1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * Kernel-based Virtual Machine driver for Linux
4 *
5 * This module enables machines with Intel VT-x extensions to run virtual
6 * machines without emulation or binary translation.
7 *
8 * Copyright (C) 2006 Qumranet, Inc.
9 * Copyright 2010 Red Hat, Inc. and/or its affiliates.
10 *
11 * Authors:
12 *   Avi Kivity   <avi@qumranet.com>
13 *   Yaniv Kamay  <yaniv@qumranet.com>
14 */
15#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
16
17#include <linux/highmem.h>
18#include <linux/hrtimer.h>
19#include <linux/kernel.h>
20#include <linux/kvm_host.h>
21#include <linux/module.h>
22#include <linux/moduleparam.h>
23#include <linux/mod_devicetable.h>
24#include <linux/mm.h>
25#include <linux/objtool.h>
26#include <linux/sched.h>
27#include <linux/sched/smt.h>
28#include <linux/slab.h>
29#include <linux/tboot.h>
30#include <linux/trace_events.h>
31#include <linux/entry-kvm.h>
32
33#include <asm/apic.h>
34#include <asm/asm.h>
35#include <asm/cpu.h>
36#include <asm/cpu_device_id.h>
37#include <asm/debugreg.h>
38#include <asm/desc.h>
39#include <asm/fpu/api.h>
40#include <asm/fpu/xstate.h>
41#include <asm/fred.h>
42#include <asm/idtentry.h>
43#include <asm/io.h>
44#include <asm/irq_remapping.h>
45#include <asm/reboot.h>
46#include <asm/perf_event.h>
47#include <asm/mmu_context.h>
48#include <asm/mshyperv.h>
49#include <asm/mwait.h>
50#include <asm/spec-ctrl.h>
51#include <asm/vmx.h>
52
53#include <trace/events/ipi.h>
54
55#include "capabilities.h"
56#include "cpuid.h"
57#include "hyperv.h"
58#include "kvm_onhyperv.h"
59#include "irq.h"
60#include "kvm_cache_regs.h"
61#include "lapic.h"
62#include "mmu.h"
63#include "nested.h"
64#include "pmu.h"
65#include "sgx.h"
66#include "trace.h"
67#include "vmcs.h"
68#include "vmcs12.h"
69#include "vmx.h"
70#include "x86.h"
71#include "smm.h"
72#include "vmx_onhyperv.h"
73
74MODULE_AUTHOR("Qumranet");
75MODULE_LICENSE("GPL");
76
77#ifdef MODULE
78static const struct x86_cpu_id vmx_cpu_id[] = {
79	X86_MATCH_FEATURE(X86_FEATURE_VMX, NULL),
80	{}
81};
82MODULE_DEVICE_TABLE(x86cpu, vmx_cpu_id);
83#endif
84
85bool __read_mostly enable_vpid = 1;
86module_param_named(vpid, enable_vpid, bool, 0444);
87
88static bool __read_mostly enable_vnmi = 1;
89module_param_named(vnmi, enable_vnmi, bool, 0444);
90
91bool __read_mostly flexpriority_enabled = 1;
92module_param_named(flexpriority, flexpriority_enabled, bool, 0444);
93
94bool __read_mostly enable_ept = 1;
95module_param_named(ept, enable_ept, bool, 0444);
96
97bool __read_mostly enable_unrestricted_guest = 1;
98module_param_named(unrestricted_guest,
99			enable_unrestricted_guest, bool, 0444);
100
101bool __read_mostly enable_ept_ad_bits = 1;
102module_param_named(eptad, enable_ept_ad_bits, bool, 0444);
103
104static bool __read_mostly emulate_invalid_guest_state = true;
105module_param(emulate_invalid_guest_state, bool, 0444);
106
107static bool __read_mostly fasteoi = 1;
108module_param(fasteoi, bool, 0444);
109
110module_param(enable_apicv, bool, 0444);
111
112bool __read_mostly enable_ipiv = true;
113module_param(enable_ipiv, bool, 0444);
114
115/*
116 * If nested=1, nested virtualization is supported, i.e., guests may use
117 * VMX and be a hypervisor for its own guests. If nested=0, guests may not
118 * use VMX instructions.
119 */
120static bool __read_mostly nested = 1;
121module_param(nested, bool, 0444);
122
123bool __read_mostly enable_pml = 1;
124module_param_named(pml, enable_pml, bool, 0444);
125
126static bool __read_mostly error_on_inconsistent_vmcs_config = true;
127module_param(error_on_inconsistent_vmcs_config, bool, 0444);
128
129static bool __read_mostly dump_invalid_vmcs = 0;
130module_param(dump_invalid_vmcs, bool, 0644);
131
132#define MSR_BITMAP_MODE_X2APIC		1
133#define MSR_BITMAP_MODE_X2APIC_APICV	2
134
135#define KVM_VMX_TSC_MULTIPLIER_MAX     0xffffffffffffffffULL
136
137/* Guest_tsc -> host_tsc conversion requires 64-bit division.  */
138static int __read_mostly cpu_preemption_timer_multi;
139static bool __read_mostly enable_preemption_timer = 1;
140#ifdef CONFIG_X86_64
141module_param_named(preemption_timer, enable_preemption_timer, bool, S_IRUGO);
142#endif
143
144extern bool __read_mostly allow_smaller_maxphyaddr;
145module_param(allow_smaller_maxphyaddr, bool, S_IRUGO);
146
147#define KVM_VM_CR0_ALWAYS_OFF (X86_CR0_NW | X86_CR0_CD)
148#define KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST X86_CR0_NE
149#define KVM_VM_CR0_ALWAYS_ON				\
150	(KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST | X86_CR0_PG | X86_CR0_PE)
151
152#define KVM_VM_CR4_ALWAYS_ON_UNRESTRICTED_GUEST X86_CR4_VMXE
153#define KVM_PMODE_VM_CR4_ALWAYS_ON (X86_CR4_PAE | X86_CR4_VMXE)
154#define KVM_RMODE_VM_CR4_ALWAYS_ON (X86_CR4_VME | X86_CR4_PAE | X86_CR4_VMXE)
155
156#define RMODE_GUEST_OWNED_EFLAGS_BITS (~(X86_EFLAGS_IOPL | X86_EFLAGS_VM))
157
158#define MSR_IA32_RTIT_STATUS_MASK (~(RTIT_STATUS_FILTEREN | \
159	RTIT_STATUS_CONTEXTEN | RTIT_STATUS_TRIGGEREN | \
160	RTIT_STATUS_ERROR | RTIT_STATUS_STOPPED | \
161	RTIT_STATUS_BYTECNT))
162
163/*
164 * List of MSRs that can be directly passed to the guest.
165 * In addition to these x2apic, PT and LBR MSRs are handled specially.
166 */
167static u32 vmx_possible_passthrough_msrs[MAX_POSSIBLE_PASSTHROUGH_MSRS] = {
168	MSR_IA32_SPEC_CTRL,
169	MSR_IA32_PRED_CMD,
170	MSR_IA32_FLUSH_CMD,
171	MSR_IA32_TSC,
172#ifdef CONFIG_X86_64
173	MSR_FS_BASE,
174	MSR_GS_BASE,
175	MSR_KERNEL_GS_BASE,
176	MSR_IA32_XFD,
177	MSR_IA32_XFD_ERR,
178#endif
179	MSR_IA32_SYSENTER_CS,
180	MSR_IA32_SYSENTER_ESP,
181	MSR_IA32_SYSENTER_EIP,
182	MSR_CORE_C1_RES,
183	MSR_CORE_C3_RESIDENCY,
184	MSR_CORE_C6_RESIDENCY,
185	MSR_CORE_C7_RESIDENCY,
186};
187
188/*
189 * These 2 parameters are used to config the controls for Pause-Loop Exiting:
190 * ple_gap:    upper bound on the amount of time between two successive
191 *             executions of PAUSE in a loop. Also indicate if ple enabled.
192 *             According to test, this time is usually smaller than 128 cycles.
193 * ple_window: upper bound on the amount of time a guest is allowed to execute
194 *             in a PAUSE loop. Tests indicate that most spinlocks are held for
195 *             less than 2^12 cycles
196 * Time is measured based on a counter that runs at the same rate as the TSC,
197 * refer SDM volume 3b section 21.6.13 & 22.1.3.
198 */
199static unsigned int ple_gap = KVM_DEFAULT_PLE_GAP;
200module_param(ple_gap, uint, 0444);
201
202static unsigned int ple_window = KVM_VMX_DEFAULT_PLE_WINDOW;
203module_param(ple_window, uint, 0444);
204
205/* Default doubles per-vcpu window every exit. */
206static unsigned int ple_window_grow = KVM_DEFAULT_PLE_WINDOW_GROW;
207module_param(ple_window_grow, uint, 0444);
208
209/* Default resets per-vcpu window every exit to ple_window. */
210static unsigned int ple_window_shrink = KVM_DEFAULT_PLE_WINDOW_SHRINK;
211module_param(ple_window_shrink, uint, 0444);
212
213/* Default is to compute the maximum so we can never overflow. */
214static unsigned int ple_window_max        = KVM_VMX_DEFAULT_PLE_WINDOW_MAX;
215module_param(ple_window_max, uint, 0444);
216
217/* Default is SYSTEM mode, 1 for host-guest mode */
218int __read_mostly pt_mode = PT_MODE_SYSTEM;
219module_param(pt_mode, int, S_IRUGO);
220
221static DEFINE_STATIC_KEY_FALSE(vmx_l1d_should_flush);
222static DEFINE_STATIC_KEY_FALSE(vmx_l1d_flush_cond);
223static DEFINE_MUTEX(vmx_l1d_flush_mutex);
224
225/* Storage for pre module init parameter parsing */
226static enum vmx_l1d_flush_state __read_mostly vmentry_l1d_flush_param = VMENTER_L1D_FLUSH_AUTO;
227
228static const struct {
229	const char *option;
230	bool for_parse;
231} vmentry_l1d_param[] = {
232	[VMENTER_L1D_FLUSH_AUTO]	 = {"auto", true},
233	[VMENTER_L1D_FLUSH_NEVER]	 = {"never", true},
234	[VMENTER_L1D_FLUSH_COND]	 = {"cond", true},
235	[VMENTER_L1D_FLUSH_ALWAYS]	 = {"always", true},
236	[VMENTER_L1D_FLUSH_EPT_DISABLED] = {"EPT disabled", false},
237	[VMENTER_L1D_FLUSH_NOT_REQUIRED] = {"not required", false},
238};
239
240#define L1D_CACHE_ORDER 4
241static void *vmx_l1d_flush_pages;
242
243static int vmx_setup_l1d_flush(enum vmx_l1d_flush_state l1tf)
244{
245	struct page *page;
246	unsigned int i;
247
248	if (!boot_cpu_has_bug(X86_BUG_L1TF)) {
249		l1tf_vmx_mitigation = VMENTER_L1D_FLUSH_NOT_REQUIRED;
250		return 0;
251	}
252
253	if (!enable_ept) {
254		l1tf_vmx_mitigation = VMENTER_L1D_FLUSH_EPT_DISABLED;
255		return 0;
256	}
257
258	if (host_arch_capabilities & ARCH_CAP_SKIP_VMENTRY_L1DFLUSH) {
259		l1tf_vmx_mitigation = VMENTER_L1D_FLUSH_NOT_REQUIRED;
260		return 0;
261	}
262
263	/* If set to auto use the default l1tf mitigation method */
264	if (l1tf == VMENTER_L1D_FLUSH_AUTO) {
265		switch (l1tf_mitigation) {
266		case L1TF_MITIGATION_OFF:
267			l1tf = VMENTER_L1D_FLUSH_NEVER;
268			break;
269		case L1TF_MITIGATION_FLUSH_NOWARN:
270		case L1TF_MITIGATION_FLUSH:
271		case L1TF_MITIGATION_FLUSH_NOSMT:
272			l1tf = VMENTER_L1D_FLUSH_COND;
273			break;
274		case L1TF_MITIGATION_FULL:
275		case L1TF_MITIGATION_FULL_FORCE:
276			l1tf = VMENTER_L1D_FLUSH_ALWAYS;
277			break;
278		}
279	} else if (l1tf_mitigation == L1TF_MITIGATION_FULL_FORCE) {
280		l1tf = VMENTER_L1D_FLUSH_ALWAYS;
281	}
282
283	if (l1tf != VMENTER_L1D_FLUSH_NEVER && !vmx_l1d_flush_pages &&
284	    !boot_cpu_has(X86_FEATURE_FLUSH_L1D)) {
285		/*
286		 * This allocation for vmx_l1d_flush_pages is not tied to a VM
287		 * lifetime and so should not be charged to a memcg.
288		 */
289		page = alloc_pages(GFP_KERNEL, L1D_CACHE_ORDER);
290		if (!page)
291			return -ENOMEM;
292		vmx_l1d_flush_pages = page_address(page);
293
294		/*
295		 * Initialize each page with a different pattern in
296		 * order to protect against KSM in the nested
297		 * virtualization case.
298		 */
299		for (i = 0; i < 1u << L1D_CACHE_ORDER; ++i) {
300			memset(vmx_l1d_flush_pages + i * PAGE_SIZE, i + 1,
301			       PAGE_SIZE);
302		}
303	}
304
305	l1tf_vmx_mitigation = l1tf;
306
307	if (l1tf != VMENTER_L1D_FLUSH_NEVER)
308		static_branch_enable(&vmx_l1d_should_flush);
309	else
310		static_branch_disable(&vmx_l1d_should_flush);
311
312	if (l1tf == VMENTER_L1D_FLUSH_COND)
313		static_branch_enable(&vmx_l1d_flush_cond);
314	else
315		static_branch_disable(&vmx_l1d_flush_cond);
316	return 0;
317}
318
319static int vmentry_l1d_flush_parse(const char *s)
320{
321	unsigned int i;
322
323	if (s) {
324		for (i = 0; i < ARRAY_SIZE(vmentry_l1d_param); i++) {
325			if (vmentry_l1d_param[i].for_parse &&
326			    sysfs_streq(s, vmentry_l1d_param[i].option))
327				return i;
328		}
329	}
330	return -EINVAL;
331}
332
333static int vmentry_l1d_flush_set(const char *s, const struct kernel_param *kp)
334{
335	int l1tf, ret;
336
337	l1tf = vmentry_l1d_flush_parse(s);
338	if (l1tf < 0)
339		return l1tf;
340
341	if (!boot_cpu_has(X86_BUG_L1TF))
342		return 0;
343
344	/*
345	 * Has vmx_init() run already? If not then this is the pre init
346	 * parameter parsing. In that case just store the value and let
347	 * vmx_init() do the proper setup after enable_ept has been
348	 * established.
349	 */
350	if (l1tf_vmx_mitigation == VMENTER_L1D_FLUSH_AUTO) {
351		vmentry_l1d_flush_param = l1tf;
352		return 0;
353	}
354
355	mutex_lock(&vmx_l1d_flush_mutex);
356	ret = vmx_setup_l1d_flush(l1tf);
357	mutex_unlock(&vmx_l1d_flush_mutex);
358	return ret;
359}
360
361static int vmentry_l1d_flush_get(char *s, const struct kernel_param *kp)
362{
363	if (WARN_ON_ONCE(l1tf_vmx_mitigation >= ARRAY_SIZE(vmentry_l1d_param)))
364		return sysfs_emit(s, "???\n");
365
366	return sysfs_emit(s, "%s\n", vmentry_l1d_param[l1tf_vmx_mitigation].option);
367}
368
369static __always_inline void vmx_disable_fb_clear(struct vcpu_vmx *vmx)
370{
371	u64 msr;
372
373	if (!vmx->disable_fb_clear)
374		return;
375
376	msr = __rdmsr(MSR_IA32_MCU_OPT_CTRL);
377	msr |= FB_CLEAR_DIS;
378	native_wrmsrl(MSR_IA32_MCU_OPT_CTRL, msr);
379	/* Cache the MSR value to avoid reading it later */
380	vmx->msr_ia32_mcu_opt_ctrl = msr;
381}
382
383static __always_inline void vmx_enable_fb_clear(struct vcpu_vmx *vmx)
384{
385	if (!vmx->disable_fb_clear)
386		return;
387
388	vmx->msr_ia32_mcu_opt_ctrl &= ~FB_CLEAR_DIS;
389	native_wrmsrl(MSR_IA32_MCU_OPT_CTRL, vmx->msr_ia32_mcu_opt_ctrl);
390}
391
392static void vmx_update_fb_clear_dis(struct kvm_vcpu *vcpu, struct vcpu_vmx *vmx)
393{
394	/*
395	 * Disable VERW's behavior of clearing CPU buffers for the guest if the
396	 * CPU isn't affected by MDS/TAA, and the host hasn't forcefully enabled
397	 * the mitigation. Disabling the clearing behavior provides a
398	 * performance boost for guests that aren't aware that manually clearing
399	 * CPU buffers is unnecessary, at the cost of MSR accesses on VM-Entry
400	 * and VM-Exit.
401	 */
402	vmx->disable_fb_clear = !cpu_feature_enabled(X86_FEATURE_CLEAR_CPU_BUF) &&
403				(host_arch_capabilities & ARCH_CAP_FB_CLEAR_CTRL) &&
404				!boot_cpu_has_bug(X86_BUG_MDS) &&
405				!boot_cpu_has_bug(X86_BUG_TAA);
406
407	/*
408	 * If guest will not execute VERW, there is no need to set FB_CLEAR_DIS
409	 * at VMEntry. Skip the MSR read/write when a guest has no use case to
410	 * execute VERW.
411	 */
412	if ((vcpu->arch.arch_capabilities & ARCH_CAP_FB_CLEAR) ||
413	   ((vcpu->arch.arch_capabilities & ARCH_CAP_MDS_NO) &&
414	    (vcpu->arch.arch_capabilities & ARCH_CAP_TAA_NO) &&
415	    (vcpu->arch.arch_capabilities & ARCH_CAP_PSDP_NO) &&
416	    (vcpu->arch.arch_capabilities & ARCH_CAP_FBSDP_NO) &&
417	    (vcpu->arch.arch_capabilities & ARCH_CAP_SBDR_SSDP_NO)))
418		vmx->disable_fb_clear = false;
419}
420
421static const struct kernel_param_ops vmentry_l1d_flush_ops = {
422	.set = vmentry_l1d_flush_set,
423	.get = vmentry_l1d_flush_get,
424};
425module_param_cb(vmentry_l1d_flush, &vmentry_l1d_flush_ops, NULL, 0644);
426
427static u32 vmx_segment_access_rights(struct kvm_segment *var);
428
429void vmx_vmexit(void);
430
431#define vmx_insn_failed(fmt...)		\
432do {					\
433	WARN_ONCE(1, fmt);		\
434	pr_warn_ratelimited(fmt);	\
435} while (0)
436
437noinline void vmread_error(unsigned long field)
438{
439	vmx_insn_failed("vmread failed: field=%lx\n", field);
440}
441
442#ifndef CONFIG_CC_HAS_ASM_GOTO_OUTPUT
443noinstr void vmread_error_trampoline2(unsigned long field, bool fault)
444{
445	if (fault) {
446		kvm_spurious_fault();
447	} else {
448		instrumentation_begin();
449		vmread_error(field);
450		instrumentation_end();
451	}
452}
453#endif
454
455noinline void vmwrite_error(unsigned long field, unsigned long value)
456{
457	vmx_insn_failed("vmwrite failed: field=%lx val=%lx err=%u\n",
458			field, value, vmcs_read32(VM_INSTRUCTION_ERROR));
459}
460
461noinline void vmclear_error(struct vmcs *vmcs, u64 phys_addr)
462{
463	vmx_insn_failed("vmclear failed: %p/%llx err=%u\n",
464			vmcs, phys_addr, vmcs_read32(VM_INSTRUCTION_ERROR));
465}
466
467noinline void vmptrld_error(struct vmcs *vmcs, u64 phys_addr)
468{
469	vmx_insn_failed("vmptrld failed: %p/%llx err=%u\n",
470			vmcs, phys_addr, vmcs_read32(VM_INSTRUCTION_ERROR));
471}
472
473noinline void invvpid_error(unsigned long ext, u16 vpid, gva_t gva)
474{
475	vmx_insn_failed("invvpid failed: ext=0x%lx vpid=%u gva=0x%lx\n",
476			ext, vpid, gva);
477}
478
479noinline void invept_error(unsigned long ext, u64 eptp, gpa_t gpa)
480{
481	vmx_insn_failed("invept failed: ext=0x%lx eptp=%llx gpa=0x%llx\n",
482			ext, eptp, gpa);
483}
484
485static DEFINE_PER_CPU(struct vmcs *, vmxarea);
486DEFINE_PER_CPU(struct vmcs *, current_vmcs);
487/*
488 * We maintain a per-CPU linked-list of VMCS loaded on that CPU. This is needed
489 * when a CPU is brought down, and we need to VMCLEAR all VMCSs loaded on it.
490 */
491static DEFINE_PER_CPU(struct list_head, loaded_vmcss_on_cpu);
492
493static DECLARE_BITMAP(vmx_vpid_bitmap, VMX_NR_VPIDS);
494static DEFINE_SPINLOCK(vmx_vpid_lock);
495
496struct vmcs_config vmcs_config __ro_after_init;
497struct vmx_capability vmx_capability __ro_after_init;
498
499#define VMX_SEGMENT_FIELD(seg)					\
500	[VCPU_SREG_##seg] = {                                   \
501		.selector = GUEST_##seg##_SELECTOR,		\
502		.base = GUEST_##seg##_BASE,		   	\
503		.limit = GUEST_##seg##_LIMIT,		   	\
504		.ar_bytes = GUEST_##seg##_AR_BYTES,	   	\
505	}
506
507static const struct kvm_vmx_segment_field {
508	unsigned selector;
509	unsigned base;
510	unsigned limit;
511	unsigned ar_bytes;
512} kvm_vmx_segment_fields[] = {
513	VMX_SEGMENT_FIELD(CS),
514	VMX_SEGMENT_FIELD(DS),
515	VMX_SEGMENT_FIELD(ES),
516	VMX_SEGMENT_FIELD(FS),
517	VMX_SEGMENT_FIELD(GS),
518	VMX_SEGMENT_FIELD(SS),
519	VMX_SEGMENT_FIELD(TR),
520	VMX_SEGMENT_FIELD(LDTR),
521};
522
523static inline void vmx_segment_cache_clear(struct vcpu_vmx *vmx)
524{
525	vmx->segment_cache.bitmask = 0;
526}
527
528static unsigned long host_idt_base;
529
530#if IS_ENABLED(CONFIG_HYPERV)
531static struct kvm_x86_ops vmx_x86_ops __initdata;
532
533static bool __read_mostly enlightened_vmcs = true;
534module_param(enlightened_vmcs, bool, 0444);
535
536static int hv_enable_l2_tlb_flush(struct kvm_vcpu *vcpu)
537{
538	struct hv_enlightened_vmcs *evmcs;
539	hpa_t partition_assist_page = hv_get_partition_assist_page(vcpu);
540
541	if (partition_assist_page == INVALID_PAGE)
542		return -ENOMEM;
543
544	evmcs = (struct hv_enlightened_vmcs *)to_vmx(vcpu)->loaded_vmcs->vmcs;
545
546	evmcs->partition_assist_page = partition_assist_page;
547	evmcs->hv_vm_id = (unsigned long)vcpu->kvm;
548	evmcs->hv_enlightenments_control.nested_flush_hypercall = 1;
549
550	return 0;
551}
552
553static __init void hv_init_evmcs(void)
554{
555	int cpu;
556
557	if (!enlightened_vmcs)
558		return;
559
560	/*
561	 * Enlightened VMCS usage should be recommended and the host needs
562	 * to support eVMCS v1 or above.
563	 */
564	if (ms_hyperv.hints & HV_X64_ENLIGHTENED_VMCS_RECOMMENDED &&
565	    (ms_hyperv.nested_features & HV_X64_ENLIGHTENED_VMCS_VERSION) >=
566	     KVM_EVMCS_VERSION) {
567
568		/* Check that we have assist pages on all online CPUs */
569		for_each_online_cpu(cpu) {
570			if (!hv_get_vp_assist_page(cpu)) {
571				enlightened_vmcs = false;
572				break;
573			}
574		}
575
576		if (enlightened_vmcs) {
577			pr_info("Using Hyper-V Enlightened VMCS\n");
578			static_branch_enable(&__kvm_is_using_evmcs);
579		}
580
581		if (ms_hyperv.nested_features & HV_X64_NESTED_DIRECT_FLUSH)
582			vmx_x86_ops.enable_l2_tlb_flush
583				= hv_enable_l2_tlb_flush;
584
585	} else {
586		enlightened_vmcs = false;
587	}
588}
589
590static void hv_reset_evmcs(void)
591{
592	struct hv_vp_assist_page *vp_ap;
593
594	if (!kvm_is_using_evmcs())
595		return;
596
597	/*
598	 * KVM should enable eVMCS if and only if all CPUs have a VP assist
599	 * page, and should reject CPU onlining if eVMCS is enabled the CPU
600	 * doesn't have a VP assist page allocated.
601	 */
602	vp_ap = hv_get_vp_assist_page(smp_processor_id());
603	if (WARN_ON_ONCE(!vp_ap))
604		return;
605
606	/*
607	 * Reset everything to support using non-enlightened VMCS access later
608	 * (e.g. when we reload the module with enlightened_vmcs=0)
609	 */
610	vp_ap->nested_control.features.directhypercall = 0;
611	vp_ap->current_nested_vmcs = 0;
612	vp_ap->enlighten_vmentry = 0;
613}
614
615#else /* IS_ENABLED(CONFIG_HYPERV) */
616static void hv_init_evmcs(void) {}
617static void hv_reset_evmcs(void) {}
618#endif /* IS_ENABLED(CONFIG_HYPERV) */
619
620/*
621 * Comment's format: document - errata name - stepping - processor name.
622 * Refer from
623 * https://www.virtualbox.org/svn/vbox/trunk/src/VBox/VMM/VMMR0/HMR0.cpp
624 */
625static u32 vmx_preemption_cpu_tfms[] = {
626/* 323344.pdf - BA86   - D0 - Xeon 7500 Series */
6270x000206E6,
628/* 323056.pdf - AAX65  - C2 - Xeon L3406 */
629/* 322814.pdf - AAT59  - C2 - i7-600, i5-500, i5-400 and i3-300 Mobile */
630/* 322911.pdf - AAU65  - C2 - i5-600, i3-500 Desktop and Pentium G6950 */
6310x00020652,
632/* 322911.pdf - AAU65  - K0 - i5-600, i3-500 Desktop and Pentium G6950 */
6330x00020655,
634/* 322373.pdf - AAO95  - B1 - Xeon 3400 Series */
635/* 322166.pdf - AAN92  - B1 - i7-800 and i5-700 Desktop */
636/*
637 * 320767.pdf - AAP86  - B1 -
638 * i7-900 Mobile Extreme, i7-800 and i7-700 Mobile
639 */
6400x000106E5,
641/* 321333.pdf - AAM126 - C0 - Xeon 3500 */
6420x000106A0,
643/* 321333.pdf - AAM126 - C1 - Xeon 3500 */
6440x000106A1,
645/* 320836.pdf - AAJ124 - C0 - i7-900 Desktop Extreme and i7-900 Desktop */
6460x000106A4,
647 /* 321333.pdf - AAM126 - D0 - Xeon 3500 */
648 /* 321324.pdf - AAK139 - D0 - Xeon 5500 */
649 /* 320836.pdf - AAJ124 - D0 - i7-900 Extreme and i7-900 Desktop */
6500x000106A5,
651 /* Xeon E3-1220 V2 */
6520x000306A8,
653};
654
655static inline bool cpu_has_broken_vmx_preemption_timer(void)
656{
657	u32 eax = cpuid_eax(0x00000001), i;
658
659	/* Clear the reserved bits */
660	eax &= ~(0x3U << 14 | 0xfU << 28);
661	for (i = 0; i < ARRAY_SIZE(vmx_preemption_cpu_tfms); i++)
662		if (eax == vmx_preemption_cpu_tfms[i])
663			return true;
664
665	return false;
666}
667
668static inline bool cpu_need_virtualize_apic_accesses(struct kvm_vcpu *vcpu)
669{
670	return flexpriority_enabled && lapic_in_kernel(vcpu);
671}
672
673static int vmx_get_passthrough_msr_slot(u32 msr)
674{
675	int i;
676
677	switch (msr) {
678	case 0x800 ... 0x8ff:
679		/* x2APIC MSRs. These are handled in vmx_update_msr_bitmap_x2apic() */
680		return -ENOENT;
681	case MSR_IA32_RTIT_STATUS:
682	case MSR_IA32_RTIT_OUTPUT_BASE:
683	case MSR_IA32_RTIT_OUTPUT_MASK:
684	case MSR_IA32_RTIT_CR3_MATCH:
685	case MSR_IA32_RTIT_ADDR0_A ... MSR_IA32_RTIT_ADDR3_B:
686		/* PT MSRs. These are handled in pt_update_intercept_for_msr() */
687	case MSR_LBR_SELECT:
688	case MSR_LBR_TOS:
689	case MSR_LBR_INFO_0 ... MSR_LBR_INFO_0 + 31:
690	case MSR_LBR_NHM_FROM ... MSR_LBR_NHM_FROM + 31:
691	case MSR_LBR_NHM_TO ... MSR_LBR_NHM_TO + 31:
692	case MSR_LBR_CORE_FROM ... MSR_LBR_CORE_FROM + 8:
693	case MSR_LBR_CORE_TO ... MSR_LBR_CORE_TO + 8:
694		/* LBR MSRs. These are handled in vmx_update_intercept_for_lbr_msrs() */
695		return -ENOENT;
696	}
697
698	for (i = 0; i < ARRAY_SIZE(vmx_possible_passthrough_msrs); i++) {
699		if (vmx_possible_passthrough_msrs[i] == msr)
700			return i;
701	}
702
703	WARN(1, "Invalid MSR %x, please adapt vmx_possible_passthrough_msrs[]", msr);
704	return -ENOENT;
705}
706
707struct vmx_uret_msr *vmx_find_uret_msr(struct vcpu_vmx *vmx, u32 msr)
708{
709	int i;
710
711	i = kvm_find_user_return_msr(msr);
712	if (i >= 0)
713		return &vmx->guest_uret_msrs[i];
714	return NULL;
715}
716
717static int vmx_set_guest_uret_msr(struct vcpu_vmx *vmx,
718				  struct vmx_uret_msr *msr, u64 data)
719{
720	unsigned int slot = msr - vmx->guest_uret_msrs;
721	int ret = 0;
722
723	if (msr->load_into_hardware) {
724		preempt_disable();
725		ret = kvm_set_user_return_msr(slot, data, msr->mask);
726		preempt_enable();
727	}
728	if (!ret)
729		msr->data = data;
730	return ret;
731}
732
733/*
734 * Disable VMX and clear CR4.VMXE (even if VMXOFF faults)
735 *
736 * Note, VMXOFF causes a #UD if the CPU is !post-VMXON, but it's impossible to
737 * atomically track post-VMXON state, e.g. this may be called in NMI context.
738 * Eat all faults as all other faults on VMXOFF faults are mode related, i.e.
739 * faults are guaranteed to be due to the !post-VMXON check unless the CPU is
740 * magically in RM, VM86, compat mode, or at CPL>0.
741 */
742static int kvm_cpu_vmxoff(void)
743{
744	asm goto("1: vmxoff\n\t"
745			  _ASM_EXTABLE(1b, %l[fault])
746			  ::: "cc", "memory" : fault);
747
748	cr4_clear_bits(X86_CR4_VMXE);
749	return 0;
750
751fault:
752	cr4_clear_bits(X86_CR4_VMXE);
753	return -EIO;
754}
755
756static void vmx_emergency_disable(void)
757{
758	int cpu = raw_smp_processor_id();
759	struct loaded_vmcs *v;
760
761	kvm_rebooting = true;
762
763	/*
764	 * Note, CR4.VMXE can be _cleared_ in NMI context, but it can only be
765	 * set in task context.  If this races with VMX is disabled by an NMI,
766	 * VMCLEAR and VMXOFF may #UD, but KVM will eat those faults due to
767	 * kvm_rebooting set.
768	 */
769	if (!(__read_cr4() & X86_CR4_VMXE))
770		return;
771
772	list_for_each_entry(v, &per_cpu(loaded_vmcss_on_cpu, cpu),
773			    loaded_vmcss_on_cpu_link)
774		vmcs_clear(v->vmcs);
775
776	kvm_cpu_vmxoff();
777}
778
779static void __loaded_vmcs_clear(void *arg)
780{
781	struct loaded_vmcs *loaded_vmcs = arg;
782	int cpu = raw_smp_processor_id();
783
784	if (loaded_vmcs->cpu != cpu)
785		return; /* vcpu migration can race with cpu offline */
786	if (per_cpu(current_vmcs, cpu) == loaded_vmcs->vmcs)
787		per_cpu(current_vmcs, cpu) = NULL;
788
789	vmcs_clear(loaded_vmcs->vmcs);
790	if (loaded_vmcs->shadow_vmcs && loaded_vmcs->launched)
791		vmcs_clear(loaded_vmcs->shadow_vmcs);
792
793	list_del(&loaded_vmcs->loaded_vmcss_on_cpu_link);
794
795	/*
796	 * Ensure all writes to loaded_vmcs, including deleting it from its
797	 * current percpu list, complete before setting loaded_vmcs->cpu to
798	 * -1, otherwise a different cpu can see loaded_vmcs->cpu == -1 first
799	 * and add loaded_vmcs to its percpu list before it's deleted from this
800	 * cpu's list. Pairs with the smp_rmb() in vmx_vcpu_load_vmcs().
801	 */
802	smp_wmb();
803
804	loaded_vmcs->cpu = -1;
805	loaded_vmcs->launched = 0;
806}
807
808void loaded_vmcs_clear(struct loaded_vmcs *loaded_vmcs)
809{
810	int cpu = loaded_vmcs->cpu;
811
812	if (cpu != -1)
813		smp_call_function_single(cpu,
814			 __loaded_vmcs_clear, loaded_vmcs, 1);
815}
816
817static bool vmx_segment_cache_test_set(struct vcpu_vmx *vmx, unsigned seg,
818				       unsigned field)
819{
820	bool ret;
821	u32 mask = 1 << (seg * SEG_FIELD_NR + field);
822
823	if (!kvm_register_is_available(&vmx->vcpu, VCPU_EXREG_SEGMENTS)) {
824		kvm_register_mark_available(&vmx->vcpu, VCPU_EXREG_SEGMENTS);
825		vmx->segment_cache.bitmask = 0;
826	}
827	ret = vmx->segment_cache.bitmask & mask;
828	vmx->segment_cache.bitmask |= mask;
829	return ret;
830}
831
832static u16 vmx_read_guest_seg_selector(struct vcpu_vmx *vmx, unsigned seg)
833{
834	u16 *p = &vmx->segment_cache.seg[seg].selector;
835
836	if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_SEL))
837		*p = vmcs_read16(kvm_vmx_segment_fields[seg].selector);
838	return *p;
839}
840
841static ulong vmx_read_guest_seg_base(struct vcpu_vmx *vmx, unsigned seg)
842{
843	ulong *p = &vmx->segment_cache.seg[seg].base;
844
845	if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_BASE))
846		*p = vmcs_readl(kvm_vmx_segment_fields[seg].base);
847	return *p;
848}
849
850static u32 vmx_read_guest_seg_limit(struct vcpu_vmx *vmx, unsigned seg)
851{
852	u32 *p = &vmx->segment_cache.seg[seg].limit;
853
854	if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_LIMIT))
855		*p = vmcs_read32(kvm_vmx_segment_fields[seg].limit);
856	return *p;
857}
858
859static u32 vmx_read_guest_seg_ar(struct vcpu_vmx *vmx, unsigned seg)
860{
861	u32 *p = &vmx->segment_cache.seg[seg].ar;
862
863	if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_AR))
864		*p = vmcs_read32(kvm_vmx_segment_fields[seg].ar_bytes);
865	return *p;
866}
867
868void vmx_update_exception_bitmap(struct kvm_vcpu *vcpu)
869{
870	u32 eb;
871
872	eb = (1u << PF_VECTOR) | (1u << UD_VECTOR) | (1u << MC_VECTOR) |
873	     (1u << DB_VECTOR) | (1u << AC_VECTOR);
874	/*
875	 * Guest access to VMware backdoor ports could legitimately
876	 * trigger #GP because of TSS I/O permission bitmap.
877	 * We intercept those #GP and allow access to them anyway
878	 * as VMware does.
879	 */
880	if (enable_vmware_backdoor)
881		eb |= (1u << GP_VECTOR);
882	if ((vcpu->guest_debug &
883	     (KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP)) ==
884	    (KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP))
885		eb |= 1u << BP_VECTOR;
886	if (to_vmx(vcpu)->rmode.vm86_active)
887		eb = ~0;
888	if (!vmx_need_pf_intercept(vcpu))
889		eb &= ~(1u << PF_VECTOR);
890
891	/* When we are running a nested L2 guest and L1 specified for it a
892	 * certain exception bitmap, we must trap the same exceptions and pass
893	 * them to L1. When running L2, we will only handle the exceptions
894	 * specified above if L1 did not want them.
895	 */
896	if (is_guest_mode(vcpu))
897		eb |= get_vmcs12(vcpu)->exception_bitmap;
898	else {
899		int mask = 0, match = 0;
900
901		if (enable_ept && (eb & (1u << PF_VECTOR))) {
902			/*
903			 * If EPT is enabled, #PF is currently only intercepted
904			 * if MAXPHYADDR is smaller on the guest than on the
905			 * host.  In that case we only care about present,
906			 * non-reserved faults.  For vmcs02, however, PFEC_MASK
907			 * and PFEC_MATCH are set in prepare_vmcs02_rare.
908			 */
909			mask = PFERR_PRESENT_MASK | PFERR_RSVD_MASK;
910			match = PFERR_PRESENT_MASK;
911		}
912		vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK, mask);
913		vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH, match);
914	}
915
916	/*
917	 * Disabling xfd interception indicates that dynamic xfeatures
918	 * might be used in the guest. Always trap #NM in this case
919	 * to save guest xfd_err timely.
920	 */
921	if (vcpu->arch.xfd_no_write_intercept)
922		eb |= (1u << NM_VECTOR);
923
924	vmcs_write32(EXCEPTION_BITMAP, eb);
925}
926
927/*
928 * Check if MSR is intercepted for currently loaded MSR bitmap.
929 */
930static bool msr_write_intercepted(struct vcpu_vmx *vmx, u32 msr)
931{
932	if (!(exec_controls_get(vmx) & CPU_BASED_USE_MSR_BITMAPS))
933		return true;
934
935	return vmx_test_msr_bitmap_write(vmx->loaded_vmcs->msr_bitmap, msr);
936}
937
938unsigned int __vmx_vcpu_run_flags(struct vcpu_vmx *vmx)
939{
940	unsigned int flags = 0;
941
942	if (vmx->loaded_vmcs->launched)
943		flags |= VMX_RUN_VMRESUME;
944
945	/*
946	 * If writes to the SPEC_CTRL MSR aren't intercepted, the guest is free
947	 * to change it directly without causing a vmexit.  In that case read
948	 * it after vmexit and store it in vmx->spec_ctrl.
949	 */
950	if (!msr_write_intercepted(vmx, MSR_IA32_SPEC_CTRL))
951		flags |= VMX_RUN_SAVE_SPEC_CTRL;
952
953	return flags;
954}
955
956static __always_inline void clear_atomic_switch_msr_special(struct vcpu_vmx *vmx,
957		unsigned long entry, unsigned long exit)
958{
959	vm_entry_controls_clearbit(vmx, entry);
960	vm_exit_controls_clearbit(vmx, exit);
961}
962
963int vmx_find_loadstore_msr_slot(struct vmx_msrs *m, u32 msr)
964{
965	unsigned int i;
966
967	for (i = 0; i < m->nr; ++i) {
968		if (m->val[i].index == msr)
969			return i;
970	}
971	return -ENOENT;
972}
973
974static void clear_atomic_switch_msr(struct vcpu_vmx *vmx, unsigned msr)
975{
976	int i;
977	struct msr_autoload *m = &vmx->msr_autoload;
978
979	switch (msr) {
980	case MSR_EFER:
981		if (cpu_has_load_ia32_efer()) {
982			clear_atomic_switch_msr_special(vmx,
983					VM_ENTRY_LOAD_IA32_EFER,
984					VM_EXIT_LOAD_IA32_EFER);
985			return;
986		}
987		break;
988	case MSR_CORE_PERF_GLOBAL_CTRL:
989		if (cpu_has_load_perf_global_ctrl()) {
990			clear_atomic_switch_msr_special(vmx,
991					VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL,
992					VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL);
993			return;
994		}
995		break;
996	}
997	i = vmx_find_loadstore_msr_slot(&m->guest, msr);
998	if (i < 0)
999		goto skip_guest;
1000	--m->guest.nr;
1001	m->guest.val[i] = m->guest.val[m->guest.nr];
1002	vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, m->guest.nr);
1003
1004skip_guest:
1005	i = vmx_find_loadstore_msr_slot(&m->host, msr);
1006	if (i < 0)
1007		return;
1008
1009	--m->host.nr;
1010	m->host.val[i] = m->host.val[m->host.nr];
1011	vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, m->host.nr);
1012}
1013
1014static __always_inline void add_atomic_switch_msr_special(struct vcpu_vmx *vmx,
1015		unsigned long entry, unsigned long exit,
1016		unsigned long guest_val_vmcs, unsigned long host_val_vmcs,
1017		u64 guest_val, u64 host_val)
1018{
1019	vmcs_write64(guest_val_vmcs, guest_val);
1020	if (host_val_vmcs != HOST_IA32_EFER)
1021		vmcs_write64(host_val_vmcs, host_val);
1022	vm_entry_controls_setbit(vmx, entry);
1023	vm_exit_controls_setbit(vmx, exit);
1024}
1025
1026static void add_atomic_switch_msr(struct vcpu_vmx *vmx, unsigned msr,
1027				  u64 guest_val, u64 host_val, bool entry_only)
1028{
1029	int i, j = 0;
1030	struct msr_autoload *m = &vmx->msr_autoload;
1031
1032	switch (msr) {
1033	case MSR_EFER:
1034		if (cpu_has_load_ia32_efer()) {
1035			add_atomic_switch_msr_special(vmx,
1036					VM_ENTRY_LOAD_IA32_EFER,
1037					VM_EXIT_LOAD_IA32_EFER,
1038					GUEST_IA32_EFER,
1039					HOST_IA32_EFER,
1040					guest_val, host_val);
1041			return;
1042		}
1043		break;
1044	case MSR_CORE_PERF_GLOBAL_CTRL:
1045		if (cpu_has_load_perf_global_ctrl()) {
1046			add_atomic_switch_msr_special(vmx,
1047					VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL,
1048					VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL,
1049					GUEST_IA32_PERF_GLOBAL_CTRL,
1050					HOST_IA32_PERF_GLOBAL_CTRL,
1051					guest_val, host_val);
1052			return;
1053		}
1054		break;
1055	case MSR_IA32_PEBS_ENABLE:
1056		/* PEBS needs a quiescent period after being disabled (to write
1057		 * a record).  Disabling PEBS through VMX MSR swapping doesn't
1058		 * provide that period, so a CPU could write host's record into
1059		 * guest's memory.
1060		 */
1061		wrmsrl(MSR_IA32_PEBS_ENABLE, 0);
1062	}
1063
1064	i = vmx_find_loadstore_msr_slot(&m->guest, msr);
1065	if (!entry_only)
1066		j = vmx_find_loadstore_msr_slot(&m->host, msr);
1067
1068	if ((i < 0 && m->guest.nr == MAX_NR_LOADSTORE_MSRS) ||
1069	    (j < 0 &&  m->host.nr == MAX_NR_LOADSTORE_MSRS)) {
1070		printk_once(KERN_WARNING "Not enough msr switch entries. "
1071				"Can't add msr %x\n", msr);
1072		return;
1073	}
1074	if (i < 0) {
1075		i = m->guest.nr++;
1076		vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, m->guest.nr);
1077	}
1078	m->guest.val[i].index = msr;
1079	m->guest.val[i].value = guest_val;
1080
1081	if (entry_only)
1082		return;
1083
1084	if (j < 0) {
1085		j = m->host.nr++;
1086		vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, m->host.nr);
1087	}
1088	m->host.val[j].index = msr;
1089	m->host.val[j].value = host_val;
1090}
1091
1092static bool update_transition_efer(struct vcpu_vmx *vmx)
1093{
1094	u64 guest_efer = vmx->vcpu.arch.efer;
1095	u64 ignore_bits = 0;
1096	int i;
1097
1098	/* Shadow paging assumes NX to be available.  */
1099	if (!enable_ept)
1100		guest_efer |= EFER_NX;
1101
1102	/*
1103	 * LMA and LME handled by hardware; SCE meaningless outside long mode.
1104	 */
1105	ignore_bits |= EFER_SCE;
1106#ifdef CONFIG_X86_64
1107	ignore_bits |= EFER_LMA | EFER_LME;
1108	/* SCE is meaningful only in long mode on Intel */
1109	if (guest_efer & EFER_LMA)
1110		ignore_bits &= ~(u64)EFER_SCE;
1111#endif
1112
1113	/*
1114	 * On EPT, we can't emulate NX, so we must switch EFER atomically.
1115	 * On CPUs that support "load IA32_EFER", always switch EFER
1116	 * atomically, since it's faster than switching it manually.
1117	 */
1118	if (cpu_has_load_ia32_efer() ||
1119	    (enable_ept && ((vmx->vcpu.arch.efer ^ host_efer) & EFER_NX))) {
1120		if (!(guest_efer & EFER_LMA))
1121			guest_efer &= ~EFER_LME;
1122		if (guest_efer != host_efer)
1123			add_atomic_switch_msr(vmx, MSR_EFER,
1124					      guest_efer, host_efer, false);
1125		else
1126			clear_atomic_switch_msr(vmx, MSR_EFER);
1127		return false;
1128	}
1129
1130	i = kvm_find_user_return_msr(MSR_EFER);
1131	if (i < 0)
1132		return false;
1133
1134	clear_atomic_switch_msr(vmx, MSR_EFER);
1135
1136	guest_efer &= ~ignore_bits;
1137	guest_efer |= host_efer & ignore_bits;
1138
1139	vmx->guest_uret_msrs[i].data = guest_efer;
1140	vmx->guest_uret_msrs[i].mask = ~ignore_bits;
1141
1142	return true;
1143}
1144
1145#ifdef CONFIG_X86_32
1146/*
1147 * On 32-bit kernels, VM exits still load the FS and GS bases from the
1148 * VMCS rather than the segment table.  KVM uses this helper to figure
1149 * out the current bases to poke them into the VMCS before entry.
1150 */
1151static unsigned long segment_base(u16 selector)
1152{
1153	struct desc_struct *table;
1154	unsigned long v;
1155
1156	if (!(selector & ~SEGMENT_RPL_MASK))
1157		return 0;
1158
1159	table = get_current_gdt_ro();
1160
1161	if ((selector & SEGMENT_TI_MASK) == SEGMENT_LDT) {
1162		u16 ldt_selector = kvm_read_ldt();
1163
1164		if (!(ldt_selector & ~SEGMENT_RPL_MASK))
1165			return 0;
1166
1167		table = (struct desc_struct *)segment_base(ldt_selector);
1168	}
1169	v = get_desc_base(&table[selector >> 3]);
1170	return v;
1171}
1172#endif
1173
1174static inline bool pt_can_write_msr(struct vcpu_vmx *vmx)
1175{
1176	return vmx_pt_mode_is_host_guest() &&
1177	       !(vmx->pt_desc.guest.ctl & RTIT_CTL_TRACEEN);
1178}
1179
1180static inline bool pt_output_base_valid(struct kvm_vcpu *vcpu, u64 base)
1181{
1182	/* The base must be 128-byte aligned and a legal physical address. */
1183	return kvm_vcpu_is_legal_aligned_gpa(vcpu, base, 128);
1184}
1185
1186static inline void pt_load_msr(struct pt_ctx *ctx, u32 addr_range)
1187{
1188	u32 i;
1189
1190	wrmsrl(MSR_IA32_RTIT_STATUS, ctx->status);
1191	wrmsrl(MSR_IA32_RTIT_OUTPUT_BASE, ctx->output_base);
1192	wrmsrl(MSR_IA32_RTIT_OUTPUT_MASK, ctx->output_mask);
1193	wrmsrl(MSR_IA32_RTIT_CR3_MATCH, ctx->cr3_match);
1194	for (i = 0; i < addr_range; i++) {
1195		wrmsrl(MSR_IA32_RTIT_ADDR0_A + i * 2, ctx->addr_a[i]);
1196		wrmsrl(MSR_IA32_RTIT_ADDR0_B + i * 2, ctx->addr_b[i]);
1197	}
1198}
1199
1200static inline void pt_save_msr(struct pt_ctx *ctx, u32 addr_range)
1201{
1202	u32 i;
1203
1204	rdmsrl(MSR_IA32_RTIT_STATUS, ctx->status);
1205	rdmsrl(MSR_IA32_RTIT_OUTPUT_BASE, ctx->output_base);
1206	rdmsrl(MSR_IA32_RTIT_OUTPUT_MASK, ctx->output_mask);
1207	rdmsrl(MSR_IA32_RTIT_CR3_MATCH, ctx->cr3_match);
1208	for (i = 0; i < addr_range; i++) {
1209		rdmsrl(MSR_IA32_RTIT_ADDR0_A + i * 2, ctx->addr_a[i]);
1210		rdmsrl(MSR_IA32_RTIT_ADDR0_B + i * 2, ctx->addr_b[i]);
1211	}
1212}
1213
1214static void pt_guest_enter(struct vcpu_vmx *vmx)
1215{
1216	if (vmx_pt_mode_is_system())
1217		return;
1218
1219	/*
1220	 * GUEST_IA32_RTIT_CTL is already set in the VMCS.
1221	 * Save host state before VM entry.
1222	 */
1223	rdmsrl(MSR_IA32_RTIT_CTL, vmx->pt_desc.host.ctl);
1224	if (vmx->pt_desc.guest.ctl & RTIT_CTL_TRACEEN) {
1225		wrmsrl(MSR_IA32_RTIT_CTL, 0);
1226		pt_save_msr(&vmx->pt_desc.host, vmx->pt_desc.num_address_ranges);
1227		pt_load_msr(&vmx->pt_desc.guest, vmx->pt_desc.num_address_ranges);
1228	}
1229}
1230
1231static void pt_guest_exit(struct vcpu_vmx *vmx)
1232{
1233	if (vmx_pt_mode_is_system())
1234		return;
1235
1236	if (vmx->pt_desc.guest.ctl & RTIT_CTL_TRACEEN) {
1237		pt_save_msr(&vmx->pt_desc.guest, vmx->pt_desc.num_address_ranges);
1238		pt_load_msr(&vmx->pt_desc.host, vmx->pt_desc.num_address_ranges);
1239	}
1240
1241	/*
1242	 * KVM requires VM_EXIT_CLEAR_IA32_RTIT_CTL to expose PT to the guest,
1243	 * i.e. RTIT_CTL is always cleared on VM-Exit.  Restore it if necessary.
1244	 */
1245	if (vmx->pt_desc.host.ctl)
1246		wrmsrl(MSR_IA32_RTIT_CTL, vmx->pt_desc.host.ctl);
1247}
1248
1249void vmx_set_host_fs_gs(struct vmcs_host_state *host, u16 fs_sel, u16 gs_sel,
1250			unsigned long fs_base, unsigned long gs_base)
1251{
1252	if (unlikely(fs_sel != host->fs_sel)) {
1253		if (!(fs_sel & 7))
1254			vmcs_write16(HOST_FS_SELECTOR, fs_sel);
1255		else
1256			vmcs_write16(HOST_FS_SELECTOR, 0);
1257		host->fs_sel = fs_sel;
1258	}
1259	if (unlikely(gs_sel != host->gs_sel)) {
1260		if (!(gs_sel & 7))
1261			vmcs_write16(HOST_GS_SELECTOR, gs_sel);
1262		else
1263			vmcs_write16(HOST_GS_SELECTOR, 0);
1264		host->gs_sel = gs_sel;
1265	}
1266	if (unlikely(fs_base != host->fs_base)) {
1267		vmcs_writel(HOST_FS_BASE, fs_base);
1268		host->fs_base = fs_base;
1269	}
1270	if (unlikely(gs_base != host->gs_base)) {
1271		vmcs_writel(HOST_GS_BASE, gs_base);
1272		host->gs_base = gs_base;
1273	}
1274}
1275
1276void vmx_prepare_switch_to_guest(struct kvm_vcpu *vcpu)
1277{
1278	struct vcpu_vmx *vmx = to_vmx(vcpu);
1279	struct vmcs_host_state *host_state;
1280#ifdef CONFIG_X86_64
1281	int cpu = raw_smp_processor_id();
1282#endif
1283	unsigned long fs_base, gs_base;
1284	u16 fs_sel, gs_sel;
1285	int i;
1286
1287	/*
1288	 * Note that guest MSRs to be saved/restored can also be changed
1289	 * when guest state is loaded. This happens when guest transitions
1290	 * to/from long-mode by setting MSR_EFER.LMA.
1291	 */
1292	if (!vmx->guest_uret_msrs_loaded) {
1293		vmx->guest_uret_msrs_loaded = true;
1294		for (i = 0; i < kvm_nr_uret_msrs; ++i) {
1295			if (!vmx->guest_uret_msrs[i].load_into_hardware)
1296				continue;
1297
1298			kvm_set_user_return_msr(i,
1299						vmx->guest_uret_msrs[i].data,
1300						vmx->guest_uret_msrs[i].mask);
1301		}
1302	}
1303
1304	if (vmx->nested.need_vmcs12_to_shadow_sync)
1305		nested_sync_vmcs12_to_shadow(vcpu);
1306
1307	if (vmx->guest_state_loaded)
1308		return;
1309
1310	host_state = &vmx->loaded_vmcs->host_state;
1311
1312	/*
1313	 * Set host fs and gs selectors.  Unfortunately, 22.2.3 does not
1314	 * allow segment selectors with cpl > 0 or ti == 1.
1315	 */
1316	host_state->ldt_sel = kvm_read_ldt();
1317
1318#ifdef CONFIG_X86_64
1319	savesegment(ds, host_state->ds_sel);
1320	savesegment(es, host_state->es_sel);
1321
1322	gs_base = cpu_kernelmode_gs_base(cpu);
1323	if (likely(is_64bit_mm(current->mm))) {
1324		current_save_fsgs();
1325		fs_sel = current->thread.fsindex;
1326		gs_sel = current->thread.gsindex;
1327		fs_base = current->thread.fsbase;
1328		vmx->msr_host_kernel_gs_base = current->thread.gsbase;
1329	} else {
1330		savesegment(fs, fs_sel);
1331		savesegment(gs, gs_sel);
1332		fs_base = read_msr(MSR_FS_BASE);
1333		vmx->msr_host_kernel_gs_base = read_msr(MSR_KERNEL_GS_BASE);
1334	}
1335
1336	wrmsrl(MSR_KERNEL_GS_BASE, vmx->msr_guest_kernel_gs_base);
1337#else
1338	savesegment(fs, fs_sel);
1339	savesegment(gs, gs_sel);
1340	fs_base = segment_base(fs_sel);
1341	gs_base = segment_base(gs_sel);
1342#endif
1343
1344	vmx_set_host_fs_gs(host_state, fs_sel, gs_sel, fs_base, gs_base);
1345	vmx->guest_state_loaded = true;
1346}
1347
1348static void vmx_prepare_switch_to_host(struct vcpu_vmx *vmx)
1349{
1350	struct vmcs_host_state *host_state;
1351
1352	if (!vmx->guest_state_loaded)
1353		return;
1354
1355	host_state = &vmx->loaded_vmcs->host_state;
1356
1357	++vmx->vcpu.stat.host_state_reload;
1358
1359#ifdef CONFIG_X86_64
1360	rdmsrl(MSR_KERNEL_GS_BASE, vmx->msr_guest_kernel_gs_base);
1361#endif
1362	if (host_state->ldt_sel || (host_state->gs_sel & 7)) {
1363		kvm_load_ldt(host_state->ldt_sel);
1364#ifdef CONFIG_X86_64
1365		load_gs_index(host_state->gs_sel);
1366#else
1367		loadsegment(gs, host_state->gs_sel);
1368#endif
1369	}
1370	if (host_state->fs_sel & 7)
1371		loadsegment(fs, host_state->fs_sel);
1372#ifdef CONFIG_X86_64
1373	if (unlikely(host_state->ds_sel | host_state->es_sel)) {
1374		loadsegment(ds, host_state->ds_sel);
1375		loadsegment(es, host_state->es_sel);
1376	}
1377#endif
1378	invalidate_tss_limit();
1379#ifdef CONFIG_X86_64
1380	wrmsrl(MSR_KERNEL_GS_BASE, vmx->msr_host_kernel_gs_base);
1381#endif
1382	load_fixmap_gdt(raw_smp_processor_id());
1383	vmx->guest_state_loaded = false;
1384	vmx->guest_uret_msrs_loaded = false;
1385}
1386
1387#ifdef CONFIG_X86_64
1388static u64 vmx_read_guest_kernel_gs_base(struct vcpu_vmx *vmx)
1389{
1390	preempt_disable();
1391	if (vmx->guest_state_loaded)
1392		rdmsrl(MSR_KERNEL_GS_BASE, vmx->msr_guest_kernel_gs_base);
1393	preempt_enable();
1394	return vmx->msr_guest_kernel_gs_base;
1395}
1396
1397static void vmx_write_guest_kernel_gs_base(struct vcpu_vmx *vmx, u64 data)
1398{
1399	preempt_disable();
1400	if (vmx->guest_state_loaded)
1401		wrmsrl(MSR_KERNEL_GS_BASE, data);
1402	preempt_enable();
1403	vmx->msr_guest_kernel_gs_base = data;
1404}
1405#endif
1406
1407void vmx_vcpu_load_vmcs(struct kvm_vcpu *vcpu, int cpu,
1408			struct loaded_vmcs *buddy)
1409{
1410	struct vcpu_vmx *vmx = to_vmx(vcpu);
1411	bool already_loaded = vmx->loaded_vmcs->cpu == cpu;
1412	struct vmcs *prev;
1413
1414	if (!already_loaded) {
1415		loaded_vmcs_clear(vmx->loaded_vmcs);
1416		local_irq_disable();
1417
1418		/*
1419		 * Ensure loaded_vmcs->cpu is read before adding loaded_vmcs to
1420		 * this cpu's percpu list, otherwise it may not yet be deleted
1421		 * from its previous cpu's percpu list.  Pairs with the
1422		 * smb_wmb() in __loaded_vmcs_clear().
1423		 */
1424		smp_rmb();
1425
1426		list_add(&vmx->loaded_vmcs->loaded_vmcss_on_cpu_link,
1427			 &per_cpu(loaded_vmcss_on_cpu, cpu));
1428		local_irq_enable();
1429	}
1430
1431	prev = per_cpu(current_vmcs, cpu);
1432	if (prev != vmx->loaded_vmcs->vmcs) {
1433		per_cpu(current_vmcs, cpu) = vmx->loaded_vmcs->vmcs;
1434		vmcs_load(vmx->loaded_vmcs->vmcs);
1435
1436		/*
1437		 * No indirect branch prediction barrier needed when switching
1438		 * the active VMCS within a vCPU, unless IBRS is advertised to
1439		 * the vCPU.  To minimize the number of IBPBs executed, KVM
1440		 * performs IBPB on nested VM-Exit (a single nested transition
1441		 * may switch the active VMCS multiple times).
1442		 */
1443		if (!buddy || WARN_ON_ONCE(buddy->vmcs != prev))
1444			indirect_branch_prediction_barrier();
1445	}
1446
1447	if (!already_loaded) {
1448		void *gdt = get_current_gdt_ro();
1449
1450		/*
1451		 * Flush all EPTP/VPID contexts, the new pCPU may have stale
1452		 * TLB entries from its previous association with the vCPU.
1453		 */
1454		kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
1455
1456		/*
1457		 * Linux uses per-cpu TSS and GDT, so set these when switching
1458		 * processors.  See 22.2.4.
1459		 */
1460		vmcs_writel(HOST_TR_BASE,
1461			    (unsigned long)&get_cpu_entry_area(cpu)->tss.x86_tss);
1462		vmcs_writel(HOST_GDTR_BASE, (unsigned long)gdt);   /* 22.2.4 */
1463
1464		if (IS_ENABLED(CONFIG_IA32_EMULATION) || IS_ENABLED(CONFIG_X86_32)) {
1465			/* 22.2.3 */
1466			vmcs_writel(HOST_IA32_SYSENTER_ESP,
1467				    (unsigned long)(cpu_entry_stack(cpu) + 1));
1468		}
1469
1470		vmx->loaded_vmcs->cpu = cpu;
1471	}
1472}
1473
1474/*
1475 * Switches to specified vcpu, until a matching vcpu_put(), but assumes
1476 * vcpu mutex is already taken.
1477 */
1478static void vmx_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
1479{
1480	struct vcpu_vmx *vmx = to_vmx(vcpu);
1481
1482	vmx_vcpu_load_vmcs(vcpu, cpu, NULL);
1483
1484	vmx_vcpu_pi_load(vcpu, cpu);
1485
1486	vmx->host_debugctlmsr = get_debugctlmsr();
1487}
1488
1489static void vmx_vcpu_put(struct kvm_vcpu *vcpu)
1490{
1491	vmx_vcpu_pi_put(vcpu);
1492
1493	vmx_prepare_switch_to_host(to_vmx(vcpu));
1494}
1495
1496bool vmx_emulation_required(struct kvm_vcpu *vcpu)
1497{
1498	return emulate_invalid_guest_state && !vmx_guest_state_valid(vcpu);
1499}
1500
1501unsigned long vmx_get_rflags(struct kvm_vcpu *vcpu)
1502{
1503	struct vcpu_vmx *vmx = to_vmx(vcpu);
1504	unsigned long rflags, save_rflags;
1505
1506	if (!kvm_register_is_available(vcpu, VCPU_EXREG_RFLAGS)) {
1507		kvm_register_mark_available(vcpu, VCPU_EXREG_RFLAGS);
1508		rflags = vmcs_readl(GUEST_RFLAGS);
1509		if (vmx->rmode.vm86_active) {
1510			rflags &= RMODE_GUEST_OWNED_EFLAGS_BITS;
1511			save_rflags = vmx->rmode.save_rflags;
1512			rflags |= save_rflags & ~RMODE_GUEST_OWNED_EFLAGS_BITS;
1513		}
1514		vmx->rflags = rflags;
1515	}
1516	return vmx->rflags;
1517}
1518
1519void vmx_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
1520{
1521	struct vcpu_vmx *vmx = to_vmx(vcpu);
1522	unsigned long old_rflags;
1523
1524	/*
1525	 * Unlike CR0 and CR4, RFLAGS handling requires checking if the vCPU
1526	 * is an unrestricted guest in order to mark L2 as needing emulation
1527	 * if L1 runs L2 as a restricted guest.
1528	 */
1529	if (is_unrestricted_guest(vcpu)) {
1530		kvm_register_mark_available(vcpu, VCPU_EXREG_RFLAGS);
1531		vmx->rflags = rflags;
1532		vmcs_writel(GUEST_RFLAGS, rflags);
1533		return;
1534	}
1535
1536	old_rflags = vmx_get_rflags(vcpu);
1537	vmx->rflags = rflags;
1538	if (vmx->rmode.vm86_active) {
1539		vmx->rmode.save_rflags = rflags;
1540		rflags |= X86_EFLAGS_IOPL | X86_EFLAGS_VM;
1541	}
1542	vmcs_writel(GUEST_RFLAGS, rflags);
1543
1544	if ((old_rflags ^ vmx->rflags) & X86_EFLAGS_VM)
1545		vmx->emulation_required = vmx_emulation_required(vcpu);
1546}
1547
1548static bool vmx_get_if_flag(struct kvm_vcpu *vcpu)
1549{
1550	return vmx_get_rflags(vcpu) & X86_EFLAGS_IF;
1551}
1552
1553u32 vmx_get_interrupt_shadow(struct kvm_vcpu *vcpu)
1554{
1555	u32 interruptibility = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
1556	int ret = 0;
1557
1558	if (interruptibility & GUEST_INTR_STATE_STI)
1559		ret |= KVM_X86_SHADOW_INT_STI;
1560	if (interruptibility & GUEST_INTR_STATE_MOV_SS)
1561		ret |= KVM_X86_SHADOW_INT_MOV_SS;
1562
1563	return ret;
1564}
1565
1566void vmx_set_interrupt_shadow(struct kvm_vcpu *vcpu, int mask)
1567{
1568	u32 interruptibility_old = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
1569	u32 interruptibility = interruptibility_old;
1570
1571	interruptibility &= ~(GUEST_INTR_STATE_STI | GUEST_INTR_STATE_MOV_SS);
1572
1573	if (mask & KVM_X86_SHADOW_INT_MOV_SS)
1574		interruptibility |= GUEST_INTR_STATE_MOV_SS;
1575	else if (mask & KVM_X86_SHADOW_INT_STI)
1576		interruptibility |= GUEST_INTR_STATE_STI;
1577
1578	if ((interruptibility != interruptibility_old))
1579		vmcs_write32(GUEST_INTERRUPTIBILITY_INFO, interruptibility);
1580}
1581
1582static int vmx_rtit_ctl_check(struct kvm_vcpu *vcpu, u64 data)
1583{
1584	struct vcpu_vmx *vmx = to_vmx(vcpu);
1585	unsigned long value;
1586
1587	/*
1588	 * Any MSR write that attempts to change bits marked reserved will
1589	 * case a #GP fault.
1590	 */
1591	if (data & vmx->pt_desc.ctl_bitmask)
1592		return 1;
1593
1594	/*
1595	 * Any attempt to modify IA32_RTIT_CTL while TraceEn is set will
1596	 * result in a #GP unless the same write also clears TraceEn.
1597	 */
1598	if ((vmx->pt_desc.guest.ctl & RTIT_CTL_TRACEEN) &&
1599		((vmx->pt_desc.guest.ctl ^ data) & ~RTIT_CTL_TRACEEN))
1600		return 1;
1601
1602	/*
1603	 * WRMSR to IA32_RTIT_CTL that sets TraceEn but clears this bit
1604	 * and FabricEn would cause #GP, if
1605	 * CPUID.(EAX=14H, ECX=0):ECX.SNGLRGNOUT[bit 2] = 0
1606	 */
1607	if ((data & RTIT_CTL_TRACEEN) && !(data & RTIT_CTL_TOPA) &&
1608		!(data & RTIT_CTL_FABRIC_EN) &&
1609		!intel_pt_validate_cap(vmx->pt_desc.caps,
1610					PT_CAP_single_range_output))
1611		return 1;
1612
1613	/*
1614	 * MTCFreq, CycThresh and PSBFreq encodings check, any MSR write that
1615	 * utilize encodings marked reserved will cause a #GP fault.
1616	 */
1617	value = intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_mtc_periods);
1618	if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_mtc) &&
1619			!test_bit((data & RTIT_CTL_MTC_RANGE) >>
1620			RTIT_CTL_MTC_RANGE_OFFSET, &value))
1621		return 1;
1622	value = intel_pt_validate_cap(vmx->pt_desc.caps,
1623						PT_CAP_cycle_thresholds);
1624	if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_psb_cyc) &&
1625			!test_bit((data & RTIT_CTL_CYC_THRESH) >>
1626			RTIT_CTL_CYC_THRESH_OFFSET, &value))
1627		return 1;
1628	value = intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_psb_periods);
1629	if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_psb_cyc) &&
1630			!test_bit((data & RTIT_CTL_PSB_FREQ) >>
1631			RTIT_CTL_PSB_FREQ_OFFSET, &value))
1632		return 1;
1633
1634	/*
1635	 * If ADDRx_CFG is reserved or the encodings is >2 will
1636	 * cause a #GP fault.
1637	 */
1638	value = (data & RTIT_CTL_ADDR0) >> RTIT_CTL_ADDR0_OFFSET;
1639	if ((value && (vmx->pt_desc.num_address_ranges < 1)) || (value > 2))
1640		return 1;
1641	value = (data & RTIT_CTL_ADDR1) >> RTIT_CTL_ADDR1_OFFSET;
1642	if ((value && (vmx->pt_desc.num_address_ranges < 2)) || (value > 2))
1643		return 1;
1644	value = (data & RTIT_CTL_ADDR2) >> RTIT_CTL_ADDR2_OFFSET;
1645	if ((value && (vmx->pt_desc.num_address_ranges < 3)) || (value > 2))
1646		return 1;
1647	value = (data & RTIT_CTL_ADDR3) >> RTIT_CTL_ADDR3_OFFSET;
1648	if ((value && (vmx->pt_desc.num_address_ranges < 4)) || (value > 2))
1649		return 1;
1650
1651	return 0;
1652}
1653
1654static int vmx_check_emulate_instruction(struct kvm_vcpu *vcpu, int emul_type,
1655					 void *insn, int insn_len)
1656{
1657	/*
1658	 * Emulation of instructions in SGX enclaves is impossible as RIP does
1659	 * not point at the failing instruction, and even if it did, the code
1660	 * stream is inaccessible.  Inject #UD instead of exiting to userspace
1661	 * so that guest userspace can't DoS the guest simply by triggering
1662	 * emulation (enclaves are CPL3 only).
1663	 */
1664	if (to_vmx(vcpu)->exit_reason.enclave_mode) {
1665		kvm_queue_exception(vcpu, UD_VECTOR);
1666		return X86EMUL_PROPAGATE_FAULT;
1667	}
1668	return X86EMUL_CONTINUE;
1669}
1670
1671static int skip_emulated_instruction(struct kvm_vcpu *vcpu)
1672{
1673	union vmx_exit_reason exit_reason = to_vmx(vcpu)->exit_reason;
1674	unsigned long rip, orig_rip;
1675	u32 instr_len;
1676
1677	/*
1678	 * Using VMCS.VM_EXIT_INSTRUCTION_LEN on EPT misconfig depends on
1679	 * undefined behavior: Intel's SDM doesn't mandate the VMCS field be
1680	 * set when EPT misconfig occurs.  In practice, real hardware updates
1681	 * VM_EXIT_INSTRUCTION_LEN on EPT misconfig, but other hypervisors
1682	 * (namely Hyper-V) don't set it due to it being undefined behavior,
1683	 * i.e. we end up advancing IP with some random value.
1684	 */
1685	if (!static_cpu_has(X86_FEATURE_HYPERVISOR) ||
1686	    exit_reason.basic != EXIT_REASON_EPT_MISCONFIG) {
1687		instr_len = vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
1688
1689		/*
1690		 * Emulating an enclave's instructions isn't supported as KVM
1691		 * cannot access the enclave's memory or its true RIP, e.g. the
1692		 * vmcs.GUEST_RIP points at the exit point of the enclave, not
1693		 * the RIP that actually triggered the VM-Exit.  But, because
1694		 * most instructions that cause VM-Exit will #UD in an enclave,
1695		 * most instruction-based VM-Exits simply do not occur.
1696		 *
1697		 * There are a few exceptions, notably the debug instructions
1698		 * INT1ICEBRK and INT3, as they are allowed in debug enclaves
1699		 * and generate #DB/#BP as expected, which KVM might intercept.
1700		 * But again, the CPU does the dirty work and saves an instr
1701		 * length of zero so VMMs don't shoot themselves in the foot.
1702		 * WARN if KVM tries to skip a non-zero length instruction on
1703		 * a VM-Exit from an enclave.
1704		 */
1705		if (!instr_len)
1706			goto rip_updated;
1707
1708		WARN_ONCE(exit_reason.enclave_mode,
1709			  "skipping instruction after SGX enclave VM-Exit");
1710
1711		orig_rip = kvm_rip_read(vcpu);
1712		rip = orig_rip + instr_len;
1713#ifdef CONFIG_X86_64
1714		/*
1715		 * We need to mask out the high 32 bits of RIP if not in 64-bit
1716		 * mode, but just finding out that we are in 64-bit mode is
1717		 * quite expensive.  Only do it if there was a carry.
1718		 */
1719		if (unlikely(((rip ^ orig_rip) >> 31) == 3) && !is_64_bit_mode(vcpu))
1720			rip = (u32)rip;
1721#endif
1722		kvm_rip_write(vcpu, rip);
1723	} else {
1724		if (!kvm_emulate_instruction(vcpu, EMULTYPE_SKIP))
1725			return 0;
1726	}
1727
1728rip_updated:
1729	/* skipping an emulated instruction also counts */
1730	vmx_set_interrupt_shadow(vcpu, 0);
1731
1732	return 1;
1733}
1734
1735/*
1736 * Recognizes a pending MTF VM-exit and records the nested state for later
1737 * delivery.
1738 */
1739static void vmx_update_emulated_instruction(struct kvm_vcpu *vcpu)
1740{
1741	struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
1742	struct vcpu_vmx *vmx = to_vmx(vcpu);
1743
1744	if (!is_guest_mode(vcpu))
1745		return;
1746
1747	/*
1748	 * Per the SDM, MTF takes priority over debug-trap exceptions besides
1749	 * TSS T-bit traps and ICEBP (INT1).  KVM doesn't emulate T-bit traps
1750	 * or ICEBP (in the emulator proper), and skipping of ICEBP after an
1751	 * intercepted #DB deliberately avoids single-step #DB and MTF updates
1752	 * as ICEBP is higher priority than both.  As instruction emulation is
1753	 * completed at this point (i.e. KVM is at the instruction boundary),
1754	 * any #DB exception pending delivery must be a debug-trap of lower
1755	 * priority than MTF.  Record the pending MTF state to be delivered in
1756	 * vmx_check_nested_events().
1757	 */
1758	if (nested_cpu_has_mtf(vmcs12) &&
1759	    (!vcpu->arch.exception.pending ||
1760	     vcpu->arch.exception.vector == DB_VECTOR) &&
1761	    (!vcpu->arch.exception_vmexit.pending ||
1762	     vcpu->arch.exception_vmexit.vector == DB_VECTOR)) {
1763		vmx->nested.mtf_pending = true;
1764		kvm_make_request(KVM_REQ_EVENT, vcpu);
1765	} else {
1766		vmx->nested.mtf_pending = false;
1767	}
1768}
1769
1770static int vmx_skip_emulated_instruction(struct kvm_vcpu *vcpu)
1771{
1772	vmx_update_emulated_instruction(vcpu);
1773	return skip_emulated_instruction(vcpu);
1774}
1775
1776static void vmx_clear_hlt(struct kvm_vcpu *vcpu)
1777{
1778	/*
1779	 * Ensure that we clear the HLT state in the VMCS.  We don't need to
1780	 * explicitly skip the instruction because if the HLT state is set,
1781	 * then the instruction is already executing and RIP has already been
1782	 * advanced.
1783	 */
1784	if (kvm_hlt_in_guest(vcpu->kvm) &&
1785			vmcs_read32(GUEST_ACTIVITY_STATE) == GUEST_ACTIVITY_HLT)
1786		vmcs_write32(GUEST_ACTIVITY_STATE, GUEST_ACTIVITY_ACTIVE);
1787}
1788
1789static void vmx_inject_exception(struct kvm_vcpu *vcpu)
1790{
1791	struct kvm_queued_exception *ex = &vcpu->arch.exception;
1792	u32 intr_info = ex->vector | INTR_INFO_VALID_MASK;
1793	struct vcpu_vmx *vmx = to_vmx(vcpu);
1794
1795	kvm_deliver_exception_payload(vcpu, ex);
1796
1797	if (ex->has_error_code) {
1798		/*
1799		 * Despite the error code being architecturally defined as 32
1800		 * bits, and the VMCS field being 32 bits, Intel CPUs and thus
1801		 * VMX don't actually supporting setting bits 31:16.  Hardware
1802		 * will (should) never provide a bogus error code, but AMD CPUs
1803		 * do generate error codes with bits 31:16 set, and so KVM's
1804		 * ABI lets userspace shove in arbitrary 32-bit values.  Drop
1805		 * the upper bits to avoid VM-Fail, losing information that
1806		 * doesn't really exist is preferable to killing the VM.
1807		 */
1808		vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE, (u16)ex->error_code);
1809		intr_info |= INTR_INFO_DELIVER_CODE_MASK;
1810	}
1811
1812	if (vmx->rmode.vm86_active) {
1813		int inc_eip = 0;
1814		if (kvm_exception_is_soft(ex->vector))
1815			inc_eip = vcpu->arch.event_exit_inst_len;
1816		kvm_inject_realmode_interrupt(vcpu, ex->vector, inc_eip);
1817		return;
1818	}
1819
1820	WARN_ON_ONCE(vmx->emulation_required);
1821
1822	if (kvm_exception_is_soft(ex->vector)) {
1823		vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
1824			     vmx->vcpu.arch.event_exit_inst_len);
1825		intr_info |= INTR_TYPE_SOFT_EXCEPTION;
1826	} else
1827		intr_info |= INTR_TYPE_HARD_EXCEPTION;
1828
1829	vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, intr_info);
1830
1831	vmx_clear_hlt(vcpu);
1832}
1833
1834static void vmx_setup_uret_msr(struct vcpu_vmx *vmx, unsigned int msr,
1835			       bool load_into_hardware)
1836{
1837	struct vmx_uret_msr *uret_msr;
1838
1839	uret_msr = vmx_find_uret_msr(vmx, msr);
1840	if (!uret_msr)
1841		return;
1842
1843	uret_msr->load_into_hardware = load_into_hardware;
1844}
1845
1846/*
1847 * Configuring user return MSRs to automatically save, load, and restore MSRs
1848 * that need to be shoved into hardware when running the guest.  Note, omitting
1849 * an MSR here does _NOT_ mean it's not emulated, only that it will not be
1850 * loaded into hardware when running the guest.
1851 */
1852static void vmx_setup_uret_msrs(struct vcpu_vmx *vmx)
1853{
1854#ifdef CONFIG_X86_64
1855	bool load_syscall_msrs;
1856
1857	/*
1858	 * The SYSCALL MSRs are only needed on long mode guests, and only
1859	 * when EFER.SCE is set.
1860	 */
1861	load_syscall_msrs = is_long_mode(&vmx->vcpu) &&
1862			    (vmx->vcpu.arch.efer & EFER_SCE);
1863
1864	vmx_setup_uret_msr(vmx, MSR_STAR, load_syscall_msrs);
1865	vmx_setup_uret_msr(vmx, MSR_LSTAR, load_syscall_msrs);
1866	vmx_setup_uret_msr(vmx, MSR_SYSCALL_MASK, load_syscall_msrs);
1867#endif
1868	vmx_setup_uret_msr(vmx, MSR_EFER, update_transition_efer(vmx));
1869
1870	vmx_setup_uret_msr(vmx, MSR_TSC_AUX,
1871			   guest_cpuid_has(&vmx->vcpu, X86_FEATURE_RDTSCP) ||
1872			   guest_cpuid_has(&vmx->vcpu, X86_FEATURE_RDPID));
1873
1874	/*
1875	 * hle=0, rtm=0, tsx_ctrl=1 can be found with some combinations of new
1876	 * kernel and old userspace.  If those guests run on a tsx=off host, do
1877	 * allow guests to use TSX_CTRL, but don't change the value in hardware
1878	 * so that TSX remains always disabled.
1879	 */
1880	vmx_setup_uret_msr(vmx, MSR_IA32_TSX_CTRL, boot_cpu_has(X86_FEATURE_RTM));
1881
1882	/*
1883	 * The set of MSRs to load may have changed, reload MSRs before the
1884	 * next VM-Enter.
1885	 */
1886	vmx->guest_uret_msrs_loaded = false;
1887}
1888
1889u64 vmx_get_l2_tsc_offset(struct kvm_vcpu *vcpu)
1890{
1891	struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
1892
1893	if (nested_cpu_has(vmcs12, CPU_BASED_USE_TSC_OFFSETTING))
1894		return vmcs12->tsc_offset;
1895
1896	return 0;
1897}
1898
1899u64 vmx_get_l2_tsc_multiplier(struct kvm_vcpu *vcpu)
1900{
1901	struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
1902
1903	if (nested_cpu_has(vmcs12, CPU_BASED_USE_TSC_OFFSETTING) &&
1904	    nested_cpu_has2(vmcs12, SECONDARY_EXEC_TSC_SCALING))
1905		return vmcs12->tsc_multiplier;
1906
1907	return kvm_caps.default_tsc_scaling_ratio;
1908}
1909
1910static void vmx_write_tsc_offset(struct kvm_vcpu *vcpu)
1911{
1912	vmcs_write64(TSC_OFFSET, vcpu->arch.tsc_offset);
1913}
1914
1915static void vmx_write_tsc_multiplier(struct kvm_vcpu *vcpu)
1916{
1917	vmcs_write64(TSC_MULTIPLIER, vcpu->arch.tsc_scaling_ratio);
1918}
1919
1920/*
1921 * Userspace is allowed to set any supported IA32_FEATURE_CONTROL regardless of
1922 * guest CPUID.  Note, KVM allows userspace to set "VMX in SMX" to maintain
1923 * backwards compatibility even though KVM doesn't support emulating SMX.  And
1924 * because userspace set "VMX in SMX", the guest must also be allowed to set it,
1925 * e.g. if the MSR is left unlocked and the guest does a RMW operation.
1926 */
1927#define KVM_SUPPORTED_FEATURE_CONTROL  (FEAT_CTL_LOCKED			 | \
1928					FEAT_CTL_VMX_ENABLED_INSIDE_SMX	 | \
1929					FEAT_CTL_VMX_ENABLED_OUTSIDE_SMX | \
1930					FEAT_CTL_SGX_LC_ENABLED		 | \
1931					FEAT_CTL_SGX_ENABLED		 | \
1932					FEAT_CTL_LMCE_ENABLED)
1933
1934static inline bool is_vmx_feature_control_msr_valid(struct vcpu_vmx *vmx,
1935						    struct msr_data *msr)
1936{
1937	uint64_t valid_bits;
1938
1939	/*
1940	 * Ensure KVM_SUPPORTED_FEATURE_CONTROL is updated when new bits are
1941	 * exposed to the guest.
1942	 */
1943	WARN_ON_ONCE(vmx->msr_ia32_feature_control_valid_bits &
1944		     ~KVM_SUPPORTED_FEATURE_CONTROL);
1945
1946	if (!msr->host_initiated &&
1947	    (vmx->msr_ia32_feature_control & FEAT_CTL_LOCKED))
1948		return false;
1949
1950	if (msr->host_initiated)
1951		valid_bits = KVM_SUPPORTED_FEATURE_CONTROL;
1952	else
1953		valid_bits = vmx->msr_ia32_feature_control_valid_bits;
1954
1955	return !(msr->data & ~valid_bits);
1956}
1957
1958static int vmx_get_msr_feature(struct kvm_msr_entry *msr)
1959{
1960	switch (msr->index) {
1961	case KVM_FIRST_EMULATED_VMX_MSR ... KVM_LAST_EMULATED_VMX_MSR:
1962		if (!nested)
1963			return 1;
1964		return vmx_get_vmx_msr(&vmcs_config.nested, msr->index, &msr->data);
1965	default:
1966		return KVM_MSR_RET_INVALID;
1967	}
1968}
1969
1970/*
1971 * Reads an msr value (of 'msr_info->index') into 'msr_info->data'.
1972 * Returns 0 on success, non-0 otherwise.
1973 * Assumes vcpu_load() was already called.
1974 */
1975static int vmx_get_msr(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
1976{
1977	struct vcpu_vmx *vmx = to_vmx(vcpu);
1978	struct vmx_uret_msr *msr;
1979	u32 index;
1980
1981	switch (msr_info->index) {
1982#ifdef CONFIG_X86_64
1983	case MSR_FS_BASE:
1984		msr_info->data = vmcs_readl(GUEST_FS_BASE);
1985		break;
1986	case MSR_GS_BASE:
1987		msr_info->data = vmcs_readl(GUEST_GS_BASE);
1988		break;
1989	case MSR_KERNEL_GS_BASE:
1990		msr_info->data = vmx_read_guest_kernel_gs_base(vmx);
1991		break;
1992#endif
1993	case MSR_EFER:
1994		return kvm_get_msr_common(vcpu, msr_info);
1995	case MSR_IA32_TSX_CTRL:
1996		if (!msr_info->host_initiated &&
1997		    !(vcpu->arch.arch_capabilities & ARCH_CAP_TSX_CTRL_MSR))
1998			return 1;
1999		goto find_uret_msr;
2000	case MSR_IA32_UMWAIT_CONTROL:
2001		if (!msr_info->host_initiated && !vmx_has_waitpkg(vmx))
2002			return 1;
2003
2004		msr_info->data = vmx->msr_ia32_umwait_control;
2005		break;
2006	case MSR_IA32_SPEC_CTRL:
2007		if (!msr_info->host_initiated &&
2008		    !guest_has_spec_ctrl_msr(vcpu))
2009			return 1;
2010
2011		msr_info->data = to_vmx(vcpu)->spec_ctrl;
2012		break;
2013	case MSR_IA32_SYSENTER_CS:
2014		msr_info->data = vmcs_read32(GUEST_SYSENTER_CS);
2015		break;
2016	case MSR_IA32_SYSENTER_EIP:
2017		msr_info->data = vmcs_readl(GUEST_SYSENTER_EIP);
2018		break;
2019	case MSR_IA32_SYSENTER_ESP:
2020		msr_info->data = vmcs_readl(GUEST_SYSENTER_ESP);
2021		break;
2022	case MSR_IA32_BNDCFGS:
2023		if (!kvm_mpx_supported() ||
2024		    (!msr_info->host_initiated &&
2025		     !guest_cpuid_has(vcpu, X86_FEATURE_MPX)))
2026			return 1;
2027		msr_info->data = vmcs_read64(GUEST_BNDCFGS);
2028		break;
2029	case MSR_IA32_MCG_EXT_CTL:
2030		if (!msr_info->host_initiated &&
2031		    !(vmx->msr_ia32_feature_control &
2032		      FEAT_CTL_LMCE_ENABLED))
2033			return 1;
2034		msr_info->data = vcpu->arch.mcg_ext_ctl;
2035		break;
2036	case MSR_IA32_FEAT_CTL:
2037		msr_info->data = vmx->msr_ia32_feature_control;
2038		break;
2039	case MSR_IA32_SGXLEPUBKEYHASH0 ... MSR_IA32_SGXLEPUBKEYHASH3:
2040		if (!msr_info->host_initiated &&
2041		    !guest_cpuid_has(vcpu, X86_FEATURE_SGX_LC))
2042			return 1;
2043		msr_info->data = to_vmx(vcpu)->msr_ia32_sgxlepubkeyhash
2044			[msr_info->index - MSR_IA32_SGXLEPUBKEYHASH0];
2045		break;
2046	case KVM_FIRST_EMULATED_VMX_MSR ... KVM_LAST_EMULATED_VMX_MSR:
2047		if (!guest_can_use(vcpu, X86_FEATURE_VMX))
2048			return 1;
2049		if (vmx_get_vmx_msr(&vmx->nested.msrs, msr_info->index,
2050				    &msr_info->data))
2051			return 1;
2052#ifdef CONFIG_KVM_HYPERV
2053		/*
2054		 * Enlightened VMCS v1 doesn't have certain VMCS fields but
2055		 * instead of just ignoring the features, different Hyper-V
2056		 * versions are either trying to use them and fail or do some
2057		 * sanity checking and refuse to boot. Filter all unsupported
2058		 * features out.
2059		 */
2060		if (!msr_info->host_initiated && guest_cpuid_has_evmcs(vcpu))
2061			nested_evmcs_filter_control_msr(vcpu, msr_info->index,
2062							&msr_info->data);
2063#endif
2064		break;
2065	case MSR_IA32_RTIT_CTL:
2066		if (!vmx_pt_mode_is_host_guest())
2067			return 1;
2068		msr_info->data = vmx->pt_desc.guest.ctl;
2069		break;
2070	case MSR_IA32_RTIT_STATUS:
2071		if (!vmx_pt_mode_is_host_guest())
2072			return 1;
2073		msr_info->data = vmx->pt_desc.guest.status;
2074		break;
2075	case MSR_IA32_RTIT_CR3_MATCH:
2076		if (!vmx_pt_mode_is_host_guest() ||
2077			!intel_pt_validate_cap(vmx->pt_desc.caps,
2078						PT_CAP_cr3_filtering))
2079			return 1;
2080		msr_info->data = vmx->pt_desc.guest.cr3_match;
2081		break;
2082	case MSR_IA32_RTIT_OUTPUT_BASE:
2083		if (!vmx_pt_mode_is_host_guest() ||
2084			(!intel_pt_validate_cap(vmx->pt_desc.caps,
2085					PT_CAP_topa_output) &&
2086			 !intel_pt_validate_cap(vmx->pt_desc.caps,
2087					PT_CAP_single_range_output)))
2088			return 1;
2089		msr_info->data = vmx->pt_desc.guest.output_base;
2090		break;
2091	case MSR_IA32_RTIT_OUTPUT_MASK:
2092		if (!vmx_pt_mode_is_host_guest() ||
2093			(!intel_pt_validate_cap(vmx->pt_desc.caps,
2094					PT_CAP_topa_output) &&
2095			 !intel_pt_validate_cap(vmx->pt_desc.caps,
2096					PT_CAP_single_range_output)))
2097			return 1;
2098		msr_info->data = vmx->pt_desc.guest.output_mask;
2099		break;
2100	case MSR_IA32_RTIT_ADDR0_A ... MSR_IA32_RTIT_ADDR3_B:
2101		index = msr_info->index - MSR_IA32_RTIT_ADDR0_A;
2102		if (!vmx_pt_mode_is_host_guest() ||
2103		    (index >= 2 * vmx->pt_desc.num_address_ranges))
2104			return 1;
2105		if (index % 2)
2106			msr_info->data = vmx->pt_desc.guest.addr_b[index / 2];
2107		else
2108			msr_info->data = vmx->pt_desc.guest.addr_a[index / 2];
2109		break;
2110	case MSR_IA32_DEBUGCTLMSR:
2111		msr_info->data = vmcs_read64(GUEST_IA32_DEBUGCTL);
2112		break;
2113	default:
2114	find_uret_msr:
2115		msr = vmx_find_uret_msr(vmx, msr_info->index);
2116		if (msr) {
2117			msr_info->data = msr->data;
2118			break;
2119		}
2120		return kvm_get_msr_common(vcpu, msr_info);
2121	}
2122
2123	return 0;
2124}
2125
2126static u64 nested_vmx_truncate_sysenter_addr(struct kvm_vcpu *vcpu,
2127						    u64 data)
2128{
2129#ifdef CONFIG_X86_64
2130	if (!guest_cpuid_has(vcpu, X86_FEATURE_LM))
2131		return (u32)data;
2132#endif
2133	return (unsigned long)data;
2134}
2135
2136static u64 vmx_get_supported_debugctl(struct kvm_vcpu *vcpu, bool host_initiated)
2137{
2138	u64 debugctl = 0;
2139
2140	if (boot_cpu_has(X86_FEATURE_BUS_LOCK_DETECT) &&
2141	    (host_initiated || guest_cpuid_has(vcpu, X86_FEATURE_BUS_LOCK_DETECT)))
2142		debugctl |= DEBUGCTLMSR_BUS_LOCK_DETECT;
2143
2144	if ((kvm_caps.supported_perf_cap & PMU_CAP_LBR_FMT) &&
2145	    (host_initiated || intel_pmu_lbr_is_enabled(vcpu)))
2146		debugctl |= DEBUGCTLMSR_LBR | DEBUGCTLMSR_FREEZE_LBRS_ON_PMI;
2147
2148	return debugctl;
2149}
2150
2151/*
2152 * Writes msr value into the appropriate "register".
2153 * Returns 0 on success, non-0 otherwise.
2154 * Assumes vcpu_load() was already called.
2155 */
2156static int vmx_set_msr(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
2157{
2158	struct vcpu_vmx *vmx = to_vmx(vcpu);
2159	struct vmx_uret_msr *msr;
2160	int ret = 0;
2161	u32 msr_index = msr_info->index;
2162	u64 data = msr_info->data;
2163	u32 index;
2164
2165	switch (msr_index) {
2166	case MSR_EFER:
2167		ret = kvm_set_msr_common(vcpu, msr_info);
2168		break;
2169#ifdef CONFIG_X86_64
2170	case MSR_FS_BASE:
2171		vmx_segment_cache_clear(vmx);
2172		vmcs_writel(GUEST_FS_BASE, data);
2173		break;
2174	case MSR_GS_BASE:
2175		vmx_segment_cache_clear(vmx);
2176		vmcs_writel(GUEST_GS_BASE, data);
2177		break;
2178	case MSR_KERNEL_GS_BASE:
2179		vmx_write_guest_kernel_gs_base(vmx, data);
2180		break;
2181	case MSR_IA32_XFD:
2182		ret = kvm_set_msr_common(vcpu, msr_info);
2183		/*
2184		 * Always intercepting WRMSR could incur non-negligible
2185		 * overhead given xfd might be changed frequently in
2186		 * guest context switch. Disable write interception
2187		 * upon the first write with a non-zero value (indicating
2188		 * potential usage on dynamic xfeatures). Also update
2189		 * exception bitmap to trap #NM for proper virtualization
2190		 * of guest xfd_err.
2191		 */
2192		if (!ret && data) {
2193			vmx_disable_intercept_for_msr(vcpu, MSR_IA32_XFD,
2194						      MSR_TYPE_RW);
2195			vcpu->arch.xfd_no_write_intercept = true;
2196			vmx_update_exception_bitmap(vcpu);
2197		}
2198		break;
2199#endif
2200	case MSR_IA32_SYSENTER_CS:
2201		if (is_guest_mode(vcpu))
2202			get_vmcs12(vcpu)->guest_sysenter_cs = data;
2203		vmcs_write32(GUEST_SYSENTER_CS, data);
2204		break;
2205	case MSR_IA32_SYSENTER_EIP:
2206		if (is_guest_mode(vcpu)) {
2207			data = nested_vmx_truncate_sysenter_addr(vcpu, data);
2208			get_vmcs12(vcpu)->guest_sysenter_eip = data;
2209		}
2210		vmcs_writel(GUEST_SYSENTER_EIP, data);
2211		break;
2212	case MSR_IA32_SYSENTER_ESP:
2213		if (is_guest_mode(vcpu)) {
2214			data = nested_vmx_truncate_sysenter_addr(vcpu, data);
2215			get_vmcs12(vcpu)->guest_sysenter_esp = data;
2216		}
2217		vmcs_writel(GUEST_SYSENTER_ESP, data);
2218		break;
2219	case MSR_IA32_DEBUGCTLMSR: {
2220		u64 invalid;
2221
2222		invalid = data & ~vmx_get_supported_debugctl(vcpu, msr_info->host_initiated);
2223		if (invalid & (DEBUGCTLMSR_BTF|DEBUGCTLMSR_LBR)) {
2224			kvm_pr_unimpl_wrmsr(vcpu, msr_index, data);
2225			data &= ~(DEBUGCTLMSR_BTF|DEBUGCTLMSR_LBR);
2226			invalid &= ~(DEBUGCTLMSR_BTF|DEBUGCTLMSR_LBR);
2227		}
2228
2229		if (invalid)
2230			return 1;
2231
2232		if (is_guest_mode(vcpu) && get_vmcs12(vcpu)->vm_exit_controls &
2233						VM_EXIT_SAVE_DEBUG_CONTROLS)
2234			get_vmcs12(vcpu)->guest_ia32_debugctl = data;
2235
2236		vmcs_write64(GUEST_IA32_DEBUGCTL, data);
2237		if (intel_pmu_lbr_is_enabled(vcpu) && !to_vmx(vcpu)->lbr_desc.event &&
2238		    (data & DEBUGCTLMSR_LBR))
2239			intel_pmu_create_guest_lbr_event(vcpu);
2240		return 0;
2241	}
2242	case MSR_IA32_BNDCFGS:
2243		if (!kvm_mpx_supported() ||
2244		    (!msr_info->host_initiated &&
2245		     !guest_cpuid_has(vcpu, X86_FEATURE_MPX)))
2246			return 1;
2247		if (is_noncanonical_address(data & PAGE_MASK, vcpu) ||
2248		    (data & MSR_IA32_BNDCFGS_RSVD))
2249			return 1;
2250
2251		if (is_guest_mode(vcpu) &&
2252		    ((vmx->nested.msrs.entry_ctls_high & VM_ENTRY_LOAD_BNDCFGS) ||
2253		     (vmx->nested.msrs.exit_ctls_high & VM_EXIT_CLEAR_BNDCFGS)))
2254			get_vmcs12(vcpu)->guest_bndcfgs = data;
2255
2256		vmcs_write64(GUEST_BNDCFGS, data);
2257		break;
2258	case MSR_IA32_UMWAIT_CONTROL:
2259		if (!msr_info->host_initiated && !vmx_has_waitpkg(vmx))
2260			return 1;
2261
2262		/* The reserved bit 1 and non-32 bit [63:32] should be zero */
2263		if (data & (BIT_ULL(1) | GENMASK_ULL(63, 32)))
2264			return 1;
2265
2266		vmx->msr_ia32_umwait_control = data;
2267		break;
2268	case MSR_IA32_SPEC_CTRL:
2269		if (!msr_info->host_initiated &&
2270		    !guest_has_spec_ctrl_msr(vcpu))
2271			return 1;
2272
2273		if (kvm_spec_ctrl_test_value(data))
2274			return 1;
2275
2276		vmx->spec_ctrl = data;
2277		if (!data)
2278			break;
2279
2280		/*
2281		 * For non-nested:
2282		 * When it's written (to non-zero) for the first time, pass
2283		 * it through.
2284		 *
2285		 * For nested:
2286		 * The handling of the MSR bitmap for L2 guests is done in
2287		 * nested_vmx_prepare_msr_bitmap. We should not touch the
2288		 * vmcs02.msr_bitmap here since it gets completely overwritten
2289		 * in the merging. We update the vmcs01 here for L1 as well
2290		 * since it will end up touching the MSR anyway now.
2291		 */
2292		vmx_disable_intercept_for_msr(vcpu,
2293					      MSR_IA32_SPEC_CTRL,
2294					      MSR_TYPE_RW);
2295		break;
2296	case MSR_IA32_TSX_CTRL:
2297		if (!msr_info->host_initiated &&
2298		    !(vcpu->arch.arch_capabilities & ARCH_CAP_TSX_CTRL_MSR))
2299			return 1;
2300		if (data & ~(TSX_CTRL_RTM_DISABLE | TSX_CTRL_CPUID_CLEAR))
2301			return 1;
2302		goto find_uret_msr;
2303	case MSR_IA32_CR_PAT:
2304		ret = kvm_set_msr_common(vcpu, msr_info);
2305		if (ret)
2306			break;
2307
2308		if (is_guest_mode(vcpu) &&
2309		    get_vmcs12(vcpu)->vm_exit_controls & VM_EXIT_SAVE_IA32_PAT)
2310			get_vmcs12(vcpu)->guest_ia32_pat = data;
2311
2312		if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT)
2313			vmcs_write64(GUEST_IA32_PAT, data);
2314		break;
2315	case MSR_IA32_MCG_EXT_CTL:
2316		if ((!msr_info->host_initiated &&
2317		     !(to_vmx(vcpu)->msr_ia32_feature_control &
2318		       FEAT_CTL_LMCE_ENABLED)) ||
2319		    (data & ~MCG_EXT_CTL_LMCE_EN))
2320			return 1;
2321		vcpu->arch.mcg_ext_ctl = data;
2322		break;
2323	case MSR_IA32_FEAT_CTL:
2324		if (!is_vmx_feature_control_msr_valid(vmx, msr_info))
2325			return 1;
2326
2327		vmx->msr_ia32_feature_control = data;
2328		if (msr_info->host_initiated && data == 0)
2329			vmx_leave_nested(vcpu);
2330
2331		/* SGX may be enabled/disabled by guest's firmware */
2332		vmx_write_encls_bitmap(vcpu, NULL);
2333		break;
2334	case MSR_IA32_SGXLEPUBKEYHASH0 ... MSR_IA32_SGXLEPUBKEYHASH3:
2335		/*
2336		 * On real hardware, the LE hash MSRs are writable before
2337		 * the firmware sets bit 0 in MSR 0x7a ("activating" SGX),
2338		 * at which point SGX related bits in IA32_FEATURE_CONTROL
2339		 * become writable.
2340		 *
2341		 * KVM does not emulate SGX activation for simplicity, so
2342		 * allow writes to the LE hash MSRs if IA32_FEATURE_CONTROL
2343		 * is unlocked.  This is technically not architectural
2344		 * behavior, but it's close enough.
2345		 */
2346		if (!msr_info->host_initiated &&
2347		    (!guest_cpuid_has(vcpu, X86_FEATURE_SGX_LC) ||
2348		    ((vmx->msr_ia32_feature_control & FEAT_CTL_LOCKED) &&
2349		    !(vmx->msr_ia32_feature_control & FEAT_CTL_SGX_LC_ENABLED))))
2350			return 1;
2351		vmx->msr_ia32_sgxlepubkeyhash
2352			[msr_index - MSR_IA32_SGXLEPUBKEYHASH0] = data;
2353		break;
2354	case KVM_FIRST_EMULATED_VMX_MSR ... KVM_LAST_EMULATED_VMX_MSR:
2355		if (!msr_info->host_initiated)
2356			return 1; /* they are read-only */
2357		if (!guest_can_use(vcpu, X86_FEATURE_VMX))
2358			return 1;
2359		return vmx_set_vmx_msr(vcpu, msr_index, data);
2360	case MSR_IA32_RTIT_CTL:
2361		if (!vmx_pt_mode_is_host_guest() ||
2362			vmx_rtit_ctl_check(vcpu, data) ||
2363			vmx->nested.vmxon)
2364			return 1;
2365		vmcs_write64(GUEST_IA32_RTIT_CTL, data);
2366		vmx->pt_desc.guest.ctl = data;
2367		pt_update_intercept_for_msr(vcpu);
2368		break;
2369	case MSR_IA32_RTIT_STATUS:
2370		if (!pt_can_write_msr(vmx))
2371			return 1;
2372		if (data & MSR_IA32_RTIT_STATUS_MASK)
2373			return 1;
2374		vmx->pt_desc.guest.status = data;
2375		break;
2376	case MSR_IA32_RTIT_CR3_MATCH:
2377		if (!pt_can_write_msr(vmx))
2378			return 1;
2379		if (!intel_pt_validate_cap(vmx->pt_desc.caps,
2380					   PT_CAP_cr3_filtering))
2381			return 1;
2382		vmx->pt_desc.guest.cr3_match = data;
2383		break;
2384	case MSR_IA32_RTIT_OUTPUT_BASE:
2385		if (!pt_can_write_msr(vmx))
2386			return 1;
2387		if (!intel_pt_validate_cap(vmx->pt_desc.caps,
2388					   PT_CAP_topa_output) &&
2389		    !intel_pt_validate_cap(vmx->pt_desc.caps,
2390					   PT_CAP_single_range_output))
2391			return 1;
2392		if (!pt_output_base_valid(vcpu, data))
2393			return 1;
2394		vmx->pt_desc.guest.output_base = data;
2395		break;
2396	case MSR_IA32_RTIT_OUTPUT_MASK:
2397		if (!pt_can_write_msr(vmx))
2398			return 1;
2399		if (!intel_pt_validate_cap(vmx->pt_desc.caps,
2400					   PT_CAP_topa_output) &&
2401		    !intel_pt_validate_cap(vmx->pt_desc.caps,
2402					   PT_CAP_single_range_output))
2403			return 1;
2404		vmx->pt_desc.guest.output_mask = data;
2405		break;
2406	case MSR_IA32_RTIT_ADDR0_A ... MSR_IA32_RTIT_ADDR3_B:
2407		if (!pt_can_write_msr(vmx))
2408			return 1;
2409		index = msr_info->index - MSR_IA32_RTIT_ADDR0_A;
2410		if (index >= 2 * vmx->pt_desc.num_address_ranges)
2411			return 1;
2412		if (is_noncanonical_address(data, vcpu))
2413			return 1;
2414		if (index % 2)
2415			vmx->pt_desc.guest.addr_b[index / 2] = data;
2416		else
2417			vmx->pt_desc.guest.addr_a[index / 2] = data;
2418		break;
2419	case MSR_IA32_PERF_CAPABILITIES:
2420		if (data && !vcpu_to_pmu(vcpu)->version)
2421			return 1;
2422		if (data & PMU_CAP_LBR_FMT) {
2423			if ((data & PMU_CAP_LBR_FMT) !=
2424			    (kvm_caps.supported_perf_cap & PMU_CAP_LBR_FMT))
2425				return 1;
2426			if (!cpuid_model_is_consistent(vcpu))
2427				return 1;
2428		}
2429		if (data & PERF_CAP_PEBS_FORMAT) {
2430			if ((data & PERF_CAP_PEBS_MASK) !=
2431			    (kvm_caps.supported_perf_cap & PERF_CAP_PEBS_MASK))
2432				return 1;
2433			if (!guest_cpuid_has(vcpu, X86_FEATURE_DS))
2434				return 1;
2435			if (!guest_cpuid_has(vcpu, X86_FEATURE_DTES64))
2436				return 1;
2437			if (!cpuid_model_is_consistent(vcpu))
2438				return 1;
2439		}
2440		ret = kvm_set_msr_common(vcpu, msr_info);
2441		break;
2442
2443	default:
2444	find_uret_msr:
2445		msr = vmx_find_uret_msr(vmx, msr_index);
2446		if (msr)
2447			ret = vmx_set_guest_uret_msr(vmx, msr, data);
2448		else
2449			ret = kvm_set_msr_common(vcpu, msr_info);
2450	}
2451
2452	/* FB_CLEAR may have changed, also update the FB_CLEAR_DIS behavior */
2453	if (msr_index == MSR_IA32_ARCH_CAPABILITIES)
2454		vmx_update_fb_clear_dis(vcpu, vmx);
2455
2456	return ret;
2457}
2458
2459static void vmx_cache_reg(struct kvm_vcpu *vcpu, enum kvm_reg reg)
2460{
2461	unsigned long guest_owned_bits;
2462
2463	kvm_register_mark_available(vcpu, reg);
2464
2465	switch (reg) {
2466	case VCPU_REGS_RSP:
2467		vcpu->arch.regs[VCPU_REGS_RSP] = vmcs_readl(GUEST_RSP);
2468		break;
2469	case VCPU_REGS_RIP:
2470		vcpu->arch.regs[VCPU_REGS_RIP] = vmcs_readl(GUEST_RIP);
2471		break;
2472	case VCPU_EXREG_PDPTR:
2473		if (enable_ept)
2474			ept_save_pdptrs(vcpu);
2475		break;
2476	case VCPU_EXREG_CR0:
2477		guest_owned_bits = vcpu->arch.cr0_guest_owned_bits;
2478
2479		vcpu->arch.cr0 &= ~guest_owned_bits;
2480		vcpu->arch.cr0 |= vmcs_readl(GUEST_CR0) & guest_owned_bits;
2481		break;
2482	case VCPU_EXREG_CR3:
2483		/*
2484		 * When intercepting CR3 loads, e.g. for shadowing paging, KVM's
2485		 * CR3 is loaded into hardware, not the guest's CR3.
2486		 */
2487		if (!(exec_controls_get(to_vmx(vcpu)) & CPU_BASED_CR3_LOAD_EXITING))
2488			vcpu->arch.cr3 = vmcs_readl(GUEST_CR3);
2489		break;
2490	case VCPU_EXREG_CR4:
2491		guest_owned_bits = vcpu->arch.cr4_guest_owned_bits;
2492
2493		vcpu->arch.cr4 &= ~guest_owned_bits;
2494		vcpu->arch.cr4 |= vmcs_readl(GUEST_CR4) & guest_owned_bits;
2495		break;
2496	default:
2497		KVM_BUG_ON(1, vcpu->kvm);
2498		break;
2499	}
2500}
2501
2502/*
2503 * There is no X86_FEATURE for SGX yet, but anyway we need to query CPUID
2504 * directly instead of going through cpu_has(), to ensure KVM is trapping
2505 * ENCLS whenever it's supported in hardware.  It does not matter whether
2506 * the host OS supports or has enabled SGX.
2507 */
2508static bool cpu_has_sgx(void)
2509{
2510	return cpuid_eax(0) >= 0x12 && (cpuid_eax(0x12) & BIT(0));
2511}
2512
2513/*
2514 * Some cpus support VM_{ENTRY,EXIT}_IA32_PERF_GLOBAL_CTRL but they
2515 * can't be used due to errata where VM Exit may incorrectly clear
2516 * IA32_PERF_GLOBAL_CTRL[34:32]. Work around the errata by using the
2517 * MSR load mechanism to switch IA32_PERF_GLOBAL_CTRL.
2518 */
2519static bool cpu_has_perf_global_ctrl_bug(void)
2520{
2521	if (boot_cpu_data.x86 == 0x6) {
2522		switch (boot_cpu_data.x86_model) {
2523		case INTEL_FAM6_NEHALEM_EP:	/* AAK155 */
2524		case INTEL_FAM6_NEHALEM:	/* AAP115 */
2525		case INTEL_FAM6_WESTMERE:	/* AAT100 */
2526		case INTEL_FAM6_WESTMERE_EP:	/* BC86,AAY89,BD102 */
2527		case INTEL_FAM6_NEHALEM_EX:	/* BA97 */
2528			return true;
2529		default:
2530			break;
2531		}
2532	}
2533
2534	return false;
2535}
2536
2537static int adjust_vmx_controls(u32 ctl_min, u32 ctl_opt, u32 msr, u32 *result)
2538{
2539	u32 vmx_msr_low, vmx_msr_high;
2540	u32 ctl = ctl_min | ctl_opt;
2541
2542	rdmsr(msr, vmx_msr_low, vmx_msr_high);
2543
2544	ctl &= vmx_msr_high; /* bit == 0 in high word ==> must be zero */
2545	ctl |= vmx_msr_low;  /* bit == 1 in low word  ==> must be one  */
2546
2547	/* Ensure minimum (required) set of control bits are supported. */
2548	if (ctl_min & ~ctl)
2549		return -EIO;
2550
2551	*result = ctl;
2552	return 0;
2553}
2554
2555static u64 adjust_vmx_controls64(u64 ctl_opt, u32 msr)
2556{
2557	u64 allowed;
2558
2559	rdmsrl(msr, allowed);
2560
2561	return  ctl_opt & allowed;
2562}
2563
2564static int setup_vmcs_config(struct vmcs_config *vmcs_conf,
2565			     struct vmx_capability *vmx_cap)
2566{
2567	u32 vmx_msr_low, vmx_msr_high;
2568	u32 _pin_based_exec_control = 0;
2569	u32 _cpu_based_exec_control = 0;
2570	u32 _cpu_based_2nd_exec_control = 0;
2571	u64 _cpu_based_3rd_exec_control = 0;
2572	u32 _vmexit_control = 0;
2573	u32 _vmentry_control = 0;
2574	u64 misc_msr;
2575	int i;
2576
2577	/*
2578	 * LOAD/SAVE_DEBUG_CONTROLS are absent because both are mandatory.
2579	 * SAVE_IA32_PAT and SAVE_IA32_EFER are absent because KVM always
2580	 * intercepts writes to PAT and EFER, i.e. never enables those controls.
2581	 */
2582	struct {
2583		u32 entry_control;
2584		u32 exit_control;
2585	} const vmcs_entry_exit_pairs[] = {
2586		{ VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL,	VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL },
2587		{ VM_ENTRY_LOAD_IA32_PAT,		VM_EXIT_LOAD_IA32_PAT },
2588		{ VM_ENTRY_LOAD_IA32_EFER,		VM_EXIT_LOAD_IA32_EFER },
2589		{ VM_ENTRY_LOAD_BNDCFGS,		VM_EXIT_CLEAR_BNDCFGS },
2590		{ VM_ENTRY_LOAD_IA32_RTIT_CTL,		VM_EXIT_CLEAR_IA32_RTIT_CTL },
2591	};
2592
2593	memset(vmcs_conf, 0, sizeof(*vmcs_conf));
2594
2595	if (adjust_vmx_controls(KVM_REQUIRED_VMX_CPU_BASED_VM_EXEC_CONTROL,
2596				KVM_OPTIONAL_VMX_CPU_BASED_VM_EXEC_CONTROL,
2597				MSR_IA32_VMX_PROCBASED_CTLS,
2598				&_cpu_based_exec_control))
2599		return -EIO;
2600	if (_cpu_based_exec_control & CPU_BASED_ACTIVATE_SECONDARY_CONTROLS) {
2601		if (adjust_vmx_controls(KVM_REQUIRED_VMX_SECONDARY_VM_EXEC_CONTROL,
2602					KVM_OPTIONAL_VMX_SECONDARY_VM_EXEC_CONTROL,
2603					MSR_IA32_VMX_PROCBASED_CTLS2,
2604					&_cpu_based_2nd_exec_control))
2605			return -EIO;
2606	}
2607#ifndef CONFIG_X86_64
2608	if (!(_cpu_based_2nd_exec_control &
2609				SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES))
2610		_cpu_based_exec_control &= ~CPU_BASED_TPR_SHADOW;
2611#endif
2612
2613	if (!(_cpu_based_exec_control & CPU_BASED_TPR_SHADOW))
2614		_cpu_based_2nd_exec_control &= ~(
2615				SECONDARY_EXEC_APIC_REGISTER_VIRT |
2616				SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE |
2617				SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY);
2618
2619	rdmsr_safe(MSR_IA32_VMX_EPT_VPID_CAP,
2620		&vmx_cap->ept, &vmx_cap->vpid);
2621
2622	if (!(_cpu_based_2nd_exec_control & SECONDARY_EXEC_ENABLE_EPT) &&
2623	    vmx_cap->ept) {
2624		pr_warn_once("EPT CAP should not exist if not support "
2625				"1-setting enable EPT VM-execution control\n");
2626
2627		if (error_on_inconsistent_vmcs_config)
2628			return -EIO;
2629
2630		vmx_cap->ept = 0;
2631	}
2632	if (!(_cpu_based_2nd_exec_control & SECONDARY_EXEC_ENABLE_VPID) &&
2633	    vmx_cap->vpid) {
2634		pr_warn_once("VPID CAP should not exist if not support "
2635				"1-setting enable VPID VM-execution control\n");
2636
2637		if (error_on_inconsistent_vmcs_config)
2638			return -EIO;
2639
2640		vmx_cap->vpid = 0;
2641	}
2642
2643	if (!cpu_has_sgx())
2644		_cpu_based_2nd_exec_control &= ~SECONDARY_EXEC_ENCLS_EXITING;
2645
2646	if (_cpu_based_exec_control & CPU_BASED_ACTIVATE_TERTIARY_CONTROLS)
2647		_cpu_based_3rd_exec_control =
2648			adjust_vmx_controls64(KVM_OPTIONAL_VMX_TERTIARY_VM_EXEC_CONTROL,
2649					      MSR_IA32_VMX_PROCBASED_CTLS3);
2650
2651	if (adjust_vmx_controls(KVM_REQUIRED_VMX_VM_EXIT_CONTROLS,
2652				KVM_OPTIONAL_VMX_VM_EXIT_CONTROLS,
2653				MSR_IA32_VMX_EXIT_CTLS,
2654				&_vmexit_control))
2655		return -EIO;
2656
2657	if (adjust_vmx_controls(KVM_REQUIRED_VMX_PIN_BASED_VM_EXEC_CONTROL,
2658				KVM_OPTIONAL_VMX_PIN_BASED_VM_EXEC_CONTROL,
2659				MSR_IA32_VMX_PINBASED_CTLS,
2660				&_pin_based_exec_control))
2661		return -EIO;
2662
2663	if (cpu_has_broken_vmx_preemption_timer())
2664		_pin_based_exec_control &= ~PIN_BASED_VMX_PREEMPTION_TIMER;
2665	if (!(_cpu_based_2nd_exec_control &
2666		SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY))
2667		_pin_based_exec_control &= ~PIN_BASED_POSTED_INTR;
2668
2669	if (adjust_vmx_controls(KVM_REQUIRED_VMX_VM_ENTRY_CONTROLS,
2670				KVM_OPTIONAL_VMX_VM_ENTRY_CONTROLS,
2671				MSR_IA32_VMX_ENTRY_CTLS,
2672				&_vmentry_control))
2673		return -EIO;
2674
2675	for (i = 0; i < ARRAY_SIZE(vmcs_entry_exit_pairs); i++) {
2676		u32 n_ctrl = vmcs_entry_exit_pairs[i].entry_control;
2677		u32 x_ctrl = vmcs_entry_exit_pairs[i].exit_control;
2678
2679		if (!(_vmentry_control & n_ctrl) == !(_vmexit_control & x_ctrl))
2680			continue;
2681
2682		pr_warn_once("Inconsistent VM-Entry/VM-Exit pair, entry = %x, exit = %x\n",
2683			     _vmentry_control & n_ctrl, _vmexit_control & x_ctrl);
2684
2685		if (error_on_inconsistent_vmcs_config)
2686			return -EIO;
2687
2688		_vmentry_control &= ~n_ctrl;
2689		_vmexit_control &= ~x_ctrl;
2690	}
2691
2692	rdmsr(MSR_IA32_VMX_BASIC, vmx_msr_low, vmx_msr_high);
2693
2694	/* IA-32 SDM Vol 3B: VMCS size is never greater than 4kB. */
2695	if ((vmx_msr_high & 0x1fff) > PAGE_SIZE)
2696		return -EIO;
2697
2698#ifdef CONFIG_X86_64
2699	/* IA-32 SDM Vol 3B: 64-bit CPUs always have VMX_BASIC_MSR[48]==0. */
2700	if (vmx_msr_high & (1u<<16))
2701		return -EIO;
2702#endif
2703
2704	/* Require Write-Back (WB) memory type for VMCS accesses. */
2705	if (((vmx_msr_high >> 18) & 15) != 6)
2706		return -EIO;
2707
2708	rdmsrl(MSR_IA32_VMX_MISC, misc_msr);
2709
2710	vmcs_conf->size = vmx_msr_high & 0x1fff;
2711	vmcs_conf->basic_cap = vmx_msr_high & ~0x1fff;
2712
2713	vmcs_conf->revision_id = vmx_msr_low;
2714
2715	vmcs_conf->pin_based_exec_ctrl = _pin_based_exec_control;
2716	vmcs_conf->cpu_based_exec_ctrl = _cpu_based_exec_control;
2717	vmcs_conf->cpu_based_2nd_exec_ctrl = _cpu_based_2nd_exec_control;
2718	vmcs_conf->cpu_based_3rd_exec_ctrl = _cpu_based_3rd_exec_control;
2719	vmcs_conf->vmexit_ctrl         = _vmexit_control;
2720	vmcs_conf->vmentry_ctrl        = _vmentry_control;
2721	vmcs_conf->misc	= misc_msr;
2722
2723#if IS_ENABLED(CONFIG_HYPERV)
2724	if (enlightened_vmcs)
2725		evmcs_sanitize_exec_ctrls(vmcs_conf);
2726#endif
2727
2728	return 0;
2729}
2730
2731static bool __kvm_is_vmx_supported(void)
2732{
2733	int cpu = smp_processor_id();
2734
2735	if (!(cpuid_ecx(1) & feature_bit(VMX))) {
2736		pr_err("VMX not supported by CPU %d\n", cpu);
2737		return false;
2738	}
2739
2740	if (!this_cpu_has(X86_FEATURE_MSR_IA32_FEAT_CTL) ||
2741	    !this_cpu_has(X86_FEATURE_VMX)) {
2742		pr_err("VMX not enabled (by BIOS) in MSR_IA32_FEAT_CTL on CPU %d\n", cpu);
2743		return false;
2744	}
2745
2746	return true;
2747}
2748
2749static bool kvm_is_vmx_supported(void)
2750{
2751	bool supported;
2752
2753	migrate_disable();
2754	supported = __kvm_is_vmx_supported();
2755	migrate_enable();
2756
2757	return supported;
2758}
2759
2760static int vmx_check_processor_compat(void)
2761{
2762	int cpu = raw_smp_processor_id();
2763	struct vmcs_config vmcs_conf;
2764	struct vmx_capability vmx_cap;
2765
2766	if (!__kvm_is_vmx_supported())
2767		return -EIO;
2768
2769	if (setup_vmcs_config(&vmcs_conf, &vmx_cap) < 0) {
2770		pr_err("Failed to setup VMCS config on CPU %d\n", cpu);
2771		return -EIO;
2772	}
2773	if (nested)
2774		nested_vmx_setup_ctls_msrs(&vmcs_conf, vmx_cap.ept);
2775	if (memcmp(&vmcs_config, &vmcs_conf, sizeof(struct vmcs_config))) {
2776		pr_err("Inconsistent VMCS config on CPU %d\n", cpu);
2777		return -EIO;
2778	}
2779	return 0;
2780}
2781
2782static int kvm_cpu_vmxon(u64 vmxon_pointer)
2783{
2784	u64 msr;
2785
2786	cr4_set_bits(X86_CR4_VMXE);
2787
2788	asm goto("1: vmxon %[vmxon_pointer]\n\t"
2789			  _ASM_EXTABLE(1b, %l[fault])
2790			  : : [vmxon_pointer] "m"(vmxon_pointer)
2791			  : : fault);
2792	return 0;
2793
2794fault:
2795	WARN_ONCE(1, "VMXON faulted, MSR_IA32_FEAT_CTL (0x3a) = 0x%llx\n",
2796		  rdmsrl_safe(MSR_IA32_FEAT_CTL, &msr) ? 0xdeadbeef : msr);
2797	cr4_clear_bits(X86_CR4_VMXE);
2798
2799	return -EFAULT;
2800}
2801
2802static int vmx_hardware_enable(void)
2803{
2804	int cpu = raw_smp_processor_id();
2805	u64 phys_addr = __pa(per_cpu(vmxarea, cpu));
2806	int r;
2807
2808	if (cr4_read_shadow() & X86_CR4_VMXE)
2809		return -EBUSY;
2810
2811	/*
2812	 * This can happen if we hot-added a CPU but failed to allocate
2813	 * VP assist page for it.
2814	 */
2815	if (kvm_is_using_evmcs() && !hv_get_vp_assist_page(cpu))
2816		return -EFAULT;
2817
2818	intel_pt_handle_vmx(1);
2819
2820	r = kvm_cpu_vmxon(phys_addr);
2821	if (r) {
2822		intel_pt_handle_vmx(0);
2823		return r;
2824	}
2825
2826	if (enable_ept)
2827		ept_sync_global();
2828
2829	return 0;
2830}
2831
2832static void vmclear_local_loaded_vmcss(void)
2833{
2834	int cpu = raw_smp_processor_id();
2835	struct loaded_vmcs *v, *n;
2836
2837	list_for_each_entry_safe(v, n, &per_cpu(loaded_vmcss_on_cpu, cpu),
2838				 loaded_vmcss_on_cpu_link)
2839		__loaded_vmcs_clear(v);
2840}
2841
2842static void vmx_hardware_disable(void)
2843{
2844	vmclear_local_loaded_vmcss();
2845
2846	if (kvm_cpu_vmxoff())
2847		kvm_spurious_fault();
2848
2849	hv_reset_evmcs();
2850
2851	intel_pt_handle_vmx(0);
2852}
2853
2854struct vmcs *alloc_vmcs_cpu(bool shadow, int cpu, gfp_t flags)
2855{
2856	int node = cpu_to_node(cpu);
2857	struct page *pages;
2858	struct vmcs *vmcs;
2859
2860	pages = __alloc_pages_node(node, flags, 0);
2861	if (!pages)
2862		return NULL;
2863	vmcs = page_address(pages);
2864	memset(vmcs, 0, vmcs_config.size);
2865
2866	/* KVM supports Enlightened VMCS v1 only */
2867	if (kvm_is_using_evmcs())
2868		vmcs->hdr.revision_id = KVM_EVMCS_VERSION;
2869	else
2870		vmcs->hdr.revision_id = vmcs_config.revision_id;
2871
2872	if (shadow)
2873		vmcs->hdr.shadow_vmcs = 1;
2874	return vmcs;
2875}
2876
2877void free_vmcs(struct vmcs *vmcs)
2878{
2879	free_page((unsigned long)vmcs);
2880}
2881
2882/*
2883 * Free a VMCS, but before that VMCLEAR it on the CPU where it was last loaded
2884 */
2885void free_loaded_vmcs(struct loaded_vmcs *loaded_vmcs)
2886{
2887	if (!loaded_vmcs->vmcs)
2888		return;
2889	loaded_vmcs_clear(loaded_vmcs);
2890	free_vmcs(loaded_vmcs->vmcs);
2891	loaded_vmcs->vmcs = NULL;
2892	if (loaded_vmcs->msr_bitmap)
2893		free_page((unsigned long)loaded_vmcs->msr_bitmap);
2894	WARN_ON(loaded_vmcs->shadow_vmcs != NULL);
2895}
2896
2897int alloc_loaded_vmcs(struct loaded_vmcs *loaded_vmcs)
2898{
2899	loaded_vmcs->vmcs = alloc_vmcs(false);
2900	if (!loaded_vmcs->vmcs)
2901		return -ENOMEM;
2902
2903	vmcs_clear(loaded_vmcs->vmcs);
2904
2905	loaded_vmcs->shadow_vmcs = NULL;
2906	loaded_vmcs->hv_timer_soft_disabled = false;
2907	loaded_vmcs->cpu = -1;
2908	loaded_vmcs->launched = 0;
2909
2910	if (cpu_has_vmx_msr_bitmap()) {
2911		loaded_vmcs->msr_bitmap = (unsigned long *)
2912				__get_free_page(GFP_KERNEL_ACCOUNT);
2913		if (!loaded_vmcs->msr_bitmap)
2914			goto out_vmcs;
2915		memset(loaded_vmcs->msr_bitmap, 0xff, PAGE_SIZE);
2916	}
2917
2918	memset(&loaded_vmcs->host_state, 0, sizeof(struct vmcs_host_state));
2919	memset(&loaded_vmcs->controls_shadow, 0,
2920		sizeof(struct vmcs_controls_shadow));
2921
2922	return 0;
2923
2924out_vmcs:
2925	free_loaded_vmcs(loaded_vmcs);
2926	return -ENOMEM;
2927}
2928
2929static void free_kvm_area(void)
2930{
2931	int cpu;
2932
2933	for_each_possible_cpu(cpu) {
2934		free_vmcs(per_cpu(vmxarea, cpu));
2935		per_cpu(vmxarea, cpu) = NULL;
2936	}
2937}
2938
2939static __init int alloc_kvm_area(void)
2940{
2941	int cpu;
2942
2943	for_each_possible_cpu(cpu) {
2944		struct vmcs *vmcs;
2945
2946		vmcs = alloc_vmcs_cpu(false, cpu, GFP_KERNEL);
2947		if (!vmcs) {
2948			free_kvm_area();
2949			return -ENOMEM;
2950		}
2951
2952		/*
2953		 * When eVMCS is enabled, alloc_vmcs_cpu() sets
2954		 * vmcs->revision_id to KVM_EVMCS_VERSION instead of
2955		 * revision_id reported by MSR_IA32_VMX_BASIC.
2956		 *
2957		 * However, even though not explicitly documented by
2958		 * TLFS, VMXArea passed as VMXON argument should
2959		 * still be marked with revision_id reported by
2960		 * physical CPU.
2961		 */
2962		if (kvm_is_using_evmcs())
2963			vmcs->hdr.revision_id = vmcs_config.revision_id;
2964
2965		per_cpu(vmxarea, cpu) = vmcs;
2966	}
2967	return 0;
2968}
2969
2970static void fix_pmode_seg(struct kvm_vcpu *vcpu, int seg,
2971		struct kvm_segment *save)
2972{
2973	if (!emulate_invalid_guest_state) {
2974		/*
2975		 * CS and SS RPL should be equal during guest entry according
2976		 * to VMX spec, but in reality it is not always so. Since vcpu
2977		 * is in the middle of the transition from real mode to
2978		 * protected mode it is safe to assume that RPL 0 is a good
2979		 * default value.
2980		 */
2981		if (seg == VCPU_SREG_CS || seg == VCPU_SREG_SS)
2982			save->selector &= ~SEGMENT_RPL_MASK;
2983		save->dpl = save->selector & SEGMENT_RPL_MASK;
2984		save->s = 1;
2985	}
2986	__vmx_set_segment(vcpu, save, seg);
2987}
2988
2989static void enter_pmode(struct kvm_vcpu *vcpu)
2990{
2991	unsigned long flags;
2992	struct vcpu_vmx *vmx = to_vmx(vcpu);
2993
2994	/*
2995	 * Update real mode segment cache. It may be not up-to-date if segment
2996	 * register was written while vcpu was in a guest mode.
2997	 */
2998	vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_ES], VCPU_SREG_ES);
2999	vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_DS], VCPU_SREG_DS);
3000	vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_FS], VCPU_SREG_FS);
3001	vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_GS], VCPU_SREG_GS);
3002	vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_SS], VCPU_SREG_SS);
3003	vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_CS], VCPU_SREG_CS);
3004
3005	vmx->rmode.vm86_active = 0;
3006
3007	__vmx_set_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_TR], VCPU_SREG_TR);
3008
3009	flags = vmcs_readl(GUEST_RFLAGS);
3010	flags &= RMODE_GUEST_OWNED_EFLAGS_BITS;
3011	flags |= vmx->rmode.save_rflags & ~RMODE_GUEST_OWNED_EFLAGS_BITS;
3012	vmcs_writel(GUEST_RFLAGS, flags);
3013
3014	vmcs_writel(GUEST_CR4, (vmcs_readl(GUEST_CR4) & ~X86_CR4_VME) |
3015			(vmcs_readl(CR4_READ_SHADOW) & X86_CR4_VME));
3016
3017	vmx_update_exception_bitmap(vcpu);
3018
3019	fix_pmode_seg(vcpu, VCPU_SREG_CS, &vmx->rmode.segs[VCPU_SREG_CS]);
3020	fix_pmode_seg(vcpu, VCPU_SREG_SS, &vmx->rmode.segs[VCPU_SREG_SS]);
3021	fix_pmode_seg(vcpu, VCPU_SREG_ES, &vmx->rmode.segs[VCPU_SREG_ES]);
3022	fix_pmode_seg(vcpu, VCPU_SREG_DS, &vmx->rmode.segs[VCPU_SREG_DS]);
3023	fix_pmode_seg(vcpu, VCPU_SREG_FS, &vmx->rmode.segs[VCPU_SREG_FS]);
3024	fix_pmode_seg(vcpu, VCPU_SREG_GS, &vmx->rmode.segs[VCPU_SREG_GS]);
3025}
3026
3027static void fix_rmode_seg(int seg, struct kvm_segment *save)
3028{
3029	const struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
3030	struct kvm_segment var = *save;
3031
3032	var.dpl = 0x3;
3033	if (seg == VCPU_SREG_CS)
3034		var.type = 0x3;
3035
3036	if (!emulate_invalid_guest_state) {
3037		var.selector = var.base >> 4;
3038		var.base = var.base & 0xffff0;
3039		var.limit = 0xffff;
3040		var.g = 0;
3041		var.db = 0;
3042		var.present = 1;
3043		var.s = 1;
3044		var.l = 0;
3045		var.unusable = 0;
3046		var.type = 0x3;
3047		var.avl = 0;
3048		if (save->base & 0xf)
3049			pr_warn_once("segment base is not paragraph aligned "
3050				     "when entering protected mode (seg=%d)", seg);
3051	}
3052
3053	vmcs_write16(sf->selector, var.selector);
3054	vmcs_writel(sf->base, var.base);
3055	vmcs_write32(sf->limit, var.limit);
3056	vmcs_write32(sf->ar_bytes, vmx_segment_access_rights(&var));
3057}
3058
3059static void enter_rmode(struct kvm_vcpu *vcpu)
3060{
3061	unsigned long flags;
3062	struct vcpu_vmx *vmx = to_vmx(vcpu);
3063	struct kvm_vmx *kvm_vmx = to_kvm_vmx(vcpu->kvm);
3064
3065	/*
3066	 * KVM should never use VM86 to virtualize Real Mode when L2 is active,
3067	 * as using VM86 is unnecessary if unrestricted guest is enabled, and
3068	 * if unrestricted guest is disabled, VM-Enter (from L1) with CR0.PG=0
3069	 * should VM-Fail and KVM should reject userspace attempts to stuff
3070	 * CR0.PG=0 when L2 is active.
3071	 */
3072	WARN_ON_ONCE(is_guest_mode(vcpu));
3073
3074	vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_TR], VCPU_SREG_TR);
3075	vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_ES], VCPU_SREG_ES);
3076	vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_DS], VCPU_SREG_DS);
3077	vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_FS], VCPU_SREG_FS);
3078	vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_GS], VCPU_SREG_GS);
3079	vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_SS], VCPU_SREG_SS);
3080	vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_CS], VCPU_SREG_CS);
3081
3082	vmx->rmode.vm86_active = 1;
3083
3084	vmx_segment_cache_clear(vmx);
3085
3086	vmcs_writel(GUEST_TR_BASE, kvm_vmx->tss_addr);
3087	vmcs_write32(GUEST_TR_LIMIT, RMODE_TSS_SIZE - 1);
3088	vmcs_write32(GUEST_TR_AR_BYTES, 0x008b);
3089
3090	flags = vmcs_readl(GUEST_RFLAGS);
3091	vmx->rmode.save_rflags = flags;
3092
3093	flags |= X86_EFLAGS_IOPL | X86_EFLAGS_VM;
3094
3095	vmcs_writel(GUEST_RFLAGS, flags);
3096	vmcs_writel(GUEST_CR4, vmcs_readl(GUEST_CR4) | X86_CR4_VME);
3097	vmx_update_exception_bitmap(vcpu);
3098
3099	fix_rmode_seg(VCPU_SREG_SS, &vmx->rmode.segs[VCPU_SREG_SS]);
3100	fix_rmode_seg(VCPU_SREG_CS, &vmx->rmode.segs[VCPU_SREG_CS]);
3101	fix_rmode_seg(VCPU_SREG_ES, &vmx->rmode.segs[VCPU_SREG_ES]);
3102	fix_rmode_seg(VCPU_SREG_DS, &vmx->rmode.segs[VCPU_SREG_DS]);
3103	fix_rmode_seg(VCPU_SREG_GS, &vmx->rmode.segs[VCPU_SREG_GS]);
3104	fix_rmode_seg(VCPU_SREG_FS, &vmx->rmode.segs[VCPU_SREG_FS]);
3105}
3106
3107int vmx_set_efer(struct kvm_vcpu *vcpu, u64 efer)
3108{
3109	struct vcpu_vmx *vmx = to_vmx(vcpu);
3110
3111	/* Nothing to do if hardware doesn't support EFER. */
3112	if (!vmx_find_uret_msr(vmx, MSR_EFER))
3113		return 0;
3114
3115	vcpu->arch.efer = efer;
3116#ifdef CONFIG_X86_64
3117	if (efer & EFER_LMA)
3118		vm_entry_controls_setbit(vmx, VM_ENTRY_IA32E_MODE);
3119	else
3120		vm_entry_controls_clearbit(vmx, VM_ENTRY_IA32E_MODE);
3121#else
3122	if (KVM_BUG_ON(efer & EFER_LMA, vcpu->kvm))
3123		return 1;
3124#endif
3125
3126	vmx_setup_uret_msrs(vmx);
3127	return 0;
3128}
3129
3130#ifdef CONFIG_X86_64
3131
3132static void enter_lmode(struct kvm_vcpu *vcpu)
3133{
3134	u32 guest_tr_ar;
3135
3136	vmx_segment_cache_clear(to_vmx(vcpu));
3137
3138	guest_tr_ar = vmcs_read32(GUEST_TR_AR_BYTES);
3139	if ((guest_tr_ar & VMX_AR_TYPE_MASK) != VMX_AR_TYPE_BUSY_64_TSS) {
3140		pr_debug_ratelimited("%s: tss fixup for long mode. \n",
3141				     __func__);
3142		vmcs_write32(GUEST_TR_AR_BYTES,
3143			     (guest_tr_ar & ~VMX_AR_TYPE_MASK)
3144			     | VMX_AR_TYPE_BUSY_64_TSS);
3145	}
3146	vmx_set_efer(vcpu, vcpu->arch.efer | EFER_LMA);
3147}
3148
3149static void exit_lmode(struct kvm_vcpu *vcpu)
3150{
3151	vmx_set_efer(vcpu, vcpu->arch.efer & ~EFER_LMA);
3152}
3153
3154#endif
3155
3156static void vmx_flush_tlb_all(struct kvm_vcpu *vcpu)
3157{
3158	struct vcpu_vmx *vmx = to_vmx(vcpu);
3159
3160	/*
3161	 * INVEPT must be issued when EPT is enabled, irrespective of VPID, as
3162	 * the CPU is not required to invalidate guest-physical mappings on
3163	 * VM-Entry, even if VPID is disabled.  Guest-physical mappings are
3164	 * associated with the root EPT structure and not any particular VPID
3165	 * (INVVPID also isn't required to invalidate guest-physical mappings).
3166	 */
3167	if (enable_ept) {
3168		ept_sync_global();
3169	} else if (enable_vpid) {
3170		if (cpu_has_vmx_invvpid_global()) {
3171			vpid_sync_vcpu_global();
3172		} else {
3173			vpid_sync_vcpu_single(vmx->vpid);
3174			vpid_sync_vcpu_single(vmx->nested.vpid02);
3175		}
3176	}
3177}
3178
3179static inline int vmx_get_current_vpid(struct kvm_vcpu *vcpu)
3180{
3181	if (is_guest_mode(vcpu))
3182		return nested_get_vpid02(vcpu);
3183	return to_vmx(vcpu)->vpid;
3184}
3185
3186static void vmx_flush_tlb_current(struct kvm_vcpu *vcpu)
3187{
3188	struct kvm_mmu *mmu = vcpu->arch.mmu;
3189	u64 root_hpa = mmu->root.hpa;
3190
3191	/* No flush required if the current context is invalid. */
3192	if (!VALID_PAGE(root_hpa))
3193		return;
3194
3195	if (enable_ept)
3196		ept_sync_context(construct_eptp(vcpu, root_hpa,
3197						mmu->root_role.level));
3198	else
3199		vpid_sync_context(vmx_get_current_vpid(vcpu));
3200}
3201
3202static void vmx_flush_tlb_gva(struct kvm_vcpu *vcpu, gva_t addr)
3203{
3204	/*
3205	 * vpid_sync_vcpu_addr() is a nop if vpid==0, see the comment in
3206	 * vmx_flush_tlb_guest() for an explanation of why this is ok.
3207	 */
3208	vpid_sync_vcpu_addr(vmx_get_current_vpid(vcpu), addr);
3209}
3210
3211static void vmx_flush_tlb_guest(struct kvm_vcpu *vcpu)
3212{
3213	/*
3214	 * vpid_sync_context() is a nop if vpid==0, e.g. if enable_vpid==0 or a
3215	 * vpid couldn't be allocated for this vCPU.  VM-Enter and VM-Exit are
3216	 * required to flush GVA->{G,H}PA mappings from the TLB if vpid is
3217	 * disabled (VM-Enter with vpid enabled and vpid==0 is disallowed),
3218	 * i.e. no explicit INVVPID is necessary.
3219	 */
3220	vpid_sync_context(vmx_get_current_vpid(vcpu));
3221}
3222
3223void vmx_ept_load_pdptrs(struct kvm_vcpu *vcpu)
3224{
3225	struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
3226
3227	if (!kvm_register_is_dirty(vcpu, VCPU_EXREG_PDPTR))
3228		return;
3229
3230	if (is_pae_paging(vcpu)) {
3231		vmcs_write64(GUEST_PDPTR0, mmu->pdptrs[0]);
3232		vmcs_write64(GUEST_PDPTR1, mmu->pdptrs[1]);
3233		vmcs_write64(GUEST_PDPTR2, mmu->pdptrs[2]);
3234		vmcs_write64(GUEST_PDPTR3, mmu->pdptrs[3]);
3235	}
3236}
3237
3238void ept_save_pdptrs(struct kvm_vcpu *vcpu)
3239{
3240	struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
3241
3242	if (WARN_ON_ONCE(!is_pae_paging(vcpu)))
3243		return;
3244
3245	mmu->pdptrs[0] = vmcs_read64(GUEST_PDPTR0);
3246	mmu->pdptrs[1] = vmcs_read64(GUEST_PDPTR1);
3247	mmu->pdptrs[2] = vmcs_read64(GUEST_PDPTR2);
3248	mmu->pdptrs[3] = vmcs_read64(GUEST_PDPTR3);
3249
3250	kvm_register_mark_available(vcpu, VCPU_EXREG_PDPTR);
3251}
3252
3253#define CR3_EXITING_BITS (CPU_BASED_CR3_LOAD_EXITING | \
3254			  CPU_BASED_CR3_STORE_EXITING)
3255
3256static bool vmx_is_valid_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
3257{
3258	if (is_guest_mode(vcpu))
3259		return nested_guest_cr0_valid(vcpu, cr0);
3260
3261	if (to_vmx(vcpu)->nested.vmxon)
3262		return nested_host_cr0_valid(vcpu, cr0);
3263
3264	return true;
3265}
3266
3267void vmx_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
3268{
3269	struct vcpu_vmx *vmx = to_vmx(vcpu);
3270	unsigned long hw_cr0, old_cr0_pg;
3271	u32 tmp;
3272
3273	old_cr0_pg = kvm_read_cr0_bits(vcpu, X86_CR0_PG);
3274
3275	hw_cr0 = (cr0 & ~KVM_VM_CR0_ALWAYS_OFF);
3276	if (enable_unrestricted_guest)
3277		hw_cr0 |= KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST;
3278	else {
3279		hw_cr0 |= KVM_VM_CR0_ALWAYS_ON;
3280		if (!enable_ept)
3281			hw_cr0 |= X86_CR0_WP;
3282
3283		if (vmx->rmode.vm86_active && (cr0 & X86_CR0_PE))
3284			enter_pmode(vcpu);
3285
3286		if (!vmx->rmode.vm86_active && !(cr0 & X86_CR0_PE))
3287			enter_rmode(vcpu);
3288	}
3289
3290	vmcs_writel(CR0_READ_SHADOW, cr0);
3291	vmcs_writel(GUEST_CR0, hw_cr0);
3292	vcpu->arch.cr0 = cr0;
3293	kvm_register_mark_available(vcpu, VCPU_EXREG_CR0);
3294
3295#ifdef CONFIG_X86_64
3296	if (vcpu->arch.efer & EFER_LME) {
3297		if (!old_cr0_pg && (cr0 & X86_CR0_PG))
3298			enter_lmode(vcpu);
3299		else if (old_cr0_pg && !(cr0 & X86_CR0_PG))
3300			exit_lmode(vcpu);
3301	}
3302#endif
3303
3304	if (enable_ept && !enable_unrestricted_guest) {
3305		/*
3306		 * Ensure KVM has an up-to-date snapshot of the guest's CR3.  If
3307		 * the below code _enables_ CR3 exiting, vmx_cache_reg() will
3308		 * (correctly) stop reading vmcs.GUEST_CR3 because it thinks
3309		 * KVM's CR3 is installed.
3310		 */
3311		if (!kvm_register_is_available(vcpu, VCPU_EXREG_CR3))
3312			vmx_cache_reg(vcpu, VCPU_EXREG_CR3);
3313
3314		/*
3315		 * When running with EPT but not unrestricted guest, KVM must
3316		 * intercept CR3 accesses when paging is _disabled_.  This is
3317		 * necessary because restricted guests can't actually run with
3318		 * paging disabled, and so KVM stuffs its own CR3 in order to
3319		 * run the guest when identity mapped page tables.
3320		 *
3321		 * Do _NOT_ check the old CR0.PG, e.g. to optimize away the
3322		 * update, it may be stale with respect to CR3 interception,
3323		 * e.g. after nested VM-Enter.
3324		 *
3325		 * Lastly, honor L1's desires, i.e. intercept CR3 loads and/or
3326		 * stores to forward them to L1, even if KVM does not need to
3327		 * intercept them to preserve its identity mapped page tables.
3328		 */
3329		if (!(cr0 & X86_CR0_PG)) {
3330			exec_controls_setbit(vmx, CR3_EXITING_BITS);
3331		} else if (!is_guest_mode(vcpu)) {
3332			exec_controls_clearbit(vmx, CR3_EXITING_BITS);
3333		} else {
3334			tmp = exec_controls_get(vmx);
3335			tmp &= ~CR3_EXITING_BITS;
3336			tmp |= get_vmcs12(vcpu)->cpu_based_vm_exec_control & CR3_EXITING_BITS;
3337			exec_controls_set(vmx, tmp);
3338		}
3339
3340		/* Note, vmx_set_cr4() consumes the new vcpu->arch.cr0. */
3341		if ((old_cr0_pg ^ cr0) & X86_CR0_PG)
3342			vmx_set_cr4(vcpu, kvm_read_cr4(vcpu));
3343
3344		/*
3345		 * When !CR0_PG -> CR0_PG, vcpu->arch.cr3 becomes active, but
3346		 * GUEST_CR3 is still vmx->ept_identity_map_addr if EPT + !URG.
3347		 */
3348		if (!(old_cr0_pg & X86_CR0_PG) && (cr0 & X86_CR0_PG))
3349			kvm_register_mark_dirty(vcpu, VCPU_EXREG_CR3);
3350	}
3351
3352	/* depends on vcpu->arch.cr0 to be set to a new value */
3353	vmx->emulation_required = vmx_emulation_required(vcpu);
3354}
3355
3356static int vmx_get_max_ept_level(void)
3357{
3358	if (cpu_has_vmx_ept_5levels())
3359		return 5;
3360	return 4;
3361}
3362
3363u64 construct_eptp(struct kvm_vcpu *vcpu, hpa_t root_hpa, int root_level)
3364{
3365	u64 eptp = VMX_EPTP_MT_WB;
3366
3367	eptp |= (root_level == 5) ? VMX_EPTP_PWL_5 : VMX_EPTP_PWL_4;
3368
3369	if (enable_ept_ad_bits &&
3370	    (!is_guest_mode(vcpu) || nested_ept_ad_enabled(vcpu)))
3371		eptp |= VMX_EPTP_AD_ENABLE_BIT;
3372	eptp |= root_hpa;
3373
3374	return eptp;
3375}
3376
3377static void vmx_load_mmu_pgd(struct kvm_vcpu *vcpu, hpa_t root_hpa,
3378			     int root_level)
3379{
3380	struct kvm *kvm = vcpu->kvm;
3381	bool update_guest_cr3 = true;
3382	unsigned long guest_cr3;
3383	u64 eptp;
3384
3385	if (enable_ept) {
3386		eptp = construct_eptp(vcpu, root_hpa, root_level);
3387		vmcs_write64(EPT_POINTER, eptp);
3388
3389		hv_track_root_tdp(vcpu, root_hpa);
3390
3391		if (!enable_unrestricted_guest && !is_paging(vcpu))
3392			guest_cr3 = to_kvm_vmx(kvm)->ept_identity_map_addr;
3393		else if (kvm_register_is_dirty(vcpu, VCPU_EXREG_CR3))
3394			guest_cr3 = vcpu->arch.cr3;
3395		else /* vmcs.GUEST_CR3 is already up-to-date. */
3396			update_guest_cr3 = false;
3397		vmx_ept_load_pdptrs(vcpu);
3398	} else {
3399		guest_cr3 = root_hpa | kvm_get_active_pcid(vcpu) |
3400			    kvm_get_active_cr3_lam_bits(vcpu);
3401	}
3402
3403	if (update_guest_cr3)
3404		vmcs_writel(GUEST_CR3, guest_cr3);
3405}
3406
3407
3408static bool vmx_is_valid_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
3409{
3410	/*
3411	 * We operate under the default treatment of SMM, so VMX cannot be
3412	 * enabled under SMM.  Note, whether or not VMXE is allowed at all,
3413	 * i.e. is a reserved bit, is handled by common x86 code.
3414	 */
3415	if ((cr4 & X86_CR4_VMXE) && is_smm(vcpu))
3416		return false;
3417
3418	if (to_vmx(vcpu)->nested.vmxon && !nested_cr4_valid(vcpu, cr4))
3419		return false;
3420
3421	return true;
3422}
3423
3424void vmx_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
3425{
3426	unsigned long old_cr4 = kvm_read_cr4(vcpu);
3427	struct vcpu_vmx *vmx = to_vmx(vcpu);
3428	unsigned long hw_cr4;
3429
3430	/*
3431	 * Pass through host's Machine Check Enable value to hw_cr4, which
3432	 * is in force while we are in guest mode.  Do not let guests control
3433	 * this bit, even if host CR4.MCE == 0.
3434	 */
3435	hw_cr4 = (cr4_read_shadow() & X86_CR4_MCE) | (cr4 & ~X86_CR4_MCE);
3436	if (enable_unrestricted_guest)
3437		hw_cr4 |= KVM_VM_CR4_ALWAYS_ON_UNRESTRICTED_GUEST;
3438	else if (vmx->rmode.vm86_active)
3439		hw_cr4 |= KVM_RMODE_VM_CR4_ALWAYS_ON;
3440	else
3441		hw_cr4 |= KVM_PMODE_VM_CR4_ALWAYS_ON;
3442
3443	if (vmx_umip_emulated()) {
3444		if (cr4 & X86_CR4_UMIP) {
3445			secondary_exec_controls_setbit(vmx, SECONDARY_EXEC_DESC);
3446			hw_cr4 &= ~X86_CR4_UMIP;
3447		} else if (!is_guest_mode(vcpu) ||
3448			!nested_cpu_has2(get_vmcs12(vcpu), SECONDARY_EXEC_DESC)) {
3449			secondary_exec_controls_clearbit(vmx, SECONDARY_EXEC_DESC);
3450		}
3451	}
3452
3453	vcpu->arch.cr4 = cr4;
3454	kvm_register_mark_available(vcpu, VCPU_EXREG_CR4);
3455
3456	if (!enable_unrestricted_guest) {
3457		if (enable_ept) {
3458			if (!is_paging(vcpu)) {
3459				hw_cr4 &= ~X86_CR4_PAE;
3460				hw_cr4 |= X86_CR4_PSE;
3461			} else if (!(cr4 & X86_CR4_PAE)) {
3462				hw_cr4 &= ~X86_CR4_PAE;
3463			}
3464		}
3465
3466		/*
3467		 * SMEP/SMAP/PKU is disabled if CPU is in non-paging mode in
3468		 * hardware.  To emulate this behavior, SMEP/SMAP/PKU needs
3469		 * to be manually disabled when guest switches to non-paging
3470		 * mode.
3471		 *
3472		 * If !enable_unrestricted_guest, the CPU is always running
3473		 * with CR0.PG=1 and CR4 needs to be modified.
3474		 * If enable_unrestricted_guest, the CPU automatically
3475		 * disables SMEP/SMAP/PKU when the guest sets CR0.PG=0.
3476		 */
3477		if (!is_paging(vcpu))
3478			hw_cr4 &= ~(X86_CR4_SMEP | X86_CR4_SMAP | X86_CR4_PKE);
3479	}
3480
3481	vmcs_writel(CR4_READ_SHADOW, cr4);
3482	vmcs_writel(GUEST_CR4, hw_cr4);
3483
3484	if ((cr4 ^ old_cr4) & (X86_CR4_OSXSAVE | X86_CR4_PKE))
3485		kvm_update_cpuid_runtime(vcpu);
3486}
3487
3488void vmx_get_segment(struct kvm_vcpu *vcpu, struct kvm_segment *var, int seg)
3489{
3490	struct vcpu_vmx *vmx = to_vmx(vcpu);
3491	u32 ar;
3492
3493	if (vmx->rmode.vm86_active && seg != VCPU_SREG_LDTR) {
3494		*var = vmx->rmode.segs[seg];
3495		if (seg == VCPU_SREG_TR
3496		    || var->selector == vmx_read_guest_seg_selector(vmx, seg))
3497			return;
3498		var->base = vmx_read_guest_seg_base(vmx, seg);
3499		var->selector = vmx_read_guest_seg_selector(vmx, seg);
3500		return;
3501	}
3502	var->base = vmx_read_guest_seg_base(vmx, seg);
3503	var->limit = vmx_read_guest_seg_limit(vmx, seg);
3504	var->selector = vmx_read_guest_seg_selector(vmx, seg);
3505	ar = vmx_read_guest_seg_ar(vmx, seg);
3506	var->unusable = (ar >> 16) & 1;
3507	var->type = ar & 15;
3508	var->s = (ar >> 4) & 1;
3509	var->dpl = (ar >> 5) & 3;
3510	/*
3511	 * Some userspaces do not preserve unusable property. Since usable
3512	 * segment has to be present according to VMX spec we can use present
3513	 * property to amend userspace bug by making unusable segment always
3514	 * nonpresent. vmx_segment_access_rights() already marks nonpresent
3515	 * segment as unusable.
3516	 */
3517	var->present = !var->unusable;
3518	var->avl = (ar >> 12) & 1;
3519	var->l = (ar >> 13) & 1;
3520	var->db = (ar >> 14) & 1;
3521	var->g = (ar >> 15) & 1;
3522}
3523
3524static u64 vmx_get_segment_base(struct kvm_vcpu *vcpu, int seg)
3525{
3526	struct kvm_segment s;
3527
3528	if (to_vmx(vcpu)->rmode.vm86_active) {
3529		vmx_get_segment(vcpu, &s, seg);
3530		return s.base;
3531	}
3532	return vmx_read_guest_seg_base(to_vmx(vcpu), seg);
3533}
3534
3535int vmx_get_cpl(struct kvm_vcpu *vcpu)
3536{
3537	struct vcpu_vmx *vmx = to_vmx(vcpu);
3538
3539	if (unlikely(vmx->rmode.vm86_active))
3540		return 0;
3541	else {
3542		int ar = vmx_read_guest_seg_ar(vmx, VCPU_SREG_SS);
3543		return VMX_AR_DPL(ar);
3544	}
3545}
3546
3547static u32 vmx_segment_access_rights(struct kvm_segment *var)
3548{
3549	u32 ar;
3550
3551	ar = var->type & 15;
3552	ar |= (var->s & 1) << 4;
3553	ar |= (var->dpl & 3) << 5;
3554	ar |= (var->present & 1) << 7;
3555	ar |= (var->avl & 1) << 12;
3556	ar |= (var->l & 1) << 13;
3557	ar |= (var->db & 1) << 14;
3558	ar |= (var->g & 1) << 15;
3559	ar |= (var->unusable || !var->present) << 16;
3560
3561	return ar;
3562}
3563
3564void __vmx_set_segment(struct kvm_vcpu *vcpu, struct kvm_segment *var, int seg)
3565{
3566	struct vcpu_vmx *vmx = to_vmx(vcpu);
3567	const struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
3568
3569	vmx_segment_cache_clear(vmx);
3570
3571	if (vmx->rmode.vm86_active && seg != VCPU_SREG_LDTR) {
3572		vmx->rmode.segs[seg] = *var;
3573		if (seg == VCPU_SREG_TR)
3574			vmcs_write16(sf->selector, var->selector);
3575		else if (var->s)
3576			fix_rmode_seg(seg, &vmx->rmode.segs[seg]);
3577		return;
3578	}
3579
3580	vmcs_writel(sf->base, var->base);
3581	vmcs_write32(sf->limit, var->limit);
3582	vmcs_write16(sf->selector, var->selector);
3583
3584	/*
3585	 *   Fix the "Accessed" bit in AR field of segment registers for older
3586	 * qemu binaries.
3587	 *   IA32 arch specifies that at the time of processor reset the
3588	 * "Accessed" bit in the AR field of segment registers is 1. And qemu
3589	 * is setting it to 0 in the userland code. This causes invalid guest
3590	 * state vmexit when "unrestricted guest" mode is turned on.
3591	 *    Fix for this setup issue in cpu_reset is being pushed in the qemu
3592	 * tree. Newer qemu binaries with that qemu fix would not need this
3593	 * kvm hack.
3594	 */
3595	if (is_unrestricted_guest(vcpu) && (seg != VCPU_SREG_LDTR))
3596		var->type |= 0x1; /* Accessed */
3597
3598	vmcs_write32(sf->ar_bytes, vmx_segment_access_rights(var));
3599}
3600
3601static void vmx_set_segment(struct kvm_vcpu *vcpu, struct kvm_segment *var, int seg)
3602{
3603	__vmx_set_segment(vcpu, var, seg);
3604
3605	to_vmx(vcpu)->emulation_required = vmx_emulation_required(vcpu);
3606}
3607
3608static void vmx_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
3609{
3610	u32 ar = vmx_read_guest_seg_ar(to_vmx(vcpu), VCPU_SREG_CS);
3611
3612	*db = (ar >> 14) & 1;
3613	*l = (ar >> 13) & 1;
3614}
3615
3616static void vmx_get_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
3617{
3618	dt->size = vmcs_read32(GUEST_IDTR_LIMIT);
3619	dt->address = vmcs_readl(GUEST_IDTR_BASE);
3620}
3621
3622static void vmx_set_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
3623{
3624	vmcs_write32(GUEST_IDTR_LIMIT, dt->size);
3625	vmcs_writel(GUEST_IDTR_BASE, dt->address);
3626}
3627
3628static void vmx_get_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
3629{
3630	dt->size = vmcs_read32(GUEST_GDTR_LIMIT);
3631	dt->address = vmcs_readl(GUEST_GDTR_BASE);
3632}
3633
3634static void vmx_set_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
3635{
3636	vmcs_write32(GUEST_GDTR_LIMIT, dt->size);
3637	vmcs_writel(GUEST_GDTR_BASE, dt->address);
3638}
3639
3640static bool rmode_segment_valid(struct kvm_vcpu *vcpu, int seg)
3641{
3642	struct kvm_segment var;
3643	u32 ar;
3644
3645	vmx_get_segment(vcpu, &var, seg);
3646	var.dpl = 0x3;
3647	if (seg == VCPU_SREG_CS)
3648		var.type = 0x3;
3649	ar = vmx_segment_access_rights(&var);
3650
3651	if (var.base != (var.selector << 4))
3652		return false;
3653	if (var.limit != 0xffff)
3654		return false;
3655	if (ar != 0xf3)
3656		return false;
3657
3658	return true;
3659}
3660
3661static bool code_segment_valid(struct kvm_vcpu *vcpu)
3662{
3663	struct kvm_segment cs;
3664	unsigned int cs_rpl;
3665
3666	vmx_get_segment(vcpu, &cs, VCPU_SREG_CS);
3667	cs_rpl = cs.selector & SEGMENT_RPL_MASK;
3668
3669	if (cs.unusable)
3670		return false;
3671	if (~cs.type & (VMX_AR_TYPE_CODE_MASK|VMX_AR_TYPE_ACCESSES_MASK))
3672		return false;
3673	if (!cs.s)
3674		return false;
3675	if (cs.type & VMX_AR_TYPE_WRITEABLE_MASK) {
3676		if (cs.dpl > cs_rpl)
3677			return false;
3678	} else {
3679		if (cs.dpl != cs_rpl)
3680			return false;
3681	}
3682	if (!cs.present)
3683		return false;
3684
3685	/* TODO: Add Reserved field check, this'll require a new member in the kvm_segment_field structure */
3686	return true;
3687}
3688
3689static bool stack_segment_valid(struct kvm_vcpu *vcpu)
3690{
3691	struct kvm_segment ss;
3692	unsigned int ss_rpl;
3693
3694	vmx_get_segment(vcpu, &ss, VCPU_SREG_SS);
3695	ss_rpl = ss.selector & SEGMENT_RPL_MASK;
3696
3697	if (ss.unusable)
3698		return true;
3699	if (ss.type != 3 && ss.type != 7)
3700		return false;
3701	if (!ss.s)
3702		return false;
3703	if (ss.dpl != ss_rpl) /* DPL != RPL */
3704		return false;
3705	if (!ss.present)
3706		return false;
3707
3708	return true;
3709}
3710
3711static bool data_segment_valid(struct kvm_vcpu *vcpu, int seg)
3712{
3713	struct kvm_segment var;
3714	unsigned int rpl;
3715
3716	vmx_get_segment(vcpu, &var, seg);
3717	rpl = var.selector & SEGMENT_RPL_MASK;
3718
3719	if (var.unusable)
3720		return true;
3721	if (!var.s)
3722		return false;
3723	if (!var.present)
3724		return false;
3725	if (~var.type & (VMX_AR_TYPE_CODE_MASK|VMX_AR_TYPE_WRITEABLE_MASK)) {
3726		if (var.dpl < rpl) /* DPL < RPL */
3727			return false;
3728	}
3729
3730	/* TODO: Add other members to kvm_segment_field to allow checking for other access
3731	 * rights flags
3732	 */
3733	return true;
3734}
3735
3736static bool tr_valid(struct kvm_vcpu *vcpu)
3737{
3738	struct kvm_segment tr;
3739
3740	vmx_get_segment(vcpu, &tr, VCPU_SREG_TR);
3741
3742	if (tr.unusable)
3743		return false;
3744	if (tr.selector & SEGMENT_TI_MASK)	/* TI = 1 */
3745		return false;
3746	if (tr.type != 3 && tr.type != 11) /* TODO: Check if guest is in IA32e mode */
3747		return false;
3748	if (!tr.present)
3749		return false;
3750
3751	return true;
3752}
3753
3754static bool ldtr_valid(struct kvm_vcpu *vcpu)
3755{
3756	struct kvm_segment ldtr;
3757
3758	vmx_get_segment(vcpu, &ldtr, VCPU_SREG_LDTR);
3759
3760	if (ldtr.unusable)
3761		return true;
3762	if (ldtr.selector & SEGMENT_TI_MASK)	/* TI = 1 */
3763		return false;
3764	if (ldtr.type != 2)
3765		return false;
3766	if (!ldtr.present)
3767		return false;
3768
3769	return true;
3770}
3771
3772static bool cs_ss_rpl_check(struct kvm_vcpu *vcpu)
3773{
3774	struct kvm_segment cs, ss;
3775
3776	vmx_get_segment(vcpu, &cs, VCPU_SREG_CS);
3777	vmx_get_segment(vcpu, &ss, VCPU_SREG_SS);
3778
3779	return ((cs.selector & SEGMENT_RPL_MASK) ==
3780		 (ss.selector & SEGMENT_RPL_MASK));
3781}
3782
3783/*
3784 * Check if guest state is valid. Returns true if valid, false if
3785 * not.
3786 * We assume that registers are always usable
3787 */
3788bool __vmx_guest_state_valid(struct kvm_vcpu *vcpu)
3789{
3790	/* real mode guest state checks */
3791	if (!is_protmode(vcpu) || (vmx_get_rflags(vcpu) & X86_EFLAGS_VM)) {
3792		if (!rmode_segment_valid(vcpu, VCPU_SREG_CS))
3793			return false;
3794		if (!rmode_segment_valid(vcpu, VCPU_SREG_SS))
3795			return false;
3796		if (!rmode_segment_valid(vcpu, VCPU_SREG_DS))
3797			return false;
3798		if (!rmode_segment_valid(vcpu, VCPU_SREG_ES))
3799			return false;
3800		if (!rmode_segment_valid(vcpu, VCPU_SREG_FS))
3801			return false;
3802		if (!rmode_segment_valid(vcpu, VCPU_SREG_GS))
3803			return false;
3804	} else {
3805	/* protected mode guest state checks */
3806		if (!cs_ss_rpl_check(vcpu))
3807			return false;
3808		if (!code_segment_valid(vcpu))
3809			return false;
3810		if (!stack_segment_valid(vcpu))
3811			return false;
3812		if (!data_segment_valid(vcpu, VCPU_SREG_DS))
3813			return false;
3814		if (!data_segment_valid(vcpu, VCPU_SREG_ES))
3815			return false;
3816		if (!data_segment_valid(vcpu, VCPU_SREG_FS))
3817			return false;
3818		if (!data_segment_valid(vcpu, VCPU_SREG_GS))
3819			return false;
3820		if (!tr_valid(vcpu))
3821			return false;
3822		if (!ldtr_valid(vcpu))
3823			return false;
3824	}
3825	/* TODO:
3826	 * - Add checks on RIP
3827	 * - Add checks on RFLAGS
3828	 */
3829
3830	return true;
3831}
3832
3833static int init_rmode_tss(struct kvm *kvm, void __user *ua)
3834{
3835	const void *zero_page = (const void *) __va(page_to_phys(ZERO_PAGE(0)));
3836	u16 data;
3837	int i;
3838
3839	for (i = 0; i < 3; i++) {
3840		if (__copy_to_user(ua + PAGE_SIZE * i, zero_page, PAGE_SIZE))
3841			return -EFAULT;
3842	}
3843
3844	data = TSS_BASE_SIZE + TSS_REDIRECTION_SIZE;
3845	if (__copy_to_user(ua + TSS_IOPB_BASE_OFFSET, &data, sizeof(u16)))
3846		return -EFAULT;
3847
3848	data = ~0;
3849	if (__copy_to_user(ua + RMODE_TSS_SIZE - 1, &data, sizeof(u8)))
3850		return -EFAULT;
3851
3852	return 0;
3853}
3854
3855static int init_rmode_identity_map(struct kvm *kvm)
3856{
3857	struct kvm_vmx *kvm_vmx = to_kvm_vmx(kvm);
3858	int i, r = 0;
3859	void __user *uaddr;
3860	u32 tmp;
3861
3862	/* Protect kvm_vmx->ept_identity_pagetable_done. */
3863	mutex_lock(&kvm->slots_lock);
3864
3865	if (likely(kvm_vmx->ept_identity_pagetable_done))
3866		goto out;
3867
3868	if (!kvm_vmx->ept_identity_map_addr)
3869		kvm_vmx->ept_identity_map_addr = VMX_EPT_IDENTITY_PAGETABLE_ADDR;
3870
3871	uaddr = __x86_set_memory_region(kvm,
3872					IDENTITY_PAGETABLE_PRIVATE_MEMSLOT,
3873					kvm_vmx->ept_identity_map_addr,
3874					PAGE_SIZE);
3875	if (IS_ERR(uaddr)) {
3876		r = PTR_ERR(uaddr);
3877		goto out;
3878	}
3879
3880	/* Set up identity-mapping pagetable for EPT in real mode */
3881	for (i = 0; i < (PAGE_SIZE / sizeof(tmp)); i++) {
3882		tmp = (i << 22) + (_PAGE_PRESENT | _PAGE_RW | _PAGE_USER |
3883			_PAGE_ACCESSED | _PAGE_DIRTY | _PAGE_PSE);
3884		if (__copy_to_user(uaddr + i * sizeof(tmp), &tmp, sizeof(tmp))) {
3885			r = -EFAULT;
3886			goto out;
3887		}
3888	}
3889	kvm_vmx->ept_identity_pagetable_done = true;
3890
3891out:
3892	mutex_unlock(&kvm->slots_lock);
3893	return r;
3894}
3895
3896static void seg_setup(int seg)
3897{
3898	const struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
3899	unsigned int ar;
3900
3901	vmcs_write16(sf->selector, 0);
3902	vmcs_writel(sf->base, 0);
3903	vmcs_write32(sf->limit, 0xffff);
3904	ar = 0x93;
3905	if (seg == VCPU_SREG_CS)
3906		ar |= 0x08; /* code segment */
3907
3908	vmcs_write32(sf->ar_bytes, ar);
3909}
3910
3911int allocate_vpid(void)
3912{
3913	int vpid;
3914
3915	if (!enable_vpid)
3916		return 0;
3917	spin_lock(&vmx_vpid_lock);
3918	vpid = find_first_zero_bit(vmx_vpid_bitmap, VMX_NR_VPIDS);
3919	if (vpid < VMX_NR_VPIDS)
3920		__set_bit(vpid, vmx_vpid_bitmap);
3921	else
3922		vpid = 0;
3923	spin_unlock(&vmx_vpid_lock);
3924	return vpid;
3925}
3926
3927void free_vpid(int vpid)
3928{
3929	if (!enable_vpid || vpid == 0)
3930		return;
3931	spin_lock(&vmx_vpid_lock);
3932	__clear_bit(vpid, vmx_vpid_bitmap);
3933	spin_unlock(&vmx_vpid_lock);
3934}
3935
3936static void vmx_msr_bitmap_l01_changed(struct vcpu_vmx *vmx)
3937{
3938	/*
3939	 * When KVM is a nested hypervisor on top of Hyper-V and uses
3940	 * 'Enlightened MSR Bitmap' feature L0 needs to know that MSR
3941	 * bitmap has changed.
3942	 */
3943	if (kvm_is_using_evmcs()) {
3944		struct hv_enlightened_vmcs *evmcs = (void *)vmx->vmcs01.vmcs;
3945
3946		if (evmcs->hv_enlightenments_control.msr_bitmap)
3947			evmcs->hv_clean_fields &=
3948				~HV_VMX_ENLIGHTENED_CLEAN_FIELD_MSR_BITMAP;
3949	}
3950
3951	vmx->nested.force_msr_bitmap_recalc = true;
3952}
3953
3954void vmx_disable_intercept_for_msr(struct kvm_vcpu *vcpu, u32 msr, int type)
3955{
3956	struct vcpu_vmx *vmx = to_vmx(vcpu);
3957	unsigned long *msr_bitmap = vmx->vmcs01.msr_bitmap;
3958	int idx;
3959
3960	if (!cpu_has_vmx_msr_bitmap())
3961		return;
3962
3963	vmx_msr_bitmap_l01_changed(vmx);
3964
3965	/*
3966	 * Mark the desired intercept state in shadow bitmap, this is needed
3967	 * for resync when the MSR filters change.
3968	 */
3969	idx = vmx_get_passthrough_msr_slot(msr);
3970	if (idx >= 0) {
3971		if (type & MSR_TYPE_R)
3972			clear_bit(idx, vmx->shadow_msr_intercept.read);
3973		if (type & MSR_TYPE_W)
3974			clear_bit(idx, vmx->shadow_msr_intercept.write);
3975	}
3976
3977	if ((type & MSR_TYPE_R) &&
3978	    !kvm_msr_allowed(vcpu, msr, KVM_MSR_FILTER_READ)) {
3979		vmx_set_msr_bitmap_read(msr_bitmap, msr);
3980		type &= ~MSR_TYPE_R;
3981	}
3982
3983	if ((type & MSR_TYPE_W) &&
3984	    !kvm_msr_allowed(vcpu, msr, KVM_MSR_FILTER_WRITE)) {
3985		vmx_set_msr_bitmap_write(msr_bitmap, msr);
3986		type &= ~MSR_TYPE_W;
3987	}
3988
3989	if (type & MSR_TYPE_R)
3990		vmx_clear_msr_bitmap_read(msr_bitmap, msr);
3991
3992	if (type & MSR_TYPE_W)
3993		vmx_clear_msr_bitmap_write(msr_bitmap, msr);
3994}
3995
3996void vmx_enable_intercept_for_msr(struct kvm_vcpu *vcpu, u32 msr, int type)
3997{
3998	struct vcpu_vmx *vmx = to_vmx(vcpu);
3999	unsigned long *msr_bitmap = vmx->vmcs01.msr_bitmap;
4000	int idx;
4001
4002	if (!cpu_has_vmx_msr_bitmap())
4003		return;
4004
4005	vmx_msr_bitmap_l01_changed(vmx);
4006
4007	/*
4008	 * Mark the desired intercept state in shadow bitmap, this is needed
4009	 * for resync when the MSR filter changes.
4010	 */
4011	idx = vmx_get_passthrough_msr_slot(msr);
4012	if (idx >= 0) {
4013		if (type & MSR_TYPE_R)
4014			set_bit(idx, vmx->shadow_msr_intercept.read);
4015		if (type & MSR_TYPE_W)
4016			set_bit(idx, vmx->shadow_msr_intercept.write);
4017	}
4018
4019	if (type & MSR_TYPE_R)
4020		vmx_set_msr_bitmap_read(msr_bitmap, msr);
4021
4022	if (type & MSR_TYPE_W)
4023		vmx_set_msr_bitmap_write(msr_bitmap, msr);
4024}
4025
4026static void vmx_update_msr_bitmap_x2apic(struct kvm_vcpu *vcpu)
4027{
4028	/*
4029	 * x2APIC indices for 64-bit accesses into the RDMSR and WRMSR halves
4030	 * of the MSR bitmap.  KVM emulates APIC registers up through 0x3f0,
4031	 * i.e. MSR 0x83f, and so only needs to dynamically manipulate 64 bits.
4032	 */
4033	const int read_idx = APIC_BASE_MSR / BITS_PER_LONG_LONG;
4034	const int write_idx = read_idx + (0x800 / sizeof(u64));
4035	struct vcpu_vmx *vmx = to_vmx(vcpu);
4036	u64 *msr_bitmap = (u64 *)vmx->vmcs01.msr_bitmap;
4037	u8 mode;
4038
4039	if (!cpu_has_vmx_msr_bitmap() || WARN_ON_ONCE(!lapic_in_kernel(vcpu)))
4040		return;
4041
4042	if (cpu_has_secondary_exec_ctrls() &&
4043	    (secondary_exec_controls_get(vmx) &
4044	     SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE)) {
4045		mode = MSR_BITMAP_MODE_X2APIC;
4046		if (enable_apicv && kvm_vcpu_apicv_active(vcpu))
4047			mode |= MSR_BITMAP_MODE_X2APIC_APICV;
4048	} else {
4049		mode = 0;
4050	}
4051
4052	if (mode == vmx->x2apic_msr_bitmap_mode)
4053		return;
4054
4055	vmx->x2apic_msr_bitmap_mode = mode;
4056
4057	/*
4058	 * Reset the bitmap for MSRs 0x800 - 0x83f.  Leave AMD's uber-extended
4059	 * registers (0x840 and above) intercepted, KVM doesn't support them.
4060	 * Intercept all writes by default and poke holes as needed.  Pass
4061	 * through reads for all valid registers by default in x2APIC+APICv
4062	 * mode, only the current timer count needs on-demand emulation by KVM.
4063	 */
4064	if (mode & MSR_BITMAP_MODE_X2APIC_APICV)
4065		msr_bitmap[read_idx] = ~kvm_lapic_readable_reg_mask(vcpu->arch.apic);
4066	else
4067		msr_bitmap[read_idx] = ~0ull;
4068	msr_bitmap[write_idx] = ~0ull;
4069
4070	/*
4071	 * TPR reads and writes can be virtualized even if virtual interrupt
4072	 * delivery is not in use.
4073	 */
4074	vmx_set_intercept_for_msr(vcpu, X2APIC_MSR(APIC_TASKPRI), MSR_TYPE_RW,
4075				  !(mode & MSR_BITMAP_MODE_X2APIC));
4076
4077	if (mode & MSR_BITMAP_MODE_X2APIC_APICV) {
4078		vmx_enable_intercept_for_msr(vcpu, X2APIC_MSR(APIC_TMCCT), MSR_TYPE_RW);
4079		vmx_disable_intercept_for_msr(vcpu, X2APIC_MSR(APIC_EOI), MSR_TYPE_W);
4080		vmx_disable_intercept_for_msr(vcpu, X2APIC_MSR(APIC_SELF_IPI), MSR_TYPE_W);
4081		if (enable_ipiv)
4082			vmx_disable_intercept_for_msr(vcpu, X2APIC_MSR(APIC_ICR), MSR_TYPE_RW);
4083	}
4084}
4085
4086void pt_update_intercept_for_msr(struct kvm_vcpu *vcpu)
4087{
4088	struct vcpu_vmx *vmx = to_vmx(vcpu);
4089	bool flag = !(vmx->pt_desc.guest.ctl & RTIT_CTL_TRACEEN);
4090	u32 i;
4091
4092	vmx_set_intercept_for_msr(vcpu, MSR_IA32_RTIT_STATUS, MSR_TYPE_RW, flag);
4093	vmx_set_intercept_for_msr(vcpu, MSR_IA32_RTIT_OUTPUT_BASE, MSR_TYPE_RW, flag);
4094	vmx_set_intercept_for_msr(vcpu, MSR_IA32_RTIT_OUTPUT_MASK, MSR_TYPE_RW, flag);
4095	vmx_set_intercept_for_msr(vcpu, MSR_IA32_RTIT_CR3_MATCH, MSR_TYPE_RW, flag);
4096	for (i = 0; i < vmx->pt_desc.num_address_ranges; i++) {
4097		vmx_set_intercept_for_msr(vcpu, MSR_IA32_RTIT_ADDR0_A + i * 2, MSR_TYPE_RW, flag);
4098		vmx_set_intercept_for_msr(vcpu, MSR_IA32_RTIT_ADDR0_B + i * 2, MSR_TYPE_RW, flag);
4099	}
4100}
4101
4102static bool vmx_guest_apic_has_interrupt(struct kvm_vcpu *vcpu)
4103{
4104	struct vcpu_vmx *vmx = to_vmx(vcpu);
4105	void *vapic_page;
4106	u32 vppr;
4107	int rvi;
4108
4109	if (WARN_ON_ONCE(!is_guest_mode(vcpu)) ||
4110		!nested_cpu_has_vid(get_vmcs12(vcpu)) ||
4111		WARN_ON_ONCE(!vmx->nested.virtual_apic_map.gfn))
4112		return false;
4113
4114	rvi = vmx_get_rvi();
4115
4116	vapic_page = vmx->nested.virtual_apic_map.hva;
4117	vppr = *((u32 *)(vapic_page + APIC_PROCPRI));
4118
4119	return ((rvi & 0xf0) > (vppr & 0xf0));
4120}
4121
4122static void vmx_msr_filter_changed(struct kvm_vcpu *vcpu)
4123{
4124	struct vcpu_vmx *vmx = to_vmx(vcpu);
4125	u32 i;
4126
4127	if (!cpu_has_vmx_msr_bitmap())
4128		return;
4129
4130	/*
4131	 * Redo intercept permissions for MSRs that KVM is passing through to
4132	 * the guest.  Disabling interception will check the new MSR filter and
4133	 * ensure that KVM enables interception if usersepace wants to filter
4134	 * the MSR.  MSRs that KVM is already intercepting don't need to be
4135	 * refreshed since KVM is going to intercept them regardless of what
4136	 * userspace wants.
4137	 */
4138	for (i = 0; i < ARRAY_SIZE(vmx_possible_passthrough_msrs); i++) {
4139		u32 msr = vmx_possible_passthrough_msrs[i];
4140
4141		if (!test_bit(i, vmx->shadow_msr_intercept.read))
4142			vmx_disable_intercept_for_msr(vcpu, msr, MSR_TYPE_R);
4143
4144		if (!test_bit(i, vmx->shadow_msr_intercept.write))
4145			vmx_disable_intercept_for_msr(vcpu, msr, MSR_TYPE_W);
4146	}
4147
4148	/* PT MSRs can be passed through iff PT is exposed to the guest. */
4149	if (vmx_pt_mode_is_host_guest())
4150		pt_update_intercept_for_msr(vcpu);
4151}
4152
4153static inline void kvm_vcpu_trigger_posted_interrupt(struct kvm_vcpu *vcpu,
4154						     int pi_vec)
4155{
4156#ifdef CONFIG_SMP
4157	if (vcpu->mode == IN_GUEST_MODE) {
4158		/*
4159		 * The vector of the virtual has already been set in the PIR.
4160		 * Send a notification event to deliver the virtual interrupt
4161		 * unless the vCPU is the currently running vCPU, i.e. the
4162		 * event is being sent from a fastpath VM-Exit handler, in
4163		 * which case the PIR will be synced to the vIRR before
4164		 * re-entering the guest.
4165		 *
4166		 * When the target is not the running vCPU, the following
4167		 * possibilities emerge:
4168		 *
4169		 * Case 1: vCPU stays in non-root mode. Sending a notification
4170		 * event posts the interrupt to the vCPU.
4171		 *
4172		 * Case 2: vCPU exits to root mode and is still runnable. The
4173		 * PIR will be synced to the vIRR before re-entering the guest.
4174		 * Sending a notification event is ok as the host IRQ handler
4175		 * will ignore the spurious event.
4176		 *
4177		 * Case 3: vCPU exits to root mode and is blocked. vcpu_block()
4178		 * has already synced PIR to vIRR and never blocks the vCPU if
4179		 * the vIRR is not empty. Therefore, a blocked vCPU here does
4180		 * not wait for any requested interrupts in PIR, and sending a
4181		 * notification event also results in a benign, spurious event.
4182		 */
4183
4184		if (vcpu != kvm_get_running_vcpu())
4185			__apic_send_IPI_mask(get_cpu_mask(vcpu->cpu), pi_vec);
4186		return;
4187	}
4188#endif
4189	/*
4190	 * The vCPU isn't in the guest; wake the vCPU in case it is blocking,
4191	 * otherwise do nothing as KVM will grab the highest priority pending
4192	 * IRQ via ->sync_pir_to_irr() in vcpu_enter_guest().
4193	 */
4194	kvm_vcpu_wake_up(vcpu);
4195}
4196
4197static int vmx_deliver_nested_posted_interrupt(struct kvm_vcpu *vcpu,
4198						int vector)
4199{
4200	struct vcpu_vmx *vmx = to_vmx(vcpu);
4201
4202	if (is_guest_mode(vcpu) &&
4203	    vector == vmx->nested.posted_intr_nv) {
4204		/*
4205		 * If a posted intr is not recognized by hardware,
4206		 * we will accomplish it in the next vmentry.
4207		 */
4208		vmx->nested.pi_pending = true;
4209		kvm_make_request(KVM_REQ_EVENT, vcpu);
4210
4211		/*
4212		 * This pairs with the smp_mb_*() after setting vcpu->mode in
4213		 * vcpu_enter_guest() to guarantee the vCPU sees the event
4214		 * request if triggering a posted interrupt "fails" because
4215		 * vcpu->mode != IN_GUEST_MODE.  The extra barrier is needed as
4216		 * the smb_wmb() in kvm_make_request() only ensures everything
4217		 * done before making the request is visible when the request
4218		 * is visible, it doesn't ensure ordering between the store to
4219		 * vcpu->requests and the load from vcpu->mode.
4220		 */
4221		smp_mb__after_atomic();
4222
4223		/* the PIR and ON have been set by L1. */
4224		kvm_vcpu_trigger_posted_interrupt(vcpu, POSTED_INTR_NESTED_VECTOR);
4225		return 0;
4226	}
4227	return -1;
4228}
4229/*
4230 * Send interrupt to vcpu via posted interrupt way.
4231 * 1. If target vcpu is running(non-root mode), send posted interrupt
4232 * notification to vcpu and hardware will sync PIR to vIRR atomically.
4233 * 2. If target vcpu isn't running(root mode), kick it to pick up the
4234 * interrupt from PIR in next vmentry.
4235 */
4236static int vmx_deliver_posted_interrupt(struct kvm_vcpu *vcpu, int vector)
4237{
4238	struct vcpu_vmx *vmx = to_vmx(vcpu);
4239	int r;
4240
4241	r = vmx_deliver_nested_posted_interrupt(vcpu, vector);
4242	if (!r)
4243		return 0;
4244
4245	/* Note, this is called iff the local APIC is in-kernel. */
4246	if (!vcpu->arch.apic->apicv_active)
4247		return -1;
4248
4249	if (pi_test_and_set_pir(vector, &vmx->pi_desc))
4250		return 0;
4251
4252	/* If a previous notification has sent the IPI, nothing to do.  */
4253	if (pi_test_and_set_on(&vmx->pi_desc))
4254		return 0;
4255
4256	/*
4257	 * The implied barrier in pi_test_and_set_on() pairs with the smp_mb_*()
4258	 * after setting vcpu->mode in vcpu_enter_guest(), thus the vCPU is
4259	 * guaranteed to see PID.ON=1 and sync the PIR to IRR if triggering a
4260	 * posted interrupt "fails" because vcpu->mode != IN_GUEST_MODE.
4261	 */
4262	kvm_vcpu_trigger_posted_interrupt(vcpu, POSTED_INTR_VECTOR);
4263	return 0;
4264}
4265
4266static void vmx_deliver_interrupt(struct kvm_lapic *apic, int delivery_mode,
4267				  int trig_mode, int vector)
4268{
4269	struct kvm_vcpu *vcpu = apic->vcpu;
4270
4271	if (vmx_deliver_posted_interrupt(vcpu, vector)) {
4272		kvm_lapic_set_irr(vector, apic);
4273		kvm_make_request(KVM_REQ_EVENT, vcpu);
4274		kvm_vcpu_kick(vcpu);
4275	} else {
4276		trace_kvm_apicv_accept_irq(vcpu->vcpu_id, delivery_mode,
4277					   trig_mode, vector);
4278	}
4279}
4280
4281/*
4282 * Set up the vmcs's constant host-state fields, i.e., host-state fields that
4283 * will not change in the lifetime of the guest.
4284 * Note that host-state that does change is set elsewhere. E.g., host-state
4285 * that is set differently for each CPU is set in vmx_vcpu_load(), not here.
4286 */
4287void vmx_set_constant_host_state(struct vcpu_vmx *vmx)
4288{
4289	u32 low32, high32;
4290	unsigned long tmpl;
4291	unsigned long cr0, cr3, cr4;
4292
4293	cr0 = read_cr0();
4294	WARN_ON(cr0 & X86_CR0_TS);
4295	vmcs_writel(HOST_CR0, cr0);  /* 22.2.3 */
4296
4297	/*
4298	 * Save the most likely value for this task's CR3 in the VMCS.
4299	 * We can't use __get_current_cr3_fast() because we're not atomic.
4300	 */
4301	cr3 = __read_cr3();
4302	vmcs_writel(HOST_CR3, cr3);		/* 22.2.3  FIXME: shadow tables */
4303	vmx->loaded_vmcs->host_state.cr3 = cr3;
4304
4305	/* Save the most likely value for this task's CR4 in the VMCS. */
4306	cr4 = cr4_read_shadow();
4307	vmcs_writel(HOST_CR4, cr4);			/* 22.2.3, 22.2.5 */
4308	vmx->loaded_vmcs->host_state.cr4 = cr4;
4309
4310	vmcs_write16(HOST_CS_SELECTOR, __KERNEL_CS);  /* 22.2.4 */
4311#ifdef CONFIG_X86_64
4312	/*
4313	 * Load null selectors, so we can avoid reloading them in
4314	 * vmx_prepare_switch_to_host(), in case userspace uses
4315	 * the null selectors too (the expected case).
4316	 */
4317	vmcs_write16(HOST_DS_SELECTOR, 0);
4318	vmcs_write16(HOST_ES_SELECTOR, 0);
4319#else
4320	vmcs_write16(HOST_DS_SELECTOR, __KERNEL_DS);  /* 22.2.4 */
4321	vmcs_write16(HOST_ES_SELECTOR, __KERNEL_DS);  /* 22.2.4 */
4322#endif
4323	vmcs_write16(HOST_SS_SELECTOR, __KERNEL_DS);  /* 22.2.4 */
4324	vmcs_write16(HOST_TR_SELECTOR, GDT_ENTRY_TSS*8);  /* 22.2.4 */
4325
4326	vmcs_writel(HOST_IDTR_BASE, host_idt_base);   /* 22.2.4 */
4327
4328	vmcs_writel(HOST_RIP, (unsigned long)vmx_vmexit); /* 22.2.5 */
4329
4330	rdmsr(MSR_IA32_SYSENTER_CS, low32, high32);
4331	vmcs_write32(HOST_IA32_SYSENTER_CS, low32);
4332
4333	/*
4334	 * SYSENTER is used for 32-bit system calls on either 32-bit or
4335	 * 64-bit kernels.  It is always zero If neither is allowed, otherwise
4336	 * vmx_vcpu_load_vmcs loads it with the per-CPU entry stack (and may
4337	 * have already done so!).
4338	 */
4339	if (!IS_ENABLED(CONFIG_IA32_EMULATION) && !IS_ENABLED(CONFIG_X86_32))
4340		vmcs_writel(HOST_IA32_SYSENTER_ESP, 0);
4341
4342	rdmsrl(MSR_IA32_SYSENTER_EIP, tmpl);
4343	vmcs_writel(HOST_IA32_SYSENTER_EIP, tmpl);   /* 22.2.3 */
4344
4345	if (vmcs_config.vmexit_ctrl & VM_EXIT_LOAD_IA32_PAT) {
4346		rdmsr(MSR_IA32_CR_PAT, low32, high32);
4347		vmcs_write64(HOST_IA32_PAT, low32 | ((u64) high32 << 32));
4348	}
4349
4350	if (cpu_has_load_ia32_efer())
4351		vmcs_write64(HOST_IA32_EFER, host_efer);
4352}
4353
4354void set_cr4_guest_host_mask(struct vcpu_vmx *vmx)
4355{
4356	struct kvm_vcpu *vcpu = &vmx->vcpu;
4357
4358	vcpu->arch.cr4_guest_owned_bits = KVM_POSSIBLE_CR4_GUEST_BITS &
4359					  ~vcpu->arch.cr4_guest_rsvd_bits;
4360	if (!enable_ept) {
4361		vcpu->arch.cr4_guest_owned_bits &= ~X86_CR4_TLBFLUSH_BITS;
4362		vcpu->arch.cr4_guest_owned_bits &= ~X86_CR4_PDPTR_BITS;
4363	}
4364	if (is_guest_mode(&vmx->vcpu))
4365		vcpu->arch.cr4_guest_owned_bits &=
4366			~get_vmcs12(vcpu)->cr4_guest_host_mask;
4367	vmcs_writel(CR4_GUEST_HOST_MASK, ~vcpu->arch.cr4_guest_owned_bits);
4368}
4369
4370static u32 vmx_pin_based_exec_ctrl(struct vcpu_vmx *vmx)
4371{
4372	u32 pin_based_exec_ctrl = vmcs_config.pin_based_exec_ctrl;
4373
4374	if (!kvm_vcpu_apicv_active(&vmx->vcpu))
4375		pin_based_exec_ctrl &= ~PIN_BASED_POSTED_INTR;
4376
4377	if (!enable_vnmi)
4378		pin_based_exec_ctrl &= ~PIN_BASED_VIRTUAL_NMIS;
4379
4380	if (!enable_preemption_timer)
4381		pin_based_exec_ctrl &= ~PIN_BASED_VMX_PREEMPTION_TIMER;
4382
4383	return pin_based_exec_ctrl;
4384}
4385
4386static u32 vmx_vmentry_ctrl(void)
4387{
4388	u32 vmentry_ctrl = vmcs_config.vmentry_ctrl;
4389
4390	if (vmx_pt_mode_is_system())
4391		vmentry_ctrl &= ~(VM_ENTRY_PT_CONCEAL_PIP |
4392				  VM_ENTRY_LOAD_IA32_RTIT_CTL);
4393	/*
4394	 * IA32e mode, and loading of EFER and PERF_GLOBAL_CTRL are toggled dynamically.
4395	 */
4396	vmentry_ctrl &= ~(VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL |
4397			  VM_ENTRY_LOAD_IA32_EFER |
4398			  VM_ENTRY_IA32E_MODE);
4399
4400	if (cpu_has_perf_global_ctrl_bug())
4401		vmentry_ctrl &= ~VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL;
4402
4403	return vmentry_ctrl;
4404}
4405
4406static u32 vmx_vmexit_ctrl(void)
4407{
4408	u32 vmexit_ctrl = vmcs_config.vmexit_ctrl;
4409
4410	/*
4411	 * Not used by KVM and never set in vmcs01 or vmcs02, but emulated for
4412	 * nested virtualization and thus allowed to be set in vmcs12.
4413	 */
4414	vmexit_ctrl &= ~(VM_EXIT_SAVE_IA32_PAT | VM_EXIT_SAVE_IA32_EFER |
4415			 VM_EXIT_SAVE_VMX_PREEMPTION_TIMER);
4416
4417	if (vmx_pt_mode_is_system())
4418		vmexit_ctrl &= ~(VM_EXIT_PT_CONCEAL_PIP |
4419				 VM_EXIT_CLEAR_IA32_RTIT_CTL);
4420
4421	if (cpu_has_perf_global_ctrl_bug())
4422		vmexit_ctrl &= ~VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL;
4423
4424	/* Loading of EFER and PERF_GLOBAL_CTRL are toggled dynamically */
4425	return vmexit_ctrl &
4426		~(VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL | VM_EXIT_LOAD_IA32_EFER);
4427}
4428
4429static void vmx_refresh_apicv_exec_ctrl(struct kvm_vcpu *vcpu)
4430{
4431	struct vcpu_vmx *vmx = to_vmx(vcpu);
4432
4433	if (is_guest_mode(vcpu)) {
4434		vmx->nested.update_vmcs01_apicv_status = true;
4435		return;
4436	}
4437
4438	pin_controls_set(vmx, vmx_pin_based_exec_ctrl(vmx));
4439
4440	if (kvm_vcpu_apicv_active(vcpu)) {
4441		secondary_exec_controls_setbit(vmx,
4442					       SECONDARY_EXEC_APIC_REGISTER_VIRT |
4443					       SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY);
4444		if (enable_ipiv)
4445			tertiary_exec_controls_setbit(vmx, TERTIARY_EXEC_IPI_VIRT);
4446	} else {
4447		secondary_exec_controls_clearbit(vmx,
4448						 SECONDARY_EXEC_APIC_REGISTER_VIRT |
4449						 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY);
4450		if (enable_ipiv)
4451			tertiary_exec_controls_clearbit(vmx, TERTIARY_EXEC_IPI_VIRT);
4452	}
4453
4454	vmx_update_msr_bitmap_x2apic(vcpu);
4455}
4456
4457static u32 vmx_exec_control(struct vcpu_vmx *vmx)
4458{
4459	u32 exec_control = vmcs_config.cpu_based_exec_ctrl;
4460
4461	/*
4462	 * Not used by KVM, but fully supported for nesting, i.e. are allowed in
4463	 * vmcs12 and propagated to vmcs02 when set in vmcs12.
4464	 */
4465	exec_control &= ~(CPU_BASED_RDTSC_EXITING |
4466			  CPU_BASED_USE_IO_BITMAPS |
4467			  CPU_BASED_MONITOR_TRAP_FLAG |
4468			  CPU_BASED_PAUSE_EXITING);
4469
4470	/* INTR_WINDOW_EXITING and NMI_WINDOW_EXITING are toggled dynamically */
4471	exec_control &= ~(CPU_BASED_INTR_WINDOW_EXITING |
4472			  CPU_BASED_NMI_WINDOW_EXITING);
4473
4474	if (vmx->vcpu.arch.switch_db_regs & KVM_DEBUGREG_WONT_EXIT)
4475		exec_control &= ~CPU_BASED_MOV_DR_EXITING;
4476
4477	if (!cpu_need_tpr_shadow(&vmx->vcpu))
4478		exec_control &= ~CPU_BASED_TPR_SHADOW;
4479
4480#ifdef CONFIG_X86_64
4481	if (exec_control & CPU_BASED_TPR_SHADOW)
4482		exec_control &= ~(CPU_BASED_CR8_LOAD_EXITING |
4483				  CPU_BASED_CR8_STORE_EXITING);
4484	else
4485		exec_control |= CPU_BASED_CR8_STORE_EXITING |
4486				CPU_BASED_CR8_LOAD_EXITING;
4487#endif
4488	/* No need to intercept CR3 access or INVPLG when using EPT. */
4489	if (enable_ept)
4490		exec_control &= ~(CPU_BASED_CR3_LOAD_EXITING |
4491				  CPU_BASED_CR3_STORE_EXITING |
4492				  CPU_BASED_INVLPG_EXITING);
4493	if (kvm_mwait_in_guest(vmx->vcpu.kvm))
4494		exec_control &= ~(CPU_BASED_MWAIT_EXITING |
4495				CPU_BASED_MONITOR_EXITING);
4496	if (kvm_hlt_in_guest(vmx->vcpu.kvm))
4497		exec_control &= ~CPU_BASED_HLT_EXITING;
4498	return exec_control;
4499}
4500
4501static u64 vmx_tertiary_exec_control(struct vcpu_vmx *vmx)
4502{
4503	u64 exec_control = vmcs_config.cpu_based_3rd_exec_ctrl;
4504
4505	/*
4506	 * IPI virtualization relies on APICv. Disable IPI virtualization if
4507	 * APICv is inhibited.
4508	 */
4509	if (!enable_ipiv || !kvm_vcpu_apicv_active(&vmx->vcpu))
4510		exec_control &= ~TERTIARY_EXEC_IPI_VIRT;
4511
4512	return exec_control;
4513}
4514
4515/*
4516 * Adjust a single secondary execution control bit to intercept/allow an
4517 * instruction in the guest.  This is usually done based on whether or not a
4518 * feature has been exposed to the guest in order to correctly emulate faults.
4519 */
4520static inline void
4521vmx_adjust_secondary_exec_control(struct vcpu_vmx *vmx, u32 *exec_control,
4522				  u32 control, bool enabled, bool exiting)
4523{
4524	/*
4525	 * If the control is for an opt-in feature, clear the control if the
4526	 * feature is not exposed to the guest, i.e. not enabled.  If the
4527	 * control is opt-out, i.e. an exiting control, clear the control if
4528	 * the feature _is_ exposed to the guest, i.e. exiting/interception is
4529	 * disabled for the associated instruction.  Note, the caller is
4530	 * responsible presetting exec_control to set all supported bits.
4531	 */
4532	if (enabled == exiting)
4533		*exec_control &= ~control;
4534
4535	/*
4536	 * Update the nested MSR settings so that a nested VMM can/can't set
4537	 * controls for features that are/aren't exposed to the guest.
4538	 */
4539	if (nested) {
4540		/*
4541		 * All features that can be added or removed to VMX MSRs must
4542		 * be supported in the first place for nested virtualization.
4543		 */
4544		if (WARN_ON_ONCE(!(vmcs_config.nested.secondary_ctls_high & control)))
4545			enabled = false;
4546
4547		if (enabled)
4548			vmx->nested.msrs.secondary_ctls_high |= control;
4549		else
4550			vmx->nested.msrs.secondary_ctls_high &= ~control;
4551	}
4552}
4553
4554/*
4555 * Wrapper macro for the common case of adjusting a secondary execution control
4556 * based on a single guest CPUID bit, with a dedicated feature bit.  This also
4557 * verifies that the control is actually supported by KVM and hardware.
4558 */
4559#define vmx_adjust_sec_exec_control(vmx, exec_control, name, feat_name, ctrl_name, exiting)	\
4560({												\
4561	struct kvm_vcpu *__vcpu = &(vmx)->vcpu;							\
4562	bool __enabled;										\
4563												\
4564	if (cpu_has_vmx_##name()) {								\
4565		if (kvm_is_governed_feature(X86_FEATURE_##feat_name))				\
4566			__enabled = guest_can_use(__vcpu, X86_FEATURE_##feat_name);		\
4567		else										\
4568			__enabled = guest_cpuid_has(__vcpu, X86_FEATURE_##feat_name);		\
4569		vmx_adjust_secondary_exec_control(vmx, exec_control, SECONDARY_EXEC_##ctrl_name,\
4570						  __enabled, exiting);				\
4571	}											\
4572})
4573
4574/* More macro magic for ENABLE_/opt-in versus _EXITING/opt-out controls. */
4575#define vmx_adjust_sec_exec_feature(vmx, exec_control, lname, uname) \
4576	vmx_adjust_sec_exec_control(vmx, exec_control, lname, uname, ENABLE_##uname, false)
4577
4578#define vmx_adjust_sec_exec_exiting(vmx, exec_control, lname, uname) \
4579	vmx_adjust_sec_exec_control(vmx, exec_control, lname, uname, uname##_EXITING, true)
4580
4581static u32 vmx_secondary_exec_control(struct vcpu_vmx *vmx)
4582{
4583	struct kvm_vcpu *vcpu = &vmx->vcpu;
4584
4585	u32 exec_control = vmcs_config.cpu_based_2nd_exec_ctrl;
4586
4587	if (vmx_pt_mode_is_system())
4588		exec_control &= ~(SECONDARY_EXEC_PT_USE_GPA | SECONDARY_EXEC_PT_CONCEAL_VMX);
4589	if (!cpu_need_virtualize_apic_accesses(vcpu))
4590		exec_control &= ~SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
4591	if (vmx->vpid == 0)
4592		exec_control &= ~SECONDARY_EXEC_ENABLE_VPID;
4593	if (!enable_ept) {
4594		exec_control &= ~SECONDARY_EXEC_ENABLE_EPT;
4595		enable_unrestricted_guest = 0;
4596	}
4597	if (!enable_unrestricted_guest)
4598		exec_control &= ~SECONDARY_EXEC_UNRESTRICTED_GUEST;
4599	if (kvm_pause_in_guest(vmx->vcpu.kvm))
4600		exec_control &= ~SECONDARY_EXEC_PAUSE_LOOP_EXITING;
4601	if (!kvm_vcpu_apicv_active(vcpu))
4602		exec_control &= ~(SECONDARY_EXEC_APIC_REGISTER_VIRT |
4603				  SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY);
4604	exec_control &= ~SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE;
4605
4606	/*
4607	 * KVM doesn't support VMFUNC for L1, but the control is set in KVM's
4608	 * base configuration as KVM emulates VMFUNC[EPTP_SWITCHING] for L2.
4609	 */
4610	exec_control &= ~SECONDARY_EXEC_ENABLE_VMFUNC;
4611
4612	/* SECONDARY_EXEC_DESC is enabled/disabled on writes to CR4.UMIP,
4613	 * in vmx_set_cr4.  */
4614	exec_control &= ~SECONDARY_EXEC_DESC;
4615
4616	/* SECONDARY_EXEC_SHADOW_VMCS is enabled when L1 executes VMPTRLD
4617	   (handle_vmptrld).
4618	   We can NOT enable shadow_vmcs here because we don't have yet
4619	   a current VMCS12
4620	*/
4621	exec_control &= ~SECONDARY_EXEC_SHADOW_VMCS;
4622
4623	/*
4624	 * PML is enabled/disabled when dirty logging of memsmlots changes, but
4625	 * it needs to be set here when dirty logging is already active, e.g.
4626	 * if this vCPU was created after dirty logging was enabled.
4627	 */
4628	if (!enable_pml || !atomic_read(&vcpu->kvm->nr_memslots_dirty_logging))
4629		exec_control &= ~SECONDARY_EXEC_ENABLE_PML;
4630
4631	vmx_adjust_sec_exec_feature(vmx, &exec_control, xsaves, XSAVES);
4632
4633	/*
4634	 * RDPID is also gated by ENABLE_RDTSCP, turn on the control if either
4635	 * feature is exposed to the guest.  This creates a virtualization hole
4636	 * if both are supported in hardware but only one is exposed to the
4637	 * guest, but letting the guest execute RDTSCP or RDPID when either one
4638	 * is advertised is preferable to emulating the advertised instruction
4639	 * in KVM on #UD, and obviously better than incorrectly injecting #UD.
4640	 */
4641	if (cpu_has_vmx_rdtscp()) {
4642		bool rdpid_or_rdtscp_enabled =
4643			guest_cpuid_has(vcpu, X86_FEATURE_RDTSCP) ||
4644			guest_cpuid_has(vcpu, X86_FEATURE_RDPID);
4645
4646		vmx_adjust_secondary_exec_control(vmx, &exec_control,
4647						  SECONDARY_EXEC_ENABLE_RDTSCP,
4648						  rdpid_or_rdtscp_enabled, false);
4649	}
4650
4651	vmx_adjust_sec_exec_feature(vmx, &exec_control, invpcid, INVPCID);
4652
4653	vmx_adjust_sec_exec_exiting(vmx, &exec_control, rdrand, RDRAND);
4654	vmx_adjust_sec_exec_exiting(vmx, &exec_control, rdseed, RDSEED);
4655
4656	vmx_adjust_sec_exec_control(vmx, &exec_control, waitpkg, WAITPKG,
4657				    ENABLE_USR_WAIT_PAUSE, false);
4658
4659	if (!vcpu->kvm->arch.bus_lock_detection_enabled)
4660		exec_control &= ~SECONDARY_EXEC_BUS_LOCK_DETECTION;
4661
4662	if (!kvm_notify_vmexit_enabled(vcpu->kvm))
4663		exec_control &= ~SECONDARY_EXEC_NOTIFY_VM_EXITING;
4664
4665	return exec_control;
4666}
4667
4668static inline int vmx_get_pid_table_order(struct kvm *kvm)
4669{
4670	return get_order(kvm->arch.max_vcpu_ids * sizeof(*to_kvm_vmx(kvm)->pid_table));
4671}
4672
4673static int vmx_alloc_ipiv_pid_table(struct kvm *kvm)
4674{
4675	struct page *pages;
4676	struct kvm_vmx *kvm_vmx = to_kvm_vmx(kvm);
4677
4678	if (!irqchip_in_kernel(kvm) || !enable_ipiv)
4679		return 0;
4680
4681	if (kvm_vmx->pid_table)
4682		return 0;
4683
4684	pages = alloc_pages(GFP_KERNEL_ACCOUNT | __GFP_ZERO,
4685			    vmx_get_pid_table_order(kvm));
4686	if (!pages)
4687		return -ENOMEM;
4688
4689	kvm_vmx->pid_table = (void *)page_address(pages);
4690	return 0;
4691}
4692
4693static int vmx_vcpu_precreate(struct kvm *kvm)
4694{
4695	return vmx_alloc_ipiv_pid_table(kvm);
4696}
4697
4698#define VMX_XSS_EXIT_BITMAP 0
4699
4700static void init_vmcs(struct vcpu_vmx *vmx)
4701{
4702	struct kvm *kvm = vmx->vcpu.kvm;
4703	struct kvm_vmx *kvm_vmx = to_kvm_vmx(kvm);
4704
4705	if (nested)
4706		nested_vmx_set_vmcs_shadowing_bitmap();
4707
4708	if (cpu_has_vmx_msr_bitmap())
4709		vmcs_write64(MSR_BITMAP, __pa(vmx->vmcs01.msr_bitmap));
4710
4711	vmcs_write64(VMCS_LINK_POINTER, INVALID_GPA); /* 22.3.1.5 */
4712
4713	/* Control */
4714	pin_controls_set(vmx, vmx_pin_based_exec_ctrl(vmx));
4715
4716	exec_controls_set(vmx, vmx_exec_control(vmx));
4717
4718	if (cpu_has_secondary_exec_ctrls())
4719		secondary_exec_controls_set(vmx, vmx_secondary_exec_control(vmx));
4720
4721	if (cpu_has_tertiary_exec_ctrls())
4722		tertiary_exec_controls_set(vmx, vmx_tertiary_exec_control(vmx));
4723
4724	if (enable_apicv && lapic_in_kernel(&vmx->vcpu)) {
4725		vmcs_write64(EOI_EXIT_BITMAP0, 0);
4726		vmcs_write64(EOI_EXIT_BITMAP1, 0);
4727		vmcs_write64(EOI_EXIT_BITMAP2, 0);
4728		vmcs_write64(EOI_EXIT_BITMAP3, 0);
4729
4730		vmcs_write16(GUEST_INTR_STATUS, 0);
4731
4732		vmcs_write16(POSTED_INTR_NV, POSTED_INTR_VECTOR);
4733		vmcs_write64(POSTED_INTR_DESC_ADDR, __pa((&vmx->pi_desc)));
4734	}
4735
4736	if (vmx_can_use_ipiv(&vmx->vcpu)) {
4737		vmcs_write64(PID_POINTER_TABLE, __pa(kvm_vmx->pid_table));
4738		vmcs_write16(LAST_PID_POINTER_INDEX, kvm->arch.max_vcpu_ids - 1);
4739	}
4740
4741	if (!kvm_pause_in_guest(kvm)) {
4742		vmcs_write32(PLE_GAP, ple_gap);
4743		vmx->ple_window = ple_window;
4744		vmx->ple_window_dirty = true;
4745	}
4746
4747	if (kvm_notify_vmexit_enabled(kvm))
4748		vmcs_write32(NOTIFY_WINDOW, kvm->arch.notify_window);
4749
4750	vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK, 0);
4751	vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH, 0);
4752	vmcs_write32(CR3_TARGET_COUNT, 0);           /* 22.2.1 */
4753
4754	vmcs_write16(HOST_FS_SELECTOR, 0);            /* 22.2.4 */
4755	vmcs_write16(HOST_GS_SELECTOR, 0);            /* 22.2.4 */
4756	vmx_set_constant_host_state(vmx);
4757	vmcs_writel(HOST_FS_BASE, 0); /* 22.2.4 */
4758	vmcs_writel(HOST_GS_BASE, 0); /* 22.2.4 */
4759
4760	if (cpu_has_vmx_vmfunc())
4761		vmcs_write64(VM_FUNCTION_CONTROL, 0);
4762
4763	vmcs_write32(VM_EXIT_MSR_STORE_COUNT, 0);
4764	vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, 0);
4765	vmcs_write64(VM_EXIT_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.host.val));
4766	vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, 0);
4767	vmcs_write64(VM_ENTRY_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.guest.val));
4768
4769	if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT)
4770		vmcs_write64(GUEST_IA32_PAT, vmx->vcpu.arch.pat);
4771
4772	vm_exit_controls_set(vmx, vmx_vmexit_ctrl());
4773
4774	/* 22.2.1, 20.8.1 */
4775	vm_entry_controls_set(vmx, vmx_vmentry_ctrl());
4776
4777	vmx->vcpu.arch.cr0_guest_owned_bits = vmx_l1_guest_owned_cr0_bits();
4778	vmcs_writel(CR0_GUEST_HOST_MASK, ~vmx->vcpu.arch.cr0_guest_owned_bits);
4779
4780	set_cr4_guest_host_mask(vmx);
4781
4782	if (vmx->vpid != 0)
4783		vmcs_write16(VIRTUAL_PROCESSOR_ID, vmx->vpid);
4784
4785	if (cpu_has_vmx_xsaves())
4786		vmcs_write64(XSS_EXIT_BITMAP, VMX_XSS_EXIT_BITMAP);
4787
4788	if (enable_pml) {
4789		vmcs_write64(PML_ADDRESS, page_to_phys(vmx->pml_pg));
4790		vmcs_write16(GUEST_PML_INDEX, PML_ENTITY_NUM - 1);
4791	}
4792
4793	vmx_write_encls_bitmap(&vmx->vcpu, NULL);
4794
4795	if (vmx_pt_mode_is_host_guest()) {
4796		memset(&vmx->pt_desc, 0, sizeof(vmx->pt_desc));
4797		/* Bit[6~0] are forced to 1, writes are ignored. */
4798		vmx->pt_desc.guest.output_mask = 0x7F;
4799		vmcs_write64(GUEST_IA32_RTIT_CTL, 0);
4800	}
4801
4802	vmcs_write32(GUEST_SYSENTER_CS, 0);
4803	vmcs_writel(GUEST_SYSENTER_ESP, 0);
4804	vmcs_writel(GUEST_SYSENTER_EIP, 0);
4805	vmcs_write64(GUEST_IA32_DEBUGCTL, 0);
4806
4807	if (cpu_has_vmx_tpr_shadow()) {
4808		vmcs_write64(VIRTUAL_APIC_PAGE_ADDR, 0);
4809		if (cpu_need_tpr_shadow(&vmx->vcpu))
4810			vmcs_write64(VIRTUAL_APIC_PAGE_ADDR,
4811				     __pa(vmx->vcpu.arch.apic->regs));
4812		vmcs_write32(TPR_THRESHOLD, 0);
4813	}
4814
4815	vmx_setup_uret_msrs(vmx);
4816}
4817
4818static void __vmx_vcpu_reset(struct kvm_vcpu *vcpu)
4819{
4820	struct vcpu_vmx *vmx = to_vmx(vcpu);
4821
4822	init_vmcs(vmx);
4823
4824	if (nested)
4825		memcpy(&vmx->nested.msrs, &vmcs_config.nested, sizeof(vmx->nested.msrs));
4826
4827	vcpu_setup_sgx_lepubkeyhash(vcpu);
4828
4829	vmx->nested.posted_intr_nv = -1;
4830	vmx->nested.vmxon_ptr = INVALID_GPA;
4831	vmx->nested.current_vmptr = INVALID_GPA;
4832
4833#ifdef CONFIG_KVM_HYPERV
4834	vmx->nested.hv_evmcs_vmptr = EVMPTR_INVALID;
4835#endif
4836
4837	vcpu->arch.microcode_version = 0x100000000ULL;
4838	vmx->msr_ia32_feature_control_valid_bits = FEAT_CTL_LOCKED;
4839
4840	/*
4841	 * Enforce invariant: pi_desc.nv is always either POSTED_INTR_VECTOR
4842	 * or POSTED_INTR_WAKEUP_VECTOR.
4843	 */
4844	vmx->pi_desc.nv = POSTED_INTR_VECTOR;
4845	vmx->pi_desc.sn = 1;
4846}
4847
4848static void vmx_vcpu_reset(struct kvm_vcpu *vcpu, bool init_event)
4849{
4850	struct vcpu_vmx *vmx = to_vmx(vcpu);
4851
4852	if (!init_event)
4853		__vmx_vcpu_reset(vcpu);
4854
4855	vmx->rmode.vm86_active = 0;
4856	vmx->spec_ctrl = 0;
4857
4858	vmx->msr_ia32_umwait_control = 0;
4859
4860	vmx->hv_deadline_tsc = -1;
4861	kvm_set_cr8(vcpu, 0);
4862
4863	vmx_segment_cache_clear(vmx);
4864	kvm_register_mark_available(vcpu, VCPU_EXREG_SEGMENTS);
4865
4866	seg_setup(VCPU_SREG_CS);
4867	vmcs_write16(GUEST_CS_SELECTOR, 0xf000);
4868	vmcs_writel(GUEST_CS_BASE, 0xffff0000ul);
4869
4870	seg_setup(VCPU_SREG_DS);
4871	seg_setup(VCPU_SREG_ES);
4872	seg_setup(VCPU_SREG_FS);
4873	seg_setup(VCPU_SREG_GS);
4874	seg_setup(VCPU_SREG_SS);
4875
4876	vmcs_write16(GUEST_TR_SELECTOR, 0);
4877	vmcs_writel(GUEST_TR_BASE, 0);
4878	vmcs_write32(GUEST_TR_LIMIT, 0xffff);
4879	vmcs_write32(GUEST_TR_AR_BYTES, 0x008b);
4880
4881	vmcs_write16(GUEST_LDTR_SELECTOR, 0);
4882	vmcs_writel(GUEST_LDTR_BASE, 0);
4883	vmcs_write32(GUEST_LDTR_LIMIT, 0xffff);
4884	vmcs_write32(GUEST_LDTR_AR_BYTES, 0x00082);
4885
4886	vmcs_writel(GUEST_GDTR_BASE, 0);
4887	vmcs_write32(GUEST_GDTR_LIMIT, 0xffff);
4888
4889	vmcs_writel(GUEST_IDTR_BASE, 0);
4890	vmcs_write32(GUEST_IDTR_LIMIT, 0xffff);
4891
4892	vmcs_write32(GUEST_ACTIVITY_STATE, GUEST_ACTIVITY_ACTIVE);
4893	vmcs_write32(GUEST_INTERRUPTIBILITY_INFO, 0);
4894	vmcs_writel(GUEST_PENDING_DBG_EXCEPTIONS, 0);
4895	if (kvm_mpx_supported())
4896		vmcs_write64(GUEST_BNDCFGS, 0);
4897
4898	vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0);  /* 22.2.1 */
4899
4900	kvm_make_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu);
4901
4902	vpid_sync_context(vmx->vpid);
4903
4904	vmx_update_fb_clear_dis(vcpu, vmx);
4905}
4906
4907static void vmx_enable_irq_window(struct kvm_vcpu *vcpu)
4908{
4909	exec_controls_setbit(to_vmx(vcpu), CPU_BASED_INTR_WINDOW_EXITING);
4910}
4911
4912static void vmx_enable_nmi_window(struct kvm_vcpu *vcpu)
4913{
4914	if (!enable_vnmi ||
4915	    vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & GUEST_INTR_STATE_STI) {
4916		vmx_enable_irq_window(vcpu);
4917		return;
4918	}
4919
4920	exec_controls_setbit(to_vmx(vcpu), CPU_BASED_NMI_WINDOW_EXITING);
4921}
4922
4923static void vmx_inject_irq(struct kvm_vcpu *vcpu, bool reinjected)
4924{
4925	struct vcpu_vmx *vmx = to_vmx(vcpu);
4926	uint32_t intr;
4927	int irq = vcpu->arch.interrupt.nr;
4928
4929	trace_kvm_inj_virq(irq, vcpu->arch.interrupt.soft, reinjected);
4930
4931	++vcpu->stat.irq_injections;
4932	if (vmx->rmode.vm86_active) {
4933		int inc_eip = 0;
4934		if (vcpu->arch.interrupt.soft)
4935			inc_eip = vcpu->arch.event_exit_inst_len;
4936		kvm_inject_realmode_interrupt(vcpu, irq, inc_eip);
4937		return;
4938	}
4939	intr = irq | INTR_INFO_VALID_MASK;
4940	if (vcpu->arch.interrupt.soft) {
4941		intr |= INTR_TYPE_SOFT_INTR;
4942		vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
4943			     vmx->vcpu.arch.event_exit_inst_len);
4944	} else
4945		intr |= INTR_TYPE_EXT_INTR;
4946	vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, intr);
4947
4948	vmx_clear_hlt(vcpu);
4949}
4950
4951static void vmx_inject_nmi(struct kvm_vcpu *vcpu)
4952{
4953	struct vcpu_vmx *vmx = to_vmx(vcpu);
4954
4955	if (!enable_vnmi) {
4956		/*
4957		 * Tracking the NMI-blocked state in software is built upon
4958		 * finding the next open IRQ window. This, in turn, depends on
4959		 * well-behaving guests: They have to keep IRQs disabled at
4960		 * least as long as the NMI handler runs. Otherwise we may
4961		 * cause NMI nesting, maybe breaking the guest. But as this is
4962		 * highly unlikely, we can live with the residual risk.
4963		 */
4964		vmx->loaded_vmcs->soft_vnmi_blocked = 1;
4965		vmx->loaded_vmcs->vnmi_blocked_time = 0;
4966	}
4967
4968	++vcpu->stat.nmi_injections;
4969	vmx->loaded_vmcs->nmi_known_unmasked = false;
4970
4971	if (vmx->rmode.vm86_active) {
4972		kvm_inject_realmode_interrupt(vcpu, NMI_VECTOR, 0);
4973		return;
4974	}
4975
4976	vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
4977			INTR_TYPE_NMI_INTR | INTR_INFO_VALID_MASK | NMI_VECTOR);
4978
4979	vmx_clear_hlt(vcpu);
4980}
4981
4982bool vmx_get_nmi_mask(struct kvm_vcpu *vcpu)
4983{
4984	struct vcpu_vmx *vmx = to_vmx(vcpu);
4985	bool masked;
4986
4987	if (!enable_vnmi)
4988		return vmx->loaded_vmcs->soft_vnmi_blocked;
4989	if (vmx->loaded_vmcs->nmi_known_unmasked)
4990		return false;
4991	masked = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & GUEST_INTR_STATE_NMI;
4992	vmx->loaded_vmcs->nmi_known_unmasked = !masked;
4993	return masked;
4994}
4995
4996void vmx_set_nmi_mask(struct kvm_vcpu *vcpu, bool masked)
4997{
4998	struct vcpu_vmx *vmx = to_vmx(vcpu);
4999
5000	if (!enable_vnmi) {
5001		if (vmx->loaded_vmcs->soft_vnmi_blocked != masked) {
5002			vmx->loaded_vmcs->soft_vnmi_blocked = masked;
5003			vmx->loaded_vmcs->vnmi_blocked_time = 0;
5004		}
5005	} else {
5006		vmx->loaded_vmcs->nmi_known_unmasked = !masked;
5007		if (masked)
5008			vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
5009				      GUEST_INTR_STATE_NMI);
5010		else
5011			vmcs_clear_bits(GUEST_INTERRUPTIBILITY_INFO,
5012					GUEST_INTR_STATE_NMI);
5013	}
5014}
5015
5016bool vmx_nmi_blocked(struct kvm_vcpu *vcpu)
5017{
5018	if (is_guest_mode(vcpu) && nested_exit_on_nmi(vcpu))
5019		return false;
5020
5021	if (!enable_vnmi && to_vmx(vcpu)->loaded_vmcs->soft_vnmi_blocked)
5022		return true;
5023
5024	return (vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) &
5025		(GUEST_INTR_STATE_MOV_SS | GUEST_INTR_STATE_STI |
5026		 GUEST_INTR_STATE_NMI));
5027}
5028
5029static int vmx_nmi_allowed(struct kvm_vcpu *vcpu, bool for_injection)
5030{
5031	if (to_vmx(vcpu)->nested.nested_run_pending)
5032		return -EBUSY;
5033
5034	/* An NMI must not be injected into L2 if it's supposed to VM-Exit.  */
5035	if (for_injection && is_guest_mode(vcpu) && nested_exit_on_nmi(vcpu))
5036		return -EBUSY;
5037
5038	return !vmx_nmi_blocked(vcpu);
5039}
5040
5041bool vmx_interrupt_blocked(struct kvm_vcpu *vcpu)
5042{
5043	if (is_guest_mode(vcpu) && nested_exit_on_intr(vcpu))
5044		return false;
5045
5046	return !(vmx_get_rflags(vcpu) & X86_EFLAGS_IF) ||
5047	       (vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) &
5048		(GUEST_INTR_STATE_STI | GUEST_INTR_STATE_MOV_SS));
5049}
5050
5051static int vmx_interrupt_allowed(struct kvm_vcpu *vcpu, bool for_injection)
5052{
5053	if (to_vmx(vcpu)->nested.nested_run_pending)
5054		return -EBUSY;
5055
5056	/*
5057	 * An IRQ must not be injected into L2 if it's supposed to VM-Exit,
5058	 * e.g. if the IRQ arrived asynchronously after checking nested events.
5059	 */
5060	if (for_injection && is_guest_mode(vcpu) && nested_exit_on_intr(vcpu))
5061		return -EBUSY;
5062
5063	return !vmx_interrupt_blocked(vcpu);
5064}
5065
5066static int vmx_set_tss_addr(struct kvm *kvm, unsigned int addr)
5067{
5068	void __user *ret;
5069
5070	if (enable_unrestricted_guest)
5071		return 0;
5072
5073	mutex_lock(&kvm->slots_lock);
5074	ret = __x86_set_memory_region(kvm, TSS_PRIVATE_MEMSLOT, addr,
5075				      PAGE_SIZE * 3);
5076	mutex_unlock(&kvm->slots_lock);
5077
5078	if (IS_ERR(ret))
5079		return PTR_ERR(ret);
5080
5081	to_kvm_vmx(kvm)->tss_addr = addr;
5082
5083	return init_rmode_tss(kvm, ret);
5084}
5085
5086static int vmx_set_identity_map_addr(struct kvm *kvm, u64 ident_addr)
5087{
5088	to_kvm_vmx(kvm)->ept_identity_map_addr = ident_addr;
5089	return 0;
5090}
5091
5092static bool rmode_exception(struct kvm_vcpu *vcpu, int vec)
5093{
5094	switch (vec) {
5095	case BP_VECTOR:
5096		/*
5097		 * Update instruction length as we may reinject the exception
5098		 * from user space while in guest debugging mode.
5099		 */
5100		to_vmx(vcpu)->vcpu.arch.event_exit_inst_len =
5101			vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
5102		if (vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP)
5103			return false;
5104		fallthrough;
5105	case DB_VECTOR:
5106		return !(vcpu->guest_debug &
5107			(KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP));
5108	case DE_VECTOR:
5109	case OF_VECTOR:
5110	case BR_VECTOR:
5111	case UD_VECTOR:
5112	case DF_VECTOR:
5113	case SS_VECTOR:
5114	case GP_VECTOR:
5115	case MF_VECTOR:
5116		return true;
5117	}
5118	return false;
5119}
5120
5121static int handle_rmode_exception(struct kvm_vcpu *vcpu,
5122				  int vec, u32 err_code)
5123{
5124	/*
5125	 * Instruction with address size override prefix opcode 0x67
5126	 * Cause the #SS fault with 0 error code in VM86 mode.
5127	 */
5128	if (((vec == GP_VECTOR) || (vec == SS_VECTOR)) && err_code == 0) {
5129		if (kvm_emulate_instruction(vcpu, 0)) {
5130			if (vcpu->arch.halt_request) {
5131				vcpu->arch.halt_request = 0;
5132				return kvm_emulate_halt_noskip(vcpu);
5133			}
5134			return 1;
5135		}
5136		return 0;
5137	}
5138
5139	/*
5140	 * Forward all other exceptions that are valid in real mode.
5141	 * FIXME: Breaks guest debugging in real mode, needs to be fixed with
5142	 *        the required debugging infrastructure rework.
5143	 */
5144	kvm_queue_exception(vcpu, vec);
5145	return 1;
5146}
5147
5148static int handle_machine_check(struct kvm_vcpu *vcpu)
5149{
5150	/* handled by vmx_vcpu_run() */
5151	return 1;
5152}
5153
5154/*
5155 * If the host has split lock detection disabled, then #AC is
5156 * unconditionally injected into the guest, which is the pre split lock
5157 * detection behaviour.
5158 *
5159 * If the host has split lock detection enabled then #AC is
5160 * only injected into the guest when:
5161 *  - Guest CPL == 3 (user mode)
5162 *  - Guest has #AC detection enabled in CR0
5163 *  - Guest EFLAGS has AC bit set
5164 */
5165bool vmx_guest_inject_ac(struct kvm_vcpu *vcpu)
5166{
5167	if (!boot_cpu_has(X86_FEATURE_SPLIT_LOCK_DETECT))
5168		return true;
5169
5170	return vmx_get_cpl(vcpu) == 3 && kvm_is_cr0_bit_set(vcpu, X86_CR0_AM) &&
5171	       (kvm_get_rflags(vcpu) & X86_EFLAGS_AC);
5172}
5173
5174static int handle_exception_nmi(struct kvm_vcpu *vcpu)
5175{
5176	struct vcpu_vmx *vmx = to_vmx(vcpu);
5177	struct kvm_run *kvm_run = vcpu->run;
5178	u32 intr_info, ex_no, error_code;
5179	unsigned long cr2, dr6;
5180	u32 vect_info;
5181
5182	vect_info = vmx->idt_vectoring_info;
5183	intr_info = vmx_get_intr_info(vcpu);
5184
5185	/*
5186	 * Machine checks are handled by handle_exception_irqoff(), or by
5187	 * vmx_vcpu_run() if a #MC occurs on VM-Entry.  NMIs are handled by
5188	 * vmx_vcpu_enter_exit().
5189	 */
5190	if (is_machine_check(intr_info) || is_nmi(intr_info))
5191		return 1;
5192
5193	/*
5194	 * Queue the exception here instead of in handle_nm_fault_irqoff().
5195	 * This ensures the nested_vmx check is not skipped so vmexit can
5196	 * be reflected to L1 (when it intercepts #NM) before reaching this
5197	 * point.
5198	 */
5199	if (is_nm_fault(intr_info)) {
5200		kvm_queue_exception(vcpu, NM_VECTOR);
5201		return 1;
5202	}
5203
5204	if (is_invalid_opcode(intr_info))
5205		return handle_ud(vcpu);
5206
5207	error_code = 0;
5208	if (intr_info & INTR_INFO_DELIVER_CODE_MASK)
5209		error_code = vmcs_read32(VM_EXIT_INTR_ERROR_CODE);
5210
5211	if (!vmx->rmode.vm86_active && is_gp_fault(intr_info)) {
5212		WARN_ON_ONCE(!enable_vmware_backdoor);
5213
5214		/*
5215		 * VMware backdoor emulation on #GP interception only handles
5216		 * IN{S}, OUT{S}, and RDPMC, none of which generate a non-zero
5217		 * error code on #GP.
5218		 */
5219		if (error_code) {
5220			kvm_queue_exception_e(vcpu, GP_VECTOR, error_code);
5221			return 1;
5222		}
5223		return kvm_emulate_instruction(vcpu, EMULTYPE_VMWARE_GP);
5224	}
5225
5226	/*
5227	 * The #PF with PFEC.RSVD = 1 indicates the guest is accessing
5228	 * MMIO, it is better to report an internal error.
5229	 * See the comments in vmx_handle_exit.
5230	 */
5231	if ((vect_info & VECTORING_INFO_VALID_MASK) &&
5232	    !(is_page_fault(intr_info) && !(error_code & PFERR_RSVD_MASK))) {
5233		vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
5234		vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_SIMUL_EX;
5235		vcpu->run->internal.ndata = 4;
5236		vcpu->run->internal.data[0] = vect_info;
5237		vcpu->run->internal.data[1] = intr_info;
5238		vcpu->run->internal.data[2] = error_code;
5239		vcpu->run->internal.data[3] = vcpu->arch.last_vmentry_cpu;
5240		return 0;
5241	}
5242
5243	if (is_page_fault(intr_info)) {
5244		cr2 = vmx_get_exit_qual(vcpu);
5245		if (enable_ept && !vcpu->arch.apf.host_apf_flags) {
5246			/*
5247			 * EPT will cause page fault only if we need to
5248			 * detect illegal GPAs.
5249			 */
5250			WARN_ON_ONCE(!allow_smaller_maxphyaddr);
5251			kvm_fixup_and_inject_pf_error(vcpu, cr2, error_code);
5252			return 1;
5253		} else
5254			return kvm_handle_page_fault(vcpu, error_code, cr2, NULL, 0);
5255	}
5256
5257	ex_no = intr_info & INTR_INFO_VECTOR_MASK;
5258
5259	if (vmx->rmode.vm86_active && rmode_exception(vcpu, ex_no))
5260		return handle_rmode_exception(vcpu, ex_no, error_code);
5261
5262	switch (ex_no) {
5263	case DB_VECTOR:
5264		dr6 = vmx_get_exit_qual(vcpu);
5265		if (!(vcpu->guest_debug &
5266		      (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP))) {
5267			/*
5268			 * If the #DB was due to ICEBP, a.k.a. INT1, skip the
5269			 * instruction.  ICEBP generates a trap-like #DB, but
5270			 * despite its interception control being tied to #DB,
5271			 * is an instruction intercept, i.e. the VM-Exit occurs
5272			 * on the ICEBP itself.  Use the inner "skip" helper to
5273			 * avoid single-step #DB and MTF updates, as ICEBP is
5274			 * higher priority.  Note, skipping ICEBP still clears
5275			 * STI and MOVSS blocking.
5276			 *
5277			 * For all other #DBs, set vmcs.PENDING_DBG_EXCEPTIONS.BS
5278			 * if single-step is enabled in RFLAGS and STI or MOVSS
5279			 * blocking is active, as the CPU doesn't set the bit
5280			 * on VM-Exit due to #DB interception.  VM-Entry has a
5281			 * consistency check that a single-step #DB is pending
5282			 * in this scenario as the previous instruction cannot
5283			 * have toggled RFLAGS.TF 0=>1 (because STI and POP/MOV
5284			 * don't modify RFLAGS), therefore the one instruction
5285			 * delay when activating single-step breakpoints must
5286			 * have already expired.  Note, the CPU sets/clears BS
5287			 * as appropriate for all other VM-Exits types.
5288			 */
5289			if (is_icebp(intr_info))
5290				WARN_ON(!skip_emulated_instruction(vcpu));
5291			else if ((vmx_get_rflags(vcpu) & X86_EFLAGS_TF) &&
5292				 (vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) &
5293				  (GUEST_INTR_STATE_STI | GUEST_INTR_STATE_MOV_SS)))
5294				vmcs_writel(GUEST_PENDING_DBG_EXCEPTIONS,
5295					    vmcs_readl(GUEST_PENDING_DBG_EXCEPTIONS) | DR6_BS);
5296
5297			kvm_queue_exception_p(vcpu, DB_VECTOR, dr6);
5298			return 1;
5299		}
5300		kvm_run->debug.arch.dr6 = dr6 | DR6_ACTIVE_LOW;
5301		kvm_run->debug.arch.dr7 = vmcs_readl(GUEST_DR7);
5302		fallthrough;
5303	case BP_VECTOR:
5304		/*
5305		 * Update instruction length as we may reinject #BP from
5306		 * user space while in guest debugging mode. Reading it for
5307		 * #DB as well causes no harm, it is not used in that case.
5308		 */
5309		vmx->vcpu.arch.event_exit_inst_len =
5310			vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
5311		kvm_run->exit_reason = KVM_EXIT_DEBUG;
5312		kvm_run->debug.arch.pc = kvm_get_linear_rip(vcpu);
5313		kvm_run->debug.arch.exception = ex_no;
5314		break;
5315	case AC_VECTOR:
5316		if (vmx_guest_inject_ac(vcpu)) {
5317			kvm_queue_exception_e(vcpu, AC_VECTOR, error_code);
5318			return 1;
5319		}
5320
5321		/*
5322		 * Handle split lock. Depending on detection mode this will
5323		 * either warn and disable split lock detection for this
5324		 * task or force SIGBUS on it.
5325		 */
5326		if (handle_guest_split_lock(kvm_rip_read(vcpu)))
5327			return 1;
5328		fallthrough;
5329	default:
5330		kvm_run->exit_reason = KVM_EXIT_EXCEPTION;
5331		kvm_run->ex.exception = ex_no;
5332		kvm_run->ex.error_code = error_code;
5333		break;
5334	}
5335	return 0;
5336}
5337
5338static __always_inline int handle_external_interrupt(struct kvm_vcpu *vcpu)
5339{
5340	++vcpu->stat.irq_exits;
5341	return 1;
5342}
5343
5344static int handle_triple_fault(struct kvm_vcpu *vcpu)
5345{
5346	vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN;
5347	vcpu->mmio_needed = 0;
5348	return 0;
5349}
5350
5351static int handle_io(struct kvm_vcpu *vcpu)
5352{
5353	unsigned long exit_qualification;
5354	int size, in, string;
5355	unsigned port;
5356
5357	exit_qualification = vmx_get_exit_qual(vcpu);
5358	string = (exit_qualification & 16) != 0;
5359
5360	++vcpu->stat.io_exits;
5361
5362	if (string)
5363		return kvm_emulate_instruction(vcpu, 0);
5364
5365	port = exit_qualification >> 16;
5366	size = (exit_qualification & 7) + 1;
5367	in = (exit_qualification & 8) != 0;
5368
5369	return kvm_fast_pio(vcpu, size, port, in);
5370}
5371
5372static void
5373vmx_patch_hypercall(struct kvm_vcpu *vcpu, unsigned char *hypercall)
5374{
5375	/*
5376	 * Patch in the VMCALL instruction:
5377	 */
5378	hypercall[0] = 0x0f;
5379	hypercall[1] = 0x01;
5380	hypercall[2] = 0xc1;
5381}
5382
5383/* called to set cr0 as appropriate for a mov-to-cr0 exit. */
5384static int handle_set_cr0(struct kvm_vcpu *vcpu, unsigned long val)
5385{
5386	if (is_guest_mode(vcpu)) {
5387		struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
5388		unsigned long orig_val = val;
5389
5390		/*
5391		 * We get here when L2 changed cr0 in a way that did not change
5392		 * any of L1's shadowed bits (see nested_vmx_exit_handled_cr),
5393		 * but did change L0 shadowed bits. So we first calculate the
5394		 * effective cr0 value that L1 would like to write into the
5395		 * hardware. It consists of the L2-owned bits from the new
5396		 * value combined with the L1-owned bits from L1's guest_cr0.
5397		 */
5398		val = (val & ~vmcs12->cr0_guest_host_mask) |
5399			(vmcs12->guest_cr0 & vmcs12->cr0_guest_host_mask);
5400
5401		if (kvm_set_cr0(vcpu, val))
5402			return 1;
5403		vmcs_writel(CR0_READ_SHADOW, orig_val);
5404		return 0;
5405	} else {
5406		return kvm_set_cr0(vcpu, val);
5407	}
5408}
5409
5410static int handle_set_cr4(struct kvm_vcpu *vcpu, unsigned long val)
5411{
5412	if (is_guest_mode(vcpu)) {
5413		struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
5414		unsigned long orig_val = val;
5415
5416		/* analogously to handle_set_cr0 */
5417		val = (val & ~vmcs12->cr4_guest_host_mask) |
5418			(vmcs12->guest_cr4 & vmcs12->cr4_guest_host_mask);
5419		if (kvm_set_cr4(vcpu, val))
5420			return 1;
5421		vmcs_writel(CR4_READ_SHADOW, orig_val);
5422		return 0;
5423	} else
5424		return kvm_set_cr4(vcpu, val);
5425}
5426
5427static int handle_desc(struct kvm_vcpu *vcpu)
5428{
5429	/*
5430	 * UMIP emulation relies on intercepting writes to CR4.UMIP, i.e. this
5431	 * and other code needs to be updated if UMIP can be guest owned.
5432	 */
5433	BUILD_BUG_ON(KVM_POSSIBLE_CR4_GUEST_BITS & X86_CR4_UMIP);
5434
5435	WARN_ON_ONCE(!kvm_is_cr4_bit_set(vcpu, X86_CR4_UMIP));
5436	return kvm_emulate_instruction(vcpu, 0);
5437}
5438
5439static int handle_cr(struct kvm_vcpu *vcpu)
5440{
5441	unsigned long exit_qualification, val;
5442	int cr;
5443	int reg;
5444	int err;
5445	int ret;
5446
5447	exit_qualification = vmx_get_exit_qual(vcpu);
5448	cr = exit_qualification & 15;
5449	reg = (exit_qualification >> 8) & 15;
5450	switch ((exit_qualification >> 4) & 3) {
5451	case 0: /* mov to cr */
5452		val = kvm_register_read(vcpu, reg);
5453		trace_kvm_cr_write(cr, val);
5454		switch (cr) {
5455		case 0:
5456			err = handle_set_cr0(vcpu, val);
5457			return kvm_complete_insn_gp(vcpu, err);
5458		case 3:
5459			WARN_ON_ONCE(enable_unrestricted_guest);
5460
5461			err = kvm_set_cr3(vcpu, val);
5462			return kvm_complete_insn_gp(vcpu, err);
5463		case 4:
5464			err = handle_set_cr4(vcpu, val);
5465			return kvm_complete_insn_gp(vcpu, err);
5466		case 8: {
5467				u8 cr8_prev = kvm_get_cr8(vcpu);
5468				u8 cr8 = (u8)val;
5469				err = kvm_set_cr8(vcpu, cr8);
5470				ret = kvm_complete_insn_gp(vcpu, err);
5471				if (lapic_in_kernel(vcpu))
5472					return ret;
5473				if (cr8_prev <= cr8)
5474					return ret;
5475				/*
5476				 * TODO: we might be squashing a
5477				 * KVM_GUESTDBG_SINGLESTEP-triggered
5478				 * KVM_EXIT_DEBUG here.
5479				 */
5480				vcpu->run->exit_reason = KVM_EXIT_SET_TPR;
5481				return 0;
5482			}
5483		}
5484		break;
5485	case 2: /* clts */
5486		KVM_BUG(1, vcpu->kvm, "Guest always owns CR0.TS");
5487		return -EIO;
5488	case 1: /*mov from cr*/
5489		switch (cr) {
5490		case 3:
5491			WARN_ON_ONCE(enable_unrestricted_guest);
5492
5493			val = kvm_read_cr3(vcpu);
5494			kvm_register_write(vcpu, reg, val);
5495			trace_kvm_cr_read(cr, val);
5496			return kvm_skip_emulated_instruction(vcpu);
5497		case 8:
5498			val = kvm_get_cr8(vcpu);
5499			kvm_register_write(vcpu, reg, val);
5500			trace_kvm_cr_read(cr, val);
5501			return kvm_skip_emulated_instruction(vcpu);
5502		}
5503		break;
5504	case 3: /* lmsw */
5505		val = (exit_qualification >> LMSW_SOURCE_DATA_SHIFT) & 0x0f;
5506		trace_kvm_cr_write(0, (kvm_read_cr0_bits(vcpu, ~0xful) | val));
5507		kvm_lmsw(vcpu, val);
5508
5509		return kvm_skip_emulated_instruction(vcpu);
5510	default:
5511		break;
5512	}
5513	vcpu->run->exit_reason = 0;
5514	vcpu_unimpl(vcpu, "unhandled control register: op %d cr %d\n",
5515	       (int)(exit_qualification >> 4) & 3, cr);
5516	return 0;
5517}
5518
5519static int handle_dr(struct kvm_vcpu *vcpu)
5520{
5521	unsigned long exit_qualification;
5522	int dr, dr7, reg;
5523	int err = 1;
5524
5525	exit_qualification = vmx_get_exit_qual(vcpu);
5526	dr = exit_qualification & DEBUG_REG_ACCESS_NUM;
5527
5528	/* First, if DR does not exist, trigger UD */
5529	if (!kvm_require_dr(vcpu, dr))
5530		return 1;
5531
5532	if (vmx_get_cpl(vcpu) > 0)
5533		goto out;
5534
5535	dr7 = vmcs_readl(GUEST_DR7);
5536	if (dr7 & DR7_GD) {
5537		/*
5538		 * As the vm-exit takes precedence over the debug trap, we
5539		 * need to emulate the latter, either for the host or the
5540		 * guest debugging itself.
5541		 */
5542		if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) {
5543			vcpu->run->debug.arch.dr6 = DR6_BD | DR6_ACTIVE_LOW;
5544			vcpu->run->debug.arch.dr7 = dr7;
5545			vcpu->run->debug.arch.pc = kvm_get_linear_rip(vcpu);
5546			vcpu->run->debug.arch.exception = DB_VECTOR;
5547			vcpu->run->exit_reason = KVM_EXIT_DEBUG;
5548			return 0;
5549		} else {
5550			kvm_queue_exception_p(vcpu, DB_VECTOR, DR6_BD);
5551			return 1;
5552		}
5553	}
5554
5555	if (vcpu->guest_debug == 0) {
5556		exec_controls_clearbit(to_vmx(vcpu), CPU_BASED_MOV_DR_EXITING);
5557
5558		/*
5559		 * No more DR vmexits; force a reload of the debug registers
5560		 * and reenter on this instruction.  The next vmexit will
5561		 * retrieve the full state of the debug registers.
5562		 */
5563		vcpu->arch.switch_db_regs |= KVM_DEBUGREG_WONT_EXIT;
5564		return 1;
5565	}
5566
5567	reg = DEBUG_REG_ACCESS_REG(exit_qualification);
5568	if (exit_qualification & TYPE_MOV_FROM_DR) {
5569		kvm_register_write(vcpu, reg, kvm_get_dr(vcpu, dr));
5570		err = 0;
5571	} else {
5572		err = kvm_set_dr(vcpu, dr, kvm_register_read(vcpu, reg));
5573	}
5574
5575out:
5576	return kvm_complete_insn_gp(vcpu, err);
5577}
5578
5579static void vmx_sync_dirty_debug_regs(struct kvm_vcpu *vcpu)
5580{
5581	get_debugreg(vcpu->arch.db[0], 0);
5582	get_debugreg(vcpu->arch.db[1], 1);
5583	get_debugreg(vcpu->arch.db[2], 2);
5584	get_debugreg(vcpu->arch.db[3], 3);
5585	get_debugreg(vcpu->arch.dr6, 6);
5586	vcpu->arch.dr7 = vmcs_readl(GUEST_DR7);
5587
5588	vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_WONT_EXIT;
5589	exec_controls_setbit(to_vmx(vcpu), CPU_BASED_MOV_DR_EXITING);
5590
5591	/*
5592	 * exc_debug expects dr6 to be cleared after it runs, avoid that it sees
5593	 * a stale dr6 from the guest.
5594	 */
5595	set_debugreg(DR6_RESERVED, 6);
5596}
5597
5598static void vmx_set_dr7(struct kvm_vcpu *vcpu, unsigned long val)
5599{
5600	vmcs_writel(GUEST_DR7, val);
5601}
5602
5603static int handle_tpr_below_threshold(struct kvm_vcpu *vcpu)
5604{
5605	kvm_apic_update_ppr(vcpu);
5606	return 1;
5607}
5608
5609static int handle_interrupt_window(struct kvm_vcpu *vcpu)
5610{
5611	exec_controls_clearbit(to_vmx(vcpu), CPU_BASED_INTR_WINDOW_EXITING);
5612
5613	kvm_make_request(KVM_REQ_EVENT, vcpu);
5614
5615	++vcpu->stat.irq_window_exits;
5616	return 1;
5617}
5618
5619static int handle_invlpg(struct kvm_vcpu *vcpu)
5620{
5621	unsigned long exit_qualification = vmx_get_exit_qual(vcpu);
5622
5623	kvm_mmu_invlpg(vcpu, exit_qualification);
5624	return kvm_skip_emulated_instruction(vcpu);
5625}
5626
5627static int handle_apic_access(struct kvm_vcpu *vcpu)
5628{
5629	if (likely(fasteoi)) {
5630		unsigned long exit_qualification = vmx_get_exit_qual(vcpu);
5631		int access_type, offset;
5632
5633		access_type = exit_qualification & APIC_ACCESS_TYPE;
5634		offset = exit_qualification & APIC_ACCESS_OFFSET;
5635		/*
5636		 * Sane guest uses MOV to write EOI, with written value
5637		 * not cared. So make a short-circuit here by avoiding
5638		 * heavy instruction emulation.
5639		 */
5640		if ((access_type == TYPE_LINEAR_APIC_INST_WRITE) &&
5641		    (offset == APIC_EOI)) {
5642			kvm_lapic_set_eoi(vcpu);
5643			return kvm_skip_emulated_instruction(vcpu);
5644		}
5645	}
5646	return kvm_emulate_instruction(vcpu, 0);
5647}
5648
5649static int handle_apic_eoi_induced(struct kvm_vcpu *vcpu)
5650{
5651	unsigned long exit_qualification = vmx_get_exit_qual(vcpu);
5652	int vector = exit_qualification & 0xff;
5653
5654	/* EOI-induced VM exit is trap-like and thus no need to adjust IP */
5655	kvm_apic_set_eoi_accelerated(vcpu, vector);
5656	return 1;
5657}
5658
5659static int handle_apic_write(struct kvm_vcpu *vcpu)
5660{
5661	unsigned long exit_qualification = vmx_get_exit_qual(vcpu);
5662
5663	/*
5664	 * APIC-write VM-Exit is trap-like, KVM doesn't need to advance RIP and
5665	 * hardware has done any necessary aliasing, offset adjustments, etc...
5666	 * for the access.  I.e. the correct value has already been  written to
5667	 * the vAPIC page for the correct 16-byte chunk.  KVM needs only to
5668	 * retrieve the register value and emulate the access.
5669	 */
5670	u32 offset = exit_qualification & 0xff0;
5671
5672	kvm_apic_write_nodecode(vcpu, offset);
5673	return 1;
5674}
5675
5676static int handle_task_switch(struct kvm_vcpu *vcpu)
5677{
5678	struct vcpu_vmx *vmx = to_vmx(vcpu);
5679	unsigned long exit_qualification;
5680	bool has_error_code = false;
5681	u32 error_code = 0;
5682	u16 tss_selector;
5683	int reason, type, idt_v, idt_index;
5684
5685	idt_v = (vmx->idt_vectoring_info & VECTORING_INFO_VALID_MASK);
5686	idt_index = (vmx->idt_vectoring_info & VECTORING_INFO_VECTOR_MASK);
5687	type = (vmx->idt_vectoring_info & VECTORING_INFO_TYPE_MASK);
5688
5689	exit_qualification = vmx_get_exit_qual(vcpu);
5690
5691	reason = (u32)exit_qualification >> 30;
5692	if (reason == TASK_SWITCH_GATE && idt_v) {
5693		switch (type) {
5694		case INTR_TYPE_NMI_INTR:
5695			vcpu->arch.nmi_injected = false;
5696			vmx_set_nmi_mask(vcpu, true);
5697			break;
5698		case INTR_TYPE_EXT_INTR:
5699		case INTR_TYPE_SOFT_INTR:
5700			kvm_clear_interrupt_queue(vcpu);
5701			break;
5702		case INTR_TYPE_HARD_EXCEPTION:
5703			if (vmx->idt_vectoring_info &
5704			    VECTORING_INFO_DELIVER_CODE_MASK) {
5705				has_error_code = true;
5706				error_code =
5707					vmcs_read32(IDT_VECTORING_ERROR_CODE);
5708			}
5709			fallthrough;
5710		case INTR_TYPE_SOFT_EXCEPTION:
5711			kvm_clear_exception_queue(vcpu);
5712			break;
5713		default:
5714			break;
5715		}
5716	}
5717	tss_selector = exit_qualification;
5718
5719	if (!idt_v || (type != INTR_TYPE_HARD_EXCEPTION &&
5720		       type != INTR_TYPE_EXT_INTR &&
5721		       type != INTR_TYPE_NMI_INTR))
5722		WARN_ON(!skip_emulated_instruction(vcpu));
5723
5724	/*
5725	 * TODO: What about debug traps on tss switch?
5726	 *       Are we supposed to inject them and update dr6?
5727	 */
5728	return kvm_task_switch(vcpu, tss_selector,
5729			       type == INTR_TYPE_SOFT_INTR ? idt_index : -1,
5730			       reason, has_error_code, error_code);
5731}
5732
5733static int handle_ept_violation(struct kvm_vcpu *vcpu)
5734{
5735	unsigned long exit_qualification;
5736	gpa_t gpa;
5737	u64 error_code;
5738
5739	exit_qualification = vmx_get_exit_qual(vcpu);
5740
5741	/*
5742	 * EPT violation happened while executing iret from NMI,
5743	 * "blocked by NMI" bit has to be set before next VM entry.
5744	 * There are errata that may cause this bit to not be set:
5745	 * AAK134, BY25.
5746	 */
5747	if (!(to_vmx(vcpu)->idt_vectoring_info & VECTORING_INFO_VALID_MASK) &&
5748			enable_vnmi &&
5749			(exit_qualification & INTR_INFO_UNBLOCK_NMI))
5750		vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO, GUEST_INTR_STATE_NMI);
5751
5752	gpa = vmcs_read64(GUEST_PHYSICAL_ADDRESS);
5753	trace_kvm_page_fault(vcpu, gpa, exit_qualification);
5754
5755	/* Is it a read fault? */
5756	error_code = (exit_qualification & EPT_VIOLATION_ACC_READ)
5757		     ? PFERR_USER_MASK : 0;
5758	/* Is it a write fault? */
5759	error_code |= (exit_qualification & EPT_VIOLATION_ACC_WRITE)
5760		      ? PFERR_WRITE_MASK : 0;
5761	/* Is it a fetch fault? */
5762	error_code |= (exit_qualification & EPT_VIOLATION_ACC_INSTR)
5763		      ? PFERR_FETCH_MASK : 0;
5764	/* ept page table entry is present? */
5765	error_code |= (exit_qualification & EPT_VIOLATION_RWX_MASK)
5766		      ? PFERR_PRESENT_MASK : 0;
5767
5768	error_code |= (exit_qualification & EPT_VIOLATION_GVA_TRANSLATED) != 0 ?
5769	       PFERR_GUEST_FINAL_MASK : PFERR_GUEST_PAGE_MASK;
5770
5771	vcpu->arch.exit_qualification = exit_qualification;
5772
5773	/*
5774	 * Check that the GPA doesn't exceed physical memory limits, as that is
5775	 * a guest page fault.  We have to emulate the instruction here, because
5776	 * if the illegal address is that of a paging structure, then
5777	 * EPT_VIOLATION_ACC_WRITE bit is set.  Alternatively, if supported we
5778	 * would also use advanced VM-exit information for EPT violations to
5779	 * reconstruct the page fault error code.
5780	 */
5781	if (unlikely(allow_smaller_maxphyaddr && !kvm_vcpu_is_legal_gpa(vcpu, gpa)))
5782		return kvm_emulate_instruction(vcpu, 0);
5783
5784	return kvm_mmu_page_fault(vcpu, gpa, error_code, NULL, 0);
5785}
5786
5787static int handle_ept_misconfig(struct kvm_vcpu *vcpu)
5788{
5789	gpa_t gpa;
5790
5791	if (vmx_check_emulate_instruction(vcpu, EMULTYPE_PF, NULL, 0))
5792		return 1;
5793
5794	/*
5795	 * A nested guest cannot optimize MMIO vmexits, because we have an
5796	 * nGPA here instead of the required GPA.
5797	 */
5798	gpa = vmcs_read64(GUEST_PHYSICAL_ADDRESS);
5799	if (!is_guest_mode(vcpu) &&
5800	    !kvm_io_bus_write(vcpu, KVM_FAST_MMIO_BUS, gpa, 0, NULL)) {
5801		trace_kvm_fast_mmio(gpa);
5802		return kvm_skip_emulated_instruction(vcpu);
5803	}
5804
5805	return kvm_mmu_page_fault(vcpu, gpa, PFERR_RSVD_MASK, NULL, 0);
5806}
5807
5808static int handle_nmi_window(struct kvm_vcpu *vcpu)
5809{
5810	if (KVM_BUG_ON(!enable_vnmi, vcpu->kvm))
5811		return -EIO;
5812
5813	exec_controls_clearbit(to_vmx(vcpu), CPU_BASED_NMI_WINDOW_EXITING);
5814	++vcpu->stat.nmi_window_exits;
5815	kvm_make_request(KVM_REQ_EVENT, vcpu);
5816
5817	return 1;
5818}
5819
5820static bool vmx_emulation_required_with_pending_exception(struct kvm_vcpu *vcpu)
5821{
5822	struct vcpu_vmx *vmx = to_vmx(vcpu);
5823
5824	return vmx->emulation_required && !vmx->rmode.vm86_active &&
5825	       (kvm_is_exception_pending(vcpu) || vcpu->arch.exception.injected);
5826}
5827
5828static int handle_invalid_guest_state(struct kvm_vcpu *vcpu)
5829{
5830	struct vcpu_vmx *vmx = to_vmx(vcpu);
5831	bool intr_window_requested;
5832	unsigned count = 130;
5833
5834	intr_window_requested = exec_controls_get(vmx) &
5835				CPU_BASED_INTR_WINDOW_EXITING;
5836
5837	while (vmx->emulation_required && count-- != 0) {
5838		if (intr_window_requested && !vmx_interrupt_blocked(vcpu))
5839			return handle_interrupt_window(&vmx->vcpu);
5840
5841		if (kvm_test_request(KVM_REQ_EVENT, vcpu))
5842			return 1;
5843
5844		if (!kvm_emulate_instruction(vcpu, 0))
5845			return 0;
5846
5847		if (vmx_emulation_required_with_pending_exception(vcpu)) {
5848			kvm_prepare_emulation_failure_exit(vcpu);
5849			return 0;
5850		}
5851
5852		if (vcpu->arch.halt_request) {
5853			vcpu->arch.halt_request = 0;
5854			return kvm_emulate_halt_noskip(vcpu);
5855		}
5856
5857		/*
5858		 * Note, return 1 and not 0, vcpu_run() will invoke
5859		 * xfer_to_guest_mode() which will create a proper return
5860		 * code.
5861		 */
5862		if (__xfer_to_guest_mode_work_pending())
5863			return 1;
5864	}
5865
5866	return 1;
5867}
5868
5869static int vmx_vcpu_pre_run(struct kvm_vcpu *vcpu)
5870{
5871	if (vmx_emulation_required_with_pending_exception(vcpu)) {
5872		kvm_prepare_emulation_failure_exit(vcpu);
5873		return 0;
5874	}
5875
5876	return 1;
5877}
5878
5879static void grow_ple_window(struct kvm_vcpu *vcpu)
5880{
5881	struct vcpu_vmx *vmx = to_vmx(vcpu);
5882	unsigned int old = vmx->ple_window;
5883
5884	vmx->ple_window = __grow_ple_window(old, ple_window,
5885					    ple_window_grow,
5886					    ple_window_max);
5887
5888	if (vmx->ple_window != old) {
5889		vmx->ple_window_dirty = true;
5890		trace_kvm_ple_window_update(vcpu->vcpu_id,
5891					    vmx->ple_window, old);
5892	}
5893}
5894
5895static void shrink_ple_window(struct kvm_vcpu *vcpu)
5896{
5897	struct vcpu_vmx *vmx = to_vmx(vcpu);
5898	unsigned int old = vmx->ple_window;
5899
5900	vmx->ple_window = __shrink_ple_window(old, ple_window,
5901					      ple_window_shrink,
5902					      ple_window);
5903
5904	if (vmx->ple_window != old) {
5905		vmx->ple_window_dirty = true;
5906		trace_kvm_ple_window_update(vcpu->vcpu_id,
5907					    vmx->ple_window, old);
5908	}
5909}
5910
5911/*
5912 * Indicate a busy-waiting vcpu in spinlock. We do not enable the PAUSE
5913 * exiting, so only get here on cpu with PAUSE-Loop-Exiting.
5914 */
5915static int handle_pause(struct kvm_vcpu *vcpu)
5916{
5917	if (!kvm_pause_in_guest(vcpu->kvm))
5918		grow_ple_window(vcpu);
5919
5920	/*
5921	 * Intel sdm vol3 ch-25.1.3 says: The "PAUSE-loop exiting"
5922	 * VM-execution control is ignored if CPL > 0. OTOH, KVM
5923	 * never set PAUSE_EXITING and just set PLE if supported,
5924	 * so the vcpu must be CPL=0 if it gets a PAUSE exit.
5925	 */
5926	kvm_vcpu_on_spin(vcpu, true);
5927	return kvm_skip_emulated_instruction(vcpu);
5928}
5929
5930static int handle_monitor_trap(struct kvm_vcpu *vcpu)
5931{
5932	return 1;
5933}
5934
5935static int handle_invpcid(struct kvm_vcpu *vcpu)
5936{
5937	u32 vmx_instruction_info;
5938	unsigned long type;
5939	gva_t gva;
5940	struct {
5941		u64 pcid;
5942		u64 gla;
5943	} operand;
5944	int gpr_index;
5945
5946	if (!guest_cpuid_has(vcpu, X86_FEATURE_INVPCID)) {
5947		kvm_queue_exception(vcpu, UD_VECTOR);
5948		return 1;
5949	}
5950
5951	vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
5952	gpr_index = vmx_get_instr_info_reg2(vmx_instruction_info);
5953	type = kvm_register_read(vcpu, gpr_index);
5954
5955	/* According to the Intel instruction reference, the memory operand
5956	 * is read even if it isn't needed (e.g., for type==all)
5957	 */
5958	if (get_vmx_mem_address(vcpu, vmx_get_exit_qual(vcpu),
5959				vmx_instruction_info, false,
5960				sizeof(operand), &gva))
5961		return 1;
5962
5963	return kvm_handle_invpcid(vcpu, type, gva);
5964}
5965
5966static int handle_pml_full(struct kvm_vcpu *vcpu)
5967{
5968	unsigned long exit_qualification;
5969
5970	trace_kvm_pml_full(vcpu->vcpu_id);
5971
5972	exit_qualification = vmx_get_exit_qual(vcpu);
5973
5974	/*
5975	 * PML buffer FULL happened while executing iret from NMI,
5976	 * "blocked by NMI" bit has to be set before next VM entry.
5977	 */
5978	if (!(to_vmx(vcpu)->idt_vectoring_info & VECTORING_INFO_VALID_MASK) &&
5979			enable_vnmi &&
5980			(exit_qualification & INTR_INFO_UNBLOCK_NMI))
5981		vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
5982				GUEST_INTR_STATE_NMI);
5983
5984	/*
5985	 * PML buffer already flushed at beginning of VMEXIT. Nothing to do
5986	 * here.., and there's no userspace involvement needed for PML.
5987	 */
5988	return 1;
5989}
5990
5991static fastpath_t handle_fastpath_preemption_timer(struct kvm_vcpu *vcpu,
5992						   bool force_immediate_exit)
5993{
5994	struct vcpu_vmx *vmx = to_vmx(vcpu);
5995
5996	/*
5997	 * In the *extremely* unlikely scenario that this is a spurious VM-Exit
5998	 * due to the timer expiring while it was "soft" disabled, just eat the
5999	 * exit and re-enter the guest.
6000	 */
6001	if (unlikely(vmx->loaded_vmcs->hv_timer_soft_disabled))
6002		return EXIT_FASTPATH_REENTER_GUEST;
6003
6004	/*
6005	 * If the timer expired because KVM used it to force an immediate exit,
6006	 * then mission accomplished.
6007	 */
6008	if (force_immediate_exit)
6009		return EXIT_FASTPATH_EXIT_HANDLED;
6010
6011	/*
6012	 * If L2 is active, go down the slow path as emulating the guest timer
6013	 * expiration likely requires synthesizing a nested VM-Exit.
6014	 */
6015	if (is_guest_mode(vcpu))
6016		return EXIT_FASTPATH_NONE;
6017
6018	kvm_lapic_expired_hv_timer(vcpu);
6019	return EXIT_FASTPATH_REENTER_GUEST;
6020}
6021
6022static int handle_preemption_timer(struct kvm_vcpu *vcpu)
6023{
6024	/*
6025	 * This non-fastpath handler is reached if and only if the preemption
6026	 * timer was being used to emulate a guest timer while L2 is active.
6027	 * All other scenarios are supposed to be handled in the fastpath.
6028	 */
6029	WARN_ON_ONCE(!is_guest_mode(vcpu));
6030	kvm_lapic_expired_hv_timer(vcpu);
6031	return 1;
6032}
6033
6034/*
6035 * When nested=0, all VMX instruction VM Exits filter here.  The handlers
6036 * are overwritten by nested_vmx_setup() when nested=1.
6037 */
6038static int handle_vmx_instruction(struct kvm_vcpu *vcpu)
6039{
6040	kvm_queue_exception(vcpu, UD_VECTOR);
6041	return 1;
6042}
6043
6044#ifndef CONFIG_X86_SGX_KVM
6045static int handle_encls(struct kvm_vcpu *vcpu)
6046{
6047	/*
6048	 * SGX virtualization is disabled.  There is no software enable bit for
6049	 * SGX, so KVM intercepts all ENCLS leafs and injects a #UD to prevent
6050	 * the guest from executing ENCLS (when SGX is supported by hardware).
6051	 */
6052	kvm_queue_exception(vcpu, UD_VECTOR);
6053	return 1;
6054}
6055#endif /* CONFIG_X86_SGX_KVM */
6056
6057static int handle_bus_lock_vmexit(struct kvm_vcpu *vcpu)
6058{
6059	/*
6060	 * Hardware may or may not set the BUS_LOCK_DETECTED flag on BUS_LOCK
6061	 * VM-Exits. Unconditionally set the flag here and leave the handling to
6062	 * vmx_handle_exit().
6063	 */
6064	to_vmx(vcpu)->exit_reason.bus_lock_detected = true;
6065	return 1;
6066}
6067
6068static int handle_notify(struct kvm_vcpu *vcpu)
6069{
6070	unsigned long exit_qual = vmx_get_exit_qual(vcpu);
6071	bool context_invalid = exit_qual & NOTIFY_VM_CONTEXT_INVALID;
6072
6073	++vcpu->stat.notify_window_exits;
6074
6075	/*
6076	 * Notify VM exit happened while executing iret from NMI,
6077	 * "blocked by NMI" bit has to be set before next VM entry.
6078	 */
6079	if (enable_vnmi && (exit_qual & INTR_INFO_UNBLOCK_NMI))
6080		vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
6081			      GUEST_INTR_STATE_NMI);
6082
6083	if (vcpu->kvm->arch.notify_vmexit_flags & KVM_X86_NOTIFY_VMEXIT_USER ||
6084	    context_invalid) {
6085		vcpu->run->exit_reason = KVM_EXIT_NOTIFY;
6086		vcpu->run->notify.flags = context_invalid ?
6087					  KVM_NOTIFY_CONTEXT_INVALID : 0;
6088		return 0;
6089	}
6090
6091	return 1;
6092}
6093
6094/*
6095 * The exit handlers return 1 if the exit was handled fully and guest execution
6096 * may resume.  Otherwise they set the kvm_run parameter to indicate what needs
6097 * to be done to userspace and return 0.
6098 */
6099static int (*kvm_vmx_exit_handlers[])(struct kvm_vcpu *vcpu) = {
6100	[EXIT_REASON_EXCEPTION_NMI]           = handle_exception_nmi,
6101	[EXIT_REASON_EXTERNAL_INTERRUPT]      = handle_external_interrupt,
6102	[EXIT_REASON_TRIPLE_FAULT]            = handle_triple_fault,
6103	[EXIT_REASON_NMI_WINDOW]	      = handle_nmi_window,
6104	[EXIT_REASON_IO_INSTRUCTION]          = handle_io,
6105	[EXIT_REASON_CR_ACCESS]               = handle_cr,
6106	[EXIT_REASON_DR_ACCESS]               = handle_dr,
6107	[EXIT_REASON_CPUID]                   = kvm_emulate_cpuid,
6108	[EXIT_REASON_MSR_READ]                = kvm_emulate_rdmsr,
6109	[EXIT_REASON_MSR_WRITE]               = kvm_emulate_wrmsr,
6110	[EXIT_REASON_INTERRUPT_WINDOW]        = handle_interrupt_window,
6111	[EXIT_REASON_HLT]                     = kvm_emulate_halt,
6112	[EXIT_REASON_INVD]		      = kvm_emulate_invd,
6113	[EXIT_REASON_INVLPG]		      = handle_invlpg,
6114	[EXIT_REASON_RDPMC]                   = kvm_emulate_rdpmc,
6115	[EXIT_REASON_VMCALL]                  = kvm_emulate_hypercall,
6116	[EXIT_REASON_VMCLEAR]		      = handle_vmx_instruction,
6117	[EXIT_REASON_VMLAUNCH]		      = handle_vmx_instruction,
6118	[EXIT_REASON_VMPTRLD]		      = handle_vmx_instruction,
6119	[EXIT_REASON_VMPTRST]		      = handle_vmx_instruction,
6120	[EXIT_REASON_VMREAD]		      = handle_vmx_instruction,
6121	[EXIT_REASON_VMRESUME]		      = handle_vmx_instruction,
6122	[EXIT_REASON_VMWRITE]		      = handle_vmx_instruction,
6123	[EXIT_REASON_VMOFF]		      = handle_vmx_instruction,
6124	[EXIT_REASON_VMON]		      = handle_vmx_instruction,
6125	[EXIT_REASON_TPR_BELOW_THRESHOLD]     = handle_tpr_below_threshold,
6126	[EXIT_REASON_APIC_ACCESS]             = handle_apic_access,
6127	[EXIT_REASON_APIC_WRITE]              = handle_apic_write,
6128	[EXIT_REASON_EOI_INDUCED]             = handle_apic_eoi_induced,
6129	[EXIT_REASON_WBINVD]                  = kvm_emulate_wbinvd,
6130	[EXIT_REASON_XSETBV]                  = kvm_emulate_xsetbv,
6131	[EXIT_REASON_TASK_SWITCH]             = handle_task_switch,
6132	[EXIT_REASON_MCE_DURING_VMENTRY]      = handle_machine_check,
6133	[EXIT_REASON_GDTR_IDTR]		      = handle_desc,
6134	[EXIT_REASON_LDTR_TR]		      = handle_desc,
6135	[EXIT_REASON_EPT_VIOLATION]	      = handle_ept_violation,
6136	[EXIT_REASON_EPT_MISCONFIG]           = handle_ept_misconfig,
6137	[EXIT_REASON_PAUSE_INSTRUCTION]       = handle_pause,
6138	[EXIT_REASON_MWAIT_INSTRUCTION]	      = kvm_emulate_mwait,
6139	[EXIT_REASON_MONITOR_TRAP_FLAG]       = handle_monitor_trap,
6140	[EXIT_REASON_MONITOR_INSTRUCTION]     = kvm_emulate_monitor,
6141	[EXIT_REASON_INVEPT]                  = handle_vmx_instruction,
6142	[EXIT_REASON_INVVPID]                 = handle_vmx_instruction,
6143	[EXIT_REASON_RDRAND]                  = kvm_handle_invalid_op,
6144	[EXIT_REASON_RDSEED]                  = kvm_handle_invalid_op,
6145	[EXIT_REASON_PML_FULL]		      = handle_pml_full,
6146	[EXIT_REASON_INVPCID]                 = handle_invpcid,
6147	[EXIT_REASON_VMFUNC]		      = handle_vmx_instruction,
6148	[EXIT_REASON_PREEMPTION_TIMER]	      = handle_preemption_timer,
6149	[EXIT_REASON_ENCLS]		      = handle_encls,
6150	[EXIT_REASON_BUS_LOCK]                = handle_bus_lock_vmexit,
6151	[EXIT_REASON_NOTIFY]		      = handle_notify,
6152};
6153
6154static const int kvm_vmx_max_exit_handlers =
6155	ARRAY_SIZE(kvm_vmx_exit_handlers);
6156
6157static void vmx_get_exit_info(struct kvm_vcpu *vcpu, u32 *reason,
6158			      u64 *info1, u64 *info2,
6159			      u32 *intr_info, u32 *error_code)
6160{
6161	struct vcpu_vmx *vmx = to_vmx(vcpu);
6162
6163	*reason = vmx->exit_reason.full;
6164	*info1 = vmx_get_exit_qual(vcpu);
6165	if (!(vmx->exit_reason.failed_vmentry)) {
6166		*info2 = vmx->idt_vectoring_info;
6167		*intr_info = vmx_get_intr_info(vcpu);
6168		if (is_exception_with_error_code(*intr_info))
6169			*error_code = vmcs_read32(VM_EXIT_INTR_ERROR_CODE);
6170		else
6171			*error_code = 0;
6172	} else {
6173		*info2 = 0;
6174		*intr_info = 0;
6175		*error_code = 0;
6176	}
6177}
6178
6179static void vmx_destroy_pml_buffer(struct vcpu_vmx *vmx)
6180{
6181	if (vmx->pml_pg) {
6182		__free_page(vmx->pml_pg);
6183		vmx->pml_pg = NULL;
6184	}
6185}
6186
6187static void vmx_flush_pml_buffer(struct kvm_vcpu *vcpu)
6188{
6189	struct vcpu_vmx *vmx = to_vmx(vcpu);
6190	u64 *pml_buf;
6191	u16 pml_idx;
6192
6193	pml_idx = vmcs_read16(GUEST_PML_INDEX);
6194
6195	/* Do nothing if PML buffer is empty */
6196	if (pml_idx == (PML_ENTITY_NUM - 1))
6197		return;
6198
6199	/* PML index always points to next available PML buffer entity */
6200	if (pml_idx >= PML_ENTITY_NUM)
6201		pml_idx = 0;
6202	else
6203		pml_idx++;
6204
6205	pml_buf = page_address(vmx->pml_pg);
6206	for (; pml_idx < PML_ENTITY_NUM; pml_idx++) {
6207		u64 gpa;
6208
6209		gpa = pml_buf[pml_idx];
6210		WARN_ON(gpa & (PAGE_SIZE - 1));
6211		kvm_vcpu_mark_page_dirty(vcpu, gpa >> PAGE_SHIFT);
6212	}
6213
6214	/* reset PML index */
6215	vmcs_write16(GUEST_PML_INDEX, PML_ENTITY_NUM - 1);
6216}
6217
6218static void vmx_dump_sel(char *name, uint32_t sel)
6219{
6220	pr_err("%s sel=0x%04x, attr=0x%05x, limit=0x%08x, base=0x%016lx\n",
6221	       name, vmcs_read16(sel),
6222	       vmcs_read32(sel + GUEST_ES_AR_BYTES - GUEST_ES_SELECTOR),
6223	       vmcs_read32(sel + GUEST_ES_LIMIT - GUEST_ES_SELECTOR),
6224	       vmcs_readl(sel + GUEST_ES_BASE - GUEST_ES_SELECTOR));
6225}
6226
6227static void vmx_dump_dtsel(char *name, uint32_t limit)
6228{
6229	pr_err("%s                           limit=0x%08x, base=0x%016lx\n",
6230	       name, vmcs_read32(limit),
6231	       vmcs_readl(limit + GUEST_GDTR_BASE - GUEST_GDTR_LIMIT));
6232}
6233
6234static void vmx_dump_msrs(char *name, struct vmx_msrs *m)
6235{
6236	unsigned int i;
6237	struct vmx_msr_entry *e;
6238
6239	pr_err("MSR %s:\n", name);
6240	for (i = 0, e = m->val; i < m->nr; ++i, ++e)
6241		pr_err("  %2d: msr=0x%08x value=0x%016llx\n", i, e->index, e->value);
6242}
6243
6244void dump_vmcs(struct kvm_vcpu *vcpu)
6245{
6246	struct vcpu_vmx *vmx = to_vmx(vcpu);
6247	u32 vmentry_ctl, vmexit_ctl;
6248	u32 cpu_based_exec_ctrl, pin_based_exec_ctrl, secondary_exec_control;
6249	u64 tertiary_exec_control;
6250	unsigned long cr4;
6251	int efer_slot;
6252
6253	if (!dump_invalid_vmcs) {
6254		pr_warn_ratelimited("set kvm_intel.dump_invalid_vmcs=1 to dump internal KVM state.\n");
6255		return;
6256	}
6257
6258	vmentry_ctl = vmcs_read32(VM_ENTRY_CONTROLS);
6259	vmexit_ctl = vmcs_read32(VM_EXIT_CONTROLS);
6260	cpu_based_exec_ctrl = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
6261	pin_based_exec_ctrl = vmcs_read32(PIN_BASED_VM_EXEC_CONTROL);
6262	cr4 = vmcs_readl(GUEST_CR4);
6263
6264	if (cpu_has_secondary_exec_ctrls())
6265		secondary_exec_control = vmcs_read32(SECONDARY_VM_EXEC_CONTROL);
6266	else
6267		secondary_exec_control = 0;
6268
6269	if (cpu_has_tertiary_exec_ctrls())
6270		tertiary_exec_control = vmcs_read64(TERTIARY_VM_EXEC_CONTROL);
6271	else
6272		tertiary_exec_control = 0;
6273
6274	pr_err("VMCS %p, last attempted VM-entry on CPU %d\n",
6275	       vmx->loaded_vmcs->vmcs, vcpu->arch.last_vmentry_cpu);
6276	pr_err("*** Guest State ***\n");
6277	pr_err("CR0: actual=0x%016lx, shadow=0x%016lx, gh_mask=%016lx\n",
6278	       vmcs_readl(GUEST_CR0), vmcs_readl(CR0_READ_SHADOW),
6279	       vmcs_readl(CR0_GUEST_HOST_MASK));
6280	pr_err("CR4: actual=0x%016lx, shadow=0x%016lx, gh_mask=%016lx\n",
6281	       cr4, vmcs_readl(CR4_READ_SHADOW), vmcs_readl(CR4_GUEST_HOST_MASK));
6282	pr_err("CR3 = 0x%016lx\n", vmcs_readl(GUEST_CR3));
6283	if (cpu_has_vmx_ept()) {
6284		pr_err("PDPTR0 = 0x%016llx  PDPTR1 = 0x%016llx\n",
6285		       vmcs_read64(GUEST_PDPTR0), vmcs_read64(GUEST_PDPTR1));
6286		pr_err("PDPTR2 = 0x%016llx  PDPTR3 = 0x%016llx\n",
6287		       vmcs_read64(GUEST_PDPTR2), vmcs_read64(GUEST_PDPTR3));
6288	}
6289	pr_err("RSP = 0x%016lx  RIP = 0x%016lx\n",
6290	       vmcs_readl(GUEST_RSP), vmcs_readl(GUEST_RIP));
6291	pr_err("RFLAGS=0x%08lx         DR7 = 0x%016lx\n",
6292	       vmcs_readl(GUEST_RFLAGS), vmcs_readl(GUEST_DR7));
6293	pr_err("Sysenter RSP=%016lx CS:RIP=%04x:%016lx\n",
6294	       vmcs_readl(GUEST_SYSENTER_ESP),
6295	       vmcs_read32(GUEST_SYSENTER_CS), vmcs_readl(GUEST_SYSENTER_EIP));
6296	vmx_dump_sel("CS:  ", GUEST_CS_SELECTOR);
6297	vmx_dump_sel("DS:  ", GUEST_DS_SELECTOR);
6298	vmx_dump_sel("SS:  ", GUEST_SS_SELECTOR);
6299	vmx_dump_sel("ES:  ", GUEST_ES_SELECTOR);
6300	vmx_dump_sel("FS:  ", GUEST_FS_SELECTOR);
6301	vmx_dump_sel("GS:  ", GUEST_GS_SELECTOR);
6302	vmx_dump_dtsel("GDTR:", GUEST_GDTR_LIMIT);
6303	vmx_dump_sel("LDTR:", GUEST_LDTR_SELECTOR);
6304	vmx_dump_dtsel("IDTR:", GUEST_IDTR_LIMIT);
6305	vmx_dump_sel("TR:  ", GUEST_TR_SELECTOR);
6306	efer_slot = vmx_find_loadstore_msr_slot(&vmx->msr_autoload.guest, MSR_EFER);
6307	if (vmentry_ctl & VM_ENTRY_LOAD_IA32_EFER)
6308		pr_err("EFER= 0x%016llx\n", vmcs_read64(GUEST_IA32_EFER));
6309	else if (efer_slot >= 0)
6310		pr_err("EFER= 0x%016llx (autoload)\n",
6311		       vmx->msr_autoload.guest.val[efer_slot].value);
6312	else if (vmentry_ctl & VM_ENTRY_IA32E_MODE)
6313		pr_err("EFER= 0x%016llx (effective)\n",
6314		       vcpu->arch.efer | (EFER_LMA | EFER_LME));
6315	else
6316		pr_err("EFER= 0x%016llx (effective)\n",
6317		       vcpu->arch.efer & ~(EFER_LMA | EFER_LME));
6318	if (vmentry_ctl & VM_ENTRY_LOAD_IA32_PAT)
6319		pr_err("PAT = 0x%016llx\n", vmcs_read64(GUEST_IA32_PAT));
6320	pr_err("DebugCtl = 0x%016llx  DebugExceptions = 0x%016lx\n",
6321	       vmcs_read64(GUEST_IA32_DEBUGCTL),
6322	       vmcs_readl(GUEST_PENDING_DBG_EXCEPTIONS));
6323	if (cpu_has_load_perf_global_ctrl() &&
6324	    vmentry_ctl & VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL)
6325		pr_err("PerfGlobCtl = 0x%016llx\n",
6326		       vmcs_read64(GUEST_IA32_PERF_GLOBAL_CTRL));
6327	if (vmentry_ctl & VM_ENTRY_LOAD_BNDCFGS)
6328		pr_err("BndCfgS = 0x%016llx\n", vmcs_read64(GUEST_BNDCFGS));
6329	pr_err("Interruptibility = %08x  ActivityState = %08x\n",
6330	       vmcs_read32(GUEST_INTERRUPTIBILITY_INFO),
6331	       vmcs_read32(GUEST_ACTIVITY_STATE));
6332	if (secondary_exec_control & SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY)
6333		pr_err("InterruptStatus = %04x\n",
6334		       vmcs_read16(GUEST_INTR_STATUS));
6335	if (vmcs_read32(VM_ENTRY_MSR_LOAD_COUNT) > 0)
6336		vmx_dump_msrs("guest autoload", &vmx->msr_autoload.guest);
6337	if (vmcs_read32(VM_EXIT_MSR_STORE_COUNT) > 0)
6338		vmx_dump_msrs("guest autostore", &vmx->msr_autostore.guest);
6339
6340	pr_err("*** Host State ***\n");
6341	pr_err("RIP = 0x%016lx  RSP = 0x%016lx\n",
6342	       vmcs_readl(HOST_RIP), vmcs_readl(HOST_RSP));
6343	pr_err("CS=%04x SS=%04x DS=%04x ES=%04x FS=%04x GS=%04x TR=%04x\n",
6344	       vmcs_read16(HOST_CS_SELECTOR), vmcs_read16(HOST_SS_SELECTOR),
6345	       vmcs_read16(HOST_DS_SELECTOR), vmcs_read16(HOST_ES_SELECTOR),
6346	       vmcs_read16(HOST_FS_SELECTOR), vmcs_read16(HOST_GS_SELECTOR),
6347	       vmcs_read16(HOST_TR_SELECTOR));
6348	pr_err("FSBase=%016lx GSBase=%016lx TRBase=%016lx\n",
6349	       vmcs_readl(HOST_FS_BASE), vmcs_readl(HOST_GS_BASE),
6350	       vmcs_readl(HOST_TR_BASE));
6351	pr_err("GDTBase=%016lx IDTBase=%016lx\n",
6352	       vmcs_readl(HOST_GDTR_BASE), vmcs_readl(HOST_IDTR_BASE));
6353	pr_err("CR0=%016lx CR3=%016lx CR4=%016lx\n",
6354	       vmcs_readl(HOST_CR0), vmcs_readl(HOST_CR3),
6355	       vmcs_readl(HOST_CR4));
6356	pr_err("Sysenter RSP=%016lx CS:RIP=%04x:%016lx\n",
6357	       vmcs_readl(HOST_IA32_SYSENTER_ESP),
6358	       vmcs_read32(HOST_IA32_SYSENTER_CS),
6359	       vmcs_readl(HOST_IA32_SYSENTER_EIP));
6360	if (vmexit_ctl & VM_EXIT_LOAD_IA32_EFER)
6361		pr_err("EFER= 0x%016llx\n", vmcs_read64(HOST_IA32_EFER));
6362	if (vmexit_ctl & VM_EXIT_LOAD_IA32_PAT)
6363		pr_err("PAT = 0x%016llx\n", vmcs_read64(HOST_IA32_PAT));
6364	if (cpu_has_load_perf_global_ctrl() &&
6365	    vmexit_ctl & VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL)
6366		pr_err("PerfGlobCtl = 0x%016llx\n",
6367		       vmcs_read64(HOST_IA32_PERF_GLOBAL_CTRL));
6368	if (vmcs_read32(VM_EXIT_MSR_LOAD_COUNT) > 0)
6369		vmx_dump_msrs("host autoload", &vmx->msr_autoload.host);
6370
6371	pr_err("*** Control State ***\n");
6372	pr_err("CPUBased=0x%08x SecondaryExec=0x%08x TertiaryExec=0x%016llx\n",
6373	       cpu_based_exec_ctrl, secondary_exec_control, tertiary_exec_control);
6374	pr_err("PinBased=0x%08x EntryControls=%08x ExitControls=%08x\n",
6375	       pin_based_exec_ctrl, vmentry_ctl, vmexit_ctl);
6376	pr_err("ExceptionBitmap=%08x PFECmask=%08x PFECmatch=%08x\n",
6377	       vmcs_read32(EXCEPTION_BITMAP),
6378	       vmcs_read32(PAGE_FAULT_ERROR_CODE_MASK),
6379	       vmcs_read32(PAGE_FAULT_ERROR_CODE_MATCH));
6380	pr_err("VMEntry: intr_info=%08x errcode=%08x ilen=%08x\n",
6381	       vmcs_read32(VM_ENTRY_INTR_INFO_FIELD),
6382	       vmcs_read32(VM_ENTRY_EXCEPTION_ERROR_CODE),
6383	       vmcs_read32(VM_ENTRY_INSTRUCTION_LEN));
6384	pr_err("VMExit: intr_info=%08x errcode=%08x ilen=%08x\n",
6385	       vmcs_read32(VM_EXIT_INTR_INFO),
6386	       vmcs_read32(VM_EXIT_INTR_ERROR_CODE),
6387	       vmcs_read32(VM_EXIT_INSTRUCTION_LEN));
6388	pr_err("        reason=%08x qualification=%016lx\n",
6389	       vmcs_read32(VM_EXIT_REASON), vmcs_readl(EXIT_QUALIFICATION));
6390	pr_err("IDTVectoring: info=%08x errcode=%08x\n",
6391	       vmcs_read32(IDT_VECTORING_INFO_FIELD),
6392	       vmcs_read32(IDT_VECTORING_ERROR_CODE));
6393	pr_err("TSC Offset = 0x%016llx\n", vmcs_read64(TSC_OFFSET));
6394	if (secondary_exec_control & SECONDARY_EXEC_TSC_SCALING)
6395		pr_err("TSC Multiplier = 0x%016llx\n",
6396		       vmcs_read64(TSC_MULTIPLIER));
6397	if (cpu_based_exec_ctrl & CPU_BASED_TPR_SHADOW) {
6398		if (secondary_exec_control & SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY) {
6399			u16 status = vmcs_read16(GUEST_INTR_STATUS);
6400			pr_err("SVI|RVI = %02x|%02x ", status >> 8, status & 0xff);
6401		}
6402		pr_cont("TPR Threshold = 0x%02x\n", vmcs_read32(TPR_THRESHOLD));
6403		if (secondary_exec_control & SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES)
6404			pr_err("APIC-access addr = 0x%016llx ", vmcs_read64(APIC_ACCESS_ADDR));
6405		pr_cont("virt-APIC addr = 0x%016llx\n", vmcs_read64(VIRTUAL_APIC_PAGE_ADDR));
6406	}
6407	if (pin_based_exec_ctrl & PIN_BASED_POSTED_INTR)
6408		pr_err("PostedIntrVec = 0x%02x\n", vmcs_read16(POSTED_INTR_NV));
6409	if ((secondary_exec_control & SECONDARY_EXEC_ENABLE_EPT))
6410		pr_err("EPT pointer = 0x%016llx\n", vmcs_read64(EPT_POINTER));
6411	if (secondary_exec_control & SECONDARY_EXEC_PAUSE_LOOP_EXITING)
6412		pr_err("PLE Gap=%08x Window=%08x\n",
6413		       vmcs_read32(PLE_GAP), vmcs_read32(PLE_WINDOW));
6414	if (secondary_exec_control & SECONDARY_EXEC_ENABLE_VPID)
6415		pr_err("Virtual processor ID = 0x%04x\n",
6416		       vmcs_read16(VIRTUAL_PROCESSOR_ID));
6417}
6418
6419/*
6420 * The guest has exited.  See if we can fix it or if we need userspace
6421 * assistance.
6422 */
6423static int __vmx_handle_exit(struct kvm_vcpu *vcpu, fastpath_t exit_fastpath)
6424{
6425	struct vcpu_vmx *vmx = to_vmx(vcpu);
6426	union vmx_exit_reason exit_reason = vmx->exit_reason;
6427	u32 vectoring_info = vmx->idt_vectoring_info;
6428	u16 exit_handler_index;
6429
6430	/*
6431	 * Flush logged GPAs PML buffer, this will make dirty_bitmap more
6432	 * updated. Another good is, in kvm_vm_ioctl_get_dirty_log, before
6433	 * querying dirty_bitmap, we only need to kick all vcpus out of guest
6434	 * mode as if vcpus is in root mode, the PML buffer must has been
6435	 * flushed already.  Note, PML is never enabled in hardware while
6436	 * running L2.
6437	 */
6438	if (enable_pml && !is_guest_mode(vcpu))
6439		vmx_flush_pml_buffer(vcpu);
6440
6441	/*
6442	 * KVM should never reach this point with a pending nested VM-Enter.
6443	 * More specifically, short-circuiting VM-Entry to emulate L2 due to
6444	 * invalid guest state should never happen as that means KVM knowingly
6445	 * allowed a nested VM-Enter with an invalid vmcs12.  More below.
6446	 */
6447	if (KVM_BUG_ON(vmx->nested.nested_run_pending, vcpu->kvm))
6448		return -EIO;
6449
6450	if (is_guest_mode(vcpu)) {
6451		/*
6452		 * PML is never enabled when running L2, bail immediately if a
6453		 * PML full exit occurs as something is horribly wrong.
6454		 */
6455		if (exit_reason.basic == EXIT_REASON_PML_FULL)
6456			goto unexpected_vmexit;
6457
6458		/*
6459		 * The host physical addresses of some pages of guest memory
6460		 * are loaded into the vmcs02 (e.g. vmcs12's Virtual APIC
6461		 * Page). The CPU may write to these pages via their host
6462		 * physical address while L2 is running, bypassing any
6463		 * address-translation-based dirty tracking (e.g. EPT write
6464		 * protection).
6465		 *
6466		 * Mark them dirty on every exit from L2 to prevent them from
6467		 * getting out of sync with dirty tracking.
6468		 */
6469		nested_mark_vmcs12_pages_dirty(vcpu);
6470
6471		/*
6472		 * Synthesize a triple fault if L2 state is invalid.  In normal
6473		 * operation, nested VM-Enter rejects any attempt to enter L2
6474		 * with invalid state.  However, those checks are skipped if
6475		 * state is being stuffed via RSM or KVM_SET_NESTED_STATE.  If
6476		 * L2 state is invalid, it means either L1 modified SMRAM state
6477		 * or userspace provided bad state.  Synthesize TRIPLE_FAULT as
6478		 * doing so is architecturally allowed in the RSM case, and is
6479		 * the least awful solution for the userspace case without
6480		 * risking false positives.
6481		 */
6482		if (vmx->emulation_required) {
6483			nested_vmx_vmexit(vcpu, EXIT_REASON_TRIPLE_FAULT, 0, 0);
6484			return 1;
6485		}
6486
6487		if (nested_vmx_reflect_vmexit(vcpu))
6488			return 1;
6489	}
6490
6491	/* If guest state is invalid, start emulating.  L2 is handled above. */
6492	if (vmx->emulation_required)
6493		return handle_invalid_guest_state(vcpu);
6494
6495	if (exit_reason.failed_vmentry) {
6496		dump_vmcs(vcpu);
6497		vcpu->run->exit_reason = KVM_EXIT_FAIL_ENTRY;
6498		vcpu->run->fail_entry.hardware_entry_failure_reason
6499			= exit_reason.full;
6500		vcpu->run->fail_entry.cpu = vcpu->arch.last_vmentry_cpu;
6501		return 0;
6502	}
6503
6504	if (unlikely(vmx->fail)) {
6505		dump_vmcs(vcpu);
6506		vcpu->run->exit_reason = KVM_EXIT_FAIL_ENTRY;
6507		vcpu->run->fail_entry.hardware_entry_failure_reason
6508			= vmcs_read32(VM_INSTRUCTION_ERROR);
6509		vcpu->run->fail_entry.cpu = vcpu->arch.last_vmentry_cpu;
6510		return 0;
6511	}
6512
6513	/*
6514	 * Note:
6515	 * Do not try to fix EXIT_REASON_EPT_MISCONFIG if it caused by
6516	 * delivery event since it indicates guest is accessing MMIO.
6517	 * The vm-exit can be triggered again after return to guest that
6518	 * will cause infinite loop.
6519	 */
6520	if ((vectoring_info & VECTORING_INFO_VALID_MASK) &&
6521	    (exit_reason.basic != EXIT_REASON_EXCEPTION_NMI &&
6522	     exit_reason.basic != EXIT_REASON_EPT_VIOLATION &&
6523	     exit_reason.basic != EXIT_REASON_PML_FULL &&
6524	     exit_reason.basic != EXIT_REASON_APIC_ACCESS &&
6525	     exit_reason.basic != EXIT_REASON_TASK_SWITCH &&
6526	     exit_reason.basic != EXIT_REASON_NOTIFY)) {
6527		int ndata = 3;
6528
6529		vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
6530		vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_DELIVERY_EV;
6531		vcpu->run->internal.data[0] = vectoring_info;
6532		vcpu->run->internal.data[1] = exit_reason.full;
6533		vcpu->run->internal.data[2] = vmx_get_exit_qual(vcpu);
6534		if (exit_reason.basic == EXIT_REASON_EPT_MISCONFIG) {
6535			vcpu->run->internal.data[ndata++] =
6536				vmcs_read64(GUEST_PHYSICAL_ADDRESS);
6537		}
6538		vcpu->run->internal.data[ndata++] = vcpu->arch.last_vmentry_cpu;
6539		vcpu->run->internal.ndata = ndata;
6540		return 0;
6541	}
6542
6543	if (unlikely(!enable_vnmi &&
6544		     vmx->loaded_vmcs->soft_vnmi_blocked)) {
6545		if (!vmx_interrupt_blocked(vcpu)) {
6546			vmx->loaded_vmcs->soft_vnmi_blocked = 0;
6547		} else if (vmx->loaded_vmcs->vnmi_blocked_time > 1000000000LL &&
6548			   vcpu->arch.nmi_pending) {
6549			/*
6550			 * This CPU don't support us in finding the end of an
6551			 * NMI-blocked window if the guest runs with IRQs
6552			 * disabled. So we pull the trigger after 1 s of
6553			 * futile waiting, but inform the user about this.
6554			 */
6555			printk(KERN_WARNING "%s: Breaking out of NMI-blocked "
6556			       "state on VCPU %d after 1 s timeout\n",
6557			       __func__, vcpu->vcpu_id);
6558			vmx->loaded_vmcs->soft_vnmi_blocked = 0;
6559		}
6560	}
6561
6562	if (exit_fastpath != EXIT_FASTPATH_NONE)
6563		return 1;
6564
6565	if (exit_reason.basic >= kvm_vmx_max_exit_handlers)
6566		goto unexpected_vmexit;
6567#ifdef CONFIG_MITIGATION_RETPOLINE
6568	if (exit_reason.basic == EXIT_REASON_MSR_WRITE)
6569		return kvm_emulate_wrmsr(vcpu);
6570	else if (exit_reason.basic == EXIT_REASON_PREEMPTION_TIMER)
6571		return handle_preemption_timer(vcpu);
6572	else if (exit_reason.basic == EXIT_REASON_INTERRUPT_WINDOW)
6573		return handle_interrupt_window(vcpu);
6574	else if (exit_reason.basic == EXIT_REASON_EXTERNAL_INTERRUPT)
6575		return handle_external_interrupt(vcpu);
6576	else if (exit_reason.basic == EXIT_REASON_HLT)
6577		return kvm_emulate_halt(vcpu);
6578	else if (exit_reason.basic == EXIT_REASON_EPT_MISCONFIG)
6579		return handle_ept_misconfig(vcpu);
6580#endif
6581
6582	exit_handler_index = array_index_nospec((u16)exit_reason.basic,
6583						kvm_vmx_max_exit_handlers);
6584	if (!kvm_vmx_exit_handlers[exit_handler_index])
6585		goto unexpected_vmexit;
6586
6587	return kvm_vmx_exit_handlers[exit_handler_index](vcpu);
6588
6589unexpected_vmexit:
6590	vcpu_unimpl(vcpu, "vmx: unexpected exit reason 0x%x\n",
6591		    exit_reason.full);
6592	dump_vmcs(vcpu);
6593	vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
6594	vcpu->run->internal.suberror =
6595			KVM_INTERNAL_ERROR_UNEXPECTED_EXIT_REASON;
6596	vcpu->run->internal.ndata = 2;
6597	vcpu->run->internal.data[0] = exit_reason.full;
6598	vcpu->run->internal.data[1] = vcpu->arch.last_vmentry_cpu;
6599	return 0;
6600}
6601
6602static int vmx_handle_exit(struct kvm_vcpu *vcpu, fastpath_t exit_fastpath)
6603{
6604	int ret = __vmx_handle_exit(vcpu, exit_fastpath);
6605
6606	/*
6607	 * Exit to user space when bus lock detected to inform that there is
6608	 * a bus lock in guest.
6609	 */
6610	if (to_vmx(vcpu)->exit_reason.bus_lock_detected) {
6611		if (ret > 0)
6612			vcpu->run->exit_reason = KVM_EXIT_X86_BUS_LOCK;
6613
6614		vcpu->run->flags |= KVM_RUN_X86_BUS_LOCK;
6615		return 0;
6616	}
6617	return ret;
6618}
6619
6620/*
6621 * Software based L1D cache flush which is used when microcode providing
6622 * the cache control MSR is not loaded.
6623 *
6624 * The L1D cache is 32 KiB on Nehalem and later microarchitectures, but to
6625 * flush it is required to read in 64 KiB because the replacement algorithm
6626 * is not exactly LRU. This could be sized at runtime via topology
6627 * information but as all relevant affected CPUs have 32KiB L1D cache size
6628 * there is no point in doing so.
6629 */
6630static noinstr void vmx_l1d_flush(struct kvm_vcpu *vcpu)
6631{
6632	int size = PAGE_SIZE << L1D_CACHE_ORDER;
6633
6634	/*
6635	 * This code is only executed when the flush mode is 'cond' or
6636	 * 'always'
6637	 */
6638	if (static_branch_likely(&vmx_l1d_flush_cond)) {
6639		bool flush_l1d;
6640
6641		/*
6642		 * Clear the per-vcpu flush bit, it gets set again
6643		 * either from vcpu_run() or from one of the unsafe
6644		 * VMEXIT handlers.
6645		 */
6646		flush_l1d = vcpu->arch.l1tf_flush_l1d;
6647		vcpu->arch.l1tf_flush_l1d = false;
6648
6649		/*
6650		 * Clear the per-cpu flush bit, it gets set again from
6651		 * the interrupt handlers.
6652		 */
6653		flush_l1d |= kvm_get_cpu_l1tf_flush_l1d();
6654		kvm_clear_cpu_l1tf_flush_l1d();
6655
6656		if (!flush_l1d)
6657			return;
6658	}
6659
6660	vcpu->stat.l1d_flush++;
6661
6662	if (static_cpu_has(X86_FEATURE_FLUSH_L1D)) {
6663		native_wrmsrl(MSR_IA32_FLUSH_CMD, L1D_FLUSH);
6664		return;
6665	}
6666
6667	asm volatile(
6668		/* First ensure the pages are in the TLB */
6669		"xorl	%%eax, %%eax\n"
6670		".Lpopulate_tlb:\n\t"
6671		"movzbl	(%[flush_pages], %%" _ASM_AX "), %%ecx\n\t"
6672		"addl	$4096, %%eax\n\t"
6673		"cmpl	%%eax, %[size]\n\t"
6674		"jne	.Lpopulate_tlb\n\t"
6675		"xorl	%%eax, %%eax\n\t"
6676		"cpuid\n\t"
6677		/* Now fill the cache */
6678		"xorl	%%eax, %%eax\n"
6679		".Lfill_cache:\n"
6680		"movzbl	(%[flush_pages], %%" _ASM_AX "), %%ecx\n\t"
6681		"addl	$64, %%eax\n\t"
6682		"cmpl	%%eax, %[size]\n\t"
6683		"jne	.Lfill_cache\n\t"
6684		"lfence\n"
6685		:: [flush_pages] "r" (vmx_l1d_flush_pages),
6686		    [size] "r" (size)
6687		: "eax", "ebx", "ecx", "edx");
6688}
6689
6690static void vmx_update_cr8_intercept(struct kvm_vcpu *vcpu, int tpr, int irr)
6691{
6692	struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
6693	int tpr_threshold;
6694
6695	if (is_guest_mode(vcpu) &&
6696		nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW))
6697		return;
6698
6699	tpr_threshold = (irr == -1 || tpr < irr) ? 0 : irr;
6700	if (is_guest_mode(vcpu))
6701		to_vmx(vcpu)->nested.l1_tpr_threshold = tpr_threshold;
6702	else
6703		vmcs_write32(TPR_THRESHOLD, tpr_threshold);
6704}
6705
6706void vmx_set_virtual_apic_mode(struct kvm_vcpu *vcpu)
6707{
6708	struct vcpu_vmx *vmx = to_vmx(vcpu);
6709	u32 sec_exec_control;
6710
6711	if (!lapic_in_kernel(vcpu))
6712		return;
6713
6714	if (!flexpriority_enabled &&
6715	    !cpu_has_vmx_virtualize_x2apic_mode())
6716		return;
6717
6718	/* Postpone execution until vmcs01 is the current VMCS. */
6719	if (is_guest_mode(vcpu)) {
6720		vmx->nested.change_vmcs01_virtual_apic_mode = true;
6721		return;
6722	}
6723
6724	sec_exec_control = secondary_exec_controls_get(vmx);
6725	sec_exec_control &= ~(SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES |
6726			      SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE);
6727
6728	switch (kvm_get_apic_mode(vcpu)) {
6729	case LAPIC_MODE_INVALID:
6730		WARN_ONCE(true, "Invalid local APIC state");
6731		break;
6732	case LAPIC_MODE_DISABLED:
6733		break;
6734	case LAPIC_MODE_XAPIC:
6735		if (flexpriority_enabled) {
6736			sec_exec_control |=
6737				SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
6738			kvm_make_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu);
6739
6740			/*
6741			 * Flush the TLB, reloading the APIC access page will
6742			 * only do so if its physical address has changed, but
6743			 * the guest may have inserted a non-APIC mapping into
6744			 * the TLB while the APIC access page was disabled.
6745			 */
6746			kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu);
6747		}
6748		break;
6749	case LAPIC_MODE_X2APIC:
6750		if (cpu_has_vmx_virtualize_x2apic_mode())
6751			sec_exec_control |=
6752				SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE;
6753		break;
6754	}
6755	secondary_exec_controls_set(vmx, sec_exec_control);
6756
6757	vmx_update_msr_bitmap_x2apic(vcpu);
6758}
6759
6760static void vmx_set_apic_access_page_addr(struct kvm_vcpu *vcpu)
6761{
6762	const gfn_t gfn = APIC_DEFAULT_PHYS_BASE >> PAGE_SHIFT;
6763	struct kvm *kvm = vcpu->kvm;
6764	struct kvm_memslots *slots = kvm_memslots(kvm);
6765	struct kvm_memory_slot *slot;
6766	unsigned long mmu_seq;
6767	kvm_pfn_t pfn;
6768
6769	/* Defer reload until vmcs01 is the current VMCS. */
6770	if (is_guest_mode(vcpu)) {
6771		to_vmx(vcpu)->nested.reload_vmcs01_apic_access_page = true;
6772		return;
6773	}
6774
6775	if (!(secondary_exec_controls_get(to_vmx(vcpu)) &
6776	    SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES))
6777		return;
6778
6779	/*
6780	 * Explicitly grab the memslot using KVM's internal slot ID to ensure
6781	 * KVM doesn't unintentionally grab a userspace memslot.  It _should_
6782	 * be impossible for userspace to create a memslot for the APIC when
6783	 * APICv is enabled, but paranoia won't hurt in this case.
6784	 */
6785	slot = id_to_memslot(slots, APIC_ACCESS_PAGE_PRIVATE_MEMSLOT);
6786	if (!slot || slot->flags & KVM_MEMSLOT_INVALID)
6787		return;
6788
6789	/*
6790	 * Ensure that the mmu_notifier sequence count is read before KVM
6791	 * retrieves the pfn from the primary MMU.  Note, the memslot is
6792	 * protected by SRCU, not the mmu_notifier.  Pairs with the smp_wmb()
6793	 * in kvm_mmu_invalidate_end().
6794	 */
6795	mmu_seq = kvm->mmu_invalidate_seq;
6796	smp_rmb();
6797
6798	/*
6799	 * No need to retry if the memslot does not exist or is invalid.  KVM
6800	 * controls the APIC-access page memslot, and only deletes the memslot
6801	 * if APICv is permanently inhibited, i.e. the memslot won't reappear.
6802	 */
6803	pfn = gfn_to_pfn_memslot(slot, gfn);
6804	if (is_error_noslot_pfn(pfn))
6805		return;
6806
6807	read_lock(&vcpu->kvm->mmu_lock);
6808	if (mmu_invalidate_retry_gfn(kvm, mmu_seq, gfn)) {
6809		kvm_make_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu);
6810		read_unlock(&vcpu->kvm->mmu_lock);
6811		goto out;
6812	}
6813
6814	vmcs_write64(APIC_ACCESS_ADDR, pfn_to_hpa(pfn));
6815	read_unlock(&vcpu->kvm->mmu_lock);
6816
6817	/*
6818	 * No need for a manual TLB flush at this point, KVM has already done a
6819	 * flush if there were SPTEs pointing at the previous page.
6820	 */
6821out:
6822	/*
6823	 * Do not pin apic access page in memory, the MMU notifier
6824	 * will call us again if it is migrated or swapped out.
6825	 */
6826	kvm_release_pfn_clean(pfn);
6827}
6828
6829static void vmx_hwapic_isr_update(int max_isr)
6830{
6831	u16 status;
6832	u8 old;
6833
6834	if (max_isr == -1)
6835		max_isr = 0;
6836
6837	status = vmcs_read16(GUEST_INTR_STATUS);
6838	old = status >> 8;
6839	if (max_isr != old) {
6840		status &= 0xff;
6841		status |= max_isr << 8;
6842		vmcs_write16(GUEST_INTR_STATUS, status);
6843	}
6844}
6845
6846static void vmx_set_rvi(int vector)
6847{
6848	u16 status;
6849	u8 old;
6850
6851	if (vector == -1)
6852		vector = 0;
6853
6854	status = vmcs_read16(GUEST_INTR_STATUS);
6855	old = (u8)status & 0xff;
6856	if ((u8)vector != old) {
6857		status &= ~0xff;
6858		status |= (u8)vector;
6859		vmcs_write16(GUEST_INTR_STATUS, status);
6860	}
6861}
6862
6863static void vmx_hwapic_irr_update(struct kvm_vcpu *vcpu, int max_irr)
6864{
6865	/*
6866	 * When running L2, updating RVI is only relevant when
6867	 * vmcs12 virtual-interrupt-delivery enabled.
6868	 * However, it can be enabled only when L1 also
6869	 * intercepts external-interrupts and in that case
6870	 * we should not update vmcs02 RVI but instead intercept
6871	 * interrupt. Therefore, do nothing when running L2.
6872	 */
6873	if (!is_guest_mode(vcpu))
6874		vmx_set_rvi(max_irr);
6875}
6876
6877static int vmx_sync_pir_to_irr(struct kvm_vcpu *vcpu)
6878{
6879	struct vcpu_vmx *vmx = to_vmx(vcpu);
6880	int max_irr;
6881	bool got_posted_interrupt;
6882
6883	if (KVM_BUG_ON(!enable_apicv, vcpu->kvm))
6884		return -EIO;
6885
6886	if (pi_test_on(&vmx->pi_desc)) {
6887		pi_clear_on(&vmx->pi_desc);
6888		/*
6889		 * IOMMU can write to PID.ON, so the barrier matters even on UP.
6890		 * But on x86 this is just a compiler barrier anyway.
6891		 */
6892		smp_mb__after_atomic();
6893		got_posted_interrupt =
6894			kvm_apic_update_irr(vcpu, vmx->pi_desc.pir, &max_irr);
6895	} else {
6896		max_irr = kvm_lapic_find_highest_irr(vcpu);
6897		got_posted_interrupt = false;
6898	}
6899
6900	/*
6901	 * Newly recognized interrupts are injected via either virtual interrupt
6902	 * delivery (RVI) or KVM_REQ_EVENT.  Virtual interrupt delivery is
6903	 * disabled in two cases:
6904	 *
6905	 * 1) If L2 is running and the vCPU has a new pending interrupt.  If L1
6906	 * wants to exit on interrupts, KVM_REQ_EVENT is needed to synthesize a
6907	 * VM-Exit to L1.  If L1 doesn't want to exit, the interrupt is injected
6908	 * into L2, but KVM doesn't use virtual interrupt delivery to inject
6909	 * interrupts into L2, and so KVM_REQ_EVENT is again needed.
6910	 *
6911	 * 2) If APICv is disabled for this vCPU, assigned devices may still
6912	 * attempt to post interrupts.  The posted interrupt vector will cause
6913	 * a VM-Exit and the subsequent entry will call sync_pir_to_irr.
6914	 */
6915	if (!is_guest_mode(vcpu) && kvm_vcpu_apicv_active(vcpu))
6916		vmx_set_rvi(max_irr);
6917	else if (got_posted_interrupt)
6918		kvm_make_request(KVM_REQ_EVENT, vcpu);
6919
6920	return max_irr;
6921}
6922
6923static void vmx_load_eoi_exitmap(struct kvm_vcpu *vcpu, u64 *eoi_exit_bitmap)
6924{
6925	if (!kvm_vcpu_apicv_active(vcpu))
6926		return;
6927
6928	vmcs_write64(EOI_EXIT_BITMAP0, eoi_exit_bitmap[0]);
6929	vmcs_write64(EOI_EXIT_BITMAP1, eoi_exit_bitmap[1]);
6930	vmcs_write64(EOI_EXIT_BITMAP2, eoi_exit_bitmap[2]);
6931	vmcs_write64(EOI_EXIT_BITMAP3, eoi_exit_bitmap[3]);
6932}
6933
6934static void vmx_apicv_pre_state_restore(struct kvm_vcpu *vcpu)
6935{
6936	struct vcpu_vmx *vmx = to_vmx(vcpu);
6937
6938	pi_clear_on(&vmx->pi_desc);
6939	memset(vmx->pi_desc.pir, 0, sizeof(vmx->pi_desc.pir));
6940}
6941
6942void vmx_do_interrupt_irqoff(unsigned long entry);
6943void vmx_do_nmi_irqoff(void);
6944
6945static void handle_nm_fault_irqoff(struct kvm_vcpu *vcpu)
6946{
6947	/*
6948	 * Save xfd_err to guest_fpu before interrupt is enabled, so the
6949	 * MSR value is not clobbered by the host activity before the guest
6950	 * has chance to consume it.
6951	 *
6952	 * Do not blindly read xfd_err here, since this exception might
6953	 * be caused by L1 interception on a platform which doesn't
6954	 * support xfd at all.
6955	 *
6956	 * Do it conditionally upon guest_fpu::xfd. xfd_err matters
6957	 * only when xfd contains a non-zero value.
6958	 *
6959	 * Queuing exception is done in vmx_handle_exit. See comment there.
6960	 */
6961	if (vcpu->arch.guest_fpu.fpstate->xfd)
6962		rdmsrl(MSR_IA32_XFD_ERR, vcpu->arch.guest_fpu.xfd_err);
6963}
6964
6965static void handle_exception_irqoff(struct vcpu_vmx *vmx)
6966{
6967	u32 intr_info = vmx_get_intr_info(&vmx->vcpu);
6968
6969	/* if exit due to PF check for async PF */
6970	if (is_page_fault(intr_info))
6971		vmx->vcpu.arch.apf.host_apf_flags = kvm_read_and_reset_apf_flags();
6972	/* if exit due to NM, handle before interrupts are enabled */
6973	else if (is_nm_fault(intr_info))
6974		handle_nm_fault_irqoff(&vmx->vcpu);
6975	/* Handle machine checks before interrupts are enabled */
6976	else if (is_machine_check(intr_info))
6977		kvm_machine_check();
6978}
6979
6980static void handle_external_interrupt_irqoff(struct kvm_vcpu *vcpu)
6981{
6982	u32 intr_info = vmx_get_intr_info(vcpu);
6983	unsigned int vector = intr_info & INTR_INFO_VECTOR_MASK;
6984
6985	if (KVM_BUG(!is_external_intr(intr_info), vcpu->kvm,
6986	    "unexpected VM-Exit interrupt info: 0x%x", intr_info))
6987		return;
6988
6989	kvm_before_interrupt(vcpu, KVM_HANDLING_IRQ);
6990	if (cpu_feature_enabled(X86_FEATURE_FRED))
6991		fred_entry_from_kvm(EVENT_TYPE_EXTINT, vector);
6992	else
6993		vmx_do_interrupt_irqoff(gate_offset((gate_desc *)host_idt_base + vector));
6994	kvm_after_interrupt(vcpu);
6995
6996	vcpu->arch.at_instruction_boundary = true;
6997}
6998
6999static void vmx_handle_exit_irqoff(struct kvm_vcpu *vcpu)
7000{
7001	struct vcpu_vmx *vmx = to_vmx(vcpu);
7002
7003	if (vmx->emulation_required)
7004		return;
7005
7006	if (vmx->exit_reason.basic == EXIT_REASON_EXTERNAL_INTERRUPT)
7007		handle_external_interrupt_irqoff(vcpu);
7008	else if (vmx->exit_reason.basic == EXIT_REASON_EXCEPTION_NMI)
7009		handle_exception_irqoff(vmx);
7010}
7011
7012/*
7013 * The kvm parameter can be NULL (module initialization, or invocation before
7014 * VM creation). Be sure to check the kvm parameter before using it.
7015 */
7016static bool vmx_has_emulated_msr(struct kvm *kvm, u32 index)
7017{
7018	switch (index) {
7019	case MSR_IA32_SMBASE:
7020		if (!IS_ENABLED(CONFIG_KVM_SMM))
7021			return false;
7022		/*
7023		 * We cannot do SMM unless we can run the guest in big
7024		 * real mode.
7025		 */
7026		return enable_unrestricted_guest || emulate_invalid_guest_state;
7027	case KVM_FIRST_EMULATED_VMX_MSR ... KVM_LAST_EMULATED_VMX_MSR:
7028		return nested;
7029	case MSR_AMD64_VIRT_SPEC_CTRL:
7030	case MSR_AMD64_TSC_RATIO:
7031		/* This is AMD only.  */
7032		return false;
7033	default:
7034		return true;
7035	}
7036}
7037
7038static void vmx_recover_nmi_blocking(struct vcpu_vmx *vmx)
7039{
7040	u32 exit_intr_info;
7041	bool unblock_nmi;
7042	u8 vector;
7043	bool idtv_info_valid;
7044
7045	idtv_info_valid = vmx->idt_vectoring_info & VECTORING_INFO_VALID_MASK;
7046
7047	if (enable_vnmi) {
7048		if (vmx->loaded_vmcs->nmi_known_unmasked)
7049			return;
7050
7051		exit_intr_info = vmx_get_intr_info(&vmx->vcpu);
7052		unblock_nmi = (exit_intr_info & INTR_INFO_UNBLOCK_NMI) != 0;
7053		vector = exit_intr_info & INTR_INFO_VECTOR_MASK;
7054		/*
7055		 * SDM 3: 27.7.1.2 (September 2008)
7056		 * Re-set bit "block by NMI" before VM entry if vmexit caused by
7057		 * a guest IRET fault.
7058		 * SDM 3: 23.2.2 (September 2008)
7059		 * Bit 12 is undefined in any of the following cases:
7060		 *  If the VM exit sets the valid bit in the IDT-vectoring
7061		 *   information field.
7062		 *  If the VM exit is due to a double fault.
7063		 */
7064		if ((exit_intr_info & INTR_INFO_VALID_MASK) && unblock_nmi &&
7065		    vector != DF_VECTOR && !idtv_info_valid)
7066			vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
7067				      GUEST_INTR_STATE_NMI);
7068		else
7069			vmx->loaded_vmcs->nmi_known_unmasked =
7070				!(vmcs_read32(GUEST_INTERRUPTIBILITY_INFO)
7071				  & GUEST_INTR_STATE_NMI);
7072	} else if (unlikely(vmx->loaded_vmcs->soft_vnmi_blocked))
7073		vmx->loaded_vmcs->vnmi_blocked_time +=
7074			ktime_to_ns(ktime_sub(ktime_get(),
7075					      vmx->loaded_vmcs->entry_time));
7076}
7077
7078static void __vmx_complete_interrupts(struct kvm_vcpu *vcpu,
7079				      u32 idt_vectoring_info,
7080				      int instr_len_field,
7081				      int error_code_field)
7082{
7083	u8 vector;
7084	int type;
7085	bool idtv_info_valid;
7086
7087	idtv_info_valid = idt_vectoring_info & VECTORING_INFO_VALID_MASK;
7088
7089	vcpu->arch.nmi_injected = false;
7090	kvm_clear_exception_queue(vcpu);
7091	kvm_clear_interrupt_queue(vcpu);
7092
7093	if (!idtv_info_valid)
7094		return;
7095
7096	kvm_make_request(KVM_REQ_EVENT, vcpu);
7097
7098	vector = idt_vectoring_info & VECTORING_INFO_VECTOR_MASK;
7099	type = idt_vectoring_info & VECTORING_INFO_TYPE_MASK;
7100
7101	switch (type) {
7102	case INTR_TYPE_NMI_INTR:
7103		vcpu->arch.nmi_injected = true;
7104		/*
7105		 * SDM 3: 27.7.1.2 (September 2008)
7106		 * Clear bit "block by NMI" before VM entry if a NMI
7107		 * delivery faulted.
7108		 */
7109		vmx_set_nmi_mask(vcpu, false);
7110		break;
7111	case INTR_TYPE_SOFT_EXCEPTION:
7112		vcpu->arch.event_exit_inst_len = vmcs_read32(instr_len_field);
7113		fallthrough;
7114	case INTR_TYPE_HARD_EXCEPTION:
7115		if (idt_vectoring_info & VECTORING_INFO_DELIVER_CODE_MASK) {
7116			u32 err = vmcs_read32(error_code_field);
7117			kvm_requeue_exception_e(vcpu, vector, err);
7118		} else
7119			kvm_requeue_exception(vcpu, vector);
7120		break;
7121	case INTR_TYPE_SOFT_INTR:
7122		vcpu->arch.event_exit_inst_len = vmcs_read32(instr_len_field);
7123		fallthrough;
7124	case INTR_TYPE_EXT_INTR:
7125		kvm_queue_interrupt(vcpu, vector, type == INTR_TYPE_SOFT_INTR);
7126		break;
7127	default:
7128		break;
7129	}
7130}
7131
7132static void vmx_complete_interrupts(struct vcpu_vmx *vmx)
7133{
7134	__vmx_complete_interrupts(&vmx->vcpu, vmx->idt_vectoring_info,
7135				  VM_EXIT_INSTRUCTION_LEN,
7136				  IDT_VECTORING_ERROR_CODE);
7137}
7138
7139static void vmx_cancel_injection(struct kvm_vcpu *vcpu)
7140{
7141	__vmx_complete_interrupts(vcpu,
7142				  vmcs_read32(VM_ENTRY_INTR_INFO_FIELD),
7143				  VM_ENTRY_INSTRUCTION_LEN,
7144				  VM_ENTRY_EXCEPTION_ERROR_CODE);
7145
7146	vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0);
7147}
7148
7149static void atomic_switch_perf_msrs(struct vcpu_vmx *vmx)
7150{
7151	int i, nr_msrs;
7152	struct perf_guest_switch_msr *msrs;
7153	struct kvm_pmu *pmu = vcpu_to_pmu(&vmx->vcpu);
7154
7155	pmu->host_cross_mapped_mask = 0;
7156	if (pmu->pebs_enable & pmu->global_ctrl)
7157		intel_pmu_cross_mapped_check(pmu);
7158
7159	/* Note, nr_msrs may be garbage if perf_guest_get_msrs() returns NULL. */
7160	msrs = perf_guest_get_msrs(&nr_msrs, (void *)pmu);
7161	if (!msrs)
7162		return;
7163
7164	for (i = 0; i < nr_msrs; i++)
7165		if (msrs[i].host == msrs[i].guest)
7166			clear_atomic_switch_msr(vmx, msrs[i].msr);
7167		else
7168			add_atomic_switch_msr(vmx, msrs[i].msr, msrs[i].guest,
7169					msrs[i].host, false);
7170}
7171
7172static void vmx_update_hv_timer(struct kvm_vcpu *vcpu, bool force_immediate_exit)
7173{
7174	struct vcpu_vmx *vmx = to_vmx(vcpu);
7175	u64 tscl;
7176	u32 delta_tsc;
7177
7178	if (force_immediate_exit) {
7179		vmcs_write32(VMX_PREEMPTION_TIMER_VALUE, 0);
7180		vmx->loaded_vmcs->hv_timer_soft_disabled = false;
7181	} else if (vmx->hv_deadline_tsc != -1) {
7182		tscl = rdtsc();
7183		if (vmx->hv_deadline_tsc > tscl)
7184			/* set_hv_timer ensures the delta fits in 32-bits */
7185			delta_tsc = (u32)((vmx->hv_deadline_tsc - tscl) >>
7186				cpu_preemption_timer_multi);
7187		else
7188			delta_tsc = 0;
7189
7190		vmcs_write32(VMX_PREEMPTION_TIMER_VALUE, delta_tsc);
7191		vmx->loaded_vmcs->hv_timer_soft_disabled = false;
7192	} else if (!vmx->loaded_vmcs->hv_timer_soft_disabled) {
7193		vmcs_write32(VMX_PREEMPTION_TIMER_VALUE, -1);
7194		vmx->loaded_vmcs->hv_timer_soft_disabled = true;
7195	}
7196}
7197
7198void noinstr vmx_update_host_rsp(struct vcpu_vmx *vmx, unsigned long host_rsp)
7199{
7200	if (unlikely(host_rsp != vmx->loaded_vmcs->host_state.rsp)) {
7201		vmx->loaded_vmcs->host_state.rsp = host_rsp;
7202		vmcs_writel(HOST_RSP, host_rsp);
7203	}
7204}
7205
7206void noinstr vmx_spec_ctrl_restore_host(struct vcpu_vmx *vmx,
7207					unsigned int flags)
7208{
7209	u64 hostval = this_cpu_read(x86_spec_ctrl_current);
7210
7211	if (!cpu_feature_enabled(X86_FEATURE_MSR_SPEC_CTRL))
7212		return;
7213
7214	if (flags & VMX_RUN_SAVE_SPEC_CTRL)
7215		vmx->spec_ctrl = __rdmsr(MSR_IA32_SPEC_CTRL);
7216
7217	/*
7218	 * If the guest/host SPEC_CTRL values differ, restore the host value.
7219	 *
7220	 * For legacy IBRS, the IBRS bit always needs to be written after
7221	 * transitioning from a less privileged predictor mode, regardless of
7222	 * whether the guest/host values differ.
7223	 */
7224	if (cpu_feature_enabled(X86_FEATURE_KERNEL_IBRS) ||
7225	    vmx->spec_ctrl != hostval)
7226		native_wrmsrl(MSR_IA32_SPEC_CTRL, hostval);
7227
7228	barrier_nospec();
7229}
7230
7231static fastpath_t vmx_exit_handlers_fastpath(struct kvm_vcpu *vcpu,
7232					     bool force_immediate_exit)
7233{
7234	/*
7235	 * If L2 is active, some VMX preemption timer exits can be handled in
7236	 * the fastpath even, all other exits must use the slow path.
7237	 */
7238	if (is_guest_mode(vcpu) &&
7239	    to_vmx(vcpu)->exit_reason.basic != EXIT_REASON_PREEMPTION_TIMER)
7240		return EXIT_FASTPATH_NONE;
7241
7242	switch (to_vmx(vcpu)->exit_reason.basic) {
7243	case EXIT_REASON_MSR_WRITE:
7244		return handle_fastpath_set_msr_irqoff(vcpu);
7245	case EXIT_REASON_PREEMPTION_TIMER:
7246		return handle_fastpath_preemption_timer(vcpu, force_immediate_exit);
7247	default:
7248		return EXIT_FASTPATH_NONE;
7249	}
7250}
7251
7252static noinstr void vmx_vcpu_enter_exit(struct kvm_vcpu *vcpu,
7253					unsigned int flags)
7254{
7255	struct vcpu_vmx *vmx = to_vmx(vcpu);
7256
7257	guest_state_enter_irqoff();
7258
7259	/*
7260	 * L1D Flush includes CPU buffer clear to mitigate MDS, but VERW
7261	 * mitigation for MDS is done late in VMentry and is still
7262	 * executed in spite of L1D Flush. This is because an extra VERW
7263	 * should not matter much after the big hammer L1D Flush.
7264	 */
7265	if (static_branch_unlikely(&vmx_l1d_should_flush))
7266		vmx_l1d_flush(vcpu);
7267	else if (static_branch_unlikely(&mmio_stale_data_clear) &&
7268		 kvm_arch_has_assigned_device(vcpu->kvm))
7269		mds_clear_cpu_buffers();
7270
7271	vmx_disable_fb_clear(vmx);
7272
7273	if (vcpu->arch.cr2 != native_read_cr2())
7274		native_write_cr2(vcpu->arch.cr2);
7275
7276	vmx->fail = __vmx_vcpu_run(vmx, (unsigned long *)&vcpu->arch.regs,
7277				   flags);
7278
7279	vcpu->arch.cr2 = native_read_cr2();
7280	vcpu->arch.regs_avail &= ~VMX_REGS_LAZY_LOAD_SET;
7281
7282	vmx->idt_vectoring_info = 0;
7283
7284	vmx_enable_fb_clear(vmx);
7285
7286	if (unlikely(vmx->fail)) {
7287		vmx->exit_reason.full = 0xdead;
7288		goto out;
7289	}
7290
7291	vmx->exit_reason.full = vmcs_read32(VM_EXIT_REASON);
7292	if (likely(!vmx->exit_reason.failed_vmentry))
7293		vmx->idt_vectoring_info = vmcs_read32(IDT_VECTORING_INFO_FIELD);
7294
7295	if ((u16)vmx->exit_reason.basic == EXIT_REASON_EXCEPTION_NMI &&
7296	    is_nmi(vmx_get_intr_info(vcpu))) {
7297		kvm_before_interrupt(vcpu, KVM_HANDLING_NMI);
7298		if (cpu_feature_enabled(X86_FEATURE_FRED))
7299			fred_entry_from_kvm(EVENT_TYPE_NMI, NMI_VECTOR);
7300		else
7301			vmx_do_nmi_irqoff();
7302		kvm_after_interrupt(vcpu);
7303	}
7304
7305out:
7306	guest_state_exit_irqoff();
7307}
7308
7309static fastpath_t vmx_vcpu_run(struct kvm_vcpu *vcpu, bool force_immediate_exit)
7310{
7311	struct vcpu_vmx *vmx = to_vmx(vcpu);
7312	unsigned long cr3, cr4;
7313
7314	/* Record the guest's net vcpu time for enforced NMI injections. */
7315	if (unlikely(!enable_vnmi &&
7316		     vmx->loaded_vmcs->soft_vnmi_blocked))
7317		vmx->loaded_vmcs->entry_time = ktime_get();
7318
7319	/*
7320	 * Don't enter VMX if guest state is invalid, let the exit handler
7321	 * start emulation until we arrive back to a valid state.  Synthesize a
7322	 * consistency check VM-Exit due to invalid guest state and bail.
7323	 */
7324	if (unlikely(vmx->emulation_required)) {
7325		vmx->fail = 0;
7326
7327		vmx->exit_reason.full = EXIT_REASON_INVALID_STATE;
7328		vmx->exit_reason.failed_vmentry = 1;
7329		kvm_register_mark_available(vcpu, VCPU_EXREG_EXIT_INFO_1);
7330		vmx->exit_qualification = ENTRY_FAIL_DEFAULT;
7331		kvm_register_mark_available(vcpu, VCPU_EXREG_EXIT_INFO_2);
7332		vmx->exit_intr_info = 0;
7333		return EXIT_FASTPATH_NONE;
7334	}
7335
7336	trace_kvm_entry(vcpu, force_immediate_exit);
7337
7338	if (vmx->ple_window_dirty) {
7339		vmx->ple_window_dirty = false;
7340		vmcs_write32(PLE_WINDOW, vmx->ple_window);
7341	}
7342
7343	/*
7344	 * We did this in prepare_switch_to_guest, because it needs to
7345	 * be within srcu_read_lock.
7346	 */
7347	WARN_ON_ONCE(vmx->nested.need_vmcs12_to_shadow_sync);
7348
7349	if (kvm_register_is_dirty(vcpu, VCPU_REGS_RSP))
7350		vmcs_writel(GUEST_RSP, vcpu->arch.regs[VCPU_REGS_RSP]);
7351	if (kvm_register_is_dirty(vcpu, VCPU_REGS_RIP))
7352		vmcs_writel(GUEST_RIP, vcpu->arch.regs[VCPU_REGS_RIP]);
7353	vcpu->arch.regs_dirty = 0;
7354
7355	/*
7356	 * Refresh vmcs.HOST_CR3 if necessary.  This must be done immediately
7357	 * prior to VM-Enter, as the kernel may load a new ASID (PCID) any time
7358	 * it switches back to the current->mm, which can occur in KVM context
7359	 * when switching to a temporary mm to patch kernel code, e.g. if KVM
7360	 * toggles a static key while handling a VM-Exit.
7361	 */
7362	cr3 = __get_current_cr3_fast();
7363	if (unlikely(cr3 != vmx->loaded_vmcs->host_state.cr3)) {
7364		vmcs_writel(HOST_CR3, cr3);
7365		vmx->loaded_vmcs->host_state.cr3 = cr3;
7366	}
7367
7368	cr4 = cr4_read_shadow();
7369	if (unlikely(cr4 != vmx->loaded_vmcs->host_state.cr4)) {
7370		vmcs_writel(HOST_CR4, cr4);
7371		vmx->loaded_vmcs->host_state.cr4 = cr4;
7372	}
7373
7374	/* When KVM_DEBUGREG_WONT_EXIT, dr6 is accessible in guest. */
7375	if (unlikely(vcpu->arch.switch_db_regs & KVM_DEBUGREG_WONT_EXIT))
7376		set_debugreg(vcpu->arch.dr6, 6);
7377
7378	/* When single-stepping over STI and MOV SS, we must clear the
7379	 * corresponding interruptibility bits in the guest state. Otherwise
7380	 * vmentry fails as it then expects bit 14 (BS) in pending debug
7381	 * exceptions being set, but that's not correct for the guest debugging
7382	 * case. */
7383	if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
7384		vmx_set_interrupt_shadow(vcpu, 0);
7385
7386	kvm_load_guest_xsave_state(vcpu);
7387
7388	pt_guest_enter(vmx);
7389
7390	atomic_switch_perf_msrs(vmx);
7391	if (intel_pmu_lbr_is_enabled(vcpu))
7392		vmx_passthrough_lbr_msrs(vcpu);
7393
7394	if (enable_preemption_timer)
7395		vmx_update_hv_timer(vcpu, force_immediate_exit);
7396	else if (force_immediate_exit)
7397		smp_send_reschedule(vcpu->cpu);
7398
7399	kvm_wait_lapic_expire(vcpu);
7400
7401	/* The actual VMENTER/EXIT is in the .noinstr.text section. */
7402	vmx_vcpu_enter_exit(vcpu, __vmx_vcpu_run_flags(vmx));
7403
7404	/* All fields are clean at this point */
7405	if (kvm_is_using_evmcs()) {
7406		current_evmcs->hv_clean_fields |=
7407			HV_VMX_ENLIGHTENED_CLEAN_FIELD_ALL;
7408
7409		current_evmcs->hv_vp_id = kvm_hv_get_vpindex(vcpu);
7410	}
7411
7412	/* MSR_IA32_DEBUGCTLMSR is zeroed on vmexit. Restore it if needed */
7413	if (vmx->host_debugctlmsr)
7414		update_debugctlmsr(vmx->host_debugctlmsr);
7415
7416#ifndef CONFIG_X86_64
7417	/*
7418	 * The sysexit path does not restore ds/es, so we must set them to
7419	 * a reasonable value ourselves.
7420	 *
7421	 * We can't defer this to vmx_prepare_switch_to_host() since that
7422	 * function may be executed in interrupt context, which saves and
7423	 * restore segments around it, nullifying its effect.
7424	 */
7425	loadsegment(ds, __USER_DS);
7426	loadsegment(es, __USER_DS);
7427#endif
7428
7429	pt_guest_exit(vmx);
7430
7431	kvm_load_host_xsave_state(vcpu);
7432
7433	if (is_guest_mode(vcpu)) {
7434		/*
7435		 * Track VMLAUNCH/VMRESUME that have made past guest state
7436		 * checking.
7437		 */
7438		if (vmx->nested.nested_run_pending &&
7439		    !vmx->exit_reason.failed_vmentry)
7440			++vcpu->stat.nested_run;
7441
7442		vmx->nested.nested_run_pending = 0;
7443	}
7444
7445	if (unlikely(vmx->fail))
7446		return EXIT_FASTPATH_NONE;
7447
7448	if (unlikely((u16)vmx->exit_reason.basic == EXIT_REASON_MCE_DURING_VMENTRY))
7449		kvm_machine_check();
7450
7451	trace_kvm_exit(vcpu, KVM_ISA_VMX);
7452
7453	if (unlikely(vmx->exit_reason.failed_vmentry))
7454		return EXIT_FASTPATH_NONE;
7455
7456	vmx->loaded_vmcs->launched = 1;
7457
7458	vmx_recover_nmi_blocking(vmx);
7459	vmx_complete_interrupts(vmx);
7460
7461	return vmx_exit_handlers_fastpath(vcpu, force_immediate_exit);
7462}
7463
7464static void vmx_vcpu_free(struct kvm_vcpu *vcpu)
7465{
7466	struct vcpu_vmx *vmx = to_vmx(vcpu);
7467
7468	if (enable_pml)
7469		vmx_destroy_pml_buffer(vmx);
7470	free_vpid(vmx->vpid);
7471	nested_vmx_free_vcpu(vcpu);
7472	free_loaded_vmcs(vmx->loaded_vmcs);
7473}
7474
7475static int vmx_vcpu_create(struct kvm_vcpu *vcpu)
7476{
7477	struct vmx_uret_msr *tsx_ctrl;
7478	struct vcpu_vmx *vmx;
7479	int i, err;
7480
7481	BUILD_BUG_ON(offsetof(struct vcpu_vmx, vcpu) != 0);
7482	vmx = to_vmx(vcpu);
7483
7484	INIT_LIST_HEAD(&vmx->pi_wakeup_list);
7485
7486	err = -ENOMEM;
7487
7488	vmx->vpid = allocate_vpid();
7489
7490	/*
7491	 * If PML is turned on, failure on enabling PML just results in failure
7492	 * of creating the vcpu, therefore we can simplify PML logic (by
7493	 * avoiding dealing with cases, such as enabling PML partially on vcpus
7494	 * for the guest), etc.
7495	 */
7496	if (enable_pml) {
7497		vmx->pml_pg = alloc_page(GFP_KERNEL_ACCOUNT | __GFP_ZERO);
7498		if (!vmx->pml_pg)
7499			goto free_vpid;
7500	}
7501
7502	for (i = 0; i < kvm_nr_uret_msrs; ++i)
7503		vmx->guest_uret_msrs[i].mask = -1ull;
7504	if (boot_cpu_has(X86_FEATURE_RTM)) {
7505		/*
7506		 * TSX_CTRL_CPUID_CLEAR is handled in the CPUID interception.
7507		 * Keep the host value unchanged to avoid changing CPUID bits
7508		 * under the host kernel's feet.
7509		 */
7510		tsx_ctrl = vmx_find_uret_msr(vmx, MSR_IA32_TSX_CTRL);
7511		if (tsx_ctrl)
7512			tsx_ctrl->mask = ~(u64)TSX_CTRL_CPUID_CLEAR;
7513	}
7514
7515	err = alloc_loaded_vmcs(&vmx->vmcs01);
7516	if (err < 0)
7517		goto free_pml;
7518
7519	/*
7520	 * Use Hyper-V 'Enlightened MSR Bitmap' feature when KVM runs as a
7521	 * nested (L1) hypervisor and Hyper-V in L0 supports it. Enable the
7522	 * feature only for vmcs01, KVM currently isn't equipped to realize any
7523	 * performance benefits from enabling it for vmcs02.
7524	 */
7525	if (kvm_is_using_evmcs() &&
7526	    (ms_hyperv.nested_features & HV_X64_NESTED_MSR_BITMAP)) {
7527		struct hv_enlightened_vmcs *evmcs = (void *)vmx->vmcs01.vmcs;
7528
7529		evmcs->hv_enlightenments_control.msr_bitmap = 1;
7530	}
7531
7532	/* The MSR bitmap starts with all ones */
7533	bitmap_fill(vmx->shadow_msr_intercept.read, MAX_POSSIBLE_PASSTHROUGH_MSRS);
7534	bitmap_fill(vmx->shadow_msr_intercept.write, MAX_POSSIBLE_PASSTHROUGH_MSRS);
7535
7536	vmx_disable_intercept_for_msr(vcpu, MSR_IA32_TSC, MSR_TYPE_R);
7537#ifdef CONFIG_X86_64
7538	vmx_disable_intercept_for_msr(vcpu, MSR_FS_BASE, MSR_TYPE_RW);
7539	vmx_disable_intercept_for_msr(vcpu, MSR_GS_BASE, MSR_TYPE_RW);
7540	vmx_disable_intercept_for_msr(vcpu, MSR_KERNEL_GS_BASE, MSR_TYPE_RW);
7541#endif
7542	vmx_disable_intercept_for_msr(vcpu, MSR_IA32_SYSENTER_CS, MSR_TYPE_RW);
7543	vmx_disable_intercept_for_msr(vcpu, MSR_IA32_SYSENTER_ESP, MSR_TYPE_RW);
7544	vmx_disable_intercept_for_msr(vcpu, MSR_IA32_SYSENTER_EIP, MSR_TYPE_RW);
7545	if (kvm_cstate_in_guest(vcpu->kvm)) {
7546		vmx_disable_intercept_for_msr(vcpu, MSR_CORE_C1_RES, MSR_TYPE_R);
7547		vmx_disable_intercept_for_msr(vcpu, MSR_CORE_C3_RESIDENCY, MSR_TYPE_R);
7548		vmx_disable_intercept_for_msr(vcpu, MSR_CORE_C6_RESIDENCY, MSR_TYPE_R);
7549		vmx_disable_intercept_for_msr(vcpu, MSR_CORE_C7_RESIDENCY, MSR_TYPE_R);
7550	}
7551
7552	vmx->loaded_vmcs = &vmx->vmcs01;
7553
7554	if (cpu_need_virtualize_apic_accesses(vcpu)) {
7555		err = kvm_alloc_apic_access_page(vcpu->kvm);
7556		if (err)
7557			goto free_vmcs;
7558	}
7559
7560	if (enable_ept && !enable_unrestricted_guest) {
7561		err = init_rmode_identity_map(vcpu->kvm);
7562		if (err)
7563			goto free_vmcs;
7564	}
7565
7566	if (vmx_can_use_ipiv(vcpu))
7567		WRITE_ONCE(to_kvm_vmx(vcpu->kvm)->pid_table[vcpu->vcpu_id],
7568			   __pa(&vmx->pi_desc) | PID_TABLE_ENTRY_VALID);
7569
7570	return 0;
7571
7572free_vmcs:
7573	free_loaded_vmcs(vmx->loaded_vmcs);
7574free_pml:
7575	vmx_destroy_pml_buffer(vmx);
7576free_vpid:
7577	free_vpid(vmx->vpid);
7578	return err;
7579}
7580
7581#define L1TF_MSG_SMT "L1TF CPU bug present and SMT on, data leak possible. See CVE-2018-3646 and https://www.kernel.org/doc/html/latest/admin-guide/hw-vuln/l1tf.html for details.\n"
7582#define L1TF_MSG_L1D "L1TF CPU bug present and virtualization mitigation disabled, data leak possible. See CVE-2018-3646 and https://www.kernel.org/doc/html/latest/admin-guide/hw-vuln/l1tf.html for details.\n"
7583
7584static int vmx_vm_init(struct kvm *kvm)
7585{
7586	if (!ple_gap)
7587		kvm->arch.pause_in_guest = true;
7588
7589	if (boot_cpu_has(X86_BUG_L1TF) && enable_ept) {
7590		switch (l1tf_mitigation) {
7591		case L1TF_MITIGATION_OFF:
7592		case L1TF_MITIGATION_FLUSH_NOWARN:
7593			/* 'I explicitly don't care' is set */
7594			break;
7595		case L1TF_MITIGATION_FLUSH:
7596		case L1TF_MITIGATION_FLUSH_NOSMT:
7597		case L1TF_MITIGATION_FULL:
7598			/*
7599			 * Warn upon starting the first VM in a potentially
7600			 * insecure environment.
7601			 */
7602			if (sched_smt_active())
7603				pr_warn_once(L1TF_MSG_SMT);
7604			if (l1tf_vmx_mitigation == VMENTER_L1D_FLUSH_NEVER)
7605				pr_warn_once(L1TF_MSG_L1D);
7606			break;
7607		case L1TF_MITIGATION_FULL_FORCE:
7608			/* Flush is enforced */
7609			break;
7610		}
7611	}
7612	return 0;
7613}
7614
7615static u8 vmx_get_mt_mask(struct kvm_vcpu *vcpu, gfn_t gfn, bool is_mmio)
7616{
7617	/* We wanted to honor guest CD/MTRR/PAT, but doing so could result in
7618	 * memory aliases with conflicting memory types and sometimes MCEs.
7619	 * We have to be careful as to what are honored and when.
7620	 *
7621	 * For MMIO, guest CD/MTRR are ignored.  The EPT memory type is set to
7622	 * UC.  The effective memory type is UC or WC depending on guest PAT.
7623	 * This was historically the source of MCEs and we want to be
7624	 * conservative.
7625	 *
7626	 * When there is no need to deal with noncoherent DMA (e.g., no VT-d
7627	 * or VT-d has snoop control), guest CD/MTRR/PAT are all ignored.  The
7628	 * EPT memory type is set to WB.  The effective memory type is forced
7629	 * WB.
7630	 *
7631	 * Otherwise, we trust guest.  Guest CD/MTRR/PAT are all honored.  The
7632	 * EPT memory type is used to emulate guest CD/MTRR.
7633	 */
7634
7635	if (is_mmio)
7636		return MTRR_TYPE_UNCACHABLE << VMX_EPT_MT_EPTE_SHIFT;
7637
7638	if (!kvm_arch_has_noncoherent_dma(vcpu->kvm))
7639		return (MTRR_TYPE_WRBACK << VMX_EPT_MT_EPTE_SHIFT) | VMX_EPT_IPAT_BIT;
7640
7641	if (kvm_read_cr0_bits(vcpu, X86_CR0_CD)) {
7642		if (kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_CD_NW_CLEARED))
7643			return MTRR_TYPE_WRBACK << VMX_EPT_MT_EPTE_SHIFT;
7644		else
7645			return (MTRR_TYPE_UNCACHABLE << VMX_EPT_MT_EPTE_SHIFT) |
7646				VMX_EPT_IPAT_BIT;
7647	}
7648
7649	return kvm_mtrr_get_guest_memory_type(vcpu, gfn) << VMX_EPT_MT_EPTE_SHIFT;
7650}
7651
7652static void vmcs_set_secondary_exec_control(struct vcpu_vmx *vmx, u32 new_ctl)
7653{
7654	/*
7655	 * These bits in the secondary execution controls field
7656	 * are dynamic, the others are mostly based on the hypervisor
7657	 * architecture and the guest's CPUID.  Do not touch the
7658	 * dynamic bits.
7659	 */
7660	u32 mask =
7661		SECONDARY_EXEC_SHADOW_VMCS |
7662		SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE |
7663		SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES |
7664		SECONDARY_EXEC_DESC;
7665
7666	u32 cur_ctl = secondary_exec_controls_get(vmx);
7667
7668	secondary_exec_controls_set(vmx, (new_ctl & ~mask) | (cur_ctl & mask));
7669}
7670
7671/*
7672 * Generate MSR_IA32_VMX_CR{0,4}_FIXED1 according to CPUID. Only set bits
7673 * (indicating "allowed-1") if they are supported in the guest's CPUID.
7674 */
7675static void nested_vmx_cr_fixed1_bits_update(struct kvm_vcpu *vcpu)
7676{
7677	struct vcpu_vmx *vmx = to_vmx(vcpu);
7678	struct kvm_cpuid_entry2 *entry;
7679
7680	vmx->nested.msrs.cr0_fixed1 = 0xffffffff;
7681	vmx->nested.msrs.cr4_fixed1 = X86_CR4_PCE;
7682
7683#define cr4_fixed1_update(_cr4_mask, _reg, _cpuid_mask) do {		\
7684	if (entry && (entry->_reg & (_cpuid_mask)))			\
7685		vmx->nested.msrs.cr4_fixed1 |= (_cr4_mask);	\
7686} while (0)
7687
7688	entry = kvm_find_cpuid_entry(vcpu, 0x1);
7689	cr4_fixed1_update(X86_CR4_VME,        edx, feature_bit(VME));
7690	cr4_fixed1_update(X86_CR4_PVI,        edx, feature_bit(VME));
7691	cr4_fixed1_update(X86_CR4_TSD,        edx, feature_bit(TSC));
7692	cr4_fixed1_update(X86_CR4_DE,         edx, feature_bit(DE));
7693	cr4_fixed1_update(X86_CR4_PSE,        edx, feature_bit(PSE));
7694	cr4_fixed1_update(X86_CR4_PAE,        edx, feature_bit(PAE));
7695	cr4_fixed1_update(X86_CR4_MCE,        edx, feature_bit(MCE));
7696	cr4_fixed1_update(X86_CR4_PGE,        edx, feature_bit(PGE));
7697	cr4_fixed1_update(X86_CR4_OSFXSR,     edx, feature_bit(FXSR));
7698	cr4_fixed1_update(X86_CR4_OSXMMEXCPT, edx, feature_bit(XMM));
7699	cr4_fixed1_update(X86_CR4_VMXE,       ecx, feature_bit(VMX));
7700	cr4_fixed1_update(X86_CR4_SMXE,       ecx, feature_bit(SMX));
7701	cr4_fixed1_update(X86_CR4_PCIDE,      ecx, feature_bit(PCID));
7702	cr4_fixed1_update(X86_CR4_OSXSAVE,    ecx, feature_bit(XSAVE));
7703
7704	entry = kvm_find_cpuid_entry_index(vcpu, 0x7, 0);
7705	cr4_fixed1_update(X86_CR4_FSGSBASE,   ebx, feature_bit(FSGSBASE));
7706	cr4_fixed1_update(X86_CR4_SMEP,       ebx, feature_bit(SMEP));
7707	cr4_fixed1_update(X86_CR4_SMAP,       ebx, feature_bit(SMAP));
7708	cr4_fixed1_update(X86_CR4_PKE,        ecx, feature_bit(PKU));
7709	cr4_fixed1_update(X86_CR4_UMIP,       ecx, feature_bit(UMIP));
7710	cr4_fixed1_update(X86_CR4_LA57,       ecx, feature_bit(LA57));
7711
7712	entry = kvm_find_cpuid_entry_index(vcpu, 0x7, 1);
7713	cr4_fixed1_update(X86_CR4_LAM_SUP,    eax, feature_bit(LAM));
7714
7715#undef cr4_fixed1_update
7716}
7717
7718static void update_intel_pt_cfg(struct kvm_vcpu *vcpu)
7719{
7720	struct vcpu_vmx *vmx = to_vmx(vcpu);
7721	struct kvm_cpuid_entry2 *best = NULL;
7722	int i;
7723
7724	for (i = 0; i < PT_CPUID_LEAVES; i++) {
7725		best = kvm_find_cpuid_entry_index(vcpu, 0x14, i);
7726		if (!best)
7727			return;
7728		vmx->pt_desc.caps[CPUID_EAX + i*PT_CPUID_REGS_NUM] = best->eax;
7729		vmx->pt_desc.caps[CPUID_EBX + i*PT_CPUID_REGS_NUM] = best->ebx;
7730		vmx->pt_desc.caps[CPUID_ECX + i*PT_CPUID_REGS_NUM] = best->ecx;
7731		vmx->pt_desc.caps[CPUID_EDX + i*PT_CPUID_REGS_NUM] = best->edx;
7732	}
7733
7734	/* Get the number of configurable Address Ranges for filtering */
7735	vmx->pt_desc.num_address_ranges = intel_pt_validate_cap(vmx->pt_desc.caps,
7736						PT_CAP_num_address_ranges);
7737
7738	/* Initialize and clear the no dependency bits */
7739	vmx->pt_desc.ctl_bitmask = ~(RTIT_CTL_TRACEEN | RTIT_CTL_OS |
7740			RTIT_CTL_USR | RTIT_CTL_TSC_EN | RTIT_CTL_DISRETC |
7741			RTIT_CTL_BRANCH_EN);
7742
7743	/*
7744	 * If CPUID.(EAX=14H,ECX=0):EBX[0]=1 CR3Filter can be set otherwise
7745	 * will inject an #GP
7746	 */
7747	if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_cr3_filtering))
7748		vmx->pt_desc.ctl_bitmask &= ~RTIT_CTL_CR3EN;
7749
7750	/*
7751	 * If CPUID.(EAX=14H,ECX=0):EBX[1]=1 CYCEn, CycThresh and
7752	 * PSBFreq can be set
7753	 */
7754	if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_psb_cyc))
7755		vmx->pt_desc.ctl_bitmask &= ~(RTIT_CTL_CYCLEACC |
7756				RTIT_CTL_CYC_THRESH | RTIT_CTL_PSB_FREQ);
7757
7758	/*
7759	 * If CPUID.(EAX=14H,ECX=0):EBX[3]=1 MTCEn and MTCFreq can be set
7760	 */
7761	if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_mtc))
7762		vmx->pt_desc.ctl_bitmask &= ~(RTIT_CTL_MTC_EN |
7763					      RTIT_CTL_MTC_RANGE);
7764
7765	/* If CPUID.(EAX=14H,ECX=0):EBX[4]=1 FUPonPTW and PTWEn can be set */
7766	if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_ptwrite))
7767		vmx->pt_desc.ctl_bitmask &= ~(RTIT_CTL_FUP_ON_PTW |
7768							RTIT_CTL_PTW_EN);
7769
7770	/* If CPUID.(EAX=14H,ECX=0):EBX[5]=1 PwrEvEn can be set */
7771	if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_power_event_trace))
7772		vmx->pt_desc.ctl_bitmask &= ~RTIT_CTL_PWR_EVT_EN;
7773
7774	/* If CPUID.(EAX=14H,ECX=0):ECX[0]=1 ToPA can be set */
7775	if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_topa_output))
7776		vmx->pt_desc.ctl_bitmask &= ~RTIT_CTL_TOPA;
7777
7778	/* If CPUID.(EAX=14H,ECX=0):ECX[3]=1 FabricEn can be set */
7779	if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_output_subsys))
7780		vmx->pt_desc.ctl_bitmask &= ~RTIT_CTL_FABRIC_EN;
7781
7782	/* unmask address range configure area */
7783	for (i = 0; i < vmx->pt_desc.num_address_ranges; i++)
7784		vmx->pt_desc.ctl_bitmask &= ~(0xfULL << (32 + i * 4));
7785}
7786
7787static void vmx_vcpu_after_set_cpuid(struct kvm_vcpu *vcpu)
7788{
7789	struct vcpu_vmx *vmx = to_vmx(vcpu);
7790
7791	/*
7792	 * XSAVES is effectively enabled if and only if XSAVE is also exposed
7793	 * to the guest.  XSAVES depends on CR4.OSXSAVE, and CR4.OSXSAVE can be
7794	 * set if and only if XSAVE is supported.
7795	 */
7796	if (boot_cpu_has(X86_FEATURE_XSAVE) &&
7797	    guest_cpuid_has(vcpu, X86_FEATURE_XSAVE))
7798		kvm_governed_feature_check_and_set(vcpu, X86_FEATURE_XSAVES);
7799
7800	kvm_governed_feature_check_and_set(vcpu, X86_FEATURE_VMX);
7801	kvm_governed_feature_check_and_set(vcpu, X86_FEATURE_LAM);
7802
7803	vmx_setup_uret_msrs(vmx);
7804
7805	if (cpu_has_secondary_exec_ctrls())
7806		vmcs_set_secondary_exec_control(vmx,
7807						vmx_secondary_exec_control(vmx));
7808
7809	if (guest_can_use(vcpu, X86_FEATURE_VMX))
7810		vmx->msr_ia32_feature_control_valid_bits |=
7811			FEAT_CTL_VMX_ENABLED_INSIDE_SMX |
7812			FEAT_CTL_VMX_ENABLED_OUTSIDE_SMX;
7813	else
7814		vmx->msr_ia32_feature_control_valid_bits &=
7815			~(FEAT_CTL_VMX_ENABLED_INSIDE_SMX |
7816			  FEAT_CTL_VMX_ENABLED_OUTSIDE_SMX);
7817
7818	if (guest_can_use(vcpu, X86_FEATURE_VMX))
7819		nested_vmx_cr_fixed1_bits_update(vcpu);
7820
7821	if (boot_cpu_has(X86_FEATURE_INTEL_PT) &&
7822			guest_cpuid_has(vcpu, X86_FEATURE_INTEL_PT))
7823		update_intel_pt_cfg(vcpu);
7824
7825	if (boot_cpu_has(X86_FEATURE_RTM)) {
7826		struct vmx_uret_msr *msr;
7827		msr = vmx_find_uret_msr(vmx, MSR_IA32_TSX_CTRL);
7828		if (msr) {
7829			bool enabled = guest_cpuid_has(vcpu, X86_FEATURE_RTM);
7830			vmx_set_guest_uret_msr(vmx, msr, enabled ? 0 : TSX_CTRL_RTM_DISABLE);
7831		}
7832	}
7833
7834	if (kvm_cpu_cap_has(X86_FEATURE_XFD))
7835		vmx_set_intercept_for_msr(vcpu, MSR_IA32_XFD_ERR, MSR_TYPE_R,
7836					  !guest_cpuid_has(vcpu, X86_FEATURE_XFD));
7837
7838	if (boot_cpu_has(X86_FEATURE_IBPB))
7839		vmx_set_intercept_for_msr(vcpu, MSR_IA32_PRED_CMD, MSR_TYPE_W,
7840					  !guest_has_pred_cmd_msr(vcpu));
7841
7842	if (boot_cpu_has(X86_FEATURE_FLUSH_L1D))
7843		vmx_set_intercept_for_msr(vcpu, MSR_IA32_FLUSH_CMD, MSR_TYPE_W,
7844					  !guest_cpuid_has(vcpu, X86_FEATURE_FLUSH_L1D));
7845
7846	set_cr4_guest_host_mask(vmx);
7847
7848	vmx_write_encls_bitmap(vcpu, NULL);
7849	if (guest_cpuid_has(vcpu, X86_FEATURE_SGX))
7850		vmx->msr_ia32_feature_control_valid_bits |= FEAT_CTL_SGX_ENABLED;
7851	else
7852		vmx->msr_ia32_feature_control_valid_bits &= ~FEAT_CTL_SGX_ENABLED;
7853
7854	if (guest_cpuid_has(vcpu, X86_FEATURE_SGX_LC))
7855		vmx->msr_ia32_feature_control_valid_bits |=
7856			FEAT_CTL_SGX_LC_ENABLED;
7857	else
7858		vmx->msr_ia32_feature_control_valid_bits &=
7859			~FEAT_CTL_SGX_LC_ENABLED;
7860
7861	/* Refresh #PF interception to account for MAXPHYADDR changes. */
7862	vmx_update_exception_bitmap(vcpu);
7863}
7864
7865static u64 vmx_get_perf_capabilities(void)
7866{
7867	u64 perf_cap = PMU_CAP_FW_WRITES;
7868	struct x86_pmu_lbr lbr;
7869	u64 host_perf_cap = 0;
7870
7871	if (!enable_pmu)
7872		return 0;
7873
7874	if (boot_cpu_has(X86_FEATURE_PDCM))
7875		rdmsrl(MSR_IA32_PERF_CAPABILITIES, host_perf_cap);
7876
7877	if (!cpu_feature_enabled(X86_FEATURE_ARCH_LBR)) {
7878		x86_perf_get_lbr(&lbr);
7879		if (lbr.nr)
7880			perf_cap |= host_perf_cap & PMU_CAP_LBR_FMT;
7881	}
7882
7883	if (vmx_pebs_supported()) {
7884		perf_cap |= host_perf_cap & PERF_CAP_PEBS_MASK;
7885		if ((perf_cap & PERF_CAP_PEBS_FORMAT) < 4)
7886			perf_cap &= ~PERF_CAP_PEBS_BASELINE;
7887	}
7888
7889	return perf_cap;
7890}
7891
7892static __init void vmx_set_cpu_caps(void)
7893{
7894	kvm_set_cpu_caps();
7895
7896	/* CPUID 0x1 */
7897	if (nested)
7898		kvm_cpu_cap_set(X86_FEATURE_VMX);
7899
7900	/* CPUID 0x7 */
7901	if (kvm_mpx_supported())
7902		kvm_cpu_cap_check_and_set(X86_FEATURE_MPX);
7903	if (!cpu_has_vmx_invpcid())
7904		kvm_cpu_cap_clear(X86_FEATURE_INVPCID);
7905	if (vmx_pt_mode_is_host_guest())
7906		kvm_cpu_cap_check_and_set(X86_FEATURE_INTEL_PT);
7907	if (vmx_pebs_supported()) {
7908		kvm_cpu_cap_check_and_set(X86_FEATURE_DS);
7909		kvm_cpu_cap_check_and_set(X86_FEATURE_DTES64);
7910	}
7911
7912	if (!enable_pmu)
7913		kvm_cpu_cap_clear(X86_FEATURE_PDCM);
7914	kvm_caps.supported_perf_cap = vmx_get_perf_capabilities();
7915
7916	if (!enable_sgx) {
7917		kvm_cpu_cap_clear(X86_FEATURE_SGX);
7918		kvm_cpu_cap_clear(X86_FEATURE_SGX_LC);
7919		kvm_cpu_cap_clear(X86_FEATURE_SGX1);
7920		kvm_cpu_cap_clear(X86_FEATURE_SGX2);
7921	}
7922
7923	if (vmx_umip_emulated())
7924		kvm_cpu_cap_set(X86_FEATURE_UMIP);
7925
7926	/* CPUID 0xD.1 */
7927	kvm_caps.supported_xss = 0;
7928	if (!cpu_has_vmx_xsaves())
7929		kvm_cpu_cap_clear(X86_FEATURE_XSAVES);
7930
7931	/* CPUID 0x80000001 and 0x7 (RDPID) */
7932	if (!cpu_has_vmx_rdtscp()) {
7933		kvm_cpu_cap_clear(X86_FEATURE_RDTSCP);
7934		kvm_cpu_cap_clear(X86_FEATURE_RDPID);
7935	}
7936
7937	if (cpu_has_vmx_waitpkg())
7938		kvm_cpu_cap_check_and_set(X86_FEATURE_WAITPKG);
7939}
7940
7941static int vmx_check_intercept_io(struct kvm_vcpu *vcpu,
7942				  struct x86_instruction_info *info)
7943{
7944	struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
7945	unsigned short port;
7946	bool intercept;
7947	int size;
7948
7949	if (info->intercept == x86_intercept_in ||
7950	    info->intercept == x86_intercept_ins) {
7951		port = info->src_val;
7952		size = info->dst_bytes;
7953	} else {
7954		port = info->dst_val;
7955		size = info->src_bytes;
7956	}
7957
7958	/*
7959	 * If the 'use IO bitmaps' VM-execution control is 0, IO instruction
7960	 * VM-exits depend on the 'unconditional IO exiting' VM-execution
7961	 * control.
7962	 *
7963	 * Otherwise, IO instruction VM-exits are controlled by the IO bitmaps.
7964	 */
7965	if (!nested_cpu_has(vmcs12, CPU_BASED_USE_IO_BITMAPS))
7966		intercept = nested_cpu_has(vmcs12,
7967					   CPU_BASED_UNCOND_IO_EXITING);
7968	else
7969		intercept = nested_vmx_check_io_bitmaps(vcpu, port, size);
7970
7971	/* FIXME: produce nested vmexit and return X86EMUL_INTERCEPTED.  */
7972	return intercept ? X86EMUL_UNHANDLEABLE : X86EMUL_CONTINUE;
7973}
7974
7975static int vmx_check_intercept(struct kvm_vcpu *vcpu,
7976			       struct x86_instruction_info *info,
7977			       enum x86_intercept_stage stage,
7978			       struct x86_exception *exception)
7979{
7980	struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
7981
7982	switch (info->intercept) {
7983	/*
7984	 * RDPID causes #UD if disabled through secondary execution controls.
7985	 * Because it is marked as EmulateOnUD, we need to intercept it here.
7986	 * Note, RDPID is hidden behind ENABLE_RDTSCP.
7987	 */
7988	case x86_intercept_rdpid:
7989		if (!nested_cpu_has2(vmcs12, SECONDARY_EXEC_ENABLE_RDTSCP)) {
7990			exception->vector = UD_VECTOR;
7991			exception->error_code_valid = false;
7992			return X86EMUL_PROPAGATE_FAULT;
7993		}
7994		break;
7995
7996	case x86_intercept_in:
7997	case x86_intercept_ins:
7998	case x86_intercept_out:
7999	case x86_intercept_outs:
8000		return vmx_check_intercept_io(vcpu, info);
8001
8002	case x86_intercept_lgdt:
8003	case x86_intercept_lidt:
8004	case x86_intercept_lldt:
8005	case x86_intercept_ltr:
8006	case x86_intercept_sgdt:
8007	case x86_intercept_sidt:
8008	case x86_intercept_sldt:
8009	case x86_intercept_str:
8010		if (!nested_cpu_has2(vmcs12, SECONDARY_EXEC_DESC))
8011			return X86EMUL_CONTINUE;
8012
8013		/* FIXME: produce nested vmexit and return X86EMUL_INTERCEPTED.  */
8014		break;
8015
8016	case x86_intercept_pause:
8017		/*
8018		 * PAUSE is a single-byte NOP with a REPE prefix, i.e. collides
8019		 * with vanilla NOPs in the emulator.  Apply the interception
8020		 * check only to actual PAUSE instructions.  Don't check
8021		 * PAUSE-loop-exiting, software can't expect a given PAUSE to
8022		 * exit, i.e. KVM is within its rights to allow L2 to execute
8023		 * the PAUSE.
8024		 */
8025		if ((info->rep_prefix != REPE_PREFIX) ||
8026		    !nested_cpu_has2(vmcs12, CPU_BASED_PAUSE_EXITING))
8027			return X86EMUL_CONTINUE;
8028
8029		break;
8030
8031	/* TODO: check more intercepts... */
8032	default:
8033		break;
8034	}
8035
8036	return X86EMUL_UNHANDLEABLE;
8037}
8038
8039#ifdef CONFIG_X86_64
8040/* (a << shift) / divisor, return 1 if overflow otherwise 0 */
8041static inline int u64_shl_div_u64(u64 a, unsigned int shift,
8042				  u64 divisor, u64 *result)
8043{
8044	u64 low = a << shift, high = a >> (64 - shift);
8045
8046	/* To avoid the overflow on divq */
8047	if (high >= divisor)
8048		return 1;
8049
8050	/* Low hold the result, high hold rem which is discarded */
8051	asm("divq %2\n\t" : "=a" (low), "=d" (high) :
8052	    "rm" (divisor), "0" (low), "1" (high));
8053	*result = low;
8054
8055	return 0;
8056}
8057
8058static int vmx_set_hv_timer(struct kvm_vcpu *vcpu, u64 guest_deadline_tsc,
8059			    bool *expired)
8060{
8061	struct vcpu_vmx *vmx;
8062	u64 tscl, guest_tscl, delta_tsc, lapic_timer_advance_cycles;
8063	struct kvm_timer *ktimer = &vcpu->arch.apic->lapic_timer;
8064
8065	vmx = to_vmx(vcpu);
8066	tscl = rdtsc();
8067	guest_tscl = kvm_read_l1_tsc(vcpu, tscl);
8068	delta_tsc = max(guest_deadline_tsc, guest_tscl) - guest_tscl;
8069	lapic_timer_advance_cycles = nsec_to_cycles(vcpu,
8070						    ktimer->timer_advance_ns);
8071
8072	if (delta_tsc > lapic_timer_advance_cycles)
8073		delta_tsc -= lapic_timer_advance_cycles;
8074	else
8075		delta_tsc = 0;
8076
8077	/* Convert to host delta tsc if tsc scaling is enabled */
8078	if (vcpu->arch.l1_tsc_scaling_ratio != kvm_caps.default_tsc_scaling_ratio &&
8079	    delta_tsc && u64_shl_div_u64(delta_tsc,
8080				kvm_caps.tsc_scaling_ratio_frac_bits,
8081				vcpu->arch.l1_tsc_scaling_ratio, &delta_tsc))
8082		return -ERANGE;
8083
8084	/*
8085	 * If the delta tsc can't fit in the 32 bit after the multi shift,
8086	 * we can't use the preemption timer.
8087	 * It's possible that it fits on later vmentries, but checking
8088	 * on every vmentry is costly so we just use an hrtimer.
8089	 */
8090	if (delta_tsc >> (cpu_preemption_timer_multi + 32))
8091		return -ERANGE;
8092
8093	vmx->hv_deadline_tsc = tscl + delta_tsc;
8094	*expired = !delta_tsc;
8095	return 0;
8096}
8097
8098static void vmx_cancel_hv_timer(struct kvm_vcpu *vcpu)
8099{
8100	to_vmx(vcpu)->hv_deadline_tsc = -1;
8101}
8102#endif
8103
8104static void vmx_sched_in(struct kvm_vcpu *vcpu, int cpu)
8105{
8106	if (!kvm_pause_in_guest(vcpu->kvm))
8107		shrink_ple_window(vcpu);
8108}
8109
8110void vmx_update_cpu_dirty_logging(struct kvm_vcpu *vcpu)
8111{
8112	struct vcpu_vmx *vmx = to_vmx(vcpu);
8113
8114	if (WARN_ON_ONCE(!enable_pml))
8115		return;
8116
8117	if (is_guest_mode(vcpu)) {
8118		vmx->nested.update_vmcs01_cpu_dirty_logging = true;
8119		return;
8120	}
8121
8122	/*
8123	 * Note, nr_memslots_dirty_logging can be changed concurrent with this
8124	 * code, but in that case another update request will be made and so
8125	 * the guest will never run with a stale PML value.
8126	 */
8127	if (atomic_read(&vcpu->kvm->nr_memslots_dirty_logging))
8128		secondary_exec_controls_setbit(vmx, SECONDARY_EXEC_ENABLE_PML);
8129	else
8130		secondary_exec_controls_clearbit(vmx, SECONDARY_EXEC_ENABLE_PML);
8131}
8132
8133static void vmx_setup_mce(struct kvm_vcpu *vcpu)
8134{
8135	if (vcpu->arch.mcg_cap & MCG_LMCE_P)
8136		to_vmx(vcpu)->msr_ia32_feature_control_valid_bits |=
8137			FEAT_CTL_LMCE_ENABLED;
8138	else
8139		to_vmx(vcpu)->msr_ia32_feature_control_valid_bits &=
8140			~FEAT_CTL_LMCE_ENABLED;
8141}
8142
8143#ifdef CONFIG_KVM_SMM
8144static int vmx_smi_allowed(struct kvm_vcpu *vcpu, bool for_injection)
8145{
8146	/* we need a nested vmexit to enter SMM, postpone if run is pending */
8147	if (to_vmx(vcpu)->nested.nested_run_pending)
8148		return -EBUSY;
8149	return !is_smm(vcpu);
8150}
8151
8152static int vmx_enter_smm(struct kvm_vcpu *vcpu, union kvm_smram *smram)
8153{
8154	struct vcpu_vmx *vmx = to_vmx(vcpu);
8155
8156	/*
8157	 * TODO: Implement custom flows for forcing the vCPU out/in of L2 on
8158	 * SMI and RSM.  Using the common VM-Exit + VM-Enter routines is wrong
8159	 * SMI and RSM only modify state that is saved and restored via SMRAM.
8160	 * E.g. most MSRs are left untouched, but many are modified by VM-Exit
8161	 * and VM-Enter, and thus L2's values may be corrupted on SMI+RSM.
8162	 */
8163	vmx->nested.smm.guest_mode = is_guest_mode(vcpu);
8164	if (vmx->nested.smm.guest_mode)
8165		nested_vmx_vmexit(vcpu, -1, 0, 0);
8166
8167	vmx->nested.smm.vmxon = vmx->nested.vmxon;
8168	vmx->nested.vmxon = false;
8169	vmx_clear_hlt(vcpu);
8170	return 0;
8171}
8172
8173static int vmx_leave_smm(struct kvm_vcpu *vcpu, const union kvm_smram *smram)
8174{
8175	struct vcpu_vmx *vmx = to_vmx(vcpu);
8176	int ret;
8177
8178	if (vmx->nested.smm.vmxon) {
8179		vmx->nested.vmxon = true;
8180		vmx->nested.smm.vmxon = false;
8181	}
8182
8183	if (vmx->nested.smm.guest_mode) {
8184		ret = nested_vmx_enter_non_root_mode(vcpu, false);
8185		if (ret)
8186			return ret;
8187
8188		vmx->nested.nested_run_pending = 1;
8189		vmx->nested.smm.guest_mode = false;
8190	}
8191	return 0;
8192}
8193
8194static void vmx_enable_smi_window(struct kvm_vcpu *vcpu)
8195{
8196	/* RSM will cause a vmexit anyway.  */
8197}
8198#endif
8199
8200static bool vmx_apic_init_signal_blocked(struct kvm_vcpu *vcpu)
8201{
8202	return to_vmx(vcpu)->nested.vmxon && !is_guest_mode(vcpu);
8203}
8204
8205static void vmx_migrate_timers(struct kvm_vcpu *vcpu)
8206{
8207	if (is_guest_mode(vcpu)) {
8208		struct hrtimer *timer = &to_vmx(vcpu)->nested.preemption_timer;
8209
8210		if (hrtimer_try_to_cancel(timer) == 1)
8211			hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED);
8212	}
8213}
8214
8215static void vmx_hardware_unsetup(void)
8216{
8217	kvm_set_posted_intr_wakeup_handler(NULL);
8218
8219	if (nested)
8220		nested_vmx_hardware_unsetup();
8221
8222	free_kvm_area();
8223}
8224
8225#define VMX_REQUIRED_APICV_INHIBITS			\
8226(							\
8227	BIT(APICV_INHIBIT_REASON_DISABLE)|		\
8228	BIT(APICV_INHIBIT_REASON_ABSENT) |		\
8229	BIT(APICV_INHIBIT_REASON_HYPERV) |		\
8230	BIT(APICV_INHIBIT_REASON_BLOCKIRQ) |		\
8231	BIT(APICV_INHIBIT_REASON_PHYSICAL_ID_ALIASED) |	\
8232	BIT(APICV_INHIBIT_REASON_APIC_ID_MODIFIED) |	\
8233	BIT(APICV_INHIBIT_REASON_APIC_BASE_MODIFIED)	\
8234)
8235
8236static void vmx_vm_destroy(struct kvm *kvm)
8237{
8238	struct kvm_vmx *kvm_vmx = to_kvm_vmx(kvm);
8239
8240	free_pages((unsigned long)kvm_vmx->pid_table, vmx_get_pid_table_order(kvm));
8241}
8242
8243/*
8244 * Note, the SDM states that the linear address is masked *after* the modified
8245 * canonicality check, whereas KVM masks (untags) the address and then performs
8246 * a "normal" canonicality check.  Functionally, the two methods are identical,
8247 * and when the masking occurs relative to the canonicality check isn't visible
8248 * to software, i.e. KVM's behavior doesn't violate the SDM.
8249 */
8250gva_t vmx_get_untagged_addr(struct kvm_vcpu *vcpu, gva_t gva, unsigned int flags)
8251{
8252	int lam_bit;
8253	unsigned long cr3_bits;
8254
8255	if (flags & (X86EMUL_F_FETCH | X86EMUL_F_IMPLICIT | X86EMUL_F_INVLPG))
8256		return gva;
8257
8258	if (!is_64_bit_mode(vcpu))
8259		return gva;
8260
8261	/*
8262	 * Bit 63 determines if the address should be treated as user address
8263	 * or a supervisor address.
8264	 */
8265	if (!(gva & BIT_ULL(63))) {
8266		cr3_bits = kvm_get_active_cr3_lam_bits(vcpu);
8267		if (!(cr3_bits & (X86_CR3_LAM_U57 | X86_CR3_LAM_U48)))
8268			return gva;
8269
8270		/* LAM_U48 is ignored if LAM_U57 is set. */
8271		lam_bit = cr3_bits & X86_CR3_LAM_U57 ? 56 : 47;
8272	} else {
8273		if (!kvm_is_cr4_bit_set(vcpu, X86_CR4_LAM_SUP))
8274			return gva;
8275
8276		lam_bit = kvm_is_cr4_bit_set(vcpu, X86_CR4_LA57) ? 56 : 47;
8277	}
8278
8279	/*
8280	 * Untag the address by sign-extending the lam_bit, but NOT to bit 63.
8281	 * Bit 63 is retained from the raw virtual address so that untagging
8282	 * doesn't change a user access to a supervisor access, and vice versa.
8283	 */
8284	return (sign_extend64(gva, lam_bit) & ~BIT_ULL(63)) | (gva & BIT_ULL(63));
8285}
8286
8287static struct kvm_x86_ops vmx_x86_ops __initdata = {
8288	.name = KBUILD_MODNAME,
8289
8290	.check_processor_compatibility = vmx_check_processor_compat,
8291
8292	.hardware_unsetup = vmx_hardware_unsetup,
8293
8294	.hardware_enable = vmx_hardware_enable,
8295	.hardware_disable = vmx_hardware_disable,
8296	.has_emulated_msr = vmx_has_emulated_msr,
8297
8298	.vm_size = sizeof(struct kvm_vmx),
8299	.vm_init = vmx_vm_init,
8300	.vm_destroy = vmx_vm_destroy,
8301
8302	.vcpu_precreate = vmx_vcpu_precreate,
8303	.vcpu_create = vmx_vcpu_create,
8304	.vcpu_free = vmx_vcpu_free,
8305	.vcpu_reset = vmx_vcpu_reset,
8306
8307	.prepare_switch_to_guest = vmx_prepare_switch_to_guest,
8308	.vcpu_load = vmx_vcpu_load,
8309	.vcpu_put = vmx_vcpu_put,
8310
8311	.update_exception_bitmap = vmx_update_exception_bitmap,
8312	.get_msr_feature = vmx_get_msr_feature,
8313	.get_msr = vmx_get_msr,
8314	.set_msr = vmx_set_msr,
8315	.get_segment_base = vmx_get_segment_base,
8316	.get_segment = vmx_get_segment,
8317	.set_segment = vmx_set_segment,
8318	.get_cpl = vmx_get_cpl,
8319	.get_cs_db_l_bits = vmx_get_cs_db_l_bits,
8320	.is_valid_cr0 = vmx_is_valid_cr0,
8321	.set_cr0 = vmx_set_cr0,
8322	.is_valid_cr4 = vmx_is_valid_cr4,
8323	.set_cr4 = vmx_set_cr4,
8324	.set_efer = vmx_set_efer,
8325	.get_idt = vmx_get_idt,
8326	.set_idt = vmx_set_idt,
8327	.get_gdt = vmx_get_gdt,
8328	.set_gdt = vmx_set_gdt,
8329	.set_dr7 = vmx_set_dr7,
8330	.sync_dirty_debug_regs = vmx_sync_dirty_debug_regs,
8331	.cache_reg = vmx_cache_reg,
8332	.get_rflags = vmx_get_rflags,
8333	.set_rflags = vmx_set_rflags,
8334	.get_if_flag = vmx_get_if_flag,
8335
8336	.flush_tlb_all = vmx_flush_tlb_all,
8337	.flush_tlb_current = vmx_flush_tlb_current,
8338	.flush_tlb_gva = vmx_flush_tlb_gva,
8339	.flush_tlb_guest = vmx_flush_tlb_guest,
8340
8341	.vcpu_pre_run = vmx_vcpu_pre_run,
8342	.vcpu_run = vmx_vcpu_run,
8343	.handle_exit = vmx_handle_exit,
8344	.skip_emulated_instruction = vmx_skip_emulated_instruction,
8345	.update_emulated_instruction = vmx_update_emulated_instruction,
8346	.set_interrupt_shadow = vmx_set_interrupt_shadow,
8347	.get_interrupt_shadow = vmx_get_interrupt_shadow,
8348	.patch_hypercall = vmx_patch_hypercall,
8349	.inject_irq = vmx_inject_irq,
8350	.inject_nmi = vmx_inject_nmi,
8351	.inject_exception = vmx_inject_exception,
8352	.cancel_injection = vmx_cancel_injection,
8353	.interrupt_allowed = vmx_interrupt_allowed,
8354	.nmi_allowed = vmx_nmi_allowed,
8355	.get_nmi_mask = vmx_get_nmi_mask,
8356	.set_nmi_mask = vmx_set_nmi_mask,
8357	.enable_nmi_window = vmx_enable_nmi_window,
8358	.enable_irq_window = vmx_enable_irq_window,
8359	.update_cr8_intercept = vmx_update_cr8_intercept,
8360	.set_virtual_apic_mode = vmx_set_virtual_apic_mode,
8361	.set_apic_access_page_addr = vmx_set_apic_access_page_addr,
8362	.refresh_apicv_exec_ctrl = vmx_refresh_apicv_exec_ctrl,
8363	.load_eoi_exitmap = vmx_load_eoi_exitmap,
8364	.apicv_pre_state_restore = vmx_apicv_pre_state_restore,
8365	.required_apicv_inhibits = VMX_REQUIRED_APICV_INHIBITS,
8366	.hwapic_irr_update = vmx_hwapic_irr_update,
8367	.hwapic_isr_update = vmx_hwapic_isr_update,
8368	.guest_apic_has_interrupt = vmx_guest_apic_has_interrupt,
8369	.sync_pir_to_irr = vmx_sync_pir_to_irr,
8370	.deliver_interrupt = vmx_deliver_interrupt,
8371	.dy_apicv_has_pending_interrupt = pi_has_pending_interrupt,
8372
8373	.set_tss_addr = vmx_set_tss_addr,
8374	.set_identity_map_addr = vmx_set_identity_map_addr,
8375	.get_mt_mask = vmx_get_mt_mask,
8376
8377	.get_exit_info = vmx_get_exit_info,
8378
8379	.vcpu_after_set_cpuid = vmx_vcpu_after_set_cpuid,
8380
8381	.has_wbinvd_exit = cpu_has_vmx_wbinvd_exit,
8382
8383	.get_l2_tsc_offset = vmx_get_l2_tsc_offset,
8384	.get_l2_tsc_multiplier = vmx_get_l2_tsc_multiplier,
8385	.write_tsc_offset = vmx_write_tsc_offset,
8386	.write_tsc_multiplier = vmx_write_tsc_multiplier,
8387
8388	.load_mmu_pgd = vmx_load_mmu_pgd,
8389
8390	.check_intercept = vmx_check_intercept,
8391	.handle_exit_irqoff = vmx_handle_exit_irqoff,
8392
8393	.sched_in = vmx_sched_in,
8394
8395	.cpu_dirty_log_size = PML_ENTITY_NUM,
8396	.update_cpu_dirty_logging = vmx_update_cpu_dirty_logging,
8397
8398	.nested_ops = &vmx_nested_ops,
8399
8400	.pi_update_irte = vmx_pi_update_irte,
8401	.pi_start_assignment = vmx_pi_start_assignment,
8402
8403#ifdef CONFIG_X86_64
8404	.set_hv_timer = vmx_set_hv_timer,
8405	.cancel_hv_timer = vmx_cancel_hv_timer,
8406#endif
8407
8408	.setup_mce = vmx_setup_mce,
8409
8410#ifdef CONFIG_KVM_SMM
8411	.smi_allowed = vmx_smi_allowed,
8412	.enter_smm = vmx_enter_smm,
8413	.leave_smm = vmx_leave_smm,
8414	.enable_smi_window = vmx_enable_smi_window,
8415#endif
8416
8417	.check_emulate_instruction = vmx_check_emulate_instruction,
8418	.apic_init_signal_blocked = vmx_apic_init_signal_blocked,
8419	.migrate_timers = vmx_migrate_timers,
8420
8421	.msr_filter_changed = vmx_msr_filter_changed,
8422	.complete_emulated_msr = kvm_complete_insn_gp,
8423
8424	.vcpu_deliver_sipi_vector = kvm_vcpu_deliver_sipi_vector,
8425
8426	.get_untagged_addr = vmx_get_untagged_addr,
8427};
8428
8429static unsigned int vmx_handle_intel_pt_intr(void)
8430{
8431	struct kvm_vcpu *vcpu = kvm_get_running_vcpu();
8432
8433	/* '0' on failure so that the !PT case can use a RET0 static call. */
8434	if (!vcpu || !kvm_handling_nmi_from_guest(vcpu))
8435		return 0;
8436
8437	kvm_make_request(KVM_REQ_PMI, vcpu);
8438	__set_bit(MSR_CORE_PERF_GLOBAL_OVF_CTRL_TRACE_TOPA_PMI_BIT,
8439		  (unsigned long *)&vcpu->arch.pmu.global_status);
8440	return 1;
8441}
8442
8443static __init void vmx_setup_user_return_msrs(void)
8444{
8445
8446	/*
8447	 * Though SYSCALL is only supported in 64-bit mode on Intel CPUs, kvm
8448	 * will emulate SYSCALL in legacy mode if the vendor string in guest
8449	 * CPUID.0:{EBX,ECX,EDX} is "AuthenticAMD" or "AMDisbetter!" To
8450	 * support this emulation, MSR_STAR is included in the list for i386,
8451	 * but is never loaded into hardware.  MSR_CSTAR is also never loaded
8452	 * into hardware and is here purely for emulation purposes.
8453	 */
8454	const u32 vmx_uret_msrs_list[] = {
8455	#ifdef CONFIG_X86_64
8456		MSR_SYSCALL_MASK, MSR_LSTAR, MSR_CSTAR,
8457	#endif
8458		MSR_EFER, MSR_TSC_AUX, MSR_STAR,
8459		MSR_IA32_TSX_CTRL,
8460	};
8461	int i;
8462
8463	BUILD_BUG_ON(ARRAY_SIZE(vmx_uret_msrs_list) != MAX_NR_USER_RETURN_MSRS);
8464
8465	for (i = 0; i < ARRAY_SIZE(vmx_uret_msrs_list); ++i)
8466		kvm_add_user_return_msr(vmx_uret_msrs_list[i]);
8467}
8468
8469static void __init vmx_setup_me_spte_mask(void)
8470{
8471	u64 me_mask = 0;
8472
8473	/*
8474	 * kvm_get_shadow_phys_bits() returns shadow_phys_bits.  Use
8475	 * the former to avoid exposing shadow_phys_bits.
8476	 *
8477	 * On pre-MKTME system, boot_cpu_data.x86_phys_bits equals to
8478	 * shadow_phys_bits.  On MKTME and/or TDX capable systems,
8479	 * boot_cpu_data.x86_phys_bits holds the actual physical address
8480	 * w/o the KeyID bits, and shadow_phys_bits equals to MAXPHYADDR
8481	 * reported by CPUID.  Those bits between are KeyID bits.
8482	 */
8483	if (boot_cpu_data.x86_phys_bits != kvm_get_shadow_phys_bits())
8484		me_mask = rsvd_bits(boot_cpu_data.x86_phys_bits,
8485			kvm_get_shadow_phys_bits() - 1);
8486	/*
8487	 * Unlike SME, host kernel doesn't support setting up any
8488	 * MKTME KeyID on Intel platforms.  No memory encryption
8489	 * bits should be included into the SPTE.
8490	 */
8491	kvm_mmu_set_me_spte_mask(0, me_mask);
8492}
8493
8494static struct kvm_x86_init_ops vmx_init_ops __initdata;
8495
8496static __init int hardware_setup(void)
8497{
8498	unsigned long host_bndcfgs;
8499	struct desc_ptr dt;
8500	int r;
8501
8502	store_idt(&dt);
8503	host_idt_base = dt.address;
8504
8505	vmx_setup_user_return_msrs();
8506
8507	if (setup_vmcs_config(&vmcs_config, &vmx_capability) < 0)
8508		return -EIO;
8509
8510	if (cpu_has_perf_global_ctrl_bug())
8511		pr_warn_once("VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL "
8512			     "does not work properly. Using workaround\n");
8513
8514	if (boot_cpu_has(X86_FEATURE_NX))
8515		kvm_enable_efer_bits(EFER_NX);
8516
8517	if (boot_cpu_has(X86_FEATURE_MPX)) {
8518		rdmsrl(MSR_IA32_BNDCFGS, host_bndcfgs);
8519		WARN_ONCE(host_bndcfgs, "BNDCFGS in host will be lost");
8520	}
8521
8522	if (!cpu_has_vmx_mpx())
8523		kvm_caps.supported_xcr0 &= ~(XFEATURE_MASK_BNDREGS |
8524					     XFEATURE_MASK_BNDCSR);
8525
8526	if (!cpu_has_vmx_vpid() || !cpu_has_vmx_invvpid() ||
8527	    !(cpu_has_vmx_invvpid_single() || cpu_has_vmx_invvpid_global()))
8528		enable_vpid = 0;
8529
8530	if (!cpu_has_vmx_ept() ||
8531	    !cpu_has_vmx_ept_4levels() ||
8532	    !cpu_has_vmx_ept_mt_wb() ||
8533	    !cpu_has_vmx_invept_global())
8534		enable_ept = 0;
8535
8536	/* NX support is required for shadow paging. */
8537	if (!enable_ept && !boot_cpu_has(X86_FEATURE_NX)) {
8538		pr_err_ratelimited("NX (Execute Disable) not supported\n");
8539		return -EOPNOTSUPP;
8540	}
8541
8542	if (!cpu_has_vmx_ept_ad_bits() || !enable_ept)
8543		enable_ept_ad_bits = 0;
8544
8545	if (!cpu_has_vmx_unrestricted_guest() || !enable_ept)
8546		enable_unrestricted_guest = 0;
8547
8548	if (!cpu_has_vmx_flexpriority())
8549		flexpriority_enabled = 0;
8550
8551	if (!cpu_has_virtual_nmis())
8552		enable_vnmi = 0;
8553
8554#ifdef CONFIG_X86_SGX_KVM
8555	if (!cpu_has_vmx_encls_vmexit())
8556		enable_sgx = false;
8557#endif
8558
8559	/*
8560	 * set_apic_access_page_addr() is used to reload apic access
8561	 * page upon invalidation.  No need to do anything if not
8562	 * using the APIC_ACCESS_ADDR VMCS field.
8563	 */
8564	if (!flexpriority_enabled)
8565		vmx_x86_ops.set_apic_access_page_addr = NULL;
8566
8567	if (!cpu_has_vmx_tpr_shadow())
8568		vmx_x86_ops.update_cr8_intercept = NULL;
8569
8570#if IS_ENABLED(CONFIG_HYPERV)
8571	if (ms_hyperv.nested_features & HV_X64_NESTED_GUEST_MAPPING_FLUSH
8572	    && enable_ept) {
8573		vmx_x86_ops.flush_remote_tlbs = hv_flush_remote_tlbs;
8574		vmx_x86_ops.flush_remote_tlbs_range = hv_flush_remote_tlbs_range;
8575	}
8576#endif
8577
8578	if (!cpu_has_vmx_ple()) {
8579		ple_gap = 0;
8580		ple_window = 0;
8581		ple_window_grow = 0;
8582		ple_window_max = 0;
8583		ple_window_shrink = 0;
8584	}
8585
8586	if (!cpu_has_vmx_apicv())
8587		enable_apicv = 0;
8588	if (!enable_apicv)
8589		vmx_x86_ops.sync_pir_to_irr = NULL;
8590
8591	if (!enable_apicv || !cpu_has_vmx_ipiv())
8592		enable_ipiv = false;
8593
8594	if (cpu_has_vmx_tsc_scaling())
8595		kvm_caps.has_tsc_control = true;
8596
8597	kvm_caps.max_tsc_scaling_ratio = KVM_VMX_TSC_MULTIPLIER_MAX;
8598	kvm_caps.tsc_scaling_ratio_frac_bits = 48;
8599	kvm_caps.has_bus_lock_exit = cpu_has_vmx_bus_lock_detection();
8600	kvm_caps.has_notify_vmexit = cpu_has_notify_vmexit();
8601
8602	set_bit(0, vmx_vpid_bitmap); /* 0 is reserved for host */
8603
8604	if (enable_ept)
8605		kvm_mmu_set_ept_masks(enable_ept_ad_bits,
8606				      cpu_has_vmx_ept_execute_only());
8607
8608	/*
8609	 * Setup shadow_me_value/shadow_me_mask to include MKTME KeyID
8610	 * bits to shadow_zero_check.
8611	 */
8612	vmx_setup_me_spte_mask();
8613
8614	kvm_configure_mmu(enable_ept, 0, vmx_get_max_ept_level(),
8615			  ept_caps_to_lpage_level(vmx_capability.ept));
8616
8617	/*
8618	 * Only enable PML when hardware supports PML feature, and both EPT
8619	 * and EPT A/D bit features are enabled -- PML depends on them to work.
8620	 */
8621	if (!enable_ept || !enable_ept_ad_bits || !cpu_has_vmx_pml())
8622		enable_pml = 0;
8623
8624	if (!enable_pml)
8625		vmx_x86_ops.cpu_dirty_log_size = 0;
8626
8627	if (!cpu_has_vmx_preemption_timer())
8628		enable_preemption_timer = false;
8629
8630	if (enable_preemption_timer) {
8631		u64 use_timer_freq = 5000ULL * 1000 * 1000;
8632
8633		cpu_preemption_timer_multi =
8634			vmcs_config.misc & VMX_MISC_PREEMPTION_TIMER_RATE_MASK;
8635
8636		if (tsc_khz)
8637			use_timer_freq = (u64)tsc_khz * 1000;
8638		use_timer_freq >>= cpu_preemption_timer_multi;
8639
8640		/*
8641		 * KVM "disables" the preemption timer by setting it to its max
8642		 * value.  Don't use the timer if it might cause spurious exits
8643		 * at a rate faster than 0.1 Hz (of uninterrupted guest time).
8644		 */
8645		if (use_timer_freq > 0xffffffffu / 10)
8646			enable_preemption_timer = false;
8647	}
8648
8649	if (!enable_preemption_timer) {
8650		vmx_x86_ops.set_hv_timer = NULL;
8651		vmx_x86_ops.cancel_hv_timer = NULL;
8652	}
8653
8654	kvm_caps.supported_mce_cap |= MCG_LMCE_P;
8655	kvm_caps.supported_mce_cap |= MCG_CMCI_P;
8656
8657	if (pt_mode != PT_MODE_SYSTEM && pt_mode != PT_MODE_HOST_GUEST)
8658		return -EINVAL;
8659	if (!enable_ept || !enable_pmu || !cpu_has_vmx_intel_pt())
8660		pt_mode = PT_MODE_SYSTEM;
8661	if (pt_mode == PT_MODE_HOST_GUEST)
8662		vmx_init_ops.handle_intel_pt_intr = vmx_handle_intel_pt_intr;
8663	else
8664		vmx_init_ops.handle_intel_pt_intr = NULL;
8665
8666	setup_default_sgx_lepubkeyhash();
8667
8668	if (nested) {
8669		nested_vmx_setup_ctls_msrs(&vmcs_config, vmx_capability.ept);
8670
8671		r = nested_vmx_hardware_setup(kvm_vmx_exit_handlers);
8672		if (r)
8673			return r;
8674	}
8675
8676	vmx_set_cpu_caps();
8677
8678	r = alloc_kvm_area();
8679	if (r && nested)
8680		nested_vmx_hardware_unsetup();
8681
8682	kvm_set_posted_intr_wakeup_handler(pi_wakeup_handler);
8683
8684	return r;
8685}
8686
8687static struct kvm_x86_init_ops vmx_init_ops __initdata = {
8688	.hardware_setup = hardware_setup,
8689	.handle_intel_pt_intr = NULL,
8690
8691	.runtime_ops = &vmx_x86_ops,
8692	.pmu_ops = &intel_pmu_ops,
8693};
8694
8695static void vmx_cleanup_l1d_flush(void)
8696{
8697	if (vmx_l1d_flush_pages) {
8698		free_pages((unsigned long)vmx_l1d_flush_pages, L1D_CACHE_ORDER);
8699		vmx_l1d_flush_pages = NULL;
8700	}
8701	/* Restore state so sysfs ignores VMX */
8702	l1tf_vmx_mitigation = VMENTER_L1D_FLUSH_AUTO;
8703}
8704
8705static void __vmx_exit(void)
8706{
8707	allow_smaller_maxphyaddr = false;
8708
8709	cpu_emergency_unregister_virt_callback(vmx_emergency_disable);
8710
8711	vmx_cleanup_l1d_flush();
8712}
8713
8714static void vmx_exit(void)
8715{
8716	kvm_exit();
8717	kvm_x86_vendor_exit();
8718
8719	__vmx_exit();
8720}
8721module_exit(vmx_exit);
8722
8723static int __init vmx_init(void)
8724{
8725	int r, cpu;
8726
8727	if (!kvm_is_vmx_supported())
8728		return -EOPNOTSUPP;
8729
8730	/*
8731	 * Note, hv_init_evmcs() touches only VMX knobs, i.e. there's nothing
8732	 * to unwind if a later step fails.
8733	 */
8734	hv_init_evmcs();
8735
8736	r = kvm_x86_vendor_init(&vmx_init_ops);
8737	if (r)
8738		return r;
8739
8740	/*
8741	 * Must be called after common x86 init so enable_ept is properly set
8742	 * up. Hand the parameter mitigation value in which was stored in
8743	 * the pre module init parser. If no parameter was given, it will
8744	 * contain 'auto' which will be turned into the default 'cond'
8745	 * mitigation mode.
8746	 */
8747	r = vmx_setup_l1d_flush(vmentry_l1d_flush_param);
8748	if (r)
8749		goto err_l1d_flush;
8750
8751	for_each_possible_cpu(cpu) {
8752		INIT_LIST_HEAD(&per_cpu(loaded_vmcss_on_cpu, cpu));
8753
8754		pi_init_cpu(cpu);
8755	}
8756
8757	cpu_emergency_register_virt_callback(vmx_emergency_disable);
8758
8759	vmx_check_vmcs12_offsets();
8760
8761	/*
8762	 * Shadow paging doesn't have a (further) performance penalty
8763	 * from GUEST_MAXPHYADDR < HOST_MAXPHYADDR so enable it
8764	 * by default
8765	 */
8766	if (!enable_ept)
8767		allow_smaller_maxphyaddr = true;
8768
8769	/*
8770	 * Common KVM initialization _must_ come last, after this, /dev/kvm is
8771	 * exposed to userspace!
8772	 */
8773	r = kvm_init(sizeof(struct vcpu_vmx), __alignof__(struct vcpu_vmx),
8774		     THIS_MODULE);
8775	if (r)
8776		goto err_kvm_init;
8777
8778	return 0;
8779
8780err_kvm_init:
8781	__vmx_exit();
8782err_l1d_flush:
8783	kvm_x86_vendor_exit();
8784	return r;
8785}
8786module_init(vmx_init);
8787