow page will
8870	 * result in the instruction taking a !PRESENT page fault and thus put
8871	 * the vCPU into an infinite loop of page faults.  E.g. KVM will create
8872	 * a SPTE and write-protect the gfn to resolve the !PRESENT fault, and
8873	 * then zap the SPTE to unprotect the gfn, and then do it all over
8874	 * again.  Report the error to userspace.
8875	 */
8876	return !(emulation_type & EMULTYPE_WRITE_PF_TO_SP);
8877}
8878
8879static bool retry_instruction(struct x86_emulate_ctxt *ctxt,
8880			      gpa_t cr2_or_gpa,  int emulation_type)
8881{
8882	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
8883	unsigned long last_retry_eip, last_retry_addr, gpa = cr2_or_gpa;
8884
8885	last_retry_eip = vcpu->arch.last_retry_eip;
8886	last_retry_addr = vcpu->arch.last_retry_addr;
8887
8888	/*
8889	 * If the emulation is caused by #PF and it is non-page_table
8890	 * writing instruction, it means the VM-EXIT is caused by shadow
8891	 * page protected, we can zap the shadow page and retry this
8892	 * instruction directly.
8893	 *
8894	 * Note: if the guest uses a non-page-table modifying instruction
8895	 * on the PDE that points to the instruction, then we will unmap
8896	 * the instruction and go to an infinite loop. So, we cache the
8897	 * last retried eip and the last fault address, if we meet the eip
8898	 * and the address again, we can break out of the potential infinite
8899	 * loop.
8900	 */
8901	vcpu->arch.last_retry_eip = vcpu->arch.last_retry_addr = 0;
8902
8903	if (!(emulation_type & EMULTYPE_ALLOW_RETRY_PF))
8904		return false;
8905
8906	if (WARN_ON_ONCE(is_guest_mode(vcpu)) ||
8907	    WARN_ON_ONCE(!(emulation_type & EMULTYPE_PF)))
8908		return false;
8909
8910	if (x86_page_table_writing_insn(ctxt))
8911		return false;
8912
8913	if (ctxt->eip == last_retry_eip && last_retry_addr == cr2_or_gpa)
8914		return false;
8915
8916	vcpu->arch.last_retry_eip = ctxt->eip;
8917	vcpu->arch.last_retry_addr = cr2_or_gpa;
8918
8919	if (!vcpu->arch.mmu->root_role.direct)
8920		gpa = kvm_mmu_gva_to_gpa_write(vcpu, cr2_or_gpa, NULL);
8921
8922	kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
8923
8924	return true;
8925}
8926
8927static int complete_emulated_mmio(struct kvm_vcpu *vcpu);
8928static int complete_emulated_pio(struct kvm_vcpu *vcpu);
8929
8930static int kvm_vcpu_check_hw_bp(unsigned long addr, u32 type, u32 dr7,
8931				unsigned long *db)
8932{
8933	u32 dr6 = 0;
8934	int i;
8935	u32 enable, rwlen;
8936
8937	enable = dr7;
8938	rwlen = dr7 >> 16;
8939	for (i = 0; i < 4; i++, enable >>= 2, rwlen >>= 4)
8940		if ((enable & 3) && (rwlen & 15) == type && db[i] == addr)
8941			dr6 |= (1 << i);
8942	return dr6;
8943}
8944
8945static int kvm_vcpu_do_singlestep(struct kvm_vcpu *vcpu)
8946{
8947	struct kvm_run *kvm_run = vcpu->run;
8948
8949	if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP) {
8950		kvm_run->debug.arch.dr6 = DR6_BS | DR6_ACTIVE_LOW;
8951		kvm_run->debug.arch.pc = kvm_get_linear_rip(vcpu);
8952		kvm_run->debug.arch.exception = DB_VECTOR;
8953		kvm_run->exit_reason = KVM_EXIT_DEBUG;
8954		return 0;
8955	}
8956	kvm_queue_exception_p(vcpu, DB_VECTOR, DR6_BS);
8957	return 1;
8958}
8959
8960int kvm_skip_emulated_instruction(struct kvm_vcpu *vcpu)
8961{
8962	unsigned long rflags = static_call(kvm_x86_get_rflags)(vcpu);
8963	int r;
8964
8965	r = static_call(kvm_x86_skip_emulated_instruction)(vcpu);
8966	if (unlikely(!r))
8967		return 0;
8968
8969	kvm_pmu_trigger_event(vcpu, kvm_pmu_eventsel.INSTRUCTIONS_RETIRED);
8970
8971	/*
8972	 * rflags is the old, "raw" value of the flags.  The new value has
8973	 * not been saved yet.
8974	 *
8975	 * This is correct even for TF set by the guest, because "the
8976	 * processor will not generate this exception after the instruction
8977	 * that sets the TF flag".
8978	 */
8979	if (unlikely(rflags & X86_EFLAGS_TF))
8980		r = kvm_vcpu_do_singlestep(vcpu);
8981	return r;
8982}
8983EXPORT_SYMBOL_GPL(kvm_skip_emulated_instruction);
8984
8985static bool kvm_is_code_breakpoint_inhibited(struct kvm_vcpu *vcpu)
8986{
8987	u32 shadow;
8988
8989	if (kvm_get_rflags(vcpu) & X86_EFLAGS_RF)
8990		return true;
8991
8992	/*
8993	 * Intel CPUs inhibit code #DBs when MOV/POP SS blocking is active,
8994	 * but AMD CPUs do not.  MOV/POP SS blocking is rare, check that first
8995	 * to avoid the relatively expensive CPUID lookup.
8996	 */
8997	shadow = static_call(kvm_x86_get_interrupt_shadow)(vcpu);
8998	return (shadow & KVM_X86_SHADOW_INT_MOV_SS) &&
8999	       guest_cpuid_is_intel(vcpu);
9000}
9001
9002static bool kvm_vcpu_check_code_breakpoint(struct kvm_vcpu *vcpu,
9003					   int emulation_type, int *r)
9004{
9005	WARN_ON_ONCE(emulation_type & EMULTYPE_NO_DECODE);
9006
9007	/*
9008	 * Do not check for code breakpoints if hardware has already done the
9009	 * checks, as inferred from the emulation type.  On NO_DECODE and SKIP,
9010	 * the instruction has passed all exception checks, and all intercepted
9011	 * exceptions that trigger emulation have lower priority than code
9012	 * breakpoints, i.e. the fact that the intercepted exception occurred
9013	 * means any code breakpoints have already been serviced.
9014	 *
9015	 * Note, KVM needs to check for code #DBs on EMULTYPE_TRAP_UD_FORCED as
9016	 * hardware has checked the RIP of the magic prefix, but not the RIP of
9017	 * the instruction being emulated.  The intent of forced emulation is
9018	 * to behave as if KVM intercepted the instruction without an exception
9019	 * and without a prefix.
9020	 */
9021	if (emulation_type & (EMULTYPE_NO_DECODE | EMULTYPE_SKIP |
9022			      EMULTYPE_TRAP_UD | EMULTYPE_VMWARE_GP | EMULTYPE_PF))
9023		return false;
9024
9025	if (unlikely(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) &&
9026	    (vcpu->arch.guest_debug_dr7 & DR7_BP_EN_MASK)) {
9027		struct kvm_run *kvm_run = vcpu->run;
9028		unsigned long eip = kvm_get_linear_rip(vcpu);
9029		u32 dr6 = kvm_vcpu_check_hw_bp(eip, 0,
9030					   vcpu->arch.guest_debug_dr7,
9031					   vcpu->arch.eff_db);
9032
9033		if (dr6 != 0) {
9034			kvm_run->debug.arch.dr6 = dr6 | DR6_ACTIVE_LOW;
9035			kvm_run->debug.arch.pc = eip;
9036			kvm_run->debug.arch.exception = DB_VECTOR;
9037			kvm_run->exit_reason = KVM_EXIT_DEBUG;
9038			*r = 0;
9039			return true;
9040		}
9041	}
9042
9043	if (unlikely(vcpu->arch.dr7 & DR7_BP_EN_MASK) &&
9044	    !kvm_is_code_breakpoint_inhibited(vcpu)) {
9045		unsigned long eip = kvm_get_linear_rip(vcpu);
9046		u32 dr6 = kvm_vcpu_check_hw_bp(eip, 0,
9047					   vcpu->arch.dr7,
9048					   vcpu->arch.db);
9049
9050		if (dr6 != 0) {
9051			kvm_queue_exception_p(vcpu, DB_VECTOR, dr6);
9052			*r = 1;
9053			return true;
9054		}
9055	}
9056
9057	return false;
9058}
9059
9060static bool is_vmware_backdoor_opcode(struct x86_emulate_ctxt *ctxt)
9061{
9062	switch (ctxt->opcode_len) {
9063	case 1:
9064		switch (ctxt->b) {
9065		case 0xe4:	/* IN */
9066		case 0xe5:
9067		case 0xec:
9068		case 0xed:
9069		case 0xe6:	/* OUT */
9070		case 0xe7:
9071		case 0xee:
9072		case 0xef:
9073		case 0x6c:	/* INS */
9074		case 0x6d:
9075		case 0x6e:	/* OUTS */
9076		case 0x6f:
9077			return true;
9078		}
9079		break;
9080	case 2:
9081		switch (ctxt->b) {
9082		case 0x33:	/* RDPMC */
9083			return true;
9084		}
9085		break;
9086	}
9087
9088	return false;
9089}
9090
9091/*
9092 * Decode an instruction for emulation.  The caller is responsible for handling
9093 * code breakpoints.  Note, manually detecting code breakpoints is unnecessary
9094 * (and wrong) when emulating on an intercepted fault-like exception[*], as
9095 * code breakpoints have higher priority and thus have already been done by
9096 * hardware.
9097 *
9098 * [*] Except #MC, which is higher priority, but KVM should never emulate in
9099 *     response to a machine check.
9100 */
9101int x86_decode_emulated_instruction(struct kvm_vcpu *vcpu, int emulation_type,
9102				    void *insn, int insn_len)
9103{
9104	struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
9105	int r;
9106
9107	init_emulate_ctxt(vcpu);
9108
9109	r = x86_decode_insn(ctxt, insn, insn_len, emulation_type);
9110
9111	trace_kvm_emulate_insn_start(vcpu);
9112	++vcpu->stat.insn_emulation;
9113
9114	return r;
9115}
9116EXPORT_SYMBOL_GPL(x86_decode_emulated_instruction);
9117
9118int x86_emulate_instruction(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa,
9119			    int emulation_type, void *insn, int insn_len)
9120{
9121	int r;
9122	struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
9123	bool writeback = true;
9124
9125	r = kvm_check_emulate_insn(vcpu, emulation_type, insn, insn_len);
9126	if (r != X86EMUL_CONTINUE) {
9127		if (r == X86EMUL_RETRY_INSTR || r == X86EMUL_PROPAGATE_FAULT)
9128			return 1;
9129
9130		WARN_ON_ONCE(r != X86EMUL_UNHANDLEABLE);
9131		return handle_emulation_failure(vcpu, emulation_type);
9132	}
9133
9134	vcpu->arch.l1tf_flush_l1d = true;
9135
9136	if (!(emulation_type & EMULTYPE_NO_DECODE)) {
9137		kvm_clear_exception_queue(vcpu);
9138
9139		/*
9140		 * Return immediately if RIP hits a code breakpoint, such #DBs
9141		 * are fault-like and are higher priority than any faults on
9142		 * the code fetch itself.
9143		 */
9144		if (kvm_vcpu_check_code_breakpoint(vcpu, emulation_type, &r))
9145			return r;
9146
9147		r = x86_decode_emulated_instruction(vcpu, emulation_type,
9148						    insn, insn_len);
9149		if (r != EMULATION_OK)  {
9150			if ((emulation_type & EMULTYPE_TRAP_UD) ||
9151			    (emulation_type & EMULTYPE_TRAP_UD_FORCED)) {
9152				kvm_queue_exception(vcpu, UD_VECTOR);
9153				return 1;
9154			}
9155			if (reexecute_instruction(vcpu, cr2_or_gpa,
9156						  emulation_type))
9157				return 1;
9158
9159			if (ctxt->have_exception &&
9160			    !(emulation_type & EMULTYPE_SKIP)) {
9161				/*
9162				 * #UD should result in just EMULATION_FAILED, and trap-like
9163				 * exception should not be encountered during decode.
9164				 */
9165				WARN_ON_ONCE(ctxt->exception.vector == UD_VECTOR ||
9166					     exception_type(ctxt->exception.vector) == EXCPT_TRAP);
9167				inject_emulated_exception(vcpu);
9168				return 1;
9169			}
9170			return handle_emulation_failure(vcpu, emulation_type);
9171		}
9172	}
9173
9174	if ((emulation_type & EMULTYPE_VMWARE_GP) &&
9175	    !is_vmware_backdoor_opcode(ctxt)) {
9176		kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
9177		return 1;
9178	}
9179
9180	/*
9181	 * EMULTYPE_SKIP without EMULTYPE_COMPLETE_USER_EXIT is intended for
9182	 * use *only* by vendor callbacks for kvm_skip_emulated_instruction().
9183	 * The caller is responsible for updating interruptibility state and
9184	 * injecting single-step #DBs.
9185	 */
9186	if (emulation_type & EMULTYPE_SKIP) {
9187		if (ctxt->mode != X86EMUL_MODE_PROT64)
9188			ctxt->eip = (u32)ctxt->_eip;
9189		else
9190			ctxt->eip = ctxt->_eip;
9191
9192		if (emulation_type & EMULTYPE_COMPLETE_USER_EXIT) {
9193			r = 1;
9194			goto writeback;
9195		}
9196
9197		kvm_rip_write(vcpu, ctxt->eip);
9198		if (ctxt->eflags & X86_EFLAGS_RF)
9199			kvm_set_rflags(vcpu, ctxt->eflags & ~X86_EFLAGS_RF);
9200		return 1;
9201	}
9202
9203	if (retry_instruction(ctxt, cr2_or_gpa, emulation_type))
9204		return 1;
9205
9206	/* this is needed for vmware backdoor interface to work since it
9207	   changes registers values  during IO operation */
9208	if (vcpu->arch.emulate_regs_need_sync_from_vcpu) {
9209		vcpu->arch.emulate_regs_need_sync_from_vcpu = false;
9210		emulator_invalidate_register_cache(ctxt);
9211	}
9212
9213restart:
9214	if (emulation_type & EMULTYPE_PF) {
9215		/* Save the faulting GPA (cr2) in the address field */
9216		ctxt->exception.address = cr2_or_gpa;
9217
9218		/* With shadow page tables, cr2 contains a GVA or nGPA. */
9219		if (vcpu->arch.mmu->root_role.direct) {
9220			ctxt->gpa_available = true;
9221			ctxt->gpa_val = cr2_or_gpa;
9222		}
9223	} else {
9224		/* Sanitize the address out of an abundance of paranoia. */
9225		ctxt->exception.address = 0;
9226	}
9227
9228	r = x86_emulate_insn(ctxt);
9229
9230	if (r == EMULATION_INTERCEPTED)
9231		return 1;
9232
9233	if (r == EMULATION_FAILED) {
9234		if (reexecute_instruction(vcpu, cr2_or_gpa, emulation_type))
9235			return 1;
9236
9237		return handle_emulation_failure(vcpu, emulation_type);
9238	}
9239
9240	if (ctxt->have_exception) {
9241		WARN_ON_ONCE(vcpu->mmio_needed && !vcpu->mmio_is_write);
9242		vcpu->mmio_needed = false;
9243		r = 1;
9244		inject_emulated_exception(vcpu);
9245	} else if (vcpu->arch.pio.count) {
9246		if (!vcpu->arch.pio.in) {
9247			/* FIXME: return into emulator if single-stepping.  */
9248			vcpu->arch.pio.count = 0;
9249		} else {
9250			writeback = false;
9251			vcpu->arch.complete_userspace_io = complete_emulated_pio;
9252		}
9253		r = 0;
9254	} else if (vcpu->mmio_needed) {
9255		++vcpu->stat.mmio_exits;
9256
9257		if (!vcpu->mmio_is_write)
9258			writeback = false;
9259		r = 0;
9260		vcpu->arch.complete_userspace_io = complete_emulated_mmio;
9261	} else if (vcpu->arch.complete_userspace_io) {
9262		writeback = false;
9263		r = 0;
9264	} else if (r == EMULATION_RESTART)
9265		goto restart;
9266	else
9267		r = 1;
9268
9269writeback:
9270	if (writeback) {
9271		unsigned long rflags = static_call(kvm_x86_get_rflags)(vcpu);
9272		toggle_interruptibility(vcpu, ctxt->interruptibility);
9273		vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
9274
9275		/*
9276		 * Note, EXCPT_DB is assumed to be fault-like as the emulator
9277		 * only supports code breakpoints and general detect #DB, both
9278		 * of which are fault-like.
9279		 */
9280		if (!ctxt->have_exception ||
9281		    exception_type(ctxt->exception.vector) == EXCPT_TRAP) {
9282			kvm_pmu_trigger_event(vcpu, kvm_pmu_eventsel.INSTRUCTIONS_RETIRED);
9283			if (ctxt->is_branch)
9284				kvm_pmu_trigger_event(vcpu, kvm_pmu_eventsel.BRANCH_INSTRUCTIONS_RETIRED);
9285			kvm_rip_write(vcpu, ctxt->eip);
9286			if (r && (ctxt->tf || (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)))
9287				r = kvm_vcpu_do_singlestep(vcpu);
9288			static_call_cond(kvm_x86_update_emulated_instruction)(vcpu);
9289			__kvm_set_rflags(vcpu, ctxt->eflags);
9290		}
9291
9292		/*
9293		 * For STI, interrupts are shadowed; so KVM_REQ_EVENT will
9294		 * do nothing, and it will be requested again as soon as
9295		 * the shadow expires.  But we still need to check here,
9296		 * because POPF has no interrupt shadow.
9297		 */
9298		if (unlikely((ctxt->eflags & ~rflags) & X86_EFLAGS_IF))
9299			kvm_make_request(KVM_REQ_EVENT, vcpu);
9300	} else
9301		vcpu->arch.emulate_regs_need_sync_to_vcpu = true;
9302
9303	return r;
9304}
9305
9306int kvm_emulate_instruction(struct kvm_vcpu *vcpu, int emulation_type)
9307{
9308	return x86_emulate_instruction(vcpu, 0, emulation_type, NULL, 0);
9309}
9310EXPORT_SYMBOL_GPL(kvm_emulate_instruction);
9311
9312int kvm_emulate_instruction_from_buffer(struct kvm_vcpu *vcpu,
9313					void *insn, int insn_len)
9314{
9315	return x86_emulate_instruction(vcpu, 0, 0, insn, insn_len);
9316}
9317EXPORT_SYMBOL_GPL(kvm_emulate_instruction_from_buffer);
9318
9319static int complete_fast_pio_out_port_0x7e(struct kvm_vcpu *vcpu)
9320{
9321	vcpu->arch.pio.count = 0;
9322	return 1;
9323}
9324
9325static int complete_fast_pio_out(struct kvm_vcpu *vcpu)
9326{
9327	vcpu->arch.pio.count = 0;
9328
9329	if (unlikely(!kvm_is_linear_rip(vcpu, vcpu->arch.pio.linear_rip)))
9330		return 1;
9331
9332	return kvm_skip_emulated_instruction(vcpu);
9333}
9334
9335static int kvm_fast_pio_out(struct kvm_vcpu *vcpu, int size,
9336			    unsigned short port)
9337{
9338	unsigned long val = kvm_rax_read(vcpu);
9339	int ret = emulator_pio_out(vcpu, size, port, &val, 1);
9340
9341	if (ret)
9342		return ret;
9343
9344	/*
9345	 * Workaround userspace that relies on old KVM behavior of %rip being
9346	 * incremented prior to exiting to userspace to handle "OUT 0x7e".
9347	 */
9348	if (port == 0x7e &&
9349	    kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_OUT_7E_INC_RIP)) {
9350		vcpu->arch.complete_userspace_io =
9351			complete_fast_pio_out_port_0x7e;
9352		kvm_skip_emulated_instruction(vcpu);
9353	} else {
9354		vcpu->arch.pio.linear_rip = kvm_get_linear_rip(vcpu);
9355		vcpu->arch.complete_userspace_io = complete_fast_pio_out;
9356	}
9357	return 0;
9358}
9359
9360static int complete_fast_pio_in(struct kvm_vcpu *vcpu)
9361{
9362	unsigned long val;
9363
9364	/* We should only ever be called with arch.pio.count equal to 1 */
9365	BUG_ON(vcpu->arch.pio.count != 1);
9366
9367	if (unlikely(!kvm_is_linear_rip(vcpu, vcpu->arch.pio.linear_rip))) {
9368		vcpu->arch.pio.count = 0;
9369		return 1;
9370	}
9371
9372	/* For size less than 4 we merge, else we zero extend */
9373	val = (vcpu->arch.pio.size < 4) ? kvm_rax_read(vcpu) : 0;
9374
9375	complete_emulator_pio_in(vcpu, &val);
9376	kvm_rax_write(vcpu, val);
9377
9378	return kvm_skip_emulated_instruction(vcpu);
9379}
9380
9381static int kvm_fast_pio_in(struct kvm_vcpu *vcpu, int size,
9382			   unsigned short port)
9383{
9384	unsigned long val;
9385	int ret;
9386
9387	/* For size less than 4 we merge, else we zero extend */
9388	val = (size < 4) ? kvm_rax_read(vcpu) : 0;
9389
9390	ret = emulator_pio_in(vcpu, size, port, &val, 1);
9391	if (ret) {
9392		kvm_rax_write(vcpu, val);
9393		return ret;
9394	}
9395
9396	vcpu->arch.pio.linear_rip = kvm_get_linear_rip(vcpu);
9397	vcpu->arch.complete_userspace_io = complete_fast_pio_in;
9398
9399	return 0;
9400}
9401
9402int kvm_fast_pio(struct kvm_vcpu *vcpu, int size, unsigned short port, int in)
9403{
9404	int ret;
9405
9406	if (in)
9407		ret = kvm_fast_pio_in(vcpu, size, port);
9408	else
9409		ret = kvm_fast_pio_out(vcpu, size, port);
9410	return ret && kvm_skip_emulated_instruction(vcpu);
9411}
9412EXPORT_SYMBOL_GPL(kvm_fast_pio);
9413
9414static int kvmclock_cpu_down_prep(unsigned int cpu)
9415{
9416	__this_cpu_write(cpu_tsc_khz, 0);
9417	return 0;
9418}
9419
9420static void tsc_khz_changed(void *data)
9421{
9422	struct cpufreq_freqs *freq = data;
9423	unsigned long khz;
9424
9425	WARN_ON_ONCE(boot_cpu_has(X86_FEATURE_CONSTANT_TSC));
9426
9427	if (data)
9428		khz = freq->new;
9429	else
9430		khz = cpufreq_quick_get(raw_smp_processor_id());
9431	if (!khz)
9432		khz = tsc_khz;
9433	__this_cpu_write(cpu_tsc_khz, khz);
9434}
9435
9436#ifdef CONFIG_X86_64
9437static void kvm_hyperv_tsc_notifier(void)
9438{
9439	struct kvm *kvm;
9440	int cpu;
9441
9442	mutex_lock(&kvm_lock);
9443	list_for_each_entry(kvm, &vm_list, vm_list)
9444		kvm_make_mclock_inprogress_request(kvm);
9445
9446	/* no guest entries from this point */
9447	hyperv_stop_tsc_emulation();
9448
9449	/* TSC frequency always matches when on Hyper-V */
9450	if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) {
9451		for_each_present_cpu(cpu)
9452			per_cpu(cpu_tsc_khz, cpu) = tsc_khz;
9453	}
9454	kvm_caps.max_guest_tsc_khz = tsc_khz;
9455
9456	list_for_each_entry(kvm, &vm_list, vm_list) {
9457		__kvm_start_pvclock_update(kvm);
9458		pvclock_update_vm_gtod_copy(kvm);
9459		kvm_end_pvclock_update(kvm);
9460	}
9461
9462	mutex_unlock(&kvm_lock);
9463}
9464#endif
9465
9466static void __kvmclock_cpufreq_notifier(struct cpufreq_freqs *freq, int cpu)
9467{
9468	struct kvm *kvm;
9469	struct kvm_vcpu *vcpu;
9470	int send_ipi = 0;
9471	unsigned long i;
9472
9473	/*
9474	 * We allow guests to temporarily run on slowing clocks,
9475	 * provided we notify them after, or to run on accelerating
9476	 * clocks, provided we notify them before.  Thus time never
9477	 * goes backwards.
9478	 *
9479	 * However, we have a problem.  We can't atomically update
9480	 * the frequency of a given CPU from this function; it is
9481	 * merely a notifier, which can be called from any CPU.
9482	 * Changing the TSC frequency at arbitrary points in time
9483	 * requires a recomputation of local variables related to
9484	 * the TSC for each VCPU.  We must flag these local variables
9485	 * to be updated and be sure the update takes place with the
9486	 * new frequency before any guests proceed.
9487	 *
9488	 * Unfortunately, the combination of hotplug CPU and frequency
9489	 * change creates an intractable locking scenario; the order
9490	 * of when these callouts happen is undefined with respect to
9491	 * CPU hotplug, and they can race with each other.  As such,
9492	 * merely setting per_cpu(cpu_tsc_khz) = X during a hotadd is
9493	 * undefined; you can actually have a CPU frequency change take
9494	 * place in between the computation of X and the setting of the
9495	 * variable.  To protect against this problem, all updates of
9496	 * the per_cpu tsc_khz variable are done in an interrupt
9497	 * protected IPI, and all callers wishing to update the value
9498	 * must wait for a synchronous IPI to complete (which is trivial
9499	 * if the caller is on the CPU already).  This establishes the
9500	 * necessary total order on variable updates.
9501	 *
9502	 * Note that because a guest time update may take place
9503	 * anytime after the setting of the VCPU's request bit, the
9504	 * correct TSC value must be set before the request.  However,
9505	 * to ensure the update actually makes it to any guest which
9506	 * starts running in hardware virtualization between the set
9507	 * and the acquisition of the spinlock, we must also ping the
9508	 * CPU after setting the request bit.
9509	 *
9510	 */
9511
9512	smp_call_function_single(cpu, tsc_khz_changed, freq, 1);
9513
9514	mutex_lock(&kvm_lock);
9515	list_for_each_entry(kvm, &vm_list, vm_list) {
9516		kvm_for_each_vcpu(i, vcpu, kvm) {
9517			if (vcpu->cpu != cpu)
9518				continue;
9519			kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
9520			if (vcpu->cpu != raw_smp_processor_id())
9521				send_ipi = 1;
9522		}
9523	}
9524	mutex_unlock(&kvm_lock);
9525
9526	if (freq->old < freq->new && send_ipi) {
9527		/*
9528		 * We upscale the frequency.  Must make the guest
9529		 * doesn't see old kvmclock values while running with
9530		 * the new frequency, otherwise we risk the guest sees
9531		 * time go backwards.
9532		 *
9533		 * In case we update the frequency for another cpu
9534		 * (which might be in guest context) send an interrupt
9535		 * to kick the cpu out of guest context.  Next time
9536		 * guest context is entered kvmclock will be updated,
9537		 * so the guest will not see stale values.
9538		 */
9539		smp_call_function_single(cpu, tsc_khz_changed, freq, 1);
9540	}
9541}
9542
9543static int kvmclock_cpufreq_notifier(struct notifier_block *nb, unsigned long val,
9544				     void *data)
9545{
9546	struct cpufreq_freqs *freq = data;
9547	int cpu;
9548
9549	if (val == CPUFREQ_PRECHANGE && freq->old > freq->new)
9550		return 0;
9551	if (val == CPUFREQ_POSTCHANGE && freq->old < freq->new)
9552		return 0;
9553
9554	for_each_cpu(cpu, freq->policy->cpus)
9555		__kvmclock_cpufreq_notifier(freq, cpu);
9556
9557	return 0;
9558}
9559
9560static struct notifier_block kvmclock_cpufreq_notifier_block = {
9561	.notifier_call  = kvmclock_cpufreq_notifier
9562};
9563
9564static int kvmclock_cpu_online(unsigned int cpu)
9565{
9566	tsc_khz_changed(NULL);
9567	return 0;
9568}
9569
9570static void kvm_timer_init(void)
9571{
9572	if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) {
9573		max_tsc_khz = tsc_khz;
9574
9575		if (IS_ENABLED(CONFIG_CPU_FREQ)) {
9576			struct cpufreq_policy *policy;
9577			int cpu;
9578
9579			cpu = get_cpu();
9580			policy = cpufreq_cpu_get(cpu);
9581			if (policy) {
9582				if (policy->cpuinfo.max_freq)
9583					max_tsc_khz = policy->cpuinfo.max_freq;
9584				cpufreq_cpu_put(policy);
9585			}
9586			put_cpu();
9587		}
9588		cpufreq_register_notifier(&kvmclock_cpufreq_notifier_block,
9589					  CPUFREQ_TRANSITION_NOTIFIER);
9590
9591		cpuhp_setup_state(CPUHP_AP_X86_KVM_CLK_ONLINE, "x86/kvm/clk:online",
9592				  kvmclock_cpu_online, kvmclock_cpu_down_prep);
9593	}
9594}
9595
9596#ifdef CONFIG_X86_64
9597static void pvclock_gtod_update_fn(struct work_struct *work)
9598{
9599	struct kvm *kvm;
9600	struct kvm_vcpu *vcpu;
9601	unsigned long i;
9602
9603	mutex_lock(&kvm_lock);
9604	list_for_each_entry(kvm, &vm_list, vm_list)
9605		kvm_for_each_vcpu(i, vcpu, kvm)
9606			kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
9607	atomic_set(&kvm_guest_has_master_clock, 0);
9608	mutex_unlock(&kvm_lock);
9609}
9610
9611static DECLARE_WORK(pvclock_gtod_work, pvclock_gtod_update_fn);
9612
9613/*
9614 * Indirection to move queue_work() out of the tk_core.seq write held
9615 * region to prevent possible deadlocks against time accessors which
9616 * are invoked with work related locks held.
9617 */
9618static void pvclock_irq_work_fn(struct irq_work *w)
9619{
9620	queue_work(system_long_wq, &pvclock_gtod_work);
9621}
9622
9623static DEFINE_IRQ_WORK(pvclock_irq_work, pvclock_irq_work_fn);
9624
9625/*
9626 * Notification about pvclock gtod data update.
9627 */
9628static int pvclock_gtod_notify(struct notifier_block *nb, unsigned long unused,
9629			       void *priv)
9630{
9631	struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
9632	struct timekeeper *tk = priv;
9633
9634	update_pvclock_gtod(tk);
9635
9636	/*
9637	 * Disable master clock if host does not trust, or does not use,
9638	 * TSC based clocksource. Delegate queue_work() to irq_work as
9639	 * this is invoked with tk_core.seq write held.
9640	 */
9641	if (!gtod_is_based_on_tsc(gtod->clock.vclock_mode) &&
9642	    atomic_read(&kvm_guest_has_master_clock) != 0)
9643		irq_work_queue(&pvclock_irq_work);
9644	return 0;
9645}
9646
9647static struct notifier_block pvclock_gtod_notifier = {
9648	.notifier_call = pvclock_gtod_notify,
9649};
9650#endif
9651
9652static inline void kvm_ops_update(struct kvm_x86_init_ops *ops)
9653{
9654	memcpy(&kvm_x86_ops, ops->runtime_ops, sizeof(kvm_x86_ops));
9655
9656#define __KVM_X86_OP(func) \
9657	static_call_update(kvm_x86_##func, kvm_x86_ops.func);
9658#define KVM_X86_OP(func) \
9659	WARN_ON(!kvm_x86_ops.func); __KVM_X86_OP(func)
9660#define KVM_X86_OP_OPTIONAL __KVM_X86_OP
9661#define KVM_X86_OP_OPTIONAL_RET0(func) \
9662	static_call_update(kvm_x86_##func, (void *)kvm_x86_ops.func ? : \
9663					   (void *)__static_call_return0);
9664#include <asm/kvm-x86-ops.h>
9665#undef __KVM_X86_OP
9666
9667	kvm_pmu_ops_update(ops->pmu_ops);
9668}
9669
9670static int kvm_x86_check_processor_compatibility(void)
9671{
9672	int cpu = smp_processor_id();
9673	struct cpuinfo_x86 *c = &cpu_data(cpu);
9674
9675	/*
9676	 * Compatibility checks are done when loading KVM and when enabling
9677	 * hardware, e.g. during CPU hotplug, to ensure all online CPUs are
9678	 * compatible, i.e. KVM should never perform a compatibility check on
9679	 * an offline CPU.
9680	 */
9681	WARN_ON(!cpu_online(cpu));
9682
9683	if (__cr4_reserved_bits(cpu_has, c) !=
9684	    __cr4_reserved_bits(cpu_has, &boot_cpu_data))
9685		return -EIO;
9686
9687	return static_call(kvm_x86_check_processor_compatibility)();
9688}
9689
9690static void kvm_x86_check_cpu_compat(void *ret)
9691{
9692	*(int *)ret = kvm_x86_check_processor_compatibility();
9693}
9694
9695int kvm_x86_vendor_init(struct kvm_x86_init_ops *ops)
9696{
9697	u64 host_pat;
9698	int r, cpu;
9699
9700	guard(mutex)(&vendor_module_lock);
9701
9702	if (kvm_x86_ops.hardware_enable) {
9703		pr_err("already loaded vendor module '%s'\n", kvm_x86_ops.name);
9704		return -EEXIST;
9705	}
9706
9707	/*
9708	 * KVM explicitly assumes that the guest has an FPU and
9709	 * FXSAVE/FXRSTOR. For example, the KVM_GET_FPU explicitly casts the
9710	 * vCPU's FPU state as a fxregs_state struct.
9711	 */
9712	if (!boot_cpu_has(X86_FEATURE_FPU) || !boot_cpu_has(X86_FEATURE_FXSR)) {
9713		pr_err("inadequate fpu\n");
9714		return -EOPNOTSUPP;
9715	}
9716
9717	if (IS_ENABLED(CONFIG_PREEMPT_RT) && !boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) {
9718		pr_err("RT requires X86_FEATURE_CONSTANT_TSC\n");
9719		return -EOPNOTSUPP;
9720	}
9721
9722	/*
9723	 * KVM assumes that PAT entry '0' encodes WB memtype and simply zeroes
9724	 * the PAT bits in SPTEs.  Bail if PAT[0] is programmed to something
9725	 * other than WB.  Note, EPT doesn't utilize the PAT, but don't bother
9726	 * with an exception.  PAT[0] is set to WB on RESET and also by the
9727	 * kernel, i.e. failure indicates a kernel bug or broken firmware.
9728	 */
9729	if (rdmsrl_safe(MSR_IA32_CR_PAT, &host_pat) ||
9730	    (host_pat & GENMASK(2, 0)) != 6) {
9731		pr_err("host PAT[0] is not WB\n");
9732		return -EIO;
9733	}
9734
9735	x86_emulator_cache = kvm_alloc_emulator_cache();
9736	if (!x86_emulator_cache) {
9737		pr_err("failed to allocate cache for x86 emulator\n");
9738		return -ENOMEM;
9739	}
9740
9741	user_return_msrs = alloc_percpu(struct kvm_user_return_msrs);
9742	if (!user_return_msrs) {
9743		pr_err("failed to allocate percpu kvm_user_return_msrs\n");
9744		r = -ENOMEM;
9745		goto out_free_x86_emulator_cache;
9746	}
9747	kvm_nr_uret_msrs = 0;
9748
9749	r = kvm_mmu_vendor_module_init();
9750	if (r)
9751		goto out_free_percpu;
9752
9753	if (boot_cpu_has(X86_FEATURE_XSAVE)) {
9754		host_xcr0 = xgetbv(XCR_XFEATURE_ENABLED_MASK);
9755		kvm_caps.supported_xcr0 = host_xcr0 & KVM_SUPPORTED_XCR0;
9756	}
9757
9758	rdmsrl_safe(MSR_EFER, &host_efer);
9759
9760	if (boot_cpu_has(X86_FEATURE_XSAVES))
9761		rdmsrl(MSR_IA32_XSS, host_xss);
9762
9763	kvm_init_pmu_capability(ops->pmu_ops);
9764
9765	if (boot_cpu_has(X86_FEATURE_ARCH_CAPABILITIES))
9766		rdmsrl(MSR_IA32_ARCH_CAPABILITIES, host_arch_capabilities);
9767
9768	r = ops->hardware_setup();
9769	if (r != 0)
9770		goto out_mmu_exit;
9771
9772	kvm_ops_update(ops);
9773
9774	for_each_online_cpu(cpu) {
9775		smp_call_function_single(cpu, kvm_x86_check_cpu_compat, &r, 1);
9776		if (r < 0)
9777			goto out_unwind_ops;
9778	}
9779
9780	/*
9781	 * Point of no return!  DO NOT add error paths below this point unless
9782	 * absolutely necessary, as most operations from this point forward
9783	 * require unwinding.
9784	 */
9785	kvm_timer_init();
9786
9787	if (pi_inject_timer == -1)
9788		pi_inject_timer = housekeeping_enabled(HK_TYPE_TIMER);
9789#ifdef CONFIG_X86_64
9790	pvclock_gtod_register_notifier(&pvclock_gtod_notifier);
9791
9792	if (hypervisor_is_type(X86_HYPER_MS_HYPERV))
9793		set_hv_tscchange_cb(kvm_hyperv_tsc_notifier);
9794#endif
9795
9796	kvm_register_perf_callbacks(ops->handle_intel_pt_intr);
9797
9798	if (!kvm_cpu_cap_has(X86_FEATURE_XSAVES))
9799		kvm_caps.supported_xss = 0;
9800
9801#define __kvm_cpu_cap_has(UNUSED_, f) kvm_cpu_cap_has(f)
9802	cr4_reserved_bits = __cr4_reserved_bits(__kvm_cpu_cap_has, UNUSED_);
9803#undef __kvm_cpu_cap_has
9804
9805	if (kvm_caps.has_tsc_control) {
9806		/*
9807		 * Make sure the user can only configure tsc_khz values that
9808		 * fit into a signed integer.
9809		 * A min value is not calculated because it will always
9810		 * be 1 on all machines.
9811		 */
9812		u64 max = min(0x7fffffffULL,
9813			      __scale_tsc(kvm_caps.max_tsc_scaling_ratio, tsc_khz));
9814		kvm_caps.max_guest_tsc_khz = max;
9815	}
9816	kvm_caps.default_tsc_scaling_ratio = 1ULL << kvm_caps.tsc_scaling_ratio_frac_bits;
9817	kvm_init_msr_lists();
9818	return 0;
9819
9820out_unwind_ops:
9821	kvm_x86_ops.hardware_enable = NULL;
9822	static_call(kvm_x86_hardware_unsetup)();
9823out_mmu_exit:
9824	kvm_mmu_vendor_module_exit();
9825out_free_percpu:
9826	free_percpu(user_return_msrs);
9827out_free_x86_emulator_cache:
9828	kmem_cache_destroy(x86_emulator_cache);
9829	return r;
9830}
9831EXPORT_SYMBOL_GPL(kvm_x86_vendor_init);
9832
9833void kvm_x86_vendor_exit(void)
9834{
9835	kvm_unregister_perf_callbacks();
9836
9837#ifdef CONFIG_X86_64
9838	if (hypervisor_is_type(X86_HYPER_MS_HYPERV))
9839		clear_hv_tscchange_cb();
9840#endif
9841	kvm_lapic_exit();
9842
9843	if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) {
9844		cpufreq_unregister_notifier(&kvmclock_cpufreq_notifier_block,
9845					    CPUFREQ_TRANSITION_NOTIFIER);
9846		cpuhp_remove_state_nocalls(CPUHP_AP_X86_KVM_CLK_ONLINE);
9847	}
9848#ifdef CONFIG_X86_64
9849	pvclock_gtod_unregister_notifier(&pvclock_gtod_notifier);
9850	irq_work_sync(&pvclock_irq_work);
9851	cancel_work_sync(&pvclock_gtod_work);
9852#endif
9853	static_call(kvm_x86_hardware_unsetup)();
9854	kvm_mmu_vendor_module_exit();
9855	free_percpu(user_return_msrs);
9856	kmem_cache_destroy(x86_emulator_cache);
9857#ifdef CONFIG_KVM_XEN
9858	static_key_deferred_flush(&kvm_xen_enabled);
9859	WARN_ON(static_branch_unlikely(&kvm_xen_enabled.key));
9860#endif
9861	mutex_lock(&vendor_module_lock);
9862	kvm_x86_ops.hardware_enable = NULL;
9863	mutex_unlock(&vendor_module_lock);
9864}
9865EXPORT_SYMBOL_GPL(kvm_x86_vendor_exit);
9866
9867static int __kvm_emulate_halt(struct kvm_vcpu *vcpu, int state, int reason)
9868{
9869	/*
9870	 * The vCPU has halted, e.g. executed HLT.  Update the run state if the
9871	 * local APIC is in-kernel, the run loop will detect the non-runnable
9872	 * state and halt the vCPU.  Exit to userspace if the local APIC is
9873	 * managed by userspace, in which case userspace is responsible for
9874	 * handling wake events.
9875	 */
9876	++vcpu->stat.halt_exits;
9877	if (lapic_in_kernel(vcpu)) {
9878		vcpu->arch.mp_state = state;
9879		return 1;
9880	} else {
9881		vcpu->run->exit_reason = reason;
9882		return 0;
9883	}
9884}
9885
9886int kvm_emulate_halt_noskip(struct kvm_vcpu *vcpu)
9887{
9888	return __kvm_emulate_halt(vcpu, KVM_MP_STATE_HALTED, KVM_EXIT_HLT);
9889}
9890EXPORT_SYMBOL_GPL(kvm_emulate_halt_noskip);
9891
9892int kvm_emulate_halt(struct kvm_vcpu *vcpu)
9893{
9894	int ret = kvm_skip_emulated_instruction(vcpu);
9895	/*
9896	 * TODO: we might be squashing a GUESTDBG_SINGLESTEP-triggered
9897	 * KVM_EXIT_DEBUG here.
9898	 */
9899	return kvm_emulate_halt_noskip(vcpu) && ret;
9900}
9901EXPORT_SYMBOL_GPL(kvm_emulate_halt);
9902
9903int kvm_emulate_ap_reset_hold(struct kvm_vcpu *vcpu)
9904{
9905	int ret = kvm_skip_emulated_instruction(vcpu);
9906
9907	return __kvm_emulate_halt(vcpu, KVM_MP_STATE_AP_RESET_HOLD,
9908					KVM_EXIT_AP_RESET_HOLD) && ret;
9909}
9910EXPORT_SYMBOL_GPL(kvm_emulate_ap_reset_hold);
9911
9912#ifdef CONFIG_X86_64
9913static int kvm_pv_clock_pairing(struct kvm_vcpu *vcpu, gpa_t paddr,
9914			        unsigned long clock_type)
9915{
9916	struct kvm_clock_pairing clock_pairing;
9917	struct timespec64 ts;
9918	u64 cycle;
9919	int ret;
9920
9921	if (clock_type != KVM_CLOCK_PAIRING_WALLCLOCK)
9922		return -KVM_EOPNOTSUPP;
9923
9924	/*
9925	 * When tsc is in permanent catchup mode guests won't be able to use
9926	 * pvclock_read_retry loop to get consistent view of pvclock
9927	 */
9928	if (vcpu->arch.tsc_always_catchup)
9929		return -KVM_EOPNOTSUPP;
9930
9931	if (!kvm_get_walltime_and_clockread(&ts, &cycle))
9932		return -KVM_EOPNOTSUPP;
9933
9934	clock_pairing.sec = ts.tv_sec;
9935	clock_pairing.nsec = ts.tv_nsec;
9936	clock_pairing.tsc = kvm_read_l1_tsc(vcpu, cycle);
9937	clock_pairing.flags = 0;
9938	memset(&clock_pairing.pad, 0, sizeof(clock_pairing.pad));
9939
9940	ret = 0;
9941	if (kvm_write_guest(vcpu->kvm, paddr, &clock_pairing,
9942			    sizeof(struct kvm_clock_pairing)))
9943		ret = -KVM_EFAULT;
9944
9945	return ret;
9946}
9947#endif
9948
9949/*
9950 * kvm_pv_kick_cpu_op:  Kick a vcpu.
9951 *
9952 * @apicid - apicid of vcpu to be kicked.
9953 */
9954static void kvm_pv_kick_cpu_op(struct kvm *kvm, int apicid)
9955{
9956	/*
9957	 * All other fields are unused for APIC_DM_REMRD, but may be consumed by
9958	 * common code, e.g. for tracing. Defer initialization to the compiler.
9959	 */
9960	struct kvm_lapic_irq lapic_irq = {
9961		.delivery_mode = APIC_DM_REMRD,
9962		.dest_mode = APIC_DEST_PHYSICAL,
9963		.shorthand = APIC_DEST_NOSHORT,
9964		.dest_id = apicid,
9965	};
9966
9967	kvm_irq_delivery_to_apic(kvm, NULL, &lapic_irq, NULL);
9968}
9969
9970bool kvm_apicv_activated(struct kvm *kvm)
9971{
9972	return (READ_ONCE(kvm->arch.apicv_inhibit_reasons) == 0);
9973}
9974EXPORT_SYMBOL_GPL(kvm_apicv_activated);
9975
9976bool kvm_vcpu_apicv_activated(struct kvm_vcpu *vcpu)
9977{
9978	ulong vm_reasons = READ_ONCE(vcpu->kvm->arch.apicv_inhibit_reasons);
9979	ulong vcpu_reasons = static_call(kvm_x86_vcpu_get_apicv_inhibit_reasons)(vcpu);
9980
9981	return (vm_reasons | vcpu_reasons) == 0;
9982}
9983EXPORT_SYMBOL_GPL(kvm_vcpu_apicv_activated);
9984
9985static void set_or_clear_apicv_inhibit(unsigned long *inhibits,
9986				       enum kvm_apicv_inhibit reason, bool set)
9987{
9988	if (set)
9989		__set_bit(reason, inhibits);
9990	else
9991		__clear_bit(reason, inhibits);
9992
9993	trace_kvm_apicv_inhibit_changed(reason, set, *inhibits);
9994}
9995
9996static void kvm_apicv_init(struct kvm *kvm)
9997{
9998	unsigned long *inhibits = &kvm->arch.apicv_inhibit_reasons;
9999
10000	init_rwsem(&kvm->arch.apicv_update_lock);
10001
10002	set_or_clear_apicv_inhibit(inhibits, APICV_INHIBIT_REASON_ABSENT, true);
10003
10004	if (!enable_apicv)
10005		set_or_clear_apicv_inhibit(inhibits,
10006					   APICV_INHIBIT_REASON_DISABLE, true);
10007}
10008
10009static void kvm_sched_yield(struct kvm_vcpu *vcpu, unsigned long dest_id)
10010{
10011	struct kvm_vcpu *target = NULL;
10012	struct kvm_apic_map *map;
10013
10014	vcpu->stat.directed_yield_attempted++;
10015
10016	if (single_task_running())
10017		goto no_yield;
10018
10019	rcu_read_lock();
10020	map = rcu_dereference(vcpu->kvm->arch.apic_map);
10021
10022	if (likely(map) && dest_id <= map->max_apic_id && map->phys_map[dest_id])
10023		target = map->phys_map[dest_id]->vcpu;
10024
10025	rcu_read_unlock();
10026
10027	if (!target || !READ_ONCE(target->ready))
10028		goto no_yield;
10029
10030	/* Ignore requests to yield to self */
10031	if (vcpu == target)
10032		goto no_yield;
10033
10034	if (kvm_vcpu_yield_to(target) <= 0)
10035		goto no_yield;
10036
10037	vcpu->stat.directed_yield_successful++;
10038
10039no_yield:
10040	return;
10041}
10042
10043static int complete_hypercall_exit(struct kvm_vcpu *vcpu)
10044{
10045	u64 ret = vcpu->run->hypercall.ret;
10046
10047	if (!is_64_bit_mode(vcpu))
10048		ret = (u32)ret;
10049	kvm_rax_write(vcpu, ret);
10050	++vcpu->stat.hypercalls;
10051	return kvm_skip_emulated_instruction(vcpu);
10052}
10053
10054int kvm_emulate_hypercall(struct kvm_vcpu *vcpu)
10055{
10056	unsigned long nr, a0, a1, a2, a3, ret;
10057	int op_64_bit;
10058
10059	if (kvm_xen_hypercall_enabled(vcpu->kvm))
10060		return kvm_xen_hypercall(vcpu);
10061
10062	if (kvm_hv_hypercall_enabled(vcpu))
10063		return kvm_hv_hypercall(vcpu);
10064
10065	nr = kvm_rax_read(vcpu);
10066	a0 = kvm_rbx_read(vcpu);
10067	a1 = kvm_rcx_read(vcpu);
10068	a2 = kvm_rdx_read(vcpu);
10069	a3 = kvm_rsi_read(vcpu);
10070
10071	trace_kvm_hypercall(nr, a0, a1, a2, a3);
10072
10073	op_64_bit = is_64_bit_hypercall(vcpu);
10074	if (!op_64_bit) {
10075		nr &= 0xFFFFFFFF;
10076		a0 &= 0xFFFFFFFF;
10077		a1 &= 0xFFFFFFFF;
10078		a2 &= 0xFFFFFFFF;
10079		a3 &= 0xFFFFFFFF;
10080	}
10081
10082	if (static_call(kvm_x86_get_cpl)(vcpu) != 0) {
10083		ret = -KVM_EPERM;
10084		goto out;
10085	}
10086
10087	ret = -KVM_ENOSYS;
10088
10089	switch (nr) {
10090	case KVM_HC_VAPIC_POLL_IRQ:
10091		ret = 0;
10092		break;
10093	case KVM_HC_KICK_CPU:
10094		if (!guest_pv_has(vcpu, KVM_FEATURE_PV_UNHALT))
10095			break;
10096
10097		kvm_pv_kick_cpu_op(vcpu->kvm, a1);
10098		kvm_sched_yield(vcpu, a1);
10099		ret = 0;
10100		break;
10101#ifdef CONFIG_X86_64
10102	case KVM_HC_CLOCK_PAIRING:
10103		ret = kvm_pv_clock_pairing(vcpu, a0, a1);
10104		break;
10105#endif
10106	case KVM_HC_SEND_IPI:
10107		if (!guest_pv_has(vcpu, KVM_FEATURE_PV_SEND_IPI))
10108			break;
10109
10110		ret = kvm_pv_send_ipi(vcpu->kvm, a0, a1, a2, a3, op_64_bit);
10111		break;
10112	case KVM_HC_SCHED_YIELD:
10113		if (!guest_pv_has(vcpu, KVM_FEATURE_PV_SCHED_YIELD))
10114			break;
10115
10116		kvm_sched_yield(vcpu, a0);
10117		ret = 0;
10118		break;
10119	case KVM_HC_MAP_GPA_RANGE: {
10120		u64 gpa = a0, npages = a1, attrs = a2;
10121
10122		ret = -KVM_ENOSYS;
10123		if (!(vcpu->kvm->arch.hypercall_exit_enabled & (1 << KVM_HC_MAP_GPA_RANGE)))
10124			break;
10125
10126		if (!PAGE_ALIGNED(gpa) || !npages ||
10127		    gpa_to_gfn(gpa) + npages <= gpa_to_gfn(gpa)) {
10128			ret = -KVM_EINVAL;
10129			break;
10130		}
10131
10132		vcpu->run->exit_reason        = KVM_EXIT_HYPERCALL;
10133		vcpu->run->hypercall.nr       = KVM_HC_MAP_GPA_RANGE;
10134		vcpu->run->hypercall.args[0]  = gpa;
10135		vcpu->run->hypercall.args[1]  = npages;
10136		vcpu->run->hypercall.args[2]  = attrs;
10137		vcpu->run->hypercall.flags    = 0;
10138		if (op_64_bit)
10139			vcpu->run->hypercall.flags |= KVM_EXIT_HYPERCALL_LONG_MODE;
10140
10141		WARN_ON_ONCE(vcpu->run->hypercall.flags & KVM_EXIT_HYPERCALL_MBZ);
10142		vcpu->arch.complete_userspace_io = complete_hypercall_exit;
10143		return 0;
10144	}
10145	default:
10146		ret = -KVM_ENOSYS;
10147		break;
10148	}
10149out:
10150	if (!op_64_bit)
10151		ret = (u32)ret;
10152	kvm_rax_write(vcpu, ret);
10153
10154	++vcpu->stat.hypercalls;
10155	return kvm_skip_emulated_instruction(vcpu);
10156}
10157EXPORT_SYMBOL_GPL(kvm_emulate_hypercall);
10158
10159static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt)
10160{
10161	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
10162	char instruction[3];
10163	unsigned long rip = kvm_rip_read(vcpu);
10164
10165	/*
10166	 * If the quirk is disabled, synthesize a #UD and let the guest pick up
10167	 * the pieces.
10168	 */
10169	if (!kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_FIX_HYPERCALL_INSN)) {
10170		ctxt->exception.error_code_valid = false;
10171		ctxt->exception.vector = UD_VECTOR;
10172		ctxt->have_exception = true;
10173		return X86EMUL_PROPAGATE_FAULT;
10174	}
10175
10176	static_call(kvm_x86_patch_hypercall)(vcpu, instruction);
10177
10178	return emulator_write_emulated(ctxt, rip, instruction, 3,
10179		&ctxt->exception);
10180}
10181
10182static int dm_request_for_irq_injection(struct kvm_vcpu *vcpu)
10183{
10184	return vcpu->run->request_interrupt_window &&
10185		likely(!pic_in_kernel(vcpu->kvm));
10186}
10187
10188/* Called within kvm->srcu read side.  */
10189static void post_kvm_run_save(struct kvm_vcpu *vcpu)
10190{
10191	struct kvm_run *kvm_run = vcpu->run;
10192
10193	kvm_run->if_flag = static_call(kvm_x86_get_if_flag)(vcpu);
10194	kvm_run->cr8 = kvm_get_cr8(vcpu);
10195	kvm_run->apic_base = kvm_get_apic_base(vcpu);
10196
10197	kvm_run->ready_for_interrupt_injection =
10198		pic_in_kernel(vcpu->kvm) ||
10199		kvm_vcpu_ready_for_interrupt_injection(vcpu);
10200
10201	if (is_smm(vcpu))
10202		kvm_run->flags |= KVM_RUN_X86_SMM;
10203}
10204
10205static void update_cr8_intercept(struct kvm_vcpu *vcpu)
10206{
10207	int max_irr, tpr;
10208
10209	if (!kvm_x86_ops.update_cr8_intercept)
10210		return;
10211
10212	if (!lapic_in_kernel(vcpu))
10213		return;
10214
10215	if (vcpu->arch.apic->apicv_active)
10216		return;
10217
10218	if (!vcpu->arch.apic->vapic_addr)
10219		max_irr = kvm_lapic_find_highest_irr(vcpu);
10220	else
10221		max_irr = -1;
10222
10223	if (max_irr != -1)
10224		max_irr >>= 4;
10225
10226	tpr = kvm_lapic_get_cr8(vcpu);
10227
10228	static_call(kvm_x86_update_cr8_intercept)(vcpu, tpr, max_irr);
10229}
10230
10231
10232int kvm_check_nested_events(struct kvm_vcpu *vcpu)
10233{
10234	if (kvm_test_request(KVM_REQ_TRIPLE_FAULT, vcpu)) {
10235		kvm_x86_ops.nested_ops->triple_fault(vcpu);
10236		return 1;
10237	}
10238
10239	return kvm_x86_ops.nested_ops->check_events(vcpu);
10240}
10241
10242static void kvm_inject_exception(struct kvm_vcpu *vcpu)
10243{
10244	/*
10245	 * Suppress the error code if the vCPU is in Real Mode, as Real Mode
10246	 * exceptions don't report error codes.  The presence of an error code
10247	 * is carried with the exception and only stripped when the exception
10248	 * is injected as intercepted #PF VM-Exits for AMD's Paged Real Mode do
10249	 * report an error code despite the CPU being in Real Mode.
10250	 */
10251	vcpu->arch.exception.has_error_code &= is_protmode(vcpu);
10252
10253	trace_kvm_inj_exception(vcpu->arch.exception.vector,
10254				vcpu->arch.exception.has_error_code,
10255				vcpu->arch.exception.error_code,
10256				vcpu->arch.exception.injected);
10257
10258	static_call(kvm_x86_inject_exception)(vcpu);
10259}
10260
10261/*
10262 * Check for any event (interrupt or exception) that is ready to be injected,
10263 * and if there is at least one event, inject the event with the highest
10264 * priority.  This handles both "pending" events, i.e. events that have never
10265 * been injected into the guest, and "injected" events, i.e. events that were
10266 * injected as part of a previous VM-Enter, but weren't successfully delivered
10267 * and need to be re-injected.
10268 *
10269 * Note, this is not guaranteed to be invoked on a guest instruction boundary,
10270 * i.e. doesn't guarantee that there's an event window in the guest.  KVM must
10271 * be able to inject exceptions in the "middle" of an instruction, and so must
10272 * also be able to re-inject NMIs and IRQs in the middle of an instruction.
10273 * I.e. for exceptions and re-injected events, NOT invoking this on instruction
10274 * boundaries is necessary and correct.
10275 *
10276 * For simplicity, KVM uses a single path to inject all events (except events
10277 * that are injected directly from L1 to L2) and doesn't explicitly track
10278 * instruction boundaries for asynchronous events.  However, because VM-Exits
10279 * that can occur during instruction execution typically result in KVM skipping
10280 * the instruction or injecting an exception, e.g. instruction and exception
10281 * intercepts, and because pending exceptions have higher priority than pending
10282 * interrupts, KVM still honors instruction boundaries in most scenarios.
10283 *
10284 * But, if a VM-Exit occurs during instruction execution, and KVM does NOT skip
10285 * the instruction or inject an exception, then KVM can incorrecty inject a new
10286 * asynchronous event if the event became pending after the CPU fetched the
10287 * instruction (in the guest).  E.g. if a page fault (#PF, #NPF, EPT violation)
10288 * occurs and is resolved by KVM, a coincident NMI, SMI, IRQ, etc... can be
10289 * injected on the restarted instruction instead of being deferred until the
10290 * instruction completes.
10291 *
10292 * In practice, this virtualization hole is unlikely to be observed by the
10293 * guest, and even less likely to cause functional problems.  To detect the
10294 * hole, the guest would have to trigger an event on a side effect of an early
10295 * phase of instruction execution, e.g. on the instruction fetch from memory.
10296 * And for it to be a functional problem, the guest would need to depend on the
10297 * ordering between that side effect, the instruction completing, _and_ the
10298 * delivery of the asynchronous event.
10299 */
10300static int kvm_check_and_inject_events(struct kvm_vcpu *vcpu,
10301				       bool *req_immediate_exit)
10302{
10303	bool can_inject;
10304	int r;
10305
10306	/*
10307	 * Process nested events first, as nested VM-Exit supersedes event
10308	 * re-injection.  If there's an event queued for re-injection, it will
10309	 * be saved into the appropriate vmc{b,s}12 fields on nested VM-Exit.
10310	 */
10311	if (is_guest_mode(vcpu))
10312		r = kvm_check_nested_events(vcpu);
10313	else
10314		r = 0;
10315
10316	/*
10317	 * Re-inject exceptions and events *especially* if immediate entry+exit
10318	 * to/from L2 is needed, as any event that has already been injected
10319	 * into L2 needs to complete its lifecycle before injecting a new event.
10320	 *
10321	 * Don't re-inject an NMI or interrupt if there is a pending exception.
10322	 * This collision arises if an exception occurred while vectoring the
10323	 * injected event, KVM intercepted said exception, and KVM ultimately
10324	 * determined the fault belongs to the guest and queues the exception
10325	 * for injection back into the guest.
10326	 *
10327	 * "Injected" interrupts can also collide with pending exceptions if
10328	 * userspace ignores the "ready for injection" flag and blindly queues
10329	 * an interrupt.  In that case, prioritizing the exception is correct,
10330	 * as the exception "occurred" before the exit to userspace.  Trap-like
10331	 * exceptions, e.g. most #DBs, have higher priority than interrupts.
10332	 * And while fault-like exceptions, e.g. #GP and #PF, are the lowest
10333	 * priority, they're only generated (pended) during instruction
10334	 * execution, and interrupts are recognized at instruction boundaries.
10335	 * Thus a pending fault-like exception means the fault occurred on the
10336	 * *previous* instruction and must be serviced prior to recognizing any
10337	 * new events in order to fully complete the previous instruction.
10338	 */
10339	if (vcpu->arch.exception.injected)
10340		kvm_inject_exception(vcpu);
10341	else if (kvm_is_exception_pending(vcpu))
10342		; /* see above */
10343	else if (vcpu->arch.nmi_injected)
10344		static_call(kvm_x86_inject_nmi)(vcpu);
10345	else if (vcpu->arch.interrupt.injected)
10346		static_call(kvm_x86_inject_irq)(vcpu, true);
10347
10348	/*
10349	 * Exceptions that morph to VM-Exits are handled above, and pending
10350	 * exceptions on top of injected exceptions that do not VM-Exit should
10351	 * either morph to #DF or, sadly, override the injected exception.
10352	 */
10353	WARN_ON_ONCE(vcpu->arch.exception.injected &&
10354		     vcpu->arch.exception.pending);
10355
10356	/*
10357	 * Bail if immediate entry+exit to/from the guest is needed to complete
10358	 * nested VM-Enter or event re-injection so that a different pending
10359	 * event can be serviced (or if KVM needs to exit to userspace).
10360	 *
10361	 * Otherwise, continue processing events even if VM-Exit occurred.  The
10362	 * VM-Exit will have cleared exceptions that were meant for L2, but
10363	 * there may now be events that can be injected into L1.
10364	 */
10365	if (r < 0)
10366		goto out;
10367
10368	/*
10369	 * A pending exception VM-Exit should either result in nested VM-Exit
10370	 * or force an immediate re-entry and exit to/from L2, and exception
10371	 * VM-Exits cannot be injected (flag should _never_ be set).
10372	 */
10373	WARN_ON_ONCE(vcpu->arch.exception_vmexit.injected ||
10374		     vcpu->arch.exception_vmexit.pending);
10375
10376	/*
10377	 * New events, other than exceptions, cannot be injected if KVM needs
10378	 * to re-inject a previous event.  See above comments on re-injecting
10379	 * for why pending exceptions get priority.
10380	 */
10381	can_inject = !kvm_event_needs_reinjection(vcpu);
10382
10383	if (vcpu->arch.exception.pending) {
10384		/*
10385		 * Fault-class exceptions, except #DBs, set RF=1 in the RFLAGS
10386		 * value pushed on the stack.  Trap-like exception and all #DBs
10387		 * leave RF as-is (KVM follows Intel's behavior in this regard;
10388		 * AMD states that code breakpoint #DBs excplitly clear RF=0).
10389		 *
10390		 * Note, most versions of Intel's SDM and AMD's APM incorrectly
10391		 * describe the behavior of General Detect #DBs, which are
10392		 * fault-like.  They do _not_ set RF, a la code breakpoints.
10393		 */
10394		if (exception_type(vcpu->arch.exception.vector) == EXCPT_FAULT)
10395			__kvm_set_rflags(vcpu, kvm_get_rflags(vcpu) |
10396					     X86_EFLAGS_RF);
10397
10398		if (vcpu->arch.exception.vector == DB_VECTOR) {
10399			kvm_deliver_exception_payload(vcpu, &vcpu->arch.exception);
10400			if (vcpu->arch.dr7 & DR7_GD) {
10401				vcpu->arch.dr7 &= ~DR7_GD;
10402				kvm_update_dr7(vcpu);
10403			}
10404		}
10405
10406		kvm_inject_exception(vcpu);
10407
10408		vcpu->arch.exception.pending = false;
10409		vcpu->arch.exception.injected = true;
10410
10411		can_inject = false;
10412	}
10413
10414	/* Don't inject interrupts if the user asked to avoid doing so */
10415	if (vcpu->guest_debug & KVM_GUESTDBG_BLOCKIRQ)
10416		return 0;
10417
10418	/*
10419	 * Finally, inject interrupt events.  If an event cannot be injected
10420	 * due to architectural conditions (e.g. IF=0) a window-open exit
10421	 * will re-request KVM_REQ_EVENT.  Sometimes however an event is pending
10422	 * and can architecturally be injected, but we cannot do it right now:
10423	 * an interrupt could have arrived just now and we have to inject it
10424	 * as a vmexit, or there could already an event in the queue, which is
10425	 * indicated by can_inject.  In that case we request an immediate exit
10426	 * in order to make progress and get back here for another iteration.
10427	 * The kvm_x86_ops hooks communicate this by returning -EBUSY.
10428	 */
10429#ifdef CONFIG_KVM_SMM
10430	if (vcpu->arch.smi_pending) {
10431		r = can_inject ? static_call(kvm_x86_smi_allowed)(vcpu, true) : -EBUSY;
10432		if (r < 0)
10433			goto out;
10434		if (r) {
10435			vcpu->arch.smi_pending = false;
10436			++vcpu->arch.smi_count;
10437			enter_smm(vcpu);
10438			can_inject = false;
10439		} else
10440			static_call(kvm_x86_enable_smi_window)(vcpu);
10441	}
10442#endif
10443
10444	if (vcpu->arch.nmi_pending) {
10445		r = can_inject ? static_call(kvm_x86_nmi_allowed)(vcpu, true) : -EBUSY;
10446		if (r < 0)
10447			goto out;
10448		if (r) {
10449			--vcpu->arch.nmi_pending;
10450			vcpu->arch.nmi_injected = true;
10451			static_call(kvm_x86_inject_nmi)(vcpu);
10452			can_inject = false;
10453			WARN_ON(static_call(kvm_x86_nmi_allowed)(vcpu, true) < 0);
10454		}
10455		if (vcpu->arch.nmi_pending)
10456			static_call(kvm_x86_enable_nmi_window)(vcpu);
10457	}
10458
10459	if (kvm_cpu_has_injectable_intr(vcpu)) {
10460		r = can_inject ? static_call(kvm_x86_interrupt_allowed)(vcpu, true) : -EBUSY;
10461		if (r < 0)
10462			goto out;
10463		if (r) {
10464			int irq = kvm_cpu_get_interrupt(vcpu);
10465
10466			if (!WARN_ON_ONCE(irq == -1)) {
10467				kvm_queue_interrupt(vcpu, irq, false);
10468				static_call(kvm_x86_inject_irq)(vcpu, false);
10469				WARN_ON(static_call(kvm_x86_interrupt_allowed)(vcpu, true) < 0);
10470			}
10471		}
10472		if (kvm_cpu_has_injectable_intr(vcpu))
10473			static_call(kvm_x86_enable_irq_window)(vcpu);
10474	}
10475
10476	if (is_guest_mode(vcpu) &&
10477	    kvm_x86_ops.nested_ops->has_events &&
10478	    kvm_x86_ops.nested_ops->has_events(vcpu))
10479		*req_immediate_exit = true;
10480
10481	/*
10482	 * KVM must never queue a new exception while injecting an event; KVM
10483	 * is done emulating and should only propagate the to-be-injected event
10484	 * to the VMCS/VMCB.  Queueing a new exception can put the vCPU into an
10485	 * infinite loop as KVM will bail from VM-Enter to inject the pending
10486	 * exception and start the cycle all over.
10487	 *
10488	 * Exempt triple faults as they have special handling and won't put the
10489	 * vCPU into an infinite loop.  Triple fault can be queued when running
10490	 * VMX without unrestricted guest, as that requires KVM to emulate Real
10491	 * Mode events (see kvm_inject_realmode_interrupt()).
10492	 */
10493	WARN_ON_ONCE(vcpu->arch.exception.pending ||
10494		     vcpu->arch.exception_vmexit.pending);
10495	return 0;
10496
10497out:
10498	if (r == -EBUSY) {
10499		*req_immediate_exit = true;
10500		r = 0;
10501	}
10502	return r;
10503}
10504
10505static void process_nmi(struct kvm_vcpu *vcpu)
10506{
10507	unsigned int limit;
10508
10509	/*
10510	 * x86 is limited to one NMI pending, but because KVM can't react to
10511	 * incoming NMIs as quickly as bare metal, e.g. if the vCPU is
10512	 * scheduled out, KVM needs to play nice with two queued NMIs showing
10513	 * up at the same time.  To handle this scenario, allow two NMIs to be
10514	 * (temporarily) pending so long as NMIs are not blocked and KVM is not
10515	 * waiting for a previous NMI injection to complete (which effectively
10516	 * blocks NMIs).  KVM will immediately inject one of the two NMIs, and
10517	 * will request an NMI window to handle the second NMI.
10518	 */
10519	if (static_call(kvm_x86_get_nmi_mask)(vcpu) || vcpu->arch.nmi_injected)
10520		limit = 1;
10521	else
10522		limit = 2;
10523
10524	/*
10525	 * Adjust the limit to account for pending virtual NMIs, which aren't
10526	 * tracked in vcpu->arch.nmi_pending.
10527	 */
10528	if (static_call(kvm_x86_is_vnmi_pending)(vcpu))
10529		limit--;
10530
10531	vcpu->arch.nmi_pending += atomic_xchg(&vcpu->arch.nmi_queued, 0);
10532	vcpu->arch.nmi_pending = min(vcpu->arch.nmi_pending, limit);
10533
10534	if (vcpu->arch.nmi_pending &&
10535	    (static_call(kvm_x86_set_vnmi_pending)(vcpu)))
10536		vcpu->arch.nmi_pending--;
10537
10538	if (vcpu->arch.nmi_pending)
10539		kvm_make_request(KVM_REQ_EVENT, vcpu);
10540}
10541
10542/* Return total number of NMIs pending injection to the VM */
10543int kvm_get_nr_pending_nmis(struct kvm_vcpu *vcpu)
10544{
10545	return vcpu->arch.nmi_pending +
10546	       static_call(kvm_x86_is_vnmi_pending)(vcpu);
10547}
10548
10549void kvm_make_scan_ioapic_request_mask(struct kvm *kvm,
10550				       unsigned long *vcpu_bitmap)
10551{
10552	kvm_make_vcpus_request_mask(kvm, KVM_REQ_SCAN_IOAPIC, vcpu_bitmap);
10553}
10554
10555void kvm_make_scan_ioapic_request(struct kvm *kvm)
10556{
10557	kvm_make_all_cpus_request(kvm, KVM_REQ_SCAN_IOAPIC);
10558}
10559
10560void __kvm_vcpu_update_apicv(struct kvm_vcpu *vcpu)
10561{
10562	struct kvm_lapic *apic = vcpu->arch.apic;
10563	bool activate;
10564
10565	if (!lapic_in_kernel(vcpu))
10566		return;
10567
10568	down_read(&vcpu->kvm->arch.apicv_update_lock);
10569	preempt_disable();
10570
10571	/* Do not activate APICV when APIC is disabled */
10572	activate = kvm_vcpu_apicv_activated(vcpu) &&
10573		   (kvm_get_apic_mode(vcpu) != LAPIC_MODE_DISABLED);
10574
10575	if (apic->apicv_active == activate)
10576		goto out;
10577
10578	apic->apicv_active = activate;
10579	kvm_apic_update_apicv(vcpu);
10580	static_call(kvm_x86_refresh_apicv_exec_ctrl)(vcpu);
10581
10582	/*
10583	 * When APICv gets disabled, we may still have injected interrupts
10584	 * pending. At the same time, KVM_REQ_EVENT may not be set as APICv was
10585	 * still active when the interrupt got accepted. Make sure
10586	 * kvm_check_and_inject_events() is called to check for that.
10587	 */
10588	if (!apic->apicv_active)
10589		kvm_make_request(KVM_REQ_EVENT, vcpu);
10590
10591out:
10592	preempt_enable();
10593	up_read(&vcpu->kvm->arch.apicv_update_lock);
10594}
10595EXPORT_SYMBOL_GPL(__kvm_vcpu_update_apicv);
10596
10597static void kvm_vcpu_update_apicv(struct kvm_vcpu *vcpu)
10598{
10599	if (!lapic_in_kernel(vcpu))
10600		return;
10601
10602	/*
10603	 * Due to sharing page tables across vCPUs, the xAPIC memslot must be
10604	 * deleted if any vCPU has xAPIC virtualization and x2APIC enabled, but
10605	 * and hardware doesn't support x2APIC virtualization.  E.g. some AMD
10606	 * CPUs support AVIC but not x2APIC.  KVM still allows enabling AVIC in
10607	 * this case so that KVM can the AVIC doorbell to inject interrupts to
10608	 * running vCPUs, but KVM must not create SPTEs for the APIC base as
10609	 * the vCPU would incorrectly be able to access the vAPIC page via MMIO
10610	 * despite being in x2APIC mode.  For simplicity, inhibiting the APIC
10611	 * access page is sticky.
10612	 */
10613	if (apic_x2apic_mode(vcpu->arch.apic) &&
10614	    kvm_x86_ops.allow_apicv_in_x2apic_without_x2apic_virtualization)
10615		kvm_inhibit_apic_access_page(vcpu);
10616
10617	__kvm_vcpu_update_apicv(vcpu);
10618}
10619
10620void __kvm_set_or_clear_apicv_inhibit(struct kvm *kvm,
10621				      enum kvm_apicv_inhibit reason, bool set)
10622{
10623	unsigned long old, new;
10624
10625	lockdep_assert_held_write(&kvm->arch.apicv_update_lock);
10626
10627	if (!(kvm_x86_ops.required_apicv_inhibits & BIT(reason)))
10628		return;
10629
10630	old = new = kvm->arch.apicv_inhibit_reasons;
10631
10632	set_or_clear_apicv_inhibit(&new, reason, set);
10633
10634	if (!!old != !!new) {
10635		/*
10636		 * Kick all vCPUs before setting apicv_inhibit_reasons to avoid
10637		 * false positives in the sanity check WARN in svm_vcpu_run().
10638		 * This task will wait for all vCPUs to ack the kick IRQ before
10639		 * updating apicv_inhibit_reasons, and all other vCPUs will
10640		 * block on acquiring apicv_update_lock so that vCPUs can't
10641		 * redo svm_vcpu_run() without seeing the new inhibit state.
10642		 *
10643		 * Note, holding apicv_update_lock and taking it in the read
10644		 * side (handling the request) also prevents other vCPUs from
10645		 * servicing the request with a stale apicv_inhibit_reasons.
10646		 */
10647		kvm_make_all_cpus_request(kvm, KVM_REQ_APICV_UPDATE);
10648		kvm->arch.apicv_inhibit_reasons = new;
10649		if (new) {
10650			unsigned long gfn = gpa_to_gfn(APIC_DEFAULT_PHYS_BASE);
10651			int idx = srcu_read_lock(&kvm->srcu);
10652
10653			kvm_zap_gfn_range(kvm, gfn, gfn+1);
10654			srcu_read_unlock(&kvm->srcu, idx);
10655		}
10656	} else {
10657		kvm->arch.apicv_inhibit_reasons = new;
10658	}
10659}
10660
10661void kvm_set_or_clear_apicv_inhibit(struct kvm *kvm,
10662				    enum kvm_apicv_inhibit reason, bool set)
10663{
10664	if (!enable_apicv)
10665		return;
10666
10667	down_write(&kvm->arch.apicv_update_lock);
10668	__kvm_set_or_clear_apicv_inhibit(kvm, reason, set);
10669	up_write(&kvm->arch.apicv_update_lock);
10670}
10671EXPORT_SYMBOL_GPL(kvm_set_or_clear_apicv_inhibit);
10672
10673static void vcpu_scan_ioapic(struct kvm_vcpu *vcpu)
10674{
10675	if (!kvm_apic_present(vcpu))
10676		return;
10677
10678	bitmap_zero(vcpu->arch.ioapic_handled_vectors, 256);
10679
10680	if (irqchip_split(vcpu->kvm))
10681		kvm_scan_ioapic_routes(vcpu, vcpu->arch.ioapic_handled_vectors);
10682	else {
10683		static_call_cond(kvm_x86_sync_pir_to_irr)(vcpu);
10684		if (ioapic_in_kernel(vcpu->kvm))
10685			kvm_ioapic_scan_entry(vcpu, vcpu->arch.ioapic_handled_vectors);
10686	}
10687
10688	if (is_guest_mode(vcpu))
10689		vcpu->arch.load_eoi_exitmap_pending = true;
10690	else
10691		kvm_make_request(KVM_REQ_LOAD_EOI_EXITMAP, vcpu);
10692}
10693
10694static void vcpu_load_eoi_exitmap(struct kvm_vcpu *vcpu)
10695{
10696	if (!kvm_apic_hw_enabled(vcpu->arch.apic))
10697		return;
10698
10699#ifdef CONFIG_KVM_HYPERV
10700	if (to_hv_vcpu(vcpu)) {
10701		u64 eoi_exit_bitmap[4];
10702
10703		bitmap_or((ulong *)eoi_exit_bitmap,
10704			  vcpu->arch.ioapic_handled_vectors,
10705			  to_hv_synic(vcpu)->vec_bitmap, 256);
10706		static_call_cond(kvm_x86_load_eoi_exitmap)(vcpu, eoi_exit_bitmap);
10707		return;
10708	}
10709#endif
10710	static_call_cond(kvm_x86_load_eoi_exitmap)(
10711		vcpu, (u64 *)vcpu->arch.ioapic_handled_vectors);
10712}
10713
10714void kvm_arch_guest_memory_reclaimed(struct kvm *kvm)
10715{
10716	static_call_cond(kvm_x86_guest_memory_reclaimed)(kvm);
10717}
10718
10719static void kvm_vcpu_reload_apic_access_page(struct kvm_vcpu *vcpu)
10720{
10721	if (!lapic_in_kernel(vcpu))
10722		return;
10723
10724	static_call_cond(kvm_x86_set_apic_access_page_addr)(vcpu);
10725}
10726
10727/*
10728 * Called within kvm->srcu read side.
10729 * Returns 1 to let vcpu_run() continue the guest execution loop without
10730 * exiting to the userspace.  Otherwise, the value will be returned to the
10731 * userspace.
10732 */
10733static int vcpu_enter_guest(struct kvm_vcpu *vcpu)
10734{
10735	int r;
10736	bool req_int_win =
10737		dm_request_for_irq_injection(vcpu) &&
10738		kvm_cpu_accept_dm_intr(vcpu);
10739	fastpath_t exit_fastpath;
10740
10741	bool req_immediate_exit = false;
10742
10743	if (kvm_request_pending(vcpu)) {
10744		if (kvm_check_request(KVM_REQ_VM_DEAD, vcpu)) {
10745			r = -EIO;
10746			goto out;
10747		}
10748
10749		if (kvm_dirty_ring_check_request(vcpu)) {
10750			r = 0;
10751			goto out;
10752		}
10753
10754		if (kvm_check_request(KVM_REQ_GET_NESTED_STATE_PAGES, vcpu)) {
10755			if (unlikely(!kvm_x86_ops.nested_ops->get_nested_state_pages(vcpu))) {
10756				r = 0;
10757				goto out;
10758			}
10759		}
10760		if (kvm_check_request(KVM_REQ_MMU_FREE_OBSOLETE_ROOTS, vcpu))
10761			kvm_mmu_free_obsolete_roots(vcpu);
10762		if (kvm_check_request(KVM_REQ_MIGRATE_TIMER, vcpu))
10763			__kvm_migrate_timers(vcpu);
10764		if (kvm_check_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu))
10765			kvm_update_masterclock(vcpu->kvm);
10766		if (kvm_check_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu))
10767			kvm_gen_kvmclock_update(vcpu);
10768		if (kvm_check_request(KVM_REQ_CLOCK_UPDATE, vcpu)) {
10769			r = kvm_guest_time_update(vcpu);
10770			if (unlikely(r))
10771				goto out;
10772		}
10773		if (kvm_check_request(KVM_REQ_MMU_SYNC, vcpu))
10774			kvm_mmu_sync_roots(vcpu);
10775		if (kvm_check_request(KVM_REQ_LOAD_MMU_PGD, vcpu))
10776			kvm_mmu_load_pgd(vcpu);
10777
10778		/*
10779		 * Note, the order matters here, as flushing "all" TLB entries
10780		 * also flushes the "current" TLB entries, i.e. servicing the
10781		 * flush "all" will clear any request to flush "current".
10782		 */
10783		if (kvm_check_request(KVM_REQ_TLB_FLUSH, vcpu))
10784			kvm_vcpu_flush_tlb_all(vcpu);
10785
10786		kvm_service_local_tlb_flush_requests(vcpu);
10787
10788		/*
10789		 * Fall back to a "full" guest flush if Hyper-V's precise
10790		 * flushing fails.  Note, Hyper-V's flushing is per-vCPU, but
10791		 * the flushes are considered "remote" and not "local" because
10792		 * the requests can be initiated from other vCPUs.
10793		 */
10794#ifdef CONFIG_KVM_HYPERV
10795		if (kvm_check_request(KVM_REQ_HV_TLB_FLUSH, vcpu) &&
10796		    kvm_hv_vcpu_flush_tlb(vcpu))
10797			kvm_vcpu_flush_tlb_guest(vcpu);
10798#endif
10799
10800		if (kvm_check_request(KVM_REQ_REPORT_TPR_ACCESS, vcpu)) {
10801			vcpu->run->exit_reason = KVM_EXIT_TPR_ACCESS;
10802			r = 0;
10803			goto out;
10804		}
10805		if (kvm_test_request(KVM_REQ_TRIPLE_FAULT, vcpu)) {
10806			if (is_guest_mode(vcpu))
10807				kvm_x86_ops.nested_ops->triple_fault(vcpu);
10808
10809			if (kvm_check_request(KVM_REQ_TRIPLE_FAULT, vcpu)) {
10810				vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN;
10811				vcpu->mmio_needed = 0;
10812				r = 0;
10813				goto out;
10814			}
10815		}
10816		if (kvm_check_request(KVM_REQ_APF_HALT, vcpu)) {
10817			/* Page is swapped out. Do synthetic halt */
10818			vcpu->arch.apf.halted = true;
10819			r = 1;
10820			goto out;
10821		}
10822		if (kvm_check_request(KVM_REQ_STEAL_UPDATE, vcpu))
10823			record_steal_time(vcpu);
10824		if (kvm_check_request(KVM_REQ_PMU, vcpu))
10825			kvm_pmu_handle_event(vcpu);
10826		if (kvm_check_request(KVM_REQ_PMI, vcpu))
10827			kvm_pmu_deliver_pmi(vcpu);
10828#ifdef CONFIG_KVM_SMM
10829		if (kvm_check_request(KVM_REQ_SMI, vcpu))
10830			process_smi(vcpu);
10831#endif
10832		if (kvm_check_request(KVM_REQ_NMI, vcpu))
10833			process_nmi(vcpu);
10834		if (kvm_check_request(KVM_REQ_IOAPIC_EOI_EXIT, vcpu)) {
10835			BUG_ON(vcpu->arch.pending_ioapic_eoi > 255);
10836			if (test_bit(vcpu->arch.pending_ioapic_eoi,
10837				     vcpu->arch.ioapic_handled_vectors)) {
10838				vcpu->run->exit_reason = KVM_EXIT_IOAPIC_EOI;
10839				vcpu->run->eoi.vector =
10840						vcpu->arch.pending_ioapic_eoi;
10841				r = 0;
10842				goto out;
10843			}
10844		}
10845		if (kvm_check_request(KVM_REQ_SCAN_IOAPIC, vcpu))
10846			vcpu_scan_ioapic(vcpu);
10847		if (kvm_check_request(KVM_REQ_LOAD_EOI_EXITMAP, vcpu))
10848			vcpu_load_eoi_exitmap(vcpu);
10849		if (kvm_check_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu))
10850			kvm_vcpu_reload_apic_access_page(vcpu);
10851#ifdef CONFIG_KVM_HYPERV
10852		if (kvm_check_request(KVM_REQ_HV_CRASH, vcpu)) {
10853			vcpu->run->exit_reason = KVM_EXIT_SYSTEM_EVENT;
10854			vcpu->run->system_event.type = KVM_SYSTEM_EVENT_CRASH;
10855			vcpu->run->system_event.ndata = 0;
10856			r = 0;
10857			goto out;
10858		}
10859		if (kvm_check_request(KVM_REQ_HV_RESET, vcpu)) {
10860			vcpu->run->exit_reason = KVM_EXIT_SYSTEM_EVENT;
10861			vcpu->run->system_event.type = KVM_SYSTEM_EVENT_RESET;
10862			vcpu->run->system_event.ndata = 0;
10863			r = 0;
10864			goto out;
10865		}
10866		if (kvm_check_request(KVM_REQ_HV_EXIT, vcpu)) {
10867			struct kvm_vcpu_hv *hv_vcpu = to_hv_vcpu(vcpu);
10868
10869			vcpu->run->exit_reason = KVM_EXIT_HYPERV;
10870			vcpu->run->hyperv = hv_vcpu->exit;
10871			r = 0;
10872			goto out;
10873		}
10874
10875		/*
10876		 * KVM_REQ_HV_STIMER has to be processed after
10877		 * KVM_REQ_CLOCK_UPDATE, because Hyper-V SynIC timers
10878		 * depend on the guest clock being up-to-date
10879		 */
10880		if (kvm_check_request(KVM_REQ_HV_STIMER, vcpu))
10881			kvm_hv_process_stimers(vcpu);
10882#endif
10883		if (kvm_check_request(KVM_REQ_APICV_UPDATE, vcpu))
10884			kvm_vcpu_update_apicv(vcpu);
10885		if (kvm_check_request(KVM_REQ_APF_READY, vcpu))
10886			kvm_check_async_pf_completion(vcpu);
10887		if (kvm_check_request(KVM_REQ_MSR_FILTER_CHANGED, vcpu))
10888			static_call(kvm_x86_msr_filter_changed)(vcpu);
10889
10890		if (kvm_check_request(KVM_REQ_UPDATE_CPU_DIRTY_LOGGING, vcpu))
10891			static_call(kvm_x86_update_cpu_dirty_logging)(vcpu);
10892	}
10893
10894	if (kvm_check_request(KVM_REQ_EVENT, vcpu) || req_int_win ||
10895	    kvm_xen_has_interrupt(vcpu)) {
10896		++vcpu->stat.req_event;
10897		r = kvm_apic_accept_events(vcpu);
10898		if (r < 0) {
10899			r = 0;
10900			goto out;
10901		}
10902		if (vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED) {
10903			r = 1;
10904			goto out;
10905		}
10906
10907		r = kvm_check_and_inject_events(vcpu, &req_immediate_exit);
10908		if (r < 0) {
10909			r = 0;
10910			goto out;
10911		}
10912		if (req_int_win)
10913			static_call(kvm_x86_enable_irq_window)(vcpu);
10914
10915		if (kvm_lapic_enabled(vcpu)) {
10916			update_cr8_intercept(vcpu);
10917			kvm_lapic_sync_to_vapic(vcpu);
10918		}
10919	}
10920
10921	r = kvm_mmu_reload(vcpu);
10922	if (unlikely(r)) {
10923		goto cancel_injection;
10924	}
10925
10926	preempt_disable();
10927
10928	static_call(kvm_x86_prepare_switch_to_guest)(vcpu);
10929
10930	/*
10931	 * Disable IRQs before setting IN_GUEST_MODE.  Posted interrupt
10932	 * IPI are then delayed after guest entry, which ensures that they
10933	 * result in virtual interrupt delivery.
10934	 */
10935	local_irq_disable();
10936
10937	/* Store vcpu->apicv_active before vcpu->mode.  */
10938	smp_store_release(&vcpu->mode, IN_GUEST_MODE);
10939
10940	kvm_vcpu_srcu_read_unlock(vcpu);
10941
10942	/*
10943	 * 1) We should set ->mode before checking ->requests.  Please see
10944	 * the comment in kvm_vcpu_exiting_guest_mode().
10945	 *
10946	 * 2) For APICv, we should set ->mode before checking PID.ON. This
10947	 * pairs with the memory barrier implicit in pi_test_and_set_on
10948	 * (see vmx_deliver_posted_interrupt).
10949	 *
10950	 * 3) This also orders the write to mode from any reads to the page
10951	 * tables done while the VCPU is running.  Please see the comment
10952	 * in kvm_flush_remote_tlbs.
10953	 */
10954	smp_mb__after_srcu_read_unlock();
10955
10956	/*
10957	 * Process pending posted interrupts to handle the case where the
10958	 * notification IRQ arrived in the host, or was never sent (because the
10959	 * target vCPU wasn't running).  Do this regardless of the vCPU's APICv
10960	 * status, KVM doesn't update assigned devices when APICv is inhibited,
10961	 * i.e. they can post interrupts even if APICv is temporarily disabled.
10962	 */
10963	if (kvm_lapic_enabled(vcpu))
10964		static_call_cond(kvm_x86_sync_pir_to_irr)(vcpu);
10965
10966	if (kvm_vcpu_exit_request(vcpu)) {
10967		vcpu->mode = OUTSIDE_GUEST_MODE;
10968		smp_wmb();
10969		local_irq_enable();
10970		preempt_enable();
10971		kvm_vcpu_srcu_read_lock(vcpu);
10972		r = 1;
10973		goto cancel_injection;
10974	}
10975
10976	if (req_immediate_exit)
10977		kvm_make_request(KVM_REQ_EVENT, vcpu);
10978
10979	fpregs_assert_state_consistent();
10980	if (test_thread_flag(TIF_NEED_FPU_LOAD))
10981		switch_fpu_return();
10982
10983	if (vcpu->arch.guest_fpu.xfd_err)
10984		wrmsrl(MSR_IA32_XFD_ERR, vcpu->arch.guest_fpu.xfd_err);
10985
10986	if (unlikely(vcpu->arch.switch_db_regs)) {
10987		set_debugreg(0, 7);
10988		set_debugreg(vcpu->arch.eff_db[0], 0);
10989		set_debugreg(vcpu->arch.eff_db[1], 1);
10990		set_debugreg(vcpu->arch.eff_db[2], 2);
10991		set_debugreg(vcpu->arch.eff_db[3], 3);
10992	} else if (unlikely(hw_breakpoint_active())) {
10993		set_debugreg(0, 7);
10994	}
10995
10996	guest_timing_enter_irqoff();
10997
10998	for (;;) {
10999		/*
11000		 * Assert that vCPU vs. VM APICv state is consistent.  An APICv
11001		 * update must kick and wait for all vCPUs before toggling the
11002		 * per-VM state, and responding vCPUs must wait for the update
11003		 * to complete before servicing KVM_REQ_APICV_UPDATE.
11004		 */
11005		WARN_ON_ONCE((kvm_vcpu_apicv_activated(vcpu) != kvm_vcpu_apicv_active(vcpu)) &&
11006			     (kvm_get_apic_mode(vcpu) != LAPIC_MODE_DISABLED));
11007
11008		exit_fastpath = static_call(kvm_x86_vcpu_run)(vcpu, req_immediate_exit);
11009		if (likely(exit_fastpath != EXIT_FASTPATH_REENTER_GUEST))
11010			break;
11011
11012		if (kvm_lapic_enabled(vcpu))
11013			static_call_cond(kvm_x86_sync_pir_to_irr)(vcpu);
11014
11015		if (unlikely(kvm_vcpu_exit_request(vcpu))) {
11016			exit_fastpath = EXIT_FASTPATH_EXIT_HANDLED;
11017			break;
11018		}
11019
11020		/* Note, VM-Exits that go down the "slow" path are accounted below. */
11021		++vcpu->stat.exits;
11022	}
11023
11024	/*
11025	 * Do this here before restoring debug registers on the host.  And
11026	 * since we do this before handling the vmexit, a DR access vmexit
11027	 * can (a) read the correct value of the debug registers, (b) set
11028	 * KVM_DEBUGREG_WONT_EXIT again.
11029	 */
11030	if (unlikely(vcpu->arch.switch_db_regs & KVM_DEBUGREG_WONT_EXIT)) {
11031		WARN_ON(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP);
11032		static_call(kvm_x86_sync_dirty_debug_regs)(vcpu);
11033		kvm_update_dr0123(vcpu);
11034		kvm_update_dr7(vcpu);
11035	}
11036
11037	/*
11038	 * If the guest has used debug registers, at least dr7
11039	 * will be disabled while returning to the host.
11040	 * If we don't have active breakpoints in the host, we don't
11041	 * care about the messed up debug address registers. But if
11042	 * we have some of them active, restore the old state.
11043	 */
11044	if (hw_breakpoint_active())
11045		hw_breakpoint_restore();
11046
11047	vcpu->arch.last_vmentry_cpu = vcpu->cpu;
11048	vcpu->arch.last_guest_tsc = kvm_read_l1_tsc(vcpu, rdtsc());
11049
11050	vcpu->mode = OUTSIDE_GUEST_MODE;
11051	smp_wmb();
11052
11053	/*
11054	 * Sync xfd before calling handle_exit_irqoff() which may
11055	 * rely on the fact that guest_fpu::xfd is up-to-date (e.g.
11056	 * in #NM irqoff handler).
11057	 */
11058	if (vcpu->arch.xfd_no_write_intercept)
11059		fpu_sync_guest_vmexit_xfd_state();
11060
11061	static_call(kvm_x86_handle_exit_irqoff)(vcpu);
11062
11063	if (vcpu->arch.guest_fpu.xfd_err)
11064		wrmsrl(MSR_IA32_XFD_ERR, 0);
11065
11066	/*
11067	 * Consume any pending interrupts, including the possible source of
11068	 * VM-Exit on SVM and any ticks that occur between VM-Exit and now.
11069	 * An instruction is required after local_irq_enable() to fully unblock
11070	 * interrupts on processors that implement an interrupt shadow, the
11071	 * stat.exits increment will do nicely.
11072	 */
11073	kvm_before_interrupt(vcpu, KVM_HANDLING_IRQ);
11074	local_irq_enable();
11075	++vcpu->stat.exits;
11076	local_irq_disable();
11077	kvm_after_interrupt(vcpu);
11078
11079	/*
11080	 * Wait until after servicing IRQs to account guest time so that any
11081	 * ticks that occurred while running the guest are properly accounted
11082	 * to the guest.  Waiting until IRQs are enabled degrades the accuracy
11083	 * of accounting via context tracking, but the loss of accuracy is
11084	 * acceptable for all known use cases.
11085	 */
11086	guest_timing_exit_irqoff();
11087
11088	local_irq_enable();
11089	preempt_enable();
11090
11091	kvm_vcpu_srcu_read_lock(vcpu);
11092
11093	/*
11094	 * Profile KVM exit RIPs:
11095	 */
11096	if (unlikely(prof_on == KVM_PROFILING)) {
11097		unsigned long rip = kvm_rip_read(vcpu);
11098		profile_hit(KVM_PROFILING, (void *)rip);
11099	}
11100
11101	if (unlikely(vcpu->arch.tsc_always_catchup))
11102		kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
11103
11104	if (vcpu->arch.apic_attention)
11105		kvm_lapic_sync_from_vapic(vcpu);
11106
11107	r = static_call(kvm_x86_handle_exit)(vcpu, exit_fastpath);
11108	return r;
11109
11110cancel_injection:
11111	if (req_immediate_exit)
11112		kvm_make_request(KVM_REQ_EVENT, vcpu);
11113	static_call(kvm_x86_cancel_injection)(vcpu);
11114	if (unlikely(vcpu->arch.apic_attention))
11115		kvm_lapic_sync_from_vapic(vcpu);
11116out:
11117	return r;
11118}
11119
11120/* Called within kvm->srcu read side.  */
11121static inline int vcpu_block(struct kvm_vcpu *vcpu)
11122{
11123	bool hv_timer;
11124
11125	if (!kvm_arch_vcpu_runnable(vcpu)) {
11126		/*
11127		 * Switch to the software timer before halt-polling/blocking as
11128		 * the guest's timer may be a break event for the vCPU, and the
11129		 * hypervisor timer runs only when the CPU is in guest mode.
11130		 * Switch before halt-polling so that KVM recognizes an expired
11131		 * timer before blocking.
11132		 */
11133		hv_timer = kvm_lapic_hv_timer_in_use(vcpu);
11134		if (hv_timer)
11135			kvm_lapic_switch_to_sw_timer(vcpu);
11136
11137		kvm_vcpu_srcu_read_unlock(vcpu);
11138		if (vcpu->arch.mp_state == KVM_MP_STATE_HALTED)
11139			kvm_vcpu_halt(vcpu);
11140		else
11141			kvm_vcpu_block(vcpu);
11142		kvm_vcpu_srcu_read_lock(vcpu);
11143
11144		if (hv_timer)
11145			kvm_lapic_switch_to_hv_timer(vcpu);
11146
11147		/*
11148		 * If the vCPU is not runnable, a signal or another host event
11149		 * of some kind is pending; service it without changing the
11150		 * vCPU's activity state.
11151		 */
11152		if (!kvm_arch_vcpu_runnable(vcpu))
11153			return 1;
11154	}
11155
11156	/*
11157	 * Evaluate nested events before exiting the halted state.  This allows
11158	 * the halt state to be recorded properly in the VMCS12's activity
11159	 * state field (AMD does not have a similar field and a VM-Exit always
11160	 * causes a spurious wakeup from HLT).
11161	 */
11162	if (is_guest_mode(vcpu)) {
11163		if (kvm_check_nested_events(vcpu) < 0)
11164			return 0;
11165	}
11166
11167	if (kvm_apic_accept_events(vcpu) < 0)
11168		return 0;
11169	switch(vcpu->arch.mp_state) {
11170	case KVM_MP_STATE_HALTED:
11171	case KVM_MP_STATE_AP_RESET_HOLD:
11172		vcpu->arch.pv.pv_unhalted = false;
11173		vcpu->arch.mp_state =
11174			KVM_MP_STATE_RUNNABLE;
11175		fallthrough;
11176	case KVM_MP_STATE_RUNNABLE:
11177		vcpu->arch.apf.halted = false;
11178		break;
11179	case KVM_MP_STATE_INIT_RECEIVED:
11180		break;
11181	default:
11182		WARN_ON_ONCE(1);
11183		break;
11184	}
11185	return 1;
11186}
11187
11188static inline bool kvm_vcpu_running(struct kvm_vcpu *vcpu)
11189{
11190	return (vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE &&
11191		!vcpu->arch.apf.halted);
11192}
11193
11194/* Called within kvm->srcu read side.  */
11195static int vcpu_run(struct kvm_vcpu *vcpu)
11196{
11197	int r;
11198
11199	vcpu->run->exit_reason = KVM_EXIT_UNKNOWN;
11200	vcpu->arch.l1tf_flush_l1d = true;
11201
11202	for (;;) {
11203		/*
11204		 * If another guest vCPU requests a PV TLB flush in the middle
11205		 * of instruction emulation, the rest of the emulation could
11206		 * use a stale page translation. Assume that any code after
11207		 * this point can start executing an instruction.
11208		 */
11209		vcpu->arch.at_instruction_boundary = false;
11210		if (kvm_vcpu_running(vcpu)) {
11211			r = vcpu_enter_guest(vcpu);
11212		} else {
11213			r = vcpu_block(vcpu);
11214		}
11215
11216		if (r <= 0)
11217			break;
11218
11219		kvm_clear_request(KVM_REQ_UNBLOCK, vcpu);
11220		if (kvm_xen_has_pending_events(vcpu))
11221			kvm_xen_inject_pending_events(vcpu);
11222
11223		if (kvm_cpu_has_pending_timer(vcpu))
11224			kvm_inject_pending_timer_irqs(vcpu);
11225
11226		if (dm_request_for_irq_injection(vcpu) &&
11227			kvm_vcpu_ready_for_interrupt_injection(vcpu)) {
11228			r = 0;
11229			vcpu->run->exit_reason = KVM_EXIT_IRQ_WINDOW_OPEN;
11230			++vcpu->stat.request_irq_exits;
11231			break;
11232		}
11233
11234		if (__xfer_to_guest_mode_work_pending()) {
11235			kvm_vcpu_srcu_read_unlock(vcpu);
11236			r = xfer_to_guest_mode_handle_work(vcpu);
11237			kvm_vcpu_srcu_read_lock(vcpu);
11238			if (r)
11239				return r;
11240		}
11241	}
11242
11243	return r;
11244}
11245
11246static inline int complete_emulated_io(struct kvm_vcpu *vcpu)
11247{
11248	return kvm_emulate_instruction(vcpu, EMULTYPE_NO_DECODE);
11249}
11250
11251static int complete_emulated_pio(struct kvm_vcpu *vcpu)
11252{
11253	BUG_ON(!vcpu->arch.pio.count);
11254
11255	return complete_emulated_io(vcpu);
11256}
11257
11258/*
11259 * Implements the following, as a state machine:
11260 *
11261 * read:
11262 *   for each fragment
11263 *     for each mmio piece in the fragment
11264 *       write gpa, len
11265 *       exit
11266 *       copy data
11267 *   execute insn
11268 *
11269 * write:
11270 *   for each fragment
11271 *     for each mmio piece in the fragment
11272 *       write gpa, len
11273 *       copy data
11274 *       exit
11275 */
11276static int complete_emulated_mmio(struct kvm_vcpu *vcpu)
11277{
11278	struct kvm_run *run = vcpu->run;
11279	struct kvm_mmio_fragment *frag;
11280	unsigned len;
11281
11282	BUG_ON(!vcpu->mmio_needed);
11283
11284	/* Complete previous fragment */
11285	frag = &vcpu->mmio_fragments[vcpu->mmio_cur_fragment];
11286	len = min(8u, frag->len);
11287	if (!vcpu->mmio_is_write)
11288		memcpy(frag->data, run->mmio.data, len);
11289
11290	if (frag->len <= 8) {
11291		/* Switch to the next fragment. */
11292		frag++;
11293		vcpu->mmio_cur_fragment++;
11294	} else {
11295		/* Go forward to the next mmio piece. */
11296		frag->data += len;
11297		frag->gpa += len;
11298		frag->len -= len;
11299	}
11300
11301	if (vcpu->mmio_cur_fragment >= vcpu->mmio_nr_fragments) {
11302		vcpu->mmio_needed = 0;
11303
11304		/* FIXME: return into emulator if single-stepping.  */
11305		if (vcpu->mmio_is_write)
11306			return 1;
11307		vcpu->mmio_read_completed = 1;
11308		return complete_emulated_io(vcpu);
11309	}
11310
11311	run->exit_reason = KVM_EXIT_MMIO;
11312	run->mmio.phys_addr = frag->gpa;
11313	if (vcpu->mmio_is_write)
11314		memcpy(run->mmio.data, frag->data, min(8u, frag->len));
11315	run->mmio.len = min(8u, frag->len);
11316	run->mmio.is_write = vcpu->mmio_is_write;
11317	vcpu->arch.complete_userspace_io = complete_emulated_mmio;
11318	return 0;
11319}
11320
11321/* Swap (qemu) user FPU context for the guest FPU context. */
11322static void kvm_load_guest_fpu(struct kvm_vcpu *vcpu)
11323{
11324	/* Exclude PKRU, it's restored separately immediately after VM-Exit. */
11325	fpu_swap_kvm_fpstate(&vcpu->arch.guest_fpu, true);
11326	trace_kvm_fpu(1);
11327}
11328
11329/* When vcpu_run ends, restore user space FPU context. */
11330static void kvm_put_guest_fpu(struct kvm_vcpu *vcpu)
11331{
11332	fpu_swap_kvm_fpstate(&vcpu->arch.guest_fpu, false);
11333	++vcpu->stat.fpu_reload;
11334	trace_kvm_fpu(0);
11335}
11336
11337int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu)
11338{
11339	struct kvm_queued_exception *ex = &vcpu->arch.exception;
11340	struct kvm_run *kvm_run = vcpu->run;
11341	int r;
11342
11343	vcpu_load(vcpu);
11344	kvm_sigset_activate(vcpu);
11345	kvm_run->flags = 0;
11346	kvm_load_guest_fpu(vcpu);
11347
11348	kvm_vcpu_srcu_read_lock(vcpu);
11349	if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_UNINITIALIZED)) {
11350		if (kvm_run->immediate_exit) {
11351			r = -EINTR;
11352			goto out;
11353		}
11354
11355		/*
11356		 * Don't bother switching APIC timer emulation from the
11357		 * hypervisor timer to the software timer, the only way for the
11358		 * APIC timer to be active is if userspace stuffed vCPU state,
11359		 * i.e. put the vCPU into a nonsensical state.  Only an INIT
11360		 * will transition the vCPU out of UNINITIALIZED (without more
11361		 * state stuffing from userspace), which will reset the local
11362		 * APIC and thus cancel the timer or drop the IRQ (if the timer
11363		 * already expired).
11364		 */
11365		kvm_vcpu_srcu_read_unlock(vcpu);
11366		kvm_vcpu_block(vcpu);
11367		kvm_vcpu_srcu_read_lock(vcpu);
11368
11369		if (kvm_apic_accept_events(vcpu) < 0) {
11370			r = 0;
11371			goto out;
11372		}
11373		r = -EAGAIN;
11374		if (signal_pending(current)) {
11375			r = -EINTR;
11376			kvm_run->exit_reason = KVM_EXIT_INTR;
11377			++vcpu->stat.signal_exits;
11378		}
11379		goto out;
11380	}
11381
11382	if ((kvm_run->kvm_valid_regs & ~KVM_SYNC_X86_VALID_FIELDS) ||
11383	    (kvm_run->kvm_dirty_regs & ~KVM_SYNC_X86_VALID_FIELDS)) {
11384		r = -EINVAL;
11385		goto out;
11386	}
11387
11388	if (kvm_run->kvm_dirty_regs) {
11389		r = sync_regs(vcpu);
11390		if (r != 0)
11391			goto out;
11392	}
11393
11394	/* re-sync apic's tpr */
11395	if (!lapic_in_kernel(vcpu)) {
11396		if (kvm_set_cr8(vcpu, kvm_run->cr8) != 0) {
11397			r = -EINVAL;
11398			goto out;
11399		}
11400	}
11401
11402	/*
11403	 * If userspace set a pending exception and L2 is active, convert it to
11404	 * a pending VM-Exit if L1 wants to intercept the exception.
11405	 */
11406	if (vcpu->arch.exception_from_userspace && is_guest_mode(vcpu) &&
11407	    kvm_x86_ops.nested_ops->is_exception_vmexit(vcpu, ex->vector,
11408							ex->error_code)) {
11409		kvm_queue_exception_vmexit(vcpu, ex->vector,
11410					   ex->has_error_code, ex->error_code,
11411					   ex->has_payload, ex->payload);
11412		ex->injected = false;
11413		ex->pending = false;
11414	}
11415	vcpu->arch.exception_from_userspace = false;
11416
11417	if (unlikely(vcpu->arch.complete_userspace_io)) {
11418		int (*cui)(struct kvm_vcpu *) = vcpu->arch.complete_userspace_io;
11419		vcpu->arch.complete_userspace_io = NULL;
11420		r = cui(vcpu);
11421		if (r <= 0)
11422			goto out;
11423	} else {
11424		WARN_ON_ONCE(vcpu->arch.pio.count);
11425		WARN_ON_ONCE(vcpu->mmio_needed);
11426	}
11427
11428	if (kvm_run->immediate_exit) {
11429		r = -EINTR;
11430		goto out;
11431	}
11432
11433	r = static_call(kvm_x86_vcpu_pre_run)(vcpu);
11434	if (r <= 0)
11435		goto out;
11436
11437	r = vcpu_run(vcpu);
11438
11439out:
11440	kvm_put_guest_fpu(vcpu);
11441	if (kvm_run->kvm_valid_regs)
11442		store_regs(vcpu);
11443	post_kvm_run_save(vcpu);
11444	kvm_vcpu_srcu_read_unlock(vcpu);
11445
11446	kvm_sigset_deactivate(vcpu);
11447	vcpu_put(vcpu);
11448	return r;
11449}
11450
11451static void __get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
11452{
11453	if (vcpu->arch.emulate_regs_need_sync_to_vcpu) {
11454		/*
11455		 * We are here if userspace calls get_regs() in the middle of
11456		 * instruction emulation. Registers state needs to be copied
11457		 * back from emulation context to vcpu. Userspace shouldn't do
11458		 * that usually, but some bad designed PV devices (vmware
11459		 * backdoor interface) need this to work
11460		 */
11461		emulator_writeback_register_cache(vcpu->arch.emulate_ctxt);
11462		vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
11463	}
11464	regs->rax = kvm_rax_read(vcpu);
11465	regs->rbx = kvm_rbx_read(vcpu);
11466	regs->rcx = kvm_rcx_read(vcpu);
11467	regs->rdx = kvm_rdx_read(vcpu);
11468	regs->rsi = kvm_rsi_read(vcpu);
11469	regs->rdi = kvm_rdi_read(vcpu);
11470	regs->rsp = kvm_rsp_read(vcpu);
11471	regs->rbp = kvm_rbp_read(vcpu);
11472#ifdef CONFIG_X86_64
11473	regs->r8 = kvm_r8_read(vcpu);
11474	regs->r9 = kvm_r9_read(vcpu);
11475	regs->r10 = kvm_r10_read(vcpu);
11476	regs->r11 = kvm_r11_read(vcpu);
11477	regs->r12 = kvm_r12_read(vcpu);
11478	regs->r13 = kvm_r13_read(vcpu);
11479	regs->r14 = kvm_r14_read(vcpu);
11480	regs->r15 = kvm_r15_read(vcpu);
11481#endif
11482
11483	regs->rip = kvm_rip_read(vcpu);
11484	regs->rflags = kvm_get_rflags(vcpu);
11485}
11486
11487int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
11488{
11489	vcpu_load(vcpu);
11490	__get_regs(vcpu, regs);
11491	vcpu_put(vcpu);
11492	return 0;
11493}
11494
11495static void __set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
11496{
11497	vcpu->arch.emulate_regs_need_sync_from_vcpu = true;
11498	vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
11499
11500	kvm_rax_write(vcpu, regs->rax);
11501	kvm_rbx_write(vcpu, regs->rbx);
11502	kvm_rcx_write(vcpu, regs->rcx);
11503	kvm_rdx_write(vcpu, regs->rdx);
11504	kvm_rsi_write(vcpu, regs->rsi);
11505	kvm_rdi_write(vcpu, regs->rdi);
11506	kvm_rsp_write(vcpu, regs->rsp);
11507	kvm_rbp_write(vcpu, regs->rbp);
11508#ifdef CONFIG_X86_64
11509	kvm_r8_write(vcpu, regs->r8);
11510	kvm_r9_write(vcpu, regs->r9);
11511	kvm_r10_write(vcpu, regs->r10);
11512	kvm_r11_write(vcpu, regs->r11);
11513	kvm_r12_write(vcpu, regs->r12);
11514	kvm_r13_write(vcpu, regs->r13);
11515	kvm_r14_write(vcpu, regs->r14);
11516	kvm_r15_write(vcpu, regs->r15);
11517#endif
11518
11519	kvm_rip_write(vcpu, regs->rip);
11520	kvm_set_rflags(vcpu, regs->rflags | X86_EFLAGS_FIXED);
11521
11522	vcpu->arch.exception.pending = false;
11523	vcpu->arch.exception_vmexit.pending = false;
11524
11525	kvm_make_request(KVM_REQ_EVENT, vcpu);
11526}
11527
11528int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
11529{
11530	vcpu_load(vcpu);
11531	__set_regs(vcpu, regs);
11532	vcpu_put(vcpu);
11533	return 0;
11534}
11535
11536static void __get_sregs_common(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs)
11537{
11538	struct desc_ptr dt;
11539
11540	if (vcpu->arch.guest_state_protected)
11541		goto skip_protected_regs;
11542
11543	kvm_get_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
11544	kvm_get_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
11545	kvm_get_segment(vcpu, &sregs->es, VCPU_SREG_ES);
11546	kvm_get_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
11547	kvm_get_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
11548	kvm_get_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
11549
11550	kvm_get_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
11551	kvm_get_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
11552
11553	static_call(kvm_x86_get_idt)(vcpu, &dt);
11554	sregs->idt.limit = dt.size;
11555	sregs->idt.base = dt.address;
11556	static_call(kvm_x86_get_gdt)(vcpu, &dt);
11557	sregs->gdt.limit = dt.size;
11558	sregs->gdt.base = dt.address;
11559
11560	sregs->cr2 = vcpu->arch.cr2;
11561	sregs->cr3 = kvm_read_cr3(vcpu);
11562
11563skip_protected_regs:
11564	sregs->cr0 = kvm_read_cr0(vcpu);
11565	sregs->cr4 = kvm_read_cr4(vcpu);
11566	sregs->cr8 = kvm_get_cr8(vcpu);
11567	sregs->efer = vcpu->arch.efer;
11568	sregs->apic_base = kvm_get_apic_base(vcpu);
11569}
11570
11571static void __get_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs)
11572{
11573	__get_sregs_common(vcpu, sregs);
11574
11575	if (vcpu->arch.guest_state_protected)
11576		return;
11577
11578	if (vcpu->arch.interrupt.injected && !vcpu->arch.interrupt.soft)
11579		set_bit(vcpu->arch.interrupt.nr,
11580			(unsigned long *)sregs->interrupt_bitmap);
11581}
11582
11583static void __get_sregs2(struct kvm_vcpu *vcpu, struct kvm_sregs2 *sregs2)
11584{
11585	int i;
11586
11587	__get_sregs_common(vcpu, (struct kvm_sregs *)sregs2);
11588
11589	if (vcpu->arch.guest_state_protected)
11590		return;
11591
11592	if (is_pae_paging(vcpu)) {
11593		for (i = 0 ; i < 4 ; i++)
11594			sregs2->pdptrs[i] = kvm_pdptr_read(vcpu, i);
11595		sregs2->flags |= KVM_SREGS2_FLAGS_PDPTRS_VALID;
11596	}
11597}
11598
11599int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
11600				  struct kvm_sregs *sregs)
11601{
11602	vcpu_load(vcpu);
11603	__get_sregs(vcpu, sregs);
11604	vcpu_put(vcpu);
11605	return 0;
11606}
11607
11608int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
11609				    struct kvm_mp_state *mp_state)
11610{
11611	int r;
11612
11613	vcpu_load(vcpu);
11614	if (kvm_mpx_supported())
11615		kvm_load_guest_fpu(vcpu);
11616
11617	r = kvm_apic_accept_events(vcpu);
11618	if (r < 0)
11619		goto out;
11620	r = 0;
11621
11622	if ((vcpu->arch.mp_state == KVM_MP_STATE_HALTED ||
11623	     vcpu->arch.mp_state == KVM_MP_STATE_AP_RESET_HOLD) &&
11624	    vcpu->arch.pv.pv_unhalted)
11625		mp_state->mp_state = KVM_MP_STATE_RUNNABLE;
11626	else
11627		mp_state->mp_state = vcpu->arch.mp_state;
11628
11629out:
11630	if (kvm_mpx_supported())
11631		kvm_put_guest_fpu(vcpu);
11632	vcpu_put(vcpu);
11633	return r;
11634}
11635
11636int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
11637				    struct kvm_mp_state *mp_state)
11638{
11639	int ret = -EINVAL;
11640
11641	vcpu_load(vcpu);
11642
11643	switch (mp_state->mp_state) {
11644	case KVM_MP_STATE_UNINITIALIZED:
11645	case KVM_MP_STATE_HALTED:
11646	case KVM_MP_STATE_AP_RESET_HOLD:
11647	case KVM_MP_STATE_INIT_RECEIVED:
11648	case KVM_MP_STATE_SIPI_RECEIVED:
11649		if (!lapic_in_kernel(vcpu))
11650			goto out;
11651		break;
11652
11653	case KVM_MP_STATE_RUNNABLE:
11654		break;
11655
11656	default:
11657		goto out;
11658	}
11659
11660	/*
11661	 * Pending INITs are reported using KVM_SET_VCPU_EVENTS, disallow
11662	 * forcing the guest into INIT/SIPI if those events are supposed to be
11663	 * blocked.  KVM prioritizes SMI over INIT, so reject INIT/SIPI state
11664	 * if an SMI is pending as well.
11665	 */
11666	if ((!kvm_apic_init_sipi_allowed(vcpu) || vcpu->arch.smi_pending) &&
11667	    (mp_state->mp_state == KVM_MP_STATE_SIPI_RECEIVED ||
11668	     mp_state->mp_state == KVM_MP_STATE_INIT_RECEIVED))
11669		goto out;
11670
11671	if (mp_state->mp_state == KVM_MP_STATE_SIPI_RECEIVED) {
11672		vcpu->arch.mp_state = KVM_MP_STATE_INIT_RECEIVED;
11673		set_bit(KVM_APIC_SIPI, &vcpu->arch.apic->pending_events);
11674	} else
11675		vcpu->arch.mp_state = mp_state->mp_state;
11676	kvm_make_request(KVM_REQ_EVENT, vcpu);
11677
11678	ret = 0;
11679out:
11680	vcpu_put(vcpu);
11681	return ret;
11682}
11683
11684int kvm_task_switch(struct kvm_vcpu *vcpu, u16 tss_selector, int idt_index,
11685		    int reason, bool has_error_code, u32 error_code)
11686{
11687	struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
11688	int ret;
11689
11690	init_emulate_ctxt(vcpu);
11691
11692	ret = emulator_task_switch(ctxt, tss_selector, idt_index, reason,
11693				   has_error_code, error_code);
11694	if (ret) {
11695		vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
11696		vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
11697		vcpu->run->internal.ndata = 0;
11698		return 0;
11699	}
11700
11701	kvm_rip_write(vcpu, ctxt->eip);
11702	kvm_set_rflags(vcpu, ctxt->eflags);
11703	return 1;
11704}
11705EXPORT_SYMBOL_GPL(kvm_task_switch);
11706
11707static bool kvm_is_valid_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs)
11708{
11709	if ((sregs->efer & EFER_LME) && (sregs->cr0 & X86_CR0_PG)) {
11710		/*
11711		 * When EFER.LME and CR0.PG are set, the processor is in
11712		 * 64-bit mode (though maybe in a 32-bit code segment).
11713		 * CR4.PAE and EFER.LMA must be set.
11714		 */
11715		if (!(sregs->cr4 & X86_CR4_PAE) || !(sregs->efer & EFER_LMA))
11716			return false;
11717		if (!kvm_vcpu_is_legal_cr3(vcpu, sregs->cr3))
11718			return false;
11719	} else {
11720		/*
11721		 * Not in 64-bit mode: EFER.LMA is clear and the code
11722		 * segment cannot be 64-bit.
11723		 */
11724		if (sregs->efer & EFER_LMA || sregs->cs.l)
11725			return false;
11726	}
11727
11728	return kvm_is_valid_cr4(vcpu, sregs->cr4) &&
11729	       kvm_is_valid_cr0(vcpu, sregs->cr0);
11730}
11731
11732static int __set_sregs_common(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs,
11733		int *mmu_reset_needed, bool update_pdptrs)
11734{
11735	struct msr_data apic_base_msr;
11736	int idx;
11737	struct desc_ptr dt;
11738
11739	if (!kvm_is_valid_sregs(vcpu, sregs))
11740		return -EINVAL;
11741
11742	apic_base_msr.data = sregs->apic_base;
11743	apic_base_msr.host_initiated = true;
11744	if (kvm_set_apic_base(vcpu, &apic_base_msr))
11745		return -EINVAL;
11746
11747	if (vcpu->arch.guest_state_protected)
11748		return 0;
11749
11750	dt.size = sregs->idt.limit;
11751	dt.address = sregs->idt.base;
11752	static_call(kvm_x86_set_idt)(vcpu, &dt);
11753	dt.size = sregs->gdt.limit;
11754	dt.address = sregs->gdt.base;
11755	static_call(kvm_x86_set_gdt)(vcpu, &dt);
11756
11757	vcpu->arch.cr2 = sregs->cr2;
11758	*mmu_reset_needed |= kvm_read_cr3(vcpu) != sregs->cr3;
11759	vcpu->arch.cr3 = sregs->cr3;
11760	kvm_register_mark_dirty(vcpu, VCPU_EXREG_CR3);
11761	static_call_cond(kvm_x86_post_set_cr3)(vcpu, sregs->cr3);
11762
11763	kvm_set_cr8(vcpu, sregs->cr8);
11764
11765	*mmu_reset_needed |= vcpu->arch.efer != sregs->efer;
11766	static_call(kvm_x86_set_efer)(vcpu, sregs->efer);
11767
11768	*mmu_reset_needed |= kvm_read_cr0(vcpu) != sregs->cr0;
11769	static_call(kvm_x86_set_cr0)(vcpu, sregs->cr0);
11770
11771	*mmu_reset_needed |= kvm_read_cr4(vcpu) != sregs->cr4;
11772	static_call(kvm_x86_set_cr4)(vcpu, sregs->cr4);
11773
11774	if (update_pdptrs) {
11775		idx = srcu_read_lock(&vcpu->kvm->srcu);
11776		if (is_pae_paging(vcpu)) {
11777			load_pdptrs(vcpu, kvm_read_cr3(vcpu));
11778			*mmu_reset_needed = 1;
11779		}
11780		srcu_read_unlock(&vcpu->kvm->srcu, idx);
11781	}
11782
11783	kvm_set_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
11784	kvm_set_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
11785	kvm_set_segment(vcpu, &sregs->es, VCPU_SREG_ES);
11786	kvm_set_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
11787	kvm_set_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
11788	kvm_set_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
11789
11790	kvm_set_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
11791	kvm_set_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
11792
11793	update_cr8_intercept(vcpu);
11794
11795	/* Older userspace won't unhalt the vcpu on reset. */
11796	if (kvm_vcpu_is_bsp(vcpu) && kvm_rip_read(vcpu) == 0xfff0 &&
11797	    sregs->cs.selector == 0xf000 && sregs->cs.base == 0xffff0000 &&
11798	    !is_protmode(vcpu))
11799		vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
11800
11801	return 0;
11802}
11803
11804static int __set_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs)
11805{
11806	int pending_vec, max_bits;
11807	int mmu_reset_needed = 0;
11808	int ret = __set_sregs_common(vcpu, sregs, &mmu_reset_needed, true);
11809
11810	if (ret)
11811		return ret;
11812
11813	if (mmu_reset_needed) {
11814		kvm_mmu_reset_context(vcpu);
11815		kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu);
11816	}
11817
11818	max_bits = KVM_NR_INTERRUPTS;
11819	pending_vec = find_first_bit(
11820		(const unsigned long *)sregs->interrupt_bitmap, max_bits);
11821
11822	if (pending_vec < max_bits) {
11823		kvm_queue_interrupt(vcpu, pending_vec, false);
11824		pr_debug("Set back pending irq %d\n", pending_vec);
11825		kvm_make_request(KVM_REQ_EVENT, vcpu);
11826	}
11827	return 0;
11828}
11829
11830static int __set_sregs2(struct kvm_vcpu *vcpu, struct kvm_sregs2 *sregs2)
11831{
11832	int mmu_reset_needed = 0;
11833	bool valid_pdptrs = sregs2->flags & KVM_SREGS2_FLAGS_PDPTRS_VALID;
11834	bool pae = (sregs2->cr0 & X86_CR0_PG) && (sregs2->cr4 & X86_CR4_PAE) &&
11835		!(sregs2->efer & EFER_LMA);
11836	int i, ret;
11837
11838	if (sregs2->flags & ~KVM_SREGS2_FLAGS_PDPTRS_VALID)
11839		return -EINVAL;
11840
11841	if (valid_pdptrs && (!pae || vcpu->arch.guest_state_protected))
11842		return -EINVAL;
11843
11844	ret = __set_sregs_common(vcpu, (struct kvm_sregs *)sregs2,
11845				 &mmu_reset_needed, !valid_pdptrs);
11846	if (ret)
11847		return ret;
11848
11849	if (valid_pdptrs) {
11850		for (i = 0; i < 4 ; i++)
11851			kvm_pdptr_write(vcpu, i, sregs2->pdptrs[i]);
11852
11853		kvm_register_mark_dirty(vcpu, VCPU_EXREG_PDPTR);
11854		mmu_reset_needed = 1;
11855		vcpu->arch.pdptrs_from_userspace = true;
11856	}
11857	if (mmu_reset_needed) {
11858		kvm_mmu_reset_context(vcpu);
11859		kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu);
11860	}
11861	return 0;
11862}
11863
11864int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
11865				  struct kvm_sregs *sregs)
11866{
11867	int ret;
11868
11869	vcpu_load(vcpu);
11870	ret = __set_sregs(vcpu, sregs);
11871	vcpu_put(vcpu);
11872	return ret;
11873}
11874
11875static void kvm_arch_vcpu_guestdbg_update_apicv_inhibit(struct kvm *kvm)
11876{
11877	bool set = false;
11878	struct kvm_vcpu *vcpu;
11879	unsigned long i;
11880
11881	if (!enable_apicv)
11882		return;
11883
11884	down_write(&kvm->arch.apicv_update_lock);
11885
11886	kvm_for_each_vcpu(i, vcpu, kvm) {
11887		if (vcpu->guest_debug & KVM_GUESTDBG_BLOCKIRQ) {
11888			set = true;
11889			break;
11890		}
11891	}
11892	__kvm_set_or_clear_apicv_inhibit(kvm, APICV_INHIBIT_REASON_BLOCKIRQ, set);
11893	up_write(&kvm->arch.apicv_update_lock);
11894}
11895
11896int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu,
11897					struct kvm_guest_debug *dbg)
11898{
11899	unsigned long rflags;
11900	int i, r;
11901
11902	if (vcpu->arch.guest_state_protected)
11903		return -EINVAL;
11904
11905	vcpu_load(vcpu);
11906
11907	if (dbg->control & (KVM_GUESTDBG_INJECT_DB | KVM_GUESTDBG_INJECT_BP)) {
11908		r = -EBUSY;
11909		if (kvm_is_exception_pending(vcpu))
11910			goto out;
11911		if (dbg->control & KVM_GUESTDBG_INJECT_DB)
11912			kvm_queue_exception(vcpu, DB_VECTOR);
11913		else
11914			kvm_queue_exception(vcpu, BP_VECTOR);
11915	}
11916
11917	/*
11918	 * Read rflags as long as potentially injected trace flags are still
11919	 * filtered out.
11920	 */
11921	rflags = kvm_get_rflags(vcpu);
11922
11923	vcpu->guest_debug = dbg->control;
11924	if (!(vcpu->guest_debug & KVM_GUESTDBG_ENABLE))
11925		vcpu->guest_debug = 0;
11926
11927	if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) {
11928		for (i = 0; i < KVM_NR_DB_REGS; ++i)
11929			vcpu->arch.eff_db[i] = dbg->arch.debugreg[i];
11930		vcpu->arch.guest_debug_dr7 = dbg->arch.debugreg[7];
11931	} else {
11932		for (i = 0; i < KVM_NR_DB_REGS; i++)
11933			vcpu->arch.eff_db[i] = vcpu->arch.db[i];
11934	}
11935	kvm_update_dr7(vcpu);
11936
11937	if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
11938		vcpu->arch.singlestep_rip = kvm_get_linear_rip(vcpu);
11939
11940	/*
11941	 * Trigger an rflags update that will inject or remove the trace
11942	 * flags.
11943	 */
11944	kvm_set_rflags(vcpu, rflags);
11945
11946	static_call(kvm_x86_update_exception_bitmap)(vcpu);
11947
11948	kvm_arch_vcpu_guestdbg_update_apicv_inhibit(vcpu->kvm);
11949
11950	r = 0;
11951
11952out:
11953	vcpu_put(vcpu);
11954	return r;
11955}
11956
11957/*
11958 * Translate a guest virtual address to a guest physical address.
11959 */
11960int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
11961				    struct kvm_translation *tr)
11962{
11963	unsigned long vaddr = tr->linear_address;
11964	gpa_t gpa;
11965	int idx;
11966
11967	vcpu_load(vcpu);
11968
11969	idx = srcu_read_lock(&vcpu->kvm->srcu);
11970	gpa = kvm_mmu_gva_to_gpa_system(vcpu, vaddr, NULL);
11971	srcu_read_unlock(&vcpu->kvm->srcu, idx);
11972	tr->physical_address = gpa;
11973	tr->valid = gpa != INVALID_GPA;
11974	tr->writeable = 1;
11975	tr->usermode = 0;
11976
11977	vcpu_put(vcpu);
11978	return 0;
11979}
11980
11981int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
11982{
11983	struct fxregs_state *fxsave;
11984
11985	if (fpstate_is_confidential(&vcpu->arch.guest_fpu))
11986		return 0;
11987
11988	vcpu_load(vcpu);
11989
11990	fxsave = &vcpu->arch.guest_fpu.fpstate->regs.fxsave;
11991	memcpy(fpu->fpr, fxsave->st_space, 128);
11992	fpu->fcw = fxsave->cwd;
11993	fpu->fsw = fxsave->swd;
11994	fpu->ftwx = fxsave->twd;
11995	fpu->last_opcode = fxsave->fop;
11996	fpu->last_ip = fxsave->rip;
11997	fpu->last_dp = fxsave->rdp;
11998	memcpy(fpu->xmm, fxsave->xmm_space, sizeof(fxsave->xmm_space));
11999
12000	vcpu_put(vcpu);
12001	return 0;
12002}
12003
12004int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
12005{
12006	struct fxregs_state *fxsave;
12007
12008	if (fpstate_is_confidential(&vcpu->arch.guest_fpu))
12009		return 0;
12010
12011	vcpu_load(vcpu);
12012
12013	fxsave = &vcpu->arch.guest_fpu.fpstate->regs.fxsave;
12014
12015	memcpy(fxsave->st_space, fpu->fpr, 128);
12016	fxsave->cwd = fpu->fcw;
12017	fxsave->swd = fpu->fsw;
12018	fxsave->twd = fpu->ftwx;
12019	fxsave->fop = fpu->last_opcode;
12020	fxsave->rip = fpu->last_ip;
12021	fxsave->rdp = fpu->last_dp;
12022	memcpy(fxsave->xmm_space, fpu->xmm, sizeof(fxsave->xmm_space));
12023
12024	vcpu_put(vcpu);
12025	return 0;
12026}
12027
12028static void store_regs(struct kvm_vcpu *vcpu)
12029{
12030	BUILD_BUG_ON(sizeof(struct kvm_sync_regs) > SYNC_REGS_SIZE_BYTES);
12031
12032	if (vcpu->run->kvm_valid_regs & KVM_SYNC_X86_REGS)
12033		__get_regs(vcpu, &vcpu->run->s.regs.regs);
12034
12035	if (vcpu->run->kvm_valid_regs & KVM_SYNC_X86_SREGS)
12036		__get_sregs(vcpu, &vcpu->run->s.regs.sregs);
12037
12038	if (vcpu->run->kvm_valid_regs & KVM_SYNC_X86_EVENTS)
12039		kvm_vcpu_ioctl_x86_get_vcpu_events(
12040				vcpu, &vcpu->run->s.regs.events);
12041}
12042
12043static int sync_regs(struct kvm_vcpu *vcpu)
12044{
12045	if (vcpu->run->kvm_dirty_regs & KVM_SYNC_X86_REGS) {
12046		__set_regs(vcpu, &vcpu->run->s.regs.regs);
12047		vcpu->run->kvm_dirty_regs &= ~KVM_SYNC_X86_REGS;
12048	}
12049
12050	if (vcpu->run->kvm_dirty_regs & KVM_SYNC_X86_SREGS) {
12051		struct kvm_sregs sregs = vcpu->run->s.regs.sregs;
12052
12053		if (__set_sregs(vcpu, &sregs))
12054			return -EINVAL;
12055
12056		vcpu->run->kvm_dirty_regs &= ~KVM_SYNC_X86_SREGS;
12057	}
12058
12059	if (vcpu->run->kvm_dirty_regs & KVM_SYNC_X86_EVENTS) {
12060		struct kvm_vcpu_events events = vcpu->run->s.regs.events;
12061
12062		if (kvm_vcpu_ioctl_x86_set_vcpu_events(vcpu, &events))
12063			return -EINVAL;
12064
12065		vcpu->run->kvm_dirty_regs &= ~KVM_SYNC_X86_EVENTS;
12066	}
12067
12068	return 0;
12069}
12070
12071int kvm_arch_vcpu_precreate(struct kvm *kvm, unsigned int id)
12072{
12073	if (kvm_check_tsc_unstable() && kvm->created_vcpus)
12074		pr_warn_once("SMP vm created on host with unstable TSC; "
12075			     "guest TSC will not be reliable\n");
12076
12077	if (!kvm->arch.max_vcpu_ids)
12078		kvm->arch.max_vcpu_ids = KVM_MAX_VCPU_IDS;
12079
12080	if (id >= kvm->arch.max_vcpu_ids)
12081		return -EINVAL;
12082
12083	return static_call(kvm_x86_vcpu_precreate)(kvm);
12084}
12085
12086int kvm_arch_vcpu_create(struct kvm_vcpu *vcpu)
12087{
12088	struct page *page;
12089	int r;
12090
12091	vcpu->arch.last_vmentry_cpu = -1;
12092	vcpu->arch.regs_avail = ~0;
12093	vcpu->arch.regs_dirty = ~0;
12094
12095	kvm_gpc_init(&vcpu->arch.pv_time, vcpu->kvm);
12096
12097	if (!irqchip_in_kernel(vcpu->kvm) || kvm_vcpu_is_reset_bsp(vcpu))
12098		vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
12099	else
12100		vcpu->arch.mp_state = KVM_MP_STATE_UNINITIALIZED;
12101
12102	r = kvm_mmu_create(vcpu);
12103	if (r < 0)
12104		return r;
12105
12106	r = kvm_create_lapic(vcpu, lapic_timer_advance_ns);
12107	if (r < 0)
12108		goto fail_mmu_destroy;
12109
12110	r = -ENOMEM;
12111
12112	page = alloc_page(GFP_KERNEL_ACCOUNT | __GFP_ZERO);
12113	if (!page)
12114		goto fail_free_lapic;
12115	vcpu->arch.pio_data = page_address(page);
12116
12117	vcpu->arch.mce_banks = kcalloc(KVM_MAX_MCE_BANKS * 4, sizeof(u64),
12118				       GFP_KERNEL_ACCOUNT);
12119	vcpu->arch.mci_ctl2_banks = kcalloc(KVM_MAX_MCE_BANKS, sizeof(u64),
12120					    GFP_KERNEL_ACCOUNT);
12121	if (!vcpu->arch.mce_banks || !vcpu->arch.mci_ctl2_banks)
12122		goto fail_free_mce_banks;
12123	vcpu->arch.mcg_cap = KVM_MAX_MCE_BANKS;
12124
12125	if (!zalloc_cpumask_var(&vcpu->arch.wbinvd_dirty_mask,
12126				GFP_KERNEL_ACCOUNT))
12127		goto fail_free_mce_banks;
12128
12129	if (!alloc_emulate_ctxt(vcpu))
12130		goto free_wbinvd_dirty_mask;
12131
12132	if (!fpu_alloc_guest_fpstate(&vcpu->arch.guest_fpu)) {
12133		pr_err("failed to allocate vcpu's fpu\n");
12134		goto free_emulate_ctxt;
12135	}
12136
12137	vcpu->arch.maxphyaddr = cpuid_query_maxphyaddr(vcpu);
12138	vcpu->arch.reserved_gpa_bits = kvm_vcpu_reserved_gpa_bits_raw(vcpu);
12139
12140	vcpu->arch.pat = MSR_IA32_CR_PAT_DEFAULT;
12141
12142	kvm_async_pf_hash_reset(vcpu);
12143
12144	vcpu->arch.perf_capabilities = kvm_caps.supported_perf_cap;
12145	kvm_pmu_init(vcpu);
12146
12147	vcpu->arch.pending_external_vector = -1;
12148	vcpu->arch.preempted_in_kernel = false;
12149
12150#if IS_ENABLED(CONFIG_HYPERV)
12151	vcpu->arch.hv_root_tdp = INVALID_PAGE;
12152#endif
12153
12154	r = static_call(kvm_x86_vcpu_create)(vcpu);
12155	if (r)
12156		goto free_guest_fpu;
12157
12158	vcpu->arch.arch_capabilities = kvm_get_arch_capabilities();
12159	vcpu->arch.msr_platform_info = MSR_PLATFORM_INFO_CPUID_FAULT;
12160	kvm_xen_init_vcpu(vcpu);
12161	kvm_vcpu_mtrr_init(vcpu);
12162	vcpu_load(vcpu);
12163	kvm_set_tsc_khz(vcpu, vcpu->kvm->arch.default_tsc_khz);
12164	kvm_vcpu_reset(vcpu, false);
12165	kvm_init_mmu(vcpu);
12166	vcpu_put(vcpu);
12167	return 0;
12168
12169free_guest_fpu:
12170	fpu_free_guest_fpstate(&vcpu->arch.guest_fpu);
12171free_emulate_ctxt:
12172	kmem_cache_free(x86_emulator_cache, vcpu->arch.emulate_ctxt);
12173free_wbinvd_dirty_mask:
12174	free_cpumask_var(vcpu->arch.wbinvd_dirty_mask);
12175fail_free_mce_banks:
12176	kfree(vcpu->arch.mce_banks);
12177	kfree(vcpu->arch.mci_ctl2_banks);
12178	free_page((unsigned long)vcpu->arch.pio_data);
12179fail_free_lapic:
12180	kvm_free_lapic(vcpu);
12181fail_mmu_destroy:
12182	kvm_mmu_destroy(vcpu);
12183	return r;
12184}
12185
12186void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu)
12187{
12188	struct kvm *kvm = vcpu->kvm;
12189
12190	if (mutex_lock_killable(&vcpu->mutex))
12191		return;
12192	vcpu_load(vcpu);
12193	kvm_synchronize_tsc(vcpu, NULL);
12194	vcpu_put(vcpu);
12195
12196	/* poll control enabled by default */
12197	vcpu->arch.msr_kvm_poll_control = 1;
12198
12199	mutex_unlock(&vcpu->mutex);
12200
12201	if (kvmclock_periodic_sync && vcpu->vcpu_idx == 0)
12202		schedule_delayed_work(&kvm->arch.kvmclock_sync_work,
12203						KVMCLOCK_SYNC_PERIOD);
12204}
12205
12206void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
12207{
12208	int idx;
12209
12210	kvmclock_reset(vcpu);
12211
12212	static_call(kvm_x86_vcpu_free)(vcpu);
12213
12214	kmem_cache_free(x86_emulator_cache, vcpu->arch.emulate_ctxt);
12215	free_cpumask_var(vcpu->arch.wbinvd_dirty_mask);
12216	fpu_free_guest_fpstate(&vcpu->arch.guest_fpu);
12217
12218	kvm_xen_destroy_vcpu(vcpu);
12219	kvm_hv_vcpu_uninit(vcpu);
12220	kvm_pmu_destroy(vcpu);
12221	kfree(vcpu->arch.mce_banks);
12222	kfree(vcpu->arch.mci_ctl2_banks);
12223	kvm_free_lapic(vcpu);
12224	idx = srcu_read_lock(&vcpu->kvm->srcu);
12225	kvm_mmu_destroy(vcpu);
12226	srcu_read_unlock(&vcpu->kvm->srcu, idx);
12227	free_page((unsigned long)vcpu->arch.pio_data);
12228	kvfree(vcpu->arch.cpuid_entries);
12229}
12230
12231void kvm_vcpu_reset(struct kvm_vcpu *vcpu, bool init_event)
12232{
12233	struct kvm_cpuid_entry2 *cpuid_0x1;
12234	unsigned long old_cr0 = kvm_read_cr0(vcpu);
12235	unsigned long new_cr0;
12236
12237	/*
12238	 * Several of the "set" flows, e.g. ->set_cr0(), read other registers
12239	 * to handle side effects.  RESET emulation hits those flows and relies
12240	 * on emulated/virtualized registers, including those that are loaded
12241	 * into hardware, to be zeroed at vCPU creation.  Use CRs as a sentinel
12242	 * to detect improper or missing initialization.
12243	 */
12244	WARN_ON_ONCE(!init_event &&
12245		     (old_cr0 || kvm_read_cr3(vcpu) || kvm_read_cr4(vcpu)));
12246
12247	/*
12248	 * SVM doesn't unconditionally VM-Exit on INIT and SHUTDOWN, thus it's
12249	 * possible to INIT the vCPU while L2 is active.  Force the vCPU back
12250	 * into L1 as EFER.SVME is cleared on INIT (along with all other EFER
12251	 * bits), i.e. virtualization is disabled.
12252	 */
12253	if (is_guest_mode(vcpu))
12254		kvm_leave_nested(vcpu);
12255
12256	kvm_lapic_reset(vcpu, init_event);
12257
12258	WARN_ON_ONCE(is_guest_mode(vcpu) || is_smm(vcpu));
12259	vcpu->arch.hflags = 0;
12260
12261	vcpu->arch.smi_pending = 0;
12262	vcpu->arch.smi_count = 0;
12263	atomic_set(&vcpu->arch.nmi_queued, 0);
12264	vcpu->arch.nmi_pending = 0;
12265	vcpu->arch.nmi_injected = false;
12266	kvm_clear_interrupt_queue(vcpu);
12267	kvm_clear_exception_queue(vcpu);
12268
12269	memset(vcpu->arch.db, 0, sizeof(vcpu->arch.db));
12270	kvm_update_dr0123(vcpu);
12271	vcpu->arch.dr6 = DR6_ACTIVE_LOW;
12272	vcpu->arch.dr7 = DR7_FIXED_1;
12273	kvm_update_dr7(vcpu);
12274
12275	vcpu->arch.cr2 = 0;
12276
12277	kvm_make_request(KVM_REQ_EVENT, vcpu);
12278	vcpu->arch.apf.msr_en_val = 0;
12279	vcpu->arch.apf.msr_int_val = 0;
12280	vcpu->arch.st.msr_val = 0;
12281
12282	kvmclock_reset(vcpu);
12283
12284	kvm_clear_async_pf_completion_queue(vcpu);
12285	kvm_async_pf_hash_reset(vcpu);
12286	vcpu->arch.apf.halted = false;
12287
12288	if (vcpu->arch.guest_fpu.fpstate && kvm_mpx_supported()) {
12289		struct fpstate *fpstate = vcpu->arch.guest_fpu.fpstate;
12290
12291		/*
12292		 * All paths that lead to INIT are required to load the guest's
12293		 * FPU state (because most paths are buried in KVM_RUN).
12294		 */
12295		if (init_event)
12296			kvm_put_guest_fpu(vcpu);
12297
12298		fpstate_clear_xstate_component(fpstate, XFEATURE_BNDREGS);
12299		fpstate_clear_xstate_component(fpstate, XFEATURE_BNDCSR);
12300
12301		if (init_event)
12302			kvm_load_guest_fpu(vcpu);
12303	}
12304
12305	if (!init_event) {
12306		vcpu->arch.smbase = 0x30000;
12307
12308		vcpu->arch.msr_misc_features_enables = 0;
12309		vcpu->arch.ia32_misc_enable_msr = MSR_IA32_MISC_ENABLE_PEBS_UNAVAIL |
12310						  MSR_IA32_MISC_ENABLE_BTS_UNAVAIL;
12311
12312		__kvm_set_xcr(vcpu, 0, XFEATURE_MASK_FP);
12313		__kvm_set_msr(vcpu, MSR_IA32_XSS, 0, true);
12314	}
12315
12316	/* All GPRs except RDX (handled below) are zeroed on RESET/INIT. */
12317	memset(vcpu->arch.regs, 0, sizeof(vcpu->arch.regs));
12318	kvm_register_mark_dirty(vcpu, VCPU_REGS_RSP);
12319
12320	/*
12321	 * Fall back to KVM's default Family/Model/Stepping of 0x600 (P6/Athlon)
12322	 * if no CPUID match is found.  Note, it's impossible to get a match at
12323	 * RESET since KVM emulates RESET before exposing the vCPU to userspace,
12324	 * i.e. it's impossible for kvm_find_cpuid_entry() to find a valid entry
12325	 * on RESET.  But, go through the motions in case that's ever remedied.
12326	 */
12327	cpuid_0x1 = kvm_find_cpuid_entry(vcpu, 1);
12328	kvm_rdx_write(vcpu, cpuid_0x1 ? cpuid_0x1->eax : 0x600);
12329
12330	static_call(kvm_x86_vcpu_reset)(vcpu, init_event);
12331
12332	kvm_set_rflags(vcpu, X86_EFLAGS_FIXED);
12333	kvm_rip_write(vcpu, 0xfff0);
12334
12335	vcpu->arch.cr3 = 0;
12336	kvm_register_mark_dirty(vcpu, VCPU_EXREG_CR3);
12337
12338	/*
12339	 * CR0.CD/NW are set on RESET, preserved on INIT.  Note, some versions
12340	 * of Intel's SDM list CD/NW as being set on INIT, but they contradict
12341	 * (or qualify) that with a footnote stating that CD/NW are preserved.
12342	 */
12343	new_cr0 = X86_CR0_ET;
12344	if (init_event)
12345		new_cr0 |= (old_cr0 & (X86_CR0_NW | X86_CR0_CD));
12346	else
12347		new_cr0 |= X86_CR0_NW | X86_CR0_CD;
12348
12349	static_call(kvm_x86_set_cr0)(vcpu, new_cr0);
12350	static_call(kvm_x86_set_cr4)(vcpu, 0);
12351	static_call(kvm_x86_set_efer)(vcpu, 0);
12352	static_call(kvm_x86_update_exception_bitmap)(vcpu);
12353
12354	/*
12355	 * On the standard CR0/CR4/EFER modification paths, there are several
12356	 * complex conditions determining whether the MMU has to be reset and/or
12357	 * which PCIDs have to be flushed.  However, CR0.WP and the paging-related
12358	 * bits in CR4 and EFER are irrelevant if CR0.PG was '0'; and a reset+flush
12359	 * is needed anyway if CR0.PG was '1' (which can only happen for INIT, as
12360	 * CR0 will be '0' prior to RESET).  So we only need to check CR0.PG here.
12361	 */
12362	if (old_cr0 & X86_CR0_PG) {
12363		kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu);
12364		kvm_mmu_reset_context(vcpu);
12365	}
12366
12367	/*
12368	 * Intel's SDM states that all TLB entries are flushed on INIT.  AMD's
12369	 * APM states the TLBs are untouched by INIT, but it also states that
12370	 * the TLBs are flushed on "External initialization of the processor."
12371	 * Flush the guest TLB regardless of vendor, there is no meaningful
12372	 * benefit in relying on the guest to flush the TLB immediately after
12373	 * INIT.  A spurious TLB flush is benign and likely negligible from a
12374	 * performance perspective.
12375	 */
12376	if (init_event)
12377		kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu);
12378}
12379EXPORT_SYMBOL_GPL(kvm_vcpu_reset);
12380
12381void kvm_vcpu_deliver_sipi_vector(struct kvm_vcpu *vcpu, u8 vector)
12382{
12383	struct kvm_segment cs;
12384
12385	kvm_get_segment(vcpu, &cs, VCPU_SREG_CS);
12386	cs.selector = vector << 8;
12387	cs.base = vector << 12;
12388	kvm_set_segment(vcpu, &cs, VCPU_SREG_CS);
12389	kvm_rip_write(vcpu, 0);
12390}
12391EXPORT_SYMBOL_GPL(kvm_vcpu_deliver_sipi_vector);
12392
12393int kvm_arch_hardware_enable(void)
12394{
12395	struct kvm *kvm;
12396	struct kvm_vcpu *vcpu;
12397	unsigned long i;
12398	int ret;
12399	u64 local_tsc;
12400	u64 max_tsc = 0;
12401	bool stable, backwards_tsc = false;
12402
12403	kvm_user_return_msr_cpu_online();
12404
12405	ret = kvm_x86_check_processor_compatibility();
12406	if (ret)
12407		return ret;
12408
12409	ret = static_call(kvm_x86_hardware_enable)();
12410	if (ret != 0)
12411		return ret;
12412
12413	local_tsc = rdtsc();
12414	stable = !kvm_check_tsc_unstable();
12415	list_for_each_entry(kvm, &vm_list, vm_list) {
12416		kvm_for_each_vcpu(i, vcpu, kvm) {
12417			if (!stable && vcpu->cpu == smp_processor_id())
12418				kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
12419			if (stable && vcpu->arch.last_host_tsc > local_tsc) {
12420				backwards_tsc = true;
12421				if (vcpu->arch.last_host_tsc > max_tsc)
12422					max_tsc = vcpu->arch.last_host_tsc;
12423			}
12424		}
12425	}
12426
12427	/*
12428	 * Sometimes, even reliable TSCs go backwards.  This happens on
12429	 * platforms that reset TSC during suspend or hibernate actions, but
12430	 * maintain synchronization.  We must compensate.  Fortunately, we can
12431	 * detect that condition here, which happens early in CPU bringup,
12432	 * before any KVM threads can be running.  Unfortunately, we can't
12433	 * bring the TSCs fully up to date with real time, as we aren't yet far
12434	 * enough into CPU bringup that we know how much real time has actually
12435	 * elapsed; our helper function, ktime_get_boottime_ns() will be using boot
12436	 * variables that haven't been updated yet.
12437	 *
12438	 * So we simply find the maximum observed TSC above, then record the
12439	 * adjustment to TSC in each VCPU.  When the VCPU later gets loaded,
12440	 * the adjustment will be applied.  Note that we accumulate
12441	 * adjustments, in case multiple suspend cycles happen before some VCPU
12442	 * gets a chance to run again.  In the event that no KVM threads get a
12443	 * chance to run, we will miss the entire elapsed period, as we'll have
12444	 * reset last_host_tsc, so VCPUs will not have the TSC adjusted and may
12445	 * loose cycle time.  This isn't too big a deal, since the loss will be
12446	 * uniform across all VCPUs (not to mention the scenario is extremely
12447	 * unlikely). It is possible that a second hibernate recovery happens
12448	 * much faster than a first, causing the observed TSC here to be
12449	 * smaller; this would require additional padding adjustment, which is
12450	 * why we set last_host_tsc to the local tsc observed here.
12451	 *
12452	 * N.B. - this code below runs only on platforms with reliable TSC,
12453	 * as that is the only way backwards_tsc is set above.  Also note
12454	 * that this runs for ALL vcpus, which is not a bug; all VCPUs should
12455	 * have the same delta_cyc adjustment applied if backwards_tsc
12456	 * is detected.  Note further, this adjustment is only done once,
12457	 * as we reset last_host_tsc on all VCPUs to stop this from being
12458	 * called multiple times (one for each physical CPU bringup).
12459	 *
12460	 * Platforms with unreliable TSCs don't have to deal with this, they
12461	 * will be compensated by the logic in vcpu_load, which sets the TSC to
12462	 * catchup mode.  This will catchup all VCPUs to real time, but cannot
12463	 * guarantee that they stay in perfect synchronization.
12464	 */
12465	if (backwards_tsc) {
12466		u64 delta_cyc = max_tsc - local_tsc;
12467		list_for_each_entry(kvm, &vm_list, vm_list) {
12468			kvm->arch.backwards_tsc_observed = true;
12469			kvm_for_each_vcpu(i, vcpu, kvm) {
12470				vcpu->arch.tsc_offset_adjustment += delta_cyc;
12471				vcpu->arch.last_host_tsc = local_tsc;
12472				kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
12473			}
12474
12475			/*
12476			 * We have to disable TSC offset matching.. if you were
12477			 * booting a VM while issuing an S4 host suspend....
12478			 * you may have some problem.  Solving this issue is
12479			 * left as an exercise to the reader.
12480			 */
12481			kvm->arch.last_tsc_nsec = 0;
12482			kvm->arch.last_tsc_write = 0;
12483		}
12484
12485	}
12486	return 0;
12487}
12488
12489void kvm_arch_hardware_disable(void)
12490{
12491	static_call(kvm_x86_hardware_disable)();
12492	drop_user_return_notifiers();
12493}
12494
12495bool kvm_vcpu_is_reset_bsp(struct kvm_vcpu *vcpu)
12496{
12497	return vcpu->kvm->arch.bsp_vcpu_id == vcpu->vcpu_id;
12498}
12499
12500bool kvm_vcpu_is_bsp(struct kvm_vcpu *vcpu)
12501{
12502	return (vcpu->arch.apic_base & MSR_IA32_APICBASE_BSP) != 0;
12503}
12504
12505void kvm_arch_sched_in(struct kvm_vcpu *vcpu, int cpu)
12506{
12507	struct kvm_pmu *pmu = vcpu_to_pmu(vcpu);
12508
12509	vcpu->arch.l1tf_flush_l1d = true;
12510	if (pmu->version && unlikely(pmu->event_count)) {
12511		pmu->need_cleanup = true;
12512		kvm_make_request(KVM_REQ_PMU, vcpu);
12513	}
12514	static_call(kvm_x86_sched_in)(vcpu, cpu);
12515}
12516
12517void kvm_arch_free_vm(struct kvm *kvm)
12518{
12519#if IS_ENABLED(CONFIG_HYPERV)
12520	kfree(kvm->arch.hv_pa_pg);
12521#endif
12522	__kvm_arch_free_vm(kvm);
12523}
12524
12525
12526int kvm_arch_init_vm(struct kvm *kvm, unsigned long type)
12527{
12528	int ret;
12529	unsigned long flags;
12530
12531	if (!kvm_is_vm_type_supported(type))
12532		return -EINVAL;
12533
12534	kvm->arch.vm_type = type;
12535
12536	ret = kvm_page_track_init(kvm);
12537	if (ret)
12538		goto out;
12539
12540	kvm_mmu_init_vm(kvm);
12541
12542	ret = static_call(kvm_x86_vm_init)(kvm);
12543	if (ret)
12544		goto out_uninit_mmu;
12545
12546	INIT_HLIST_HEAD(&kvm->arch.mask_notifier_list);
12547	atomic_set(&kvm->arch.noncoherent_dma_count, 0);
12548
12549	/* Reserve bit 0 of irq_sources_bitmap for userspace irq source */
12550	set_bit(KVM_USERSPACE_IRQ_SOURCE_ID, &kvm->arch.irq_sources_bitmap);
12551	/* Reserve bit 1 of irq_sources_bitmap for irqfd-resampler */
12552	set_bit(KVM_IRQFD_RESAMPLE_IRQ_SOURCE_ID,
12553		&kvm->arch.irq_sources_bitmap);
12554
12555	raw_spin_lock_init(&kvm->arch.tsc_write_lock);
12556	mutex_init(&kvm->arch.apic_map_lock);
12557	seqcount_raw_spinlock_init(&kvm->arch.pvclock_sc, &kvm->arch.tsc_write_lock);
12558	kvm->arch.kvmclock_offset = -get_kvmclock_base_ns();
12559
12560	raw_spin_lock_irqsave(&kvm->arch.tsc_write_lock, flags);
12561	pvclock_update_vm_gtod_copy(kvm);
12562	raw_spin_unlock_irqrestore(&kvm->arch.tsc_write_lock, flags);
12563
12564	kvm->arch.default_tsc_khz = max_tsc_khz ? : tsc_khz;
12565	kvm->arch.guest_can_read_msr_platform_info = true;
12566	kvm->arch.enable_pmu = enable_pmu;
12567
12568#if IS_ENABLED(CONFIG_HYPERV)
12569	spin_lock_init(&kvm->arch.hv_root_tdp_lock);
12570	kvm->arch.hv_root_tdp = INVALID_PAGE;
12571#endif
12572
12573	INIT_DELAYED_WORK(&kvm->arch.kvmclock_update_work, kvmclock_update_fn);
12574	INIT_DELAYED_WORK(&kvm->arch.kvmclock_sync_work, kvmclock_sync_fn);
12575
12576	kvm_apicv_init(kvm);
12577	kvm_hv_init_vm(kvm);
12578	kvm_xen_init_vm(kvm);
12579
12580	return 0;
12581
12582out_uninit_mmu:
12583	kvm_mmu_uninit_vm(kvm);
12584	kvm_page_track_cleanup(kvm);
12585out:
12586	return ret;
12587}
12588
12589int kvm_arch_post_init_vm(struct kvm *kvm)
12590{
12591	return kvm_mmu_post_init_vm(kvm);
12592}
12593
12594static void kvm_unload_vcpu_mmu(struct kvm_vcpu *vcpu)
12595{
12596	vcpu_load(vcpu);
12597	kvm_mmu_unload(vcpu);
12598	vcpu_put(vcpu);
12599}
12600
12601static void kvm_unload_vcpu_mmus(struct kvm *kvm)
12602{
12603	unsigned long i;
12604	struct kvm_vcpu *vcpu;
12605
12606	kvm_for_each_vcpu(i, vcpu, kvm) {
12607		kvm_clear_async_pf_completion_queue(vcpu);
12608		kvm_unload_vcpu_mmu(vcpu);
12609	}
12610}
12611
12612void kvm_arch_sync_events(struct kvm *kvm)
12613{
12614	cancel_delayed_work_sync(&kvm->arch.kvmclock_sync_work);
12615	cancel_delayed_work_sync(&kvm->arch.kvmclock_update_work);
12616	kvm_free_pit(kvm);
12617}
12618
12619/**
12620 * __x86_set_memory_region: Setup KVM internal memory slot
12621 *
12622 * @kvm: the kvm pointer to the VM.
12623 * @id: the slot ID to setup.
12624 * @gpa: the GPA to install the slot (unused when @size == 0).
12625 * @size: the size of the slot. Set to zero to uninstall a slot.
12626 *
12627 * This function helps to setup a KVM internal memory slot.  Specify
12628 * @size > 0 to install a new slot, while @size == 0 to uninstall a
12629 * slot.  The return code can be one of the following:
12630 *
12631 *   HVA:           on success (uninstall will return a bogus HVA)
12632 *   -errno:        on error
12633 *
12634 * The caller should always use IS_ERR() to check the return value
12635 * before use.  Note, the KVM internal memory slots are guaranteed to
12636 * remain valid and unchanged until the VM is destroyed, i.e., the
12637 * GPA->HVA translation will not change.  However, the HVA is a user
12638 * address, i.e. its accessibility is not guaranteed, and must be
12639 * accessed via __copy_{to,from}_user().
12640 */
12641void __user * __x86_set_memory_region(struct kvm *kvm, int id, gpa_t gpa,
12642				      u32 size)
12643{
12644	int i, r;
12645	unsigned long hva, old_npages;
12646	struct kvm_memslots *slots = kvm_memslots(kvm);
12647	struct kvm_memory_slot *slot;
12648
12649	/* Called with kvm->slots_lock held.  */
12650	if (WARN_ON(id >= KVM_MEM_SLOTS_NUM))
12651		return ERR_PTR_USR(-EINVAL);
12652
12653	slot = id_to_memslot(slots, id);
12654	if (size) {
12655		if (slot && slot->npages)
12656			return ERR_PTR_USR(-EEXIST);
12657
12658		/*
12659		 * MAP_SHARED to prevent internal slot pages from being moved
12660		 * by fork()/COW.
12661		 */
12662		hva = vm_mmap(NULL, 0, size, PROT_READ | PROT_WRITE,
12663			      MAP_SHARED | MAP_ANONYMOUS, 0);
12664		if (IS_ERR_VALUE(hva))
12665			return (void __user *)hva;
12666	} else {
12667		if (!slot || !slot->npages)
12668			return NULL;
12669
12670		old_npages = slot->npages;
12671		hva = slot->userspace_addr;
12672	}
12673
12674	for (i = 0; i < kvm_arch_nr_memslot_as_ids(kvm); i++) {
12675		struct kvm_userspace_memory_region2 m;
12676
12677		m.slot = id | (i << 16);
12678		m.flags = 0;
12679		m.guest_phys_addr = gpa;
12680		m.userspace_addr = hva;
12681		m.memory_size = size;
12682		r = __kvm_set_memory_region(kvm, &m);
12683		if (r < 0)
12684			return ERR_PTR_USR(r);
12685	}
12686
12687	if (!size)
12688		vm_munmap(hva, old_npages * PAGE_SIZE);
12689
12690	return (void __user *)hva;
12691}
12692EXPORT_SYMBOL_GPL(__x86_set_memory_region);
12693
12694void kvm_arch_pre_destroy_vm(struct kvm *kvm)
12695{
12696	kvm_mmu_pre_destroy_vm(kvm);
12697}
12698
12699void kvm_arch_destroy_vm(struct kvm *kvm)
12700{
12701	if (current->mm == kvm->mm) {
12702		/*
12703		 * Free memory regions allocated on behalf of userspace,
12704		 * unless the memory map has changed due to process exit
12705		 * or fd copying.
12706		 */
12707		mutex_lock(&kvm->slots_lock);
12708		__x86_set_memory_region(kvm, APIC_ACCESS_PAGE_PRIVATE_MEMSLOT,
12709					0, 0);
12710		__x86_set_memory_region(kvm, IDENTITY_PAGETABLE_PRIVATE_MEMSLOT,
12711					0, 0);
12712		__x86_set_memory_region(kvm, TSS_PRIVATE_MEMSLOT, 0, 0);
12713		mutex_unlock(&kvm->slots_lock);
12714	}
12715	kvm_unload_vcpu_mmus(kvm);
12716	static_call_cond(kvm_x86_vm_destroy)(kvm);
12717	kvm_free_msr_filter(srcu_dereference_check(kvm->arch.msr_filter, &kvm->srcu, 1));
12718	kvm_pic_destroy(kvm);
12719	kvm_ioapic_destroy(kvm);
12720	kvm_destroy_vcpus(kvm);
12721	kvfree(rcu_dereference_check(kvm->arch.apic_map, 1));
12722	kfree(srcu_dereference_check(kvm->arch.pmu_event_filter, &kvm->srcu, 1));
12723	kvm_mmu_uninit_vm(kvm);
12724	kvm_page_track_cleanup(kvm);
12725	kvm_xen_destroy_vm(kvm);
12726	kvm_hv_destroy_vm(kvm);
12727}
12728
12729static void memslot_rmap_free(struct kvm_memory_slot *slot)
12730{
12731	int i;
12732
12733	for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
12734		kvfree(slot->arch.rmap[i]);
12735		slot->arch.rmap[i] = NULL;
12736	}
12737}
12738
12739void kvm_arch_free_memslot(struct kvm *kvm, struct kvm_memory_slot *slot)
12740{
12741	int i;
12742
12743	memslot_rmap_free(slot);
12744
12745	for (i = 1; i < KVM_NR_PAGE_SIZES; ++i) {
12746		kvfree(slot->arch.lpage_info[i - 1]);
12747		slot->arch.lpage_info[i - 1] = NULL;
12748	}
12749
12750	kvm_page_track_free_memslot(slot);
12751}
12752
12753int memslot_rmap_alloc(struct kvm_memory_slot *slot, unsigned long npages)
12754{
12755	const int sz = sizeof(*slot->arch.rmap[0]);
12756	int i;
12757
12758	for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
12759		int level = i + 1;
12760		int lpages = __kvm_mmu_slot_lpages(slot, npages, level);
12761
12762		if (slot->arch.rmap[i])
12763			continue;
12764
12765		slot->arch.rmap[i] = __vcalloc(lpages, sz, GFP_KERNEL_ACCOUNT);
12766		if (!slot->arch.rmap[i]) {
12767			memslot_rmap_free(slot);
12768			return -ENOMEM;
12769		}
12770	}
12771
12772	return 0;
12773}
12774
12775static int kvm_alloc_memslot_metadata(struct kvm *kvm,
12776				      struct kvm_memory_slot *slot)
12777{
12778	unsigned long npages = slot->npages;
12779	int i, r;
12780
12781	/*
12782	 * Clear out the previous array pointers for the KVM_MR_MOVE case.  The
12783	 * old arrays will be freed by __kvm_set_memory_region() if installing
12784	 * the new memslot is successful.
12785	 */
12786	memset(&slot->arch, 0, sizeof(slot->arch));
12787
12788	if (kvm_memslots_have_rmaps(kvm)) {
12789		r = memslot_rmap_alloc(slot, npages);
12790		if (r)
12791			return r;
12792	}
12793
12794	for (i = 1; i < KVM_NR_PAGE_SIZES; ++i) {
12795		struct kvm_lpage_info *linfo;
12796		unsigned long ugfn;
12797		int lpages;
12798		int level = i + 1;
12799
12800		lpages = __kvm_mmu_slot_lpages(slot, npages, level);
12801
12802		linfo = __vcalloc(lpages, sizeof(*linfo), GFP_KERNEL_ACCOUNT);
12803		if (!linfo)
12804			goto out_free;
12805
12806		slot->arch.lpage_info[i - 1] = linfo;
12807
12808		if (slot->base_gfn & (KVM_PAGES_PER_HPAGE(level) - 1))
12809			linfo[0].disallow_lpage = 1;
12810		if ((slot->base_gfn + npages) & (KVM_PAGES_PER_HPAGE(level) - 1))
12811			linfo[lpages - 1].disallow_lpage = 1;
12812		ugfn = slot->userspace_addr >> PAGE_SHIFT;
12813		/*
12814		 * If the gfn and userspace address are not aligned wrt each
12815		 * other, disable large page support for this slot.
12816		 */
12817		if ((slot->base_gfn ^ ugfn) & (KVM_PAGES_PER_HPAGE(level) - 1)) {
12818			unsigned long j;
12819
12820			for (j = 0; j < lpages; ++j)
12821				linfo[j].disallow_lpage = 1;
12822		}
12823	}
12824
12825#ifdef CONFIG_KVM_GENERIC_MEMORY_ATTRIBUTES
12826	kvm_mmu_init_memslot_memory_attributes(kvm, slot);
12827#endif
12828
12829	if (kvm_page_track_create_memslot(kvm, slot, npages))
12830		goto out_free;
12831
12832	return 0;
12833
12834out_free:
12835	memslot_rmap_free(slot);
12836
12837	for (i = 1; i < KVM_NR_PAGE_SIZES; ++i) {
12838		kvfree(slot->arch.lpage_info[i - 1]);
12839		slot->arch.lpage_info[i - 1] = NULL;
12840	}
12841	return -ENOMEM;
12842}
12843
12844void kvm_arch_memslots_updated(struct kvm *kvm, u64 gen)
12845{
12846	struct kvm_vcpu *vcpu;
12847	unsigned long i;
12848
12849	/*
12850	 * memslots->generation has been incremented.
12851	 * mmio generation may have reached its maximum value.
12852	 */
12853	kvm_mmu_invalidate_mmio_sptes(kvm, gen);
12854
12855	/* Force re-initialization of steal_time cache */
12856	kvm_for_each_vcpu(i, vcpu, kvm)
12857		kvm_vcpu_kick(vcpu);
12858}
12859
12860int kvm_arch_prepare_memory_region(struct kvm *kvm,
12861				   const struct kvm_memory_slot *old,
12862				   struct kvm_memory_slot *new,
12863				   enum kvm_mr_change change)
12864{
12865	/*
12866	 * KVM doesn't support moving memslots when there are external page
12867	 * trackers attached to the VM, i.e. if KVMGT is in use.
12868	 */
12869	if (change == KVM_MR_MOVE && kvm_page_track_has_external_user(kvm))
12870		return -EINVAL;
12871
12872	if (change == KVM_MR_CREATE || change == KVM_MR_MOVE) {
12873		if ((new->base_gfn + new->npages - 1) > kvm_mmu_max_gfn())
12874			return -EINVAL;
12875
12876		return kvm_alloc_memslot_metadata(kvm, new);
12877	}
12878
12879	if (change == KVM_MR_FLAGS_ONLY)
12880		memcpy(&new->arch, &old->arch, sizeof(old->arch));
12881	else if (WARN_ON_ONCE(change != KVM_MR_DELETE))
12882		return -EIO;
12883
12884	return 0;
12885}
12886
12887
12888static void kvm_mmu_update_cpu_dirty_logging(struct kvm *kvm, bool enable)
12889{
12890	int nr_slots;
12891
12892	if (!kvm_x86_ops.cpu_dirty_log_size)
12893		return;
12894
12895	nr_slots = atomic_read(&kvm->nr_memslots_dirty_logging);
12896	if ((enable && nr_slots == 1) || !nr_slots)
12897		kvm_make_all_cpus_request(kvm, KVM_REQ_UPDATE_CPU_DIRTY_LOGGING);
12898}
12899
12900static void kvm_mmu_slot_apply_flags(struct kvm *kvm,
12901				     struct kvm_memory_slot *old,
12902				     const struct kvm_memory_slot *new,
12903				     enum kvm_mr_change change)
12904{
12905	u32 old_flags = old ? old->flags : 0;
12906	u32 new_flags = new ? new->flags : 0;
12907	bool log_dirty_pages = new_flags & KVM_MEM_LOG_DIRTY_PAGES;
12908
12909	/*
12910	 * Update CPU dirty logging if dirty logging is being toggled.  This
12911	 * applies to all operations.
12912	 */
12913	if ((old_flags ^ new_flags) & KVM_MEM_LOG_DIRTY_PAGES)
12914		kvm_mmu_update_cpu_dirty_logging(kvm, log_dirty_pages);
12915
12916	/*
12917	 * Nothing more to do for RO slots (which can't be dirtied and can't be
12918	 * made writable) or CREATE/MOVE/DELETE of a slot.
12919	 *
12920	 * For a memslot with dirty logging disabled:
12921	 * CREATE:      No dirty mappings will already exist.
12922	 * MOVE/DELETE: The old mappings will already have been cleaned up by
12923	 *		kvm_arch_flush_shadow_memslot()
12924	 *
12925	 * For a memslot with dirty logging enabled:
12926	 * CREATE:      No shadow pages exist, thus nothing to write-protect
12927	 *		and no dirty bits to clear.
12928	 * MOVE/DELETE: The old mappings will already have been cleaned up by
12929	 *		kvm_arch_flush_shadow_memslot().
12930	 */
12931	if ((change != KVM_MR_FLAGS_ONLY) || (new_flags & KVM_MEM_READONLY))
12932		return;
12933
12934	/*
12935	 * READONLY and non-flags changes were filtered out above, and the only
12936	 * other flag is LOG_DIRTY_PAGES, i.e. something is wrong if dirty
12937	 * logging isn't being toggled on or off.
12938	 */
12939	if (WARN_ON_ONCE(!((old_flags ^ new_flags) & KVM_MEM_LOG_DIRTY_PAGES)))
12940		return;
12941
12942	if (!log_dirty_pages) {
12943		/*
12944		 * Dirty logging tracks sptes in 4k granularity, meaning that
12945		 * large sptes have to be split.  If live migration succeeds,
12946		 * the guest in the source machine will be destroyed and large
12947		 * sptes will be created in the destination.  However, if the
12948		 * guest continues to run in the source machine (for example if
12949		 * live migration fails), small sptes will remain around and
12950		 * cause bad performance.
12951		 *
12952		 * Scan sptes if dirty logging has been stopped, dropping those
12953		 * which can be collapsed into a single large-page spte.  Later
12954		 * page faults will create the large-page sptes.
12955		 */
12956		kvm_mmu_zap_collapsible_sptes(kvm, new);
12957	} else {
12958		/*
12959		 * Initially-all-set does not require write protecting any page,
12960		 * because they're all assumed to be dirty.
12961		 */
12962		if (kvm_dirty_log_manual_protect_and_init_set(kvm))
12963			return;
12964
12965		if (READ_ONCE(eager_page_split))
12966			kvm_mmu_slot_try_split_huge_pages(kvm, new, PG_LEVEL_4K);
12967
12968		if (kvm_x86_ops.cpu_dirty_log_size) {
12969			kvm_mmu_slot_leaf_clear_dirty(kvm, new);
12970			kvm_mmu_slot_remove_write_access(kvm, new, PG_LEVEL_2M);
12971		} else {
12972			kvm_mmu_slot_remove_write_access(kvm, new, PG_LEVEL_4K);
12973		}
12974
12975		/*
12976		 * Unconditionally flush the TLBs after enabling dirty logging.
12977		 * A flush is almost always going to be necessary (see below),
12978		 * and unconditionally flushing allows the helpers to omit
12979		 * the subtly complex checks when removing write access.
12980		 *
12981		 * Do the flush outside of mmu_lock to reduce the amount of
12982		 * time mmu_lock is held.  Flushing after dropping mmu_lock is
12983		 * safe as KVM only needs to guarantee the slot is fully
12984		 * write-protected before returning to userspace, i.e. before
12985		 * userspace can consume the dirty status.
12986		 *
12987		 * Flushing outside of mmu_lock requires KVM to be careful when
12988		 * making decisions based on writable status of an SPTE, e.g. a
12989		 * !writable SPTE doesn't guarantee a CPU can't perform writes.
12990		 *
12991		 * Specifically, KVM also write-protects guest page tables to
12992		 * monitor changes when using shadow paging, and must guarantee
12993		 * no CPUs can write to those page before mmu_lock is dropped.
12994		 * Because CPUs may have stale TLB entries at this point, a
12995		 * !writable SPTE doesn't guarantee CPUs can't perform writes.
12996		 *
12997		 * KVM also allows making SPTES writable outside of mmu_lock,
12998		 * e.g. to allow dirty logging without taking mmu_lock.
12999		 *
13000		 * To handle these scenarios, KVM uses a separate software-only
13001		 * bit (MMU-writable) to track if a SPTE is !writable due to
13002		 * a guest page table being write-protected (KVM clears the
13003		 * MMU-writable flag when write-protecting for shadow paging).
13004		 *
13005		 * The use of MMU-writable is also the primary motivation for
13006		 * the unconditional flush.  Because KVM must guarantee that a
13007		 * CPU doesn't contain stale, writable TLB entries for a
13008		 * !MMU-writable SPTE, KVM must flush if it encounters any
13009		 * MMU-writable SPTE regardless of whether the actual hardware
13010		 * writable bit was set.  I.e. KVM is almost guaranteed to need
13011		 * to flush, while unconditionally flushing allows the "remove
13012		 * write access" helpers to ignore MMU-writable entirely.
13013		 *
13014		 * See is_writable_pte() for more details (the case involving
13015		 * access-tracked SPTEs is particularly relevant).
13016		 */
13017		kvm_flush_remote_tlbs_memslot(kvm, new);
13018	}
13019}
13020
13021void kvm_arch_commit_memory_region(struct kvm *kvm,
13022				struct kvm_memory_slot *old,
13023				const struct kvm_memory_slot *new,
13024				enum kvm_mr_change change)
13025{
13026	if (change == KVM_MR_DELETE)
13027		kvm_page_track_delete_slot(kvm, old);
13028
13029	if (!kvm->arch.n_requested_mmu_pages &&
13030	    (change == KVM_MR_CREATE || change == KVM_MR_DELETE)) {
13031		unsigned long nr_mmu_pages;
13032
13033		nr_mmu_pages = kvm->nr_memslot_pages / KVM_MEMSLOT_PAGES_TO_MMU_PAGES_RATIO;
13034		nr_mmu_pages = max(nr_mmu_pages, KVM_MIN_ALLOC_MMU_PAGES);
13035		kvm_mmu_change_mmu_pages(kvm, nr_mmu_pages);
13036	}
13037
13038	kvm_mmu_slot_apply_flags(kvm, old, new, change);
13039
13040	/* Free the arrays associated with the old memslot. */
13041	if (change == KVM_MR_MOVE)
13042		kvm_arch_free_memslot(kvm, old);
13043}
13044
13045static inline bool kvm_guest_apic_has_interrupt(struct kvm_vcpu *vcpu)
13046{
13047	return (is_guest_mode(vcpu) &&
13048		static_call(kvm_x86_guest_apic_has_interrupt)(vcpu));
13049}
13050
13051static inline bool kvm_vcpu_has_events(struct kvm_vcpu *vcpu)
13052{
13053	if (!list_empty_careful(&vcpu->async_pf.done))
13054		return true;
13055
13056	if (kvm_apic_has_pending_init_or_sipi(vcpu) &&
13057	    kvm_apic_init_sipi_allowed(vcpu))
13058		return true;
13059
13060	if (vcpu->arch.pv.pv_unhalted)
13061		return true;
13062
13063	if (kvm_is_exception_pending(vcpu))
13064		return true;
13065
13066	if (kvm_test_request(KVM_REQ_NMI, vcpu) ||
13067	    (vcpu->arch.nmi_pending &&
13068	     static_call(kvm_x86_nmi_allowed)(vcpu, false)))
13069		return true;
13070
13071#ifdef CONFIG_KVM_SMM
13072	if (kvm_test_request(KVM_REQ_SMI, vcpu) ||
13073	    (vcpu->arch.smi_pending &&
13074	     static_call(kvm_x86_smi_allowed)(vcpu, false)))
13075		return true;
13076#endif
13077
13078	if (kvm_test_request(KVM_REQ_PMI, vcpu))
13079		return true;
13080
13081	if (kvm_arch_interrupt_allowed(vcpu) &&
13082	    (kvm_cpu_has_interrupt(vcpu) ||
13083	    kvm_guest_apic_has_interrupt(vcpu)))
13084		return true;
13085
13086	if (kvm_hv_has_stimer_pending(vcpu))
13087		return true;
13088
13089	if (is_guest_mode(vcpu) &&
13090	    kvm_x86_ops.nested_ops->has_events &&
13091	    kvm_x86_ops.nested_ops->has_events(vcpu))
13092		return true;
13093
13094	if (kvm_xen_has_pending_events(vcpu))
13095		return true;
13096
13097	return false;
13098}
13099
13100int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu)
13101{
13102	return kvm_vcpu_running(vcpu) || kvm_vcpu_has_events(vcpu);
13103}
13104
13105bool kvm_arch_dy_has_pending_interrupt(struct kvm_vcpu *vcpu)
13106{
13107	return kvm_vcpu_apicv_active(vcpu) &&
13108	       static_call(kvm_x86_dy_apicv_has_pending_interrupt)(vcpu);
13109}
13110
13111bool kvm_arch_vcpu_preempted_in_kernel(struct kvm_vcpu *vcpu)
13112{
13113	return vcpu->arch.preempted_in_kernel;
13114}
13115
13116bool kvm_arch_dy_runnable(struct kvm_vcpu *vcpu)
13117{
13118	if (READ_ONCE(vcpu->arch.pv.pv_unhalted))
13119		return true;
13120
13121	if (kvm_test_request(KVM_REQ_NMI, vcpu) ||
13122#ifdef CONFIG_KVM_SMM
13123		kvm_test_request(KVM_REQ_SMI, vcpu) ||
13124#endif
13125		 kvm_test_request(KVM_REQ_EVENT, vcpu))
13126		return true;
13127
13128	return kvm_arch_dy_has_pending_interrupt(vcpu);
13129}
13130
13131bool kvm_arch_vcpu_in_kernel(struct kvm_vcpu *vcpu)
13132{
13133	if (vcpu->arch.guest_state_protected)
13134		return true;
13135
13136	return static_call(kvm_x86_get_cpl)(vcpu) == 0;
13137}
13138
13139unsigned long kvm_arch_vcpu_get_ip(struct kvm_vcpu *vcpu)
13140{
13141	return kvm_rip_read(vcpu);
13142}
13143
13144int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu)
13145{
13146	return kvm_vcpu_exiting_guest_mode(vcpu) == IN_GUEST_MODE;
13147}
13148
13149int kvm_arch_interrupt_allowed(struct kvm_vcpu *vcpu)
13150{
13151	return static_call(kvm_x86_interrupt_allowed)(vcpu, false);
13152}
13153
13154unsigned long kvm_get_linear_rip(struct kvm_vcpu *vcpu)
13155{
13156	/* Can't read the RIP when guest state is protected, just return 0 */
13157	if (vcpu->arch.guest_state_protected)
13158		return 0;
13159
13160	if (is_64_bit_mode(vcpu))
13161		return kvm_rip_read(vcpu);
13162	return (u32)(get_segment_base(vcpu, VCPU_SREG_CS) +
13163		     kvm_rip_read(vcpu));
13164}
13165EXPORT_SYMBOL_GPL(kvm_get_linear_rip);
13166
13167bool kvm_is_linear_rip(struct kvm_vcpu *vcpu, unsigned long linear_rip)
13168{
13169	return kvm_get_linear_rip(vcpu) == linear_rip;
13170}
13171EXPORT_SYMBOL_GPL(kvm_is_linear_rip);
13172
13173unsigned long kvm_get_rflags(struct kvm_vcpu *vcpu)
13174{
13175	unsigned long rflags;
13176
13177	rflags = static_call(kvm_x86_get_rflags)(vcpu);
13178	if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
13179		rflags &= ~X86_EFLAGS_TF;
13180	return rflags;
13181}
13182EXPORT_SYMBOL_GPL(kvm_get_rflags);
13183
13184static void __kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
13185{
13186	if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP &&
13187	    kvm_is_linear_rip(vcpu, vcpu->arch.singlestep_rip))
13188		rflags |= X86_EFLAGS_TF;
13189	static_call(kvm_x86_set_rflags)(vcpu, rflags);
13190}
13191
13192void kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
13193{
13194	__kvm_set_rflags(vcpu, rflags);
13195	kvm_make_request(KVM_REQ_EVENT, vcpu);
13196}
13197EXPORT_SYMBOL_GPL(kvm_set_rflags);
13198
13199static inline u32 kvm_async_pf_hash_fn(gfn_t gfn)
13200{
13201	BUILD_BUG_ON(!is_power_of_2(ASYNC_PF_PER_VCPU));
13202
13203	return hash_32(gfn & 0xffffffff, order_base_2(ASYNC_PF_PER_VCPU));
13204}
13205
13206static inline u32 kvm_async_pf_next_probe(u32 key)
13207{
13208	return (key + 1) & (ASYNC_PF_PER_VCPU - 1);
13209}
13210
13211static void kvm_add_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
13212{
13213	u32 key = kvm_async_pf_hash_fn(gfn);
13214
13215	while (vcpu->arch.apf.gfns[key] != ~0)
13216		key = kvm_async_pf_next_probe(key);
13217
13218	vcpu->arch.apf.gfns[key] = gfn;
13219}
13220
13221static u32 kvm_async_pf_gfn_slot(struct kvm_vcpu *vcpu, gfn_t gfn)
13222{
13223	int i;
13224	u32 key = kvm_async_pf_hash_fn(gfn);
13225
13226	for (i = 0; i < ASYNC_PF_PER_VCPU &&
13227		     (vcpu->arch.apf.gfns[key] != gfn &&
13228		      vcpu->arch.apf.gfns[key] != ~0); i++)
13229		key = kvm_async_pf_next_probe(key);
13230
13231	return key;
13232}
13233
13234bool kvm_find_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
13235{
13236	return vcpu->arch.apf.gfns[kvm_async_pf_gfn_slot(vcpu, gfn)] == gfn;
13237}
13238
13239static void kvm_del_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
13240{
13241	u32 i, j, k;
13242
13243	i = j = kvm_async_pf_gfn_slot(vcpu, gfn);
13244
13245	if (WARN_ON_ONCE(vcpu->arch.apf.gfns[i] != gfn))
13246		return;
13247
13248	while (true) {
13249		vcpu->arch.apf.gfns[i] = ~0;
13250		do {
13251			j = kvm_async_pf_next_probe(j);
13252			if (vcpu->arch.apf.gfns[j] == ~0)
13253				return;
13254			k = kvm_async_pf_hash_fn(vcpu->arch.apf.gfns[j]);
13255			/*
13256			 * k lies cyclically in ]i,j]
13257			 * |    i.k.j |
13258			 * |....j i.k.| or  |.k..j i...|
13259			 */
13260		} while ((i <= j) ? (i < k && k <= j) : (i < k || k <= j));
13261		vcpu->arch.apf.gfns[i] = vcpu->arch.apf.gfns[j];
13262		i = j;
13263	}
13264}
13265
13266static inline int apf_put_user_notpresent(struct kvm_vcpu *vcpu)
13267{
13268	u32 reason = KVM_PV_REASON_PAGE_NOT_PRESENT;
13269
13270	return kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.apf.data, &reason,
13271				      sizeof(reason));
13272}
13273
13274static inline int apf_put_user_ready(struct kvm_vcpu *vcpu, u32 token)
13275{
13276	unsigned int offset = offsetof(struct kvm_vcpu_pv_apf_data, token);
13277
13278	return kvm_write_guest_offset_cached(vcpu->kvm, &vcpu->arch.apf.data,
13279					     &token, offset, sizeof(token));
13280}
13281
13282static inline bool apf_pageready_slot_free(struct kvm_vcpu *vcpu)
13283{
13284	unsigned int offset = offsetof(struct kvm_vcpu_pv_apf_data, token);
13285	u32 val;
13286
13287	if (kvm_read_guest_offset_cached(vcpu->kvm, &vcpu->arch.apf.data,
13288					 &val, offset, sizeof(val)))
13289		return false;
13290
13291	return !val;
13292}
13293
13294static bool kvm_can_deliver_async_pf(struct kvm_vcpu *vcpu)
13295{
13296
13297	if (!kvm_pv_async_pf_enabled(vcpu))
13298		return false;
13299
13300	if (vcpu->arch.apf.send_user_only &&
13301	    static_call(kvm_x86_get_cpl)(vcpu) == 0)
13302		return false;
13303
13304	if (is_guest_mode(vcpu)) {
13305		/*
13306		 * L1 needs to opt into the special #PF vmexits that are
13307		 * used to deliver async page faults.
13308		 */
13309		return vcpu->arch.apf.delivery_as_pf_vmexit;
13310	} else {
13311		/*
13312		 * Play it safe in case the guest temporarily disables paging.
13313		 * The real mode IDT in particular is unlikely to have a #PF
13314		 * exception setup.
13315		 */
13316		return is_paging(vcpu);
13317	}
13318}
13319
13320bool kvm_can_do_async_pf(struct kvm_vcpu *vcpu)
13321{
13322	if (unlikely(!lapic_in_kernel(vcpu) ||
13323		     kvm_event_needs_reinjection(vcpu) ||
13324		     kvm_is_exception_pending(vcpu)))
13325		return false;
13326
13327	if (kvm_hlt_in_guest(vcpu->kvm) && !kvm_can_deliver_async_pf(vcpu))
13328		return false;
13329
13330	/*
13331	 * If interrupts are off we cannot even use an artificial
13332	 * halt state.
13333	 */
13334	return kvm_arch_interrupt_allowed(vcpu);
13335}
13336
13337bool kvm_arch_async_page_not_present(struct kvm_vcpu *vcpu,
13338				     struct kvm_async_pf *work)
13339{
13340	struct x86_exception fault;
13341
13342	trace_kvm_async_pf_not_present(work->arch.token, work->cr2_or_gpa);
13343	kvm_add_async_pf_gfn(vcpu, work->arch.gfn);
13344
13345	if (kvm_can_deliver_async_pf(vcpu) &&
13346	    !apf_put_user_notpresent(vcpu)) {
13347		fault.vector = PF_VECTOR;
13348		fault.error_code_valid = true;
13349		fault.error_code = 0;
13350		fault.nested_page_fault = false;
13351		fault.address = work->arch.token;
13352		fault.async_page_fault = true;
13353		kvm_inject_page_fault(vcpu, &fault);
13354		return true;
13355	} else {
13356		/*
13357		 * It is not possible to deliver a paravirtualized asynchronous
13358		 * page fault, but putting the guest in an artificial halt state
13359		 * can be beneficial nevertheless: if an interrupt arrives, we
13360		 * can deliver it timely and perhaps the guest will schedule
13361		 * another process.  When the instruction that triggered a page
13362		 * fault is retried, hopefully the page will be ready in the host.
13363		 */
13364		kvm_make_request(KVM_REQ_APF_HALT, vcpu);
13365		return false;
13366	}
13367}
13368
13369void kvm_arch_async_page_present(struct kvm_vcpu *vcpu,
13370				 struct kvm_async_pf *work)
13371{
13372	struct kvm_lapic_irq irq = {
13373		.delivery_mode = APIC_DM_FIXED,
13374		.vector = vcpu->arch.apf.vec
13375	};
13376
13377	if (work->wakeup_all)
13378		work->arch.token = ~0; /* broadcast wakeup */
13379	else
13380		kvm_del_async_pf_gfn(vcpu, work->arch.gfn);
13381	trace_kvm_async_pf_ready(work->arch.token, work->cr2_or_gpa);
13382
13383	if ((work->wakeup_all || work->notpresent_injected) &&
13384	    kvm_pv_async_pf_enabled(vcpu) &&
13385	    !apf_put_user_ready(vcpu, work->arch.token)) {
13386		vcpu->arch.apf.pageready_pending = true;
13387		kvm_apic_set_irq(vcpu, &irq, NULL);
13388	}
13389
13390	vcpu->arch.apf.halted = false;
13391	vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
13392}
13393
13394void kvm_arch_async_page_present_queued(struct kvm_vcpu *vcpu)
13395{
13396	kvm_make_request(KVM_REQ_APF_READY, vcpu);
13397	if (!vcpu->arch.apf.pageready_pending)
13398		kvm_vcpu_kick(vcpu);
13399}
13400
13401bool kvm_arch_can_dequeue_async_page_present(struct kvm_vcpu *vcpu)
13402{
13403	if (!kvm_pv_async_pf_enabled(vcpu))
13404		return true;
13405	else
13406		return kvm_lapic_enabled(vcpu) && apf_pageready_slot_free(vcpu);
13407}
13408
13409void kvm_arch_start_assignment(struct kvm *kvm)
13410{
13411	if (atomic_inc_return(&kvm->arch.assigned_device_count) == 1)
13412		static_call_cond(kvm_x86_pi_start_assignment)(kvm);
13413}
13414EXPORT_SYMBOL_GPL(kvm_arch_start_assignment);
13415
13416void kvm_arch_end_assignment(struct kvm *kvm)
13417{
13418	atomic_dec(&kvm->arch.assigned_device_count);
13419}
13420EXPORT_SYMBOL_GPL(kvm_arch_end_assignment);
13421
13422bool noinstr kvm_arch_has_assigned_device(struct kvm *kvm)
13423{
13424	return raw_atomic_read(&kvm->arch.assigned_device_count);
13425}
13426EXPORT_SYMBOL_GPL(kvm_arch_has_assigned_device);
13427
13428static void kvm_noncoherent_dma_assignment_start_or_stop(struct kvm *kvm)
13429{
13430	/*
13431	 * Non-coherent DMA assignment and de-assignment will affect
13432	 * whether KVM honors guest MTRRs and cause changes in memtypes
13433	 * in TDP.
13434	 * So, pass %true unconditionally to indicate non-coherent DMA was,
13435	 * or will be involved, and that zapping SPTEs might be necessary.
13436	 */
13437	if (__kvm_mmu_honors_guest_mtrrs(true))
13438		kvm_zap_gfn_range(kvm, gpa_to_gfn(0), gpa_to_gfn(~0ULL));
13439}
13440
13441void kvm_arch_register_noncoherent_dma(struct kvm *kvm)
13442{
13443	if (atomic_inc_return(&kvm->arch.noncoherent_dma_count) == 1)
13444		kvm_noncoherent_dma_assignment_start_or_stop(kvm);
13445}
13446EXPORT_SYMBOL_GPL(kvm_arch_register_noncoherent_dma);
13447
13448void kvm_arch_unregister_noncoherent_dma(struct kvm *kvm)
13449{
13450	if (!atomic_dec_return(&kvm->arch.noncoherent_dma_count))
13451		kvm_noncoherent_dma_assignment_start_or_stop(kvm);
13452}
13453EXPORT_SYMBOL_GPL(kvm_arch_unregister_noncoherent_dma);
13454
13455bool kvm_arch_has_noncoherent_dma(struct kvm *kvm)
13456{
13457	return atomic_read(&kvm->arch.noncoherent_dma_count);
13458}
13459EXPORT_SYMBOL_GPL(kvm_arch_has_noncoherent_dma);
13460
13461bool kvm_arch_has_irq_bypass(void)
13462{
13463	return enable_apicv && irq_remapping_cap(IRQ_POSTING_CAP);
13464}
13465
13466int kvm_arch_irq_bypass_add_producer(struct irq_bypass_consumer *cons,
13467				      struct irq_bypass_producer *prod)
13468{
13469	struct kvm_kernel_irqfd *irqfd =
13470		container_of(cons, struct kvm_kernel_irqfd, consumer);
13471	int ret;
13472
13473	irqfd->producer = prod;
13474	kvm_arch_start_assignment(irqfd->kvm);
13475	ret = static_call(kvm_x86_pi_update_irte)(irqfd->kvm,
13476					 prod->irq, irqfd->gsi, 1);
13477
13478	if (ret)
13479		kvm_arch_end_assignment(irqfd->kvm);
13480
13481	return ret;
13482}
13483
13484void kvm_arch_irq_bypass_del_producer(struct irq_bypass_consumer *cons,
13485				      struct irq_bypass_producer *prod)
13486{
13487	int ret;
13488	struct kvm_kernel_irqfd *irqfd =
13489		container_of(cons, struct kvm_kernel_irqfd, consumer);
13490
13491	WARN_ON(irqfd->producer != prod);
13492	irqfd->producer = NULL;
13493
13494	/*
13495	 * When producer of consumer is unregistered, we change back to
13496	 * remapped mode, so we can re-use the current implementation
13497	 * when the irq is masked/disabled or the consumer side (KVM
13498	 * int this case doesn't want to receive the interrupts.
13499	*/
13500	ret = static_call(kvm_x86_pi_update_irte)(irqfd->kvm, prod->irq, irqfd->gsi, 0);
13501	if (ret)
13502		printk(KERN_INFO "irq bypass consumer (token %p) unregistration"
13503		       " fails: %d\n", irqfd->consumer.token, ret);
13504
13505	kvm_arch_end_assignment(irqfd->kvm);
13506}
13507
13508int kvm_arch_update_irqfd_routing(struct kvm *kvm, unsigned int host_irq,
13509				   uint32_t guest_irq, bool set)
13510{
13511	return static_call(kvm_x86_pi_update_irte)(kvm, host_irq, guest_irq, set);
13512}
13513
13514bool kvm_arch_irqfd_route_changed(struct kvm_kernel_irq_routing_entry *old,
13515				  struct kvm_kernel_irq_routing_entry *new)
13516{
13517	if (new->type != KVM_IRQ_ROUTING_MSI)
13518		return true;
13519
13520	return !!memcmp(&old->msi, &new->msi, sizeof(new->msi));
13521}
13522
13523bool kvm_vector_hashing_enabled(void)
13524{
13525	return vector_hashing;
13526}
13527
13528bool kvm_arch_no_poll(struct kvm_vcpu *vcpu)
13529{
13530	return (vcpu->arch.msr_kvm_poll_control & 1) == 0;
13531}
13532EXPORT_SYMBOL_GPL(kvm_arch_no_poll);
13533
13534
13535int kvm_spec_ctrl_test_value(u64 value)
13536{
13537	/*
13538	 * test that setting IA32_SPEC_CTRL to given value
13539	 * is allowed by the host processor
13540	 */
13541
13542	u64 saved_value;
13543	unsigned long flags;
13544	int ret = 0;
13545
13546	local_irq_save(flags);
13547
13548	if (rdmsrl_safe(MSR_IA32_SPEC_CTRL, &saved_value))
13549		ret = 1;
13550	else if (wrmsrl_safe(MSR_IA32_SPEC_CTRL, value))
13551		ret = 1;
13552	else
13553		wrmsrl(MSR_IA32_SPEC_CTRL, saved_value);
13554
13555	local_irq_restore(flags);
13556
13557	return ret;
13558}
13559EXPORT_SYMBOL_GPL(kvm_spec_ctrl_test_value);
13560
13561void kvm_fixup_and_inject_pf_error(struct kvm_vcpu *vcpu, gva_t gva, u16 error_code)
13562{
13563	struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
13564	struct x86_exception fault;
13565	u64 access = error_code &
13566		(PFERR_WRITE_MASK | PFERR_FETCH_MASK | PFERR_USER_MASK);
13567
13568	if (!(error_code & PFERR_PRESENT_MASK) ||
13569	    mmu->gva_to_gpa(vcpu, mmu, gva, access, &fault) != INVALID_GPA) {
13570		/*
13571		 * If vcpu->arch.walk_mmu->gva_to_gpa succeeded, the page
13572		 * tables probably do not match the TLB.  Just proceed
13573		 * with the error code that the processor gave.
13574		 */
13575		fault.vector = PF_VECTOR;
13576		fault.error_code_valid = true;
13577		fault.error_code = error_code;
13578		fault.nested_page_fault = false;
13579		fault.address = gva;
13580		fault.async_page_fault = false;
13581	}
13582	vcpu->arch.walk_mmu->inject_page_fault(vcpu, &fault);
13583}
13584EXPORT_SYMBOL_GPL(kvm_fixup_and_inject_pf_error);
13585
13586/*
13587 * Handles kvm_read/write_guest_virt*() result and either injects #PF or returns
13588 * KVM_EXIT_INTERNAL_ERROR for cases not currently handled by KVM. Return value
13589 * indicates whether exit to userspace is needed.
13590 */
13591int kvm_handle_memory_failure(struct kvm_vcpu *vcpu, int r,
13592			      struct x86_exception *e)
13593{
13594	if (r == X86EMUL_PROPAGATE_FAULT) {
13595		if (KVM_BUG_ON(!e, vcpu->kvm))
13596			return -EIO;
13597
13598		kvm_inject_emulated_page_fault(vcpu, e);
13599		return 1;
13600	}
13601
13602	/*
13603	 * In case kvm_read/write_guest_virt*() failed with X86EMUL_IO_NEEDED
13604	 * while handling a VMX instruction KVM could've handled the request
13605	 * correctly by exiting to userspace and performing I/O but there
13606	 * doesn't seem to be a real use-case behind such requests, just return
13607	 * KVM_EXIT_INTERNAL_ERROR for now.
13608	 */
13609	kvm_prepare_emulation_failure_exit(vcpu);
13610
13611	return 0;
13612}
13613EXPORT_SYMBOL_GPL(kvm_handle_memory_failure);
13614
13615int kvm_handle_invpcid(struct kvm_vcpu *vcpu, unsigned long type, gva_t gva)
13616{
13617	bool pcid_enabled;
13618	struct x86_exception e;
13619	struct {
13620		u64 pcid;
13621		u64 gla;
13622	} operand;
13623	int r;
13624
13625	r = kvm_read_guest_virt(vcpu, gva, &operand, sizeof(operand), &e);
13626	if (r != X86EMUL_CONTINUE)
13627		return kvm_handle_memory_failure(vcpu, r, &e);
13628
13629	if (operand.pcid >> 12 != 0) {
13630		kvm_inject_gp(vcpu, 0);
13631		return 1;
13632	}
13633
13634	pcid_enabled = kvm_is_cr4_bit_set(vcpu, X86_CR4_PCIDE);
13635
13636	switch (type) {
13637	case INVPCID_TYPE_INDIV_ADDR:
13638		/*
13639		 * LAM doesn't apply to addresses that are inputs to TLB
13640		 * invalidation.
13641		 */
13642		if ((!pcid_enabled && (operand.pcid != 0)) ||
13643		    is_noncanonical_address(operand.gla, vcpu)) {
13644			kvm_inject_gp(vcpu, 0);
13645			return 1;
13646		}
13647		kvm_mmu_invpcid_gva(vcpu, operand.gla, operand.pcid);
13648		return kvm_skip_emulated_instruction(vcpu);
13649
13650	case INVPCID_TYPE_SINGLE_CTXT:
13651		if (!pcid_enabled && (operand.pcid != 0)) {
13652			kvm_inject_gp(vcpu, 0);
13653			return 1;
13654		}
13655
13656		kvm_invalidate_pcid(vcpu, operand.pcid);
13657		return kvm_skip_emulated_instruction(vcpu);
13658
13659	case INVPCID_TYPE_ALL_NON_GLOBAL:
13660		/*
13661		 * Currently, KVM doesn't mark global entries in the shadow
13662		 * page tables, so a non-global flush just degenerates to a
13663		 * global flush. If needed, we could optimize this later by
13664		 * keeping track of global entries in shadow page tables.
13665		 */
13666
13667		fallthrough;
13668	case INVPCID_TYPE_ALL_INCL_GLOBAL:
13669		kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu);
13670		return kvm_skip_emulated_instruction(vcpu);
13671
13672	default:
13673		kvm_inject_gp(vcpu, 0);
13674		return 1;
13675	}
13676}
13677EXPORT_SYMBOL_GPL(kvm_handle_invpcid);
13678
13679static int complete_sev_es_emulated_mmio(struct kvm_vcpu *vcpu)
13680{
13681	struct kvm_run *run = vcpu->run;
13682	struct kvm_mmio_fragment *frag;
13683	unsigned int len;
13684
13685	BUG_ON(!vcpu->mmio_needed);
13686
13687	/* Complete previous fragment */
13688	frag = &vcpu->mmio_fragments[vcpu->mmio_cur_fragment];
13689	len = min(8u, frag->len);
13690	if (!vcpu->mmio_is_write)
13691		memcpy(frag->data, run->mmio.data, len);
13692
13693	if (frag->len <= 8) {
13694		/* Switch to the next fragment. */
13695		frag++;
13696		vcpu->mmio_cur_fragment++;
13697	} else {
13698		/* Go forward to the next mmio piece. */
13699		frag->data += len;
13700		frag->gpa += len;
13701		frag->len -= len;
13702	}
13703
13704	if (vcpu->mmio_cur_fragment >= vcpu->mmio_nr_fragments) {
13705		vcpu->mmio_needed = 0;
13706
13707		// VMG change, at this point, we're always done
13708		// RIP has already been advanced
13709		return 1;
13710	}
13711
13712	// More MMIO is needed
13713	run->mmio.phys_addr = frag->gpa;
13714	run->mmio.len = min(8u, frag->len);
13715	run->mmio.is_write = vcpu->mmio_is_write;
13716	if (run->mmio.is_write)
13717		memcpy(run->mmio.data, frag->data, min(8u, frag->len));
13718	run->exit_reason = KVM_EXIT_MMIO;
13719
13720	vcpu->arch.complete_userspace_io = complete_sev_es_emulated_mmio;
13721
13722	return 0;
13723}
13724
13725int kvm_sev_es_mmio_write(struct kvm_vcpu *vcpu, gpa_t gpa, unsigned int bytes,
13726			  void *data)
13727{
13728	int handled;
13729	struct kvm_mmio_fragment *frag;
13730
13731	if (!data)
13732		return -EINVAL;
13733
13734	handled = write_emultor.read_write_mmio(vcpu, gpa, bytes, data);
13735	if (handled == bytes)
13736		return 1;
13737
13738	bytes -= handled;
13739	gpa += handled;
13740	data += handled;
13741
13742	/*TODO: Check if need to increment number of frags */
13743	frag = vcpu->mmio_fragments;
13744	vcpu->mmio_nr_fragments = 1;
13745	frag->len = bytes;
13746	frag->gpa = gpa;
13747	frag->data = data;
13748
13749	vcpu->mmio_needed = 1;
13750	vcpu->mmio_cur_fragment = 0;
13751
13752	vcpu->run->mmio.phys_addr = gpa;
13753	vcpu->run->mmio.len = min(8u, frag->len);
13754	vcpu->run->mmio.is_write = 1;
13755	memcpy(vcpu->run->mmio.data, frag->data, min(8u, frag->len));
13756	vcpu->run->exit_reason = KVM_EXIT_MMIO;
13757
13758	vcpu->arch.complete_userspace_io = complete_sev_es_emulated_mmio;
13759
13760	return 0;
13761}
13762EXPORT_SYMBOL_GPL(kvm_sev_es_mmio_write);
13763
13764int kvm_sev_es_mmio_read(struct kvm_vcpu *vcpu, gpa_t gpa, unsigned int bytes,
13765			 void *data)
13766{
13767	int handled;
13768	struct kvm_mmio_fragment *frag;
13769
13770	if (!data)
13771		return -EINVAL;
13772
13773	handled = read_emultor.read_write_mmio(vcpu, gpa, bytes, data);
13774	if (handled == bytes)
13775		return 1;
13776
13777	bytes -= handled;
13778	gpa += handled;
13779	data += handled;
13780
13781	/*TODO: Check if need to increment number of frags */
13782	frag = vcpu->mmio_fragments;
13783	vcpu->mmio_nr_fragments = 1;
13784	frag->len = bytes;
13785	frag->gpa = gpa;
13786	frag->data = data;
13787
13788	vcpu->mmio_needed = 1;
13789	vcpu->mmio_cur_fragment = 0;
13790
13791	vcpu->run->mmio.phys_addr = gpa;
13792	vcpu->run->mmio.len = min(8u, frag->len);
13793	vcpu->run->mmio.is_write = 0;
13794	vcpu->run->exit_reason = KVM_EXIT_MMIO;
13795
13796	vcpu->arch.complete_userspace_io = complete_sev_es_emulated_mmio;
13797
13798	return 0;
13799}
13800EXPORT_SYMBOL_GPL(kvm_sev_es_mmio_read);
13801
13802static void advance_sev_es_emulated_pio(struct kvm_vcpu *vcpu, unsigned count, int size)
13803{
13804	vcpu->arch.sev_pio_count -= count;
13805	vcpu->arch.sev_pio_data += count * size;
13806}
13807
13808static int kvm_sev_es_outs(struct kvm_vcpu *vcpu, unsigned int size,
13809			   unsigned int port);
13810
13811static int complete_sev_es_emulated_outs(struct kvm_vcpu *vcpu)
13812{
13813	int size = vcpu->arch.pio.size;
13814	int port = vcpu->arch.pio.port;
13815
13816	vcpu->arch.pio.count = 0;
13817	if (vcpu->arch.sev_pio_count)
13818		return kvm_sev_es_outs(vcpu, size, port);
13819	return 1;
13820}
13821
13822static int kvm_sev_es_outs(struct kvm_vcpu *vcpu, unsigned int size,
13823			   unsigned int port)
13824{
13825	for (;;) {
13826		unsigned int count =
13827			min_t(unsigned int, PAGE_SIZE / size, vcpu->arch.sev_pio_count);
13828		int ret = emulator_pio_out(vcpu, size, port, vcpu->arch.sev_pio_data, count);
13829
13830		/* memcpy done already by emulator_pio_out.  */
13831		advance_sev_es_emulated_pio(vcpu, count, size);
13832		if (!ret)
13833			break;
13834
13835		/* Emulation done by the kernel.  */
13836		if (!vcpu->arch.sev_pio_count)
13837			return 1;
13838	}
13839
13840	vcpu->arch.complete_userspace_io = complete_sev_es_emulated_outs;
13841	return 0;
13842}
13843
13844static int kvm_sev_es_ins(struct kvm_vcpu *vcpu, unsigned int size,
13845			  unsigned int port);
13846
13847static int complete_sev_es_emulated_ins(struct kvm_vcpu *vcpu)
13848{
13849	unsigned count = vcpu->arch.pio.count;
13850	int size = vcpu->arch.pio.size;
13851	int port = vcpu->arch.pio.port;
13852
13853	complete_emulator_pio_in(vcpu, vcpu->arch.sev_pio_data);
13854	advance_sev_es_emulated_pio(vcpu, count, size);
13855	if (vcpu->arch.sev_pio_count)
13856		return kvm_sev_es_ins(vcpu, size, port);
13857	return 1;
13858}
13859
13860static int kvm_sev_es_ins(struct kvm_vcpu *vcpu, unsigned int size,
13861			  unsigned int port)
13862{
13863	for (;;) {
13864		unsigned int count =
13865			min_t(unsigned int, PAGE_SIZE / size, vcpu->arch.sev_pio_count);
13866		if (!emulator_pio_in(vcpu, size, port, vcpu->arch.sev_pio_data, count))
13867			break;
13868
13869		/* Emulation done by the kernel.  */
13870		advance_sev_es_emulated_pio(vcpu, count, size);
13871		if (!vcpu->arch.sev_pio_count)
13872			return 1;
13873	}
13874
13875	vcpu->arch.complete_userspace_io = complete_sev_es_emulated_ins;
13876	return 0;
13877}
13878
13879int kvm_sev_es_string_io(struct kvm_vcpu *vcpu, unsigned int size,
13880			 unsigned int port, void *data,  unsigned int count,
13881			 int in)
13882{
13883	vcpu->arch.sev_pio_data = data;
13884	vcpu->arch.sev_pio_count = count;
13885	return in ? kvm_sev_es_ins(vcpu, size, port)
13886		  : kvm_sev_es_outs(vcpu, size, port);
13887}
13888EXPORT_SYMBOL_GPL(kvm_sev_es_string_io);
13889
13890EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_entry);
13891EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_exit);
13892EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_fast_mmio);
13893EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_inj_virq);
13894EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_page_fault);
13895EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_msr);
13896EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_cr);
13897EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmenter);
13898EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit);
13899EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit_inject);
13900EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intr_vmexit);
13901EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmenter_failed);
13902EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_invlpga);
13903EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_skinit);
13904EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intercepts);
13905EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_write_tsc_offset);
13906EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_ple_window_update);
13907EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_pml_full);
13908EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_pi_irte_update);
13909EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_unaccelerated_access);
13910EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_incomplete_ipi);
13911EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_ga_log);
13912EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_kick_vcpu_slowpath);
13913EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_doorbell);
13914EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_apicv_accept_irq);
13915EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_vmgexit_enter);
13916EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_vmgexit_exit);
13917EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_vmgexit_msr_protocol_enter);
13918EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_vmgexit_msr_protocol_exit);
13919
13920static int __init kvm_x86_init(void)
13921{
13922	kvm_mmu_x86_module_init();
13923	mitigate_smt_rsb &= boot_cpu_has_bug(X86_BUG_SMT_RSB) && cpu_smt_possible();
13924	return 0;
13925}
13926module_init(kvm_x86_init);
13927
13928static void __exit kvm_x86_exit(void)
13929{
13930	WARN_ON_ONCE(static_branch_unlikely(&kvm_has_noapic_vcpu));
13931}
13932module_exit(kvm_x86_exit);
13933