1// SPDX-License-Identifier: GPL-2.0
2#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
3
4#include <linux/objtool.h>
5#include <linux/percpu.h>
6
7#include <asm/debugreg.h>
8#include <asm/mmu_context.h>
9
10#include "cpuid.h"
11#include "hyperv.h"
12#include "mmu.h"
13#include "nested.h"
14#include "pmu.h"
15#include "sgx.h"
16#include "trace.h"
17#include "vmx.h"
18#include "x86.h"
19#include "smm.h"
20
21static bool __read_mostly enable_shadow_vmcs = 1;
22module_param_named(enable_shadow_vmcs, enable_shadow_vmcs, bool, S_IRUGO);
23
24static bool __read_mostly nested_early_check = 0;
25module_param(nested_early_check, bool, S_IRUGO);
26
27#define CC KVM_NESTED_VMENTER_CONSISTENCY_CHECK
28
29/*
30 * Hyper-V requires all of these, so mark them as supported even though
31 * they are just treated the same as all-context.
32 */
33#define VMX_VPID_EXTENT_SUPPORTED_MASK		\
34	(VMX_VPID_EXTENT_INDIVIDUAL_ADDR_BIT |	\
35	VMX_VPID_EXTENT_SINGLE_CONTEXT_BIT |	\
36	VMX_VPID_EXTENT_GLOBAL_CONTEXT_BIT |	\
37	VMX_VPID_EXTENT_SINGLE_NON_GLOBAL_BIT)
38
39#define VMX_MISC_EMULATED_PREEMPTION_TIMER_RATE 5
40
41enum {
42	VMX_VMREAD_BITMAP,
43	VMX_VMWRITE_BITMAP,
44	VMX_BITMAP_NR
45};
46static unsigned long *vmx_bitmap[VMX_BITMAP_NR];
47
48#define vmx_vmread_bitmap                    (vmx_bitmap[VMX_VMREAD_BITMAP])
49#define vmx_vmwrite_bitmap                   (vmx_bitmap[VMX_VMWRITE_BITMAP])
50
51struct shadow_vmcs_field {
52	u16	encoding;
53	u16	offset;
54};
55static struct shadow_vmcs_field shadow_read_only_fields[] = {
56#define SHADOW_FIELD_RO(x, y) { x, offsetof(struct vmcs12, y) },
57#include "vmcs_shadow_fields.h"
58};
59static int max_shadow_read_only_fields =
60	ARRAY_SIZE(shadow_read_only_fields);
61
62static struct shadow_vmcs_field shadow_read_write_fields[] = {
63#define SHADOW_FIELD_RW(x, y) { x, offsetof(struct vmcs12, y) },
64#include "vmcs_shadow_fields.h"
65};
66static int max_shadow_read_write_fields =
67	ARRAY_SIZE(shadow_read_write_fields);
68
69static void init_vmcs_shadow_fields(void)
70{
71	int i, j;
72
73	memset(vmx_vmread_bitmap, 0xff, PAGE_SIZE);
74	memset(vmx_vmwrite_bitmap, 0xff, PAGE_SIZE);
75
76	for (i = j = 0; i < max_shadow_read_only_fields; i++) {
77		struct shadow_vmcs_field entry = shadow_read_only_fields[i];
78		u16 field = entry.encoding;
79
80		if (vmcs_field_width(field) == VMCS_FIELD_WIDTH_U64 &&
81		    (i + 1 == max_shadow_read_only_fields ||
82		     shadow_read_only_fields[i + 1].encoding != field + 1))
83			pr_err("Missing field from shadow_read_only_field %x\n",
84			       field + 1);
85
86		clear_bit(field, vmx_vmread_bitmap);
87		if (field & 1)
88#ifdef CONFIG_X86_64
89			continue;
90#else
91			entry.offset += sizeof(u32);
92#endif
93		shadow_read_only_fields[j++] = entry;
94	}
95	max_shadow_read_only_fields = j;
96
97	for (i = j = 0; i < max_shadow_read_write_fields; i++) {
98		struct shadow_vmcs_field entry = shadow_read_write_fields[i];
99		u16 field = entry.encoding;
100
101		if (vmcs_field_width(field) == VMCS_FIELD_WIDTH_U64 &&
102		    (i + 1 == max_shadow_read_write_fields ||
103		     shadow_read_write_fields[i + 1].encoding != field + 1))
104			pr_err("Missing field from shadow_read_write_field %x\n",
105			       field + 1);
106
107		WARN_ONCE(field >= GUEST_ES_AR_BYTES &&
108			  field <= GUEST_TR_AR_BYTES,
109			  "Update vmcs12_write_any() to drop reserved bits from AR_BYTES");
110
111		/*
112		 * PML and the preemption timer can be emulated, but the
113		 * processor cannot vmwrite to fields that don't exist
114		 * on bare metal.
115		 */
116		switch (field) {
117		case GUEST_PML_INDEX:
118			if (!cpu_has_vmx_pml())
119				continue;
120			break;
121		case VMX_PREEMPTION_TIMER_VALUE:
122			if (!cpu_has_vmx_preemption_timer())
123				continue;
124			break;
125		case GUEST_INTR_STATUS:
126			if (!cpu_has_vmx_apicv())
127				continue;
128			break;
129		default:
130			break;
131		}
132
133		clear_bit(field, vmx_vmwrite_bitmap);
134		clear_bit(field, vmx_vmread_bitmap);
135		if (field & 1)
136#ifdef CONFIG_X86_64
137			continue;
138#else
139			entry.offset += sizeof(u32);
140#endif
141		shadow_read_write_fields[j++] = entry;
142	}
143	max_shadow_read_write_fields = j;
144}
145
146/*
147 * The following 3 functions, nested_vmx_succeed()/failValid()/failInvalid(),
148 * set the success or error code of an emulated VMX instruction (as specified
149 * by Vol 2B, VMX Instruction Reference, "Conventions"), and skip the emulated
150 * instruction.
151 */
152static int nested_vmx_succeed(struct kvm_vcpu *vcpu)
153{
154	vmx_set_rflags(vcpu, vmx_get_rflags(vcpu)
155			& ~(X86_EFLAGS_CF | X86_EFLAGS_PF | X86_EFLAGS_AF |
156			    X86_EFLAGS_ZF | X86_EFLAGS_SF | X86_EFLAGS_OF));
157	return kvm_skip_emulated_instruction(vcpu);
158}
159
160static int nested_vmx_failInvalid(struct kvm_vcpu *vcpu)
161{
162	vmx_set_rflags(vcpu, (vmx_get_rflags(vcpu)
163			& ~(X86_EFLAGS_PF | X86_EFLAGS_AF | X86_EFLAGS_ZF |
164			    X86_EFLAGS_SF | X86_EFLAGS_OF))
165			| X86_EFLAGS_CF);
166	return kvm_skip_emulated_instruction(vcpu);
167}
168
169static int nested_vmx_failValid(struct kvm_vcpu *vcpu,
170				u32 vm_instruction_error)
171{
172	vmx_set_rflags(vcpu, (vmx_get_rflags(vcpu)
173			& ~(X86_EFLAGS_CF | X86_EFLAGS_PF | X86_EFLAGS_AF |
174			    X86_EFLAGS_SF | X86_EFLAGS_OF))
175			| X86_EFLAGS_ZF);
176	get_vmcs12(vcpu)->vm_instruction_error = vm_instruction_error;
177	/*
178	 * We don't need to force sync to shadow VMCS because
179	 * VM_INSTRUCTION_ERROR is not shadowed. Enlightened VMCS 'shadows' all
180	 * fields and thus must be synced.
181	 */
182	if (nested_vmx_is_evmptr12_set(to_vmx(vcpu)))
183		to_vmx(vcpu)->nested.need_vmcs12_to_shadow_sync = true;
184
185	return kvm_skip_emulated_instruction(vcpu);
186}
187
188static int nested_vmx_fail(struct kvm_vcpu *vcpu, u32 vm_instruction_error)
189{
190	struct vcpu_vmx *vmx = to_vmx(vcpu);
191
192	/*
193	 * failValid writes the error number to the current VMCS, which
194	 * can't be done if there isn't a current VMCS.
195	 */
196	if (vmx->nested.current_vmptr == INVALID_GPA &&
197	    !nested_vmx_is_evmptr12_valid(vmx))
198		return nested_vmx_failInvalid(vcpu);
199
200	return nested_vmx_failValid(vcpu, vm_instruction_error);
201}
202
203static void nested_vmx_abort(struct kvm_vcpu *vcpu, u32 indicator)
204{
205	/* TODO: not to reset guest simply here. */
206	kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
207	pr_debug_ratelimited("nested vmx abort, indicator %d\n", indicator);
208}
209
210static inline bool vmx_control_verify(u32 control, u32 low, u32 high)
211{
212	return fixed_bits_valid(control, low, high);
213}
214
215static inline u64 vmx_control_msr(u32 low, u32 high)
216{
217	return low | ((u64)high << 32);
218}
219
220static void vmx_disable_shadow_vmcs(struct vcpu_vmx *vmx)
221{
222	secondary_exec_controls_clearbit(vmx, SECONDARY_EXEC_SHADOW_VMCS);
223	vmcs_write64(VMCS_LINK_POINTER, INVALID_GPA);
224	vmx->nested.need_vmcs12_to_shadow_sync = false;
225}
226
227static inline void nested_release_evmcs(struct kvm_vcpu *vcpu)
228{
229#ifdef CONFIG_KVM_HYPERV
230	struct kvm_vcpu_hv *hv_vcpu = to_hv_vcpu(vcpu);
231	struct vcpu_vmx *vmx = to_vmx(vcpu);
232
233	if (nested_vmx_is_evmptr12_valid(vmx)) {
234		kvm_vcpu_unmap(vcpu, &vmx->nested.hv_evmcs_map, true);
235		vmx->nested.hv_evmcs = NULL;
236	}
237
238	vmx->nested.hv_evmcs_vmptr = EVMPTR_INVALID;
239
240	if (hv_vcpu) {
241		hv_vcpu->nested.pa_page_gpa = INVALID_GPA;
242		hv_vcpu->nested.vm_id = 0;
243		hv_vcpu->nested.vp_id = 0;
244	}
245#endif
246}
247
248static bool nested_evmcs_handle_vmclear(struct kvm_vcpu *vcpu, gpa_t vmptr)
249{
250#ifdef CONFIG_KVM_HYPERV
251	struct vcpu_vmx *vmx = to_vmx(vcpu);
252	/*
253	 * When Enlightened VMEntry is enabled on the calling CPU we treat
254	 * memory area pointer by vmptr as Enlightened VMCS (as there's no good
255	 * way to distinguish it from VMCS12) and we must not corrupt it by
256	 * writing to the non-existent 'launch_state' field. The area doesn't
257	 * have to be the currently active EVMCS on the calling CPU and there's
258	 * nothing KVM has to do to transition it from 'active' to 'non-active'
259	 * state. It is possible that the area will stay mapped as
260	 * vmx->nested.hv_evmcs but this shouldn't be a problem.
261	 */
262	if (!guest_cpuid_has_evmcs(vcpu) ||
263	    !evmptr_is_valid(nested_get_evmptr(vcpu)))
264		return false;
265
266	if (nested_vmx_evmcs(vmx) && vmptr == vmx->nested.hv_evmcs_vmptr)
267		nested_release_evmcs(vcpu);
268
269	return true;
270#else
271	return false;
272#endif
273}
274
275static void vmx_sync_vmcs_host_state(struct vcpu_vmx *vmx,
276				     struct loaded_vmcs *prev)
277{
278	struct vmcs_host_state *dest, *src;
279
280	if (unlikely(!vmx->guest_state_loaded))
281		return;
282
283	src = &prev->host_state;
284	dest = &vmx->loaded_vmcs->host_state;
285
286	vmx_set_host_fs_gs(dest, src->fs_sel, src->gs_sel, src->fs_base, src->gs_base);
287	dest->ldt_sel = src->ldt_sel;
288#ifdef CONFIG_X86_64
289	dest->ds_sel = src->ds_sel;
290	dest->es_sel = src->es_sel;
291#endif
292}
293
294static void vmx_switch_vmcs(struct kvm_vcpu *vcpu, struct loaded_vmcs *vmcs)
295{
296	struct vcpu_vmx *vmx = to_vmx(vcpu);
297	struct loaded_vmcs *prev;
298	int cpu;
299
300	if (WARN_ON_ONCE(vmx->loaded_vmcs == vmcs))
301		return;
302
303	cpu = get_cpu();
304	prev = vmx->loaded_vmcs;
305	vmx->loaded_vmcs = vmcs;
306	vmx_vcpu_load_vmcs(vcpu, cpu, prev);
307	vmx_sync_vmcs_host_state(vmx, prev);
308	put_cpu();
309
310	vcpu->arch.regs_avail = ~VMX_REGS_LAZY_LOAD_SET;
311
312	/*
313	 * All lazily updated registers will be reloaded from VMCS12 on both
314	 * vmentry and vmexit.
315	 */
316	vcpu->arch.regs_dirty = 0;
317}
318
319/*
320 * Free whatever needs to be freed from vmx->nested when L1 goes down, or
321 * just stops using VMX.
322 */
323static void free_nested(struct kvm_vcpu *vcpu)
324{
325	struct vcpu_vmx *vmx = to_vmx(vcpu);
326
327	if (WARN_ON_ONCE(vmx->loaded_vmcs != &vmx->vmcs01))
328		vmx_switch_vmcs(vcpu, &vmx->vmcs01);
329
330	if (!vmx->nested.vmxon && !vmx->nested.smm.vmxon)
331		return;
332
333	kvm_clear_request(KVM_REQ_GET_NESTED_STATE_PAGES, vcpu);
334
335	vmx->nested.vmxon = false;
336	vmx->nested.smm.vmxon = false;
337	vmx->nested.vmxon_ptr = INVALID_GPA;
338	free_vpid(vmx->nested.vpid02);
339	vmx->nested.posted_intr_nv = -1;
340	vmx->nested.current_vmptr = INVALID_GPA;
341	if (enable_shadow_vmcs) {
342		vmx_disable_shadow_vmcs(vmx);
343		vmcs_clear(vmx->vmcs01.shadow_vmcs);
344		free_vmcs(vmx->vmcs01.shadow_vmcs);
345		vmx->vmcs01.shadow_vmcs = NULL;
346	}
347	kfree(vmx->nested.cached_vmcs12);
348	vmx->nested.cached_vmcs12 = NULL;
349	kfree(vmx->nested.cached_shadow_vmcs12);
350	vmx->nested.cached_shadow_vmcs12 = NULL;
351	/*
352	 * Unpin physical memory we referred to in the vmcs02.  The APIC access
353	 * page's backing page (yeah, confusing) shouldn't actually be accessed,
354	 * and if it is written, the contents are irrelevant.
355	 */
356	kvm_vcpu_unmap(vcpu, &vmx->nested.apic_access_page_map, false);
357	kvm_vcpu_unmap(vcpu, &vmx->nested.virtual_apic_map, true);
358	kvm_vcpu_unmap(vcpu, &vmx->nested.pi_desc_map, true);
359	vmx->nested.pi_desc = NULL;
360
361	kvm_mmu_free_roots(vcpu->kvm, &vcpu->arch.guest_mmu, KVM_MMU_ROOTS_ALL);
362
363	nested_release_evmcs(vcpu);
364
365	free_loaded_vmcs(&vmx->nested.vmcs02);
366}
367
368/*
369 * Ensure that the current vmcs of the logical processor is the
370 * vmcs01 of the vcpu before calling free_nested().
371 */
372void nested_vmx_free_vcpu(struct kvm_vcpu *vcpu)
373{
374	vcpu_load(vcpu);
375	vmx_leave_nested(vcpu);
376	vcpu_put(vcpu);
377}
378
379#define EPTP_PA_MASK   GENMASK_ULL(51, 12)
380
381static bool nested_ept_root_matches(hpa_t root_hpa, u64 root_eptp, u64 eptp)
382{
383	return VALID_PAGE(root_hpa) &&
384	       ((root_eptp & EPTP_PA_MASK) == (eptp & EPTP_PA_MASK));
385}
386
387static void nested_ept_invalidate_addr(struct kvm_vcpu *vcpu, gpa_t eptp,
388				       gpa_t addr)
389{
390	unsigned long roots = 0;
391	uint i;
392	struct kvm_mmu_root_info *cached_root;
393
394	WARN_ON_ONCE(!mmu_is_nested(vcpu));
395
396	for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) {
397		cached_root = &vcpu->arch.mmu->prev_roots[i];
398
399		if (nested_ept_root_matches(cached_root->hpa, cached_root->pgd,
400					    eptp))
401			roots |= KVM_MMU_ROOT_PREVIOUS(i);
402	}
403	if (roots)
404		kvm_mmu_invalidate_addr(vcpu, vcpu->arch.mmu, addr, roots);
405}
406
407static void nested_ept_inject_page_fault(struct kvm_vcpu *vcpu,
408		struct x86_exception *fault)
409{
410	struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
411	struct vcpu_vmx *vmx = to_vmx(vcpu);
412	u32 vm_exit_reason;
413	unsigned long exit_qualification = vcpu->arch.exit_qualification;
414
415	if (vmx->nested.pml_full) {
416		vm_exit_reason = EXIT_REASON_PML_FULL;
417		vmx->nested.pml_full = false;
418		exit_qualification &= INTR_INFO_UNBLOCK_NMI;
419	} else {
420		if (fault->error_code & PFERR_RSVD_MASK)
421			vm_exit_reason = EXIT_REASON_EPT_MISCONFIG;
422		else
423			vm_exit_reason = EXIT_REASON_EPT_VIOLATION;
424
425		/*
426		 * Although the caller (kvm_inject_emulated_page_fault) would
427		 * have already synced the faulting address in the shadow EPT
428		 * tables for the current EPTP12, we also need to sync it for
429		 * any other cached EPTP02s based on the same EP4TA, since the
430		 * TLB associates mappings to the EP4TA rather than the full EPTP.
431		 */
432		nested_ept_invalidate_addr(vcpu, vmcs12->ept_pointer,
433					   fault->address);
434	}
435
436	nested_vmx_vmexit(vcpu, vm_exit_reason, 0, exit_qualification);
437	vmcs12->guest_physical_address = fault->address;
438}
439
440static void nested_ept_new_eptp(struct kvm_vcpu *vcpu)
441{
442	struct vcpu_vmx *vmx = to_vmx(vcpu);
443	bool execonly = vmx->nested.msrs.ept_caps & VMX_EPT_EXECUTE_ONLY_BIT;
444	int ept_lpage_level = ept_caps_to_lpage_level(vmx->nested.msrs.ept_caps);
445
446	kvm_init_shadow_ept_mmu(vcpu, execonly, ept_lpage_level,
447				nested_ept_ad_enabled(vcpu),
448				nested_ept_get_eptp(vcpu));
449}
450
451static void nested_ept_init_mmu_context(struct kvm_vcpu *vcpu)
452{
453	WARN_ON(mmu_is_nested(vcpu));
454
455	vcpu->arch.mmu = &vcpu->arch.guest_mmu;
456	nested_ept_new_eptp(vcpu);
457	vcpu->arch.mmu->get_guest_pgd     = nested_ept_get_eptp;
458	vcpu->arch.mmu->inject_page_fault = nested_ept_inject_page_fault;
459	vcpu->arch.mmu->get_pdptr         = kvm_pdptr_read;
460
461	vcpu->arch.walk_mmu              = &vcpu->arch.nested_mmu;
462}
463
464static void nested_ept_uninit_mmu_context(struct kvm_vcpu *vcpu)
465{
466	vcpu->arch.mmu = &vcpu->arch.root_mmu;
467	vcpu->arch.walk_mmu = &vcpu->arch.root_mmu;
468}
469
470static bool nested_vmx_is_page_fault_vmexit(struct vmcs12 *vmcs12,
471					    u16 error_code)
472{
473	bool inequality, bit;
474
475	bit = (vmcs12->exception_bitmap & (1u << PF_VECTOR)) != 0;
476	inequality =
477		(error_code & vmcs12->page_fault_error_code_mask) !=
478		 vmcs12->page_fault_error_code_match;
479	return inequality ^ bit;
480}
481
482static bool nested_vmx_is_exception_vmexit(struct kvm_vcpu *vcpu, u8 vector,
483					   u32 error_code)
484{
485	struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
486
487	/*
488	 * Drop bits 31:16 of the error code when performing the #PF mask+match
489	 * check.  All VMCS fields involved are 32 bits, but Intel CPUs never
490	 * set bits 31:16 and VMX disallows setting bits 31:16 in the injected
491	 * error code.  Including the to-be-dropped bits in the check might
492	 * result in an "impossible" or missed exit from L1's perspective.
493	 */
494	if (vector == PF_VECTOR)
495		return nested_vmx_is_page_fault_vmexit(vmcs12, (u16)error_code);
496
497	return (vmcs12->exception_bitmap & (1u << vector));
498}
499
500static int nested_vmx_check_io_bitmap_controls(struct kvm_vcpu *vcpu,
501					       struct vmcs12 *vmcs12)
502{
503	if (!nested_cpu_has(vmcs12, CPU_BASED_USE_IO_BITMAPS))
504		return 0;
505
506	if (CC(!page_address_valid(vcpu, vmcs12->io_bitmap_a)) ||
507	    CC(!page_address_valid(vcpu, vmcs12->io_bitmap_b)))
508		return -EINVAL;
509
510	return 0;
511}
512
513static int nested_vmx_check_msr_bitmap_controls(struct kvm_vcpu *vcpu,
514						struct vmcs12 *vmcs12)
515{
516	if (!nested_cpu_has(vmcs12, CPU_BASED_USE_MSR_BITMAPS))
517		return 0;
518
519	if (CC(!page_address_valid(vcpu, vmcs12->msr_bitmap)))
520		return -EINVAL;
521
522	return 0;
523}
524
525static int nested_vmx_check_tpr_shadow_controls(struct kvm_vcpu *vcpu,
526						struct vmcs12 *vmcs12)
527{
528	if (!nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW))
529		return 0;
530
531	if (CC(!page_address_valid(vcpu, vmcs12->virtual_apic_page_addr)))
532		return -EINVAL;
533
534	return 0;
535}
536
537/*
538 * For x2APIC MSRs, ignore the vmcs01 bitmap.  L1 can enable x2APIC without L1
539 * itself utilizing x2APIC.  All MSRs were previously set to be intercepted,
540 * only the "disable intercept" case needs to be handled.
541 */
542static void nested_vmx_disable_intercept_for_x2apic_msr(unsigned long *msr_bitmap_l1,
543							unsigned long *msr_bitmap_l0,
544							u32 msr, int type)
545{
546	if (type & MSR_TYPE_R && !vmx_test_msr_bitmap_read(msr_bitmap_l1, msr))
547		vmx_clear_msr_bitmap_read(msr_bitmap_l0, msr);
548
549	if (type & MSR_TYPE_W && !vmx_test_msr_bitmap_write(msr_bitmap_l1, msr))
550		vmx_clear_msr_bitmap_write(msr_bitmap_l0, msr);
551}
552
553static inline void enable_x2apic_msr_intercepts(unsigned long *msr_bitmap)
554{
555	int msr;
556
557	for (msr = 0x800; msr <= 0x8ff; msr += BITS_PER_LONG) {
558		unsigned word = msr / BITS_PER_LONG;
559
560		msr_bitmap[word] = ~0;
561		msr_bitmap[word + (0x800 / sizeof(long))] = ~0;
562	}
563}
564
565#define BUILD_NVMX_MSR_INTERCEPT_HELPER(rw)					\
566static inline									\
567void nested_vmx_set_msr_##rw##_intercept(struct vcpu_vmx *vmx,			\
568					 unsigned long *msr_bitmap_l1,		\
569					 unsigned long *msr_bitmap_l0, u32 msr)	\
570{										\
571	if (vmx_test_msr_bitmap_##rw(vmx->vmcs01.msr_bitmap, msr) ||		\
572	    vmx_test_msr_bitmap_##rw(msr_bitmap_l1, msr))			\
573		vmx_set_msr_bitmap_##rw(msr_bitmap_l0, msr);			\
574	else									\
575		vmx_clear_msr_bitmap_##rw(msr_bitmap_l0, msr);			\
576}
577BUILD_NVMX_MSR_INTERCEPT_HELPER(read)
578BUILD_NVMX_MSR_INTERCEPT_HELPER(write)
579
580static inline void nested_vmx_set_intercept_for_msr(struct vcpu_vmx *vmx,
581						    unsigned long *msr_bitmap_l1,
582						    unsigned long *msr_bitmap_l0,
583						    u32 msr, int types)
584{
585	if (types & MSR_TYPE_R)
586		nested_vmx_set_msr_read_intercept(vmx, msr_bitmap_l1,
587						  msr_bitmap_l0, msr);
588	if (types & MSR_TYPE_W)
589		nested_vmx_set_msr_write_intercept(vmx, msr_bitmap_l1,
590						   msr_bitmap_l0, msr);
591}
592
593/*
594 * Merge L0's and L1's MSR bitmap, return false to indicate that
595 * we do not use the hardware.
596 */
597static inline bool nested_vmx_prepare_msr_bitmap(struct kvm_vcpu *vcpu,
598						 struct vmcs12 *vmcs12)
599{
600	struct vcpu_vmx *vmx = to_vmx(vcpu);
601	int msr;
602	unsigned long *msr_bitmap_l1;
603	unsigned long *msr_bitmap_l0 = vmx->nested.vmcs02.msr_bitmap;
604	struct kvm_host_map *map = &vmx->nested.msr_bitmap_map;
605
606	/* Nothing to do if the MSR bitmap is not in use.  */
607	if (!cpu_has_vmx_msr_bitmap() ||
608	    !nested_cpu_has(vmcs12, CPU_BASED_USE_MSR_BITMAPS))
609		return false;
610
611	/*
612	 * MSR bitmap update can be skipped when:
613	 * - MSR bitmap for L1 hasn't changed.
614	 * - Nested hypervisor (L1) is attempting to launch the same L2 as
615	 *   before.
616	 * - Nested hypervisor (L1) has enabled 'Enlightened MSR Bitmap' feature
617	 *   and tells KVM (L0) there were no changes in MSR bitmap for L2.
618	 */
619	if (!vmx->nested.force_msr_bitmap_recalc) {
620		struct hv_enlightened_vmcs *evmcs = nested_vmx_evmcs(vmx);
621
622		if (evmcs && evmcs->hv_enlightenments_control.msr_bitmap &&
623		    evmcs->hv_clean_fields & HV_VMX_ENLIGHTENED_CLEAN_FIELD_MSR_BITMAP)
624			return true;
625	}
626
627	if (kvm_vcpu_map(vcpu, gpa_to_gfn(vmcs12->msr_bitmap), map))
628		return false;
629
630	msr_bitmap_l1 = (unsigned long *)map->hva;
631
632	/*
633	 * To keep the control flow simple, pay eight 8-byte writes (sixteen
634	 * 4-byte writes on 32-bit systems) up front to enable intercepts for
635	 * the x2APIC MSR range and selectively toggle those relevant to L2.
636	 */
637	enable_x2apic_msr_intercepts(msr_bitmap_l0);
638
639	if (nested_cpu_has_virt_x2apic_mode(vmcs12)) {
640		if (nested_cpu_has_apic_reg_virt(vmcs12)) {
641			/*
642			 * L0 need not intercept reads for MSRs between 0x800
643			 * and 0x8ff, it just lets the processor take the value
644			 * from the virtual-APIC page; take those 256 bits
645			 * directly from the L1 bitmap.
646			 */
647			for (msr = 0x800; msr <= 0x8ff; msr += BITS_PER_LONG) {
648				unsigned word = msr / BITS_PER_LONG;
649
650				msr_bitmap_l0[word] = msr_bitmap_l1[word];
651			}
652		}
653
654		nested_vmx_disable_intercept_for_x2apic_msr(
655			msr_bitmap_l1, msr_bitmap_l0,
656			X2APIC_MSR(APIC_TASKPRI),
657			MSR_TYPE_R | MSR_TYPE_W);
658
659		if (nested_cpu_has_vid(vmcs12)) {
660			nested_vmx_disable_intercept_for_x2apic_msr(
661				msr_bitmap_l1, msr_bitmap_l0,
662				X2APIC_MSR(APIC_EOI),
663				MSR_TYPE_W);
664			nested_vmx_disable_intercept_for_x2apic_msr(
665				msr_bitmap_l1, msr_bitmap_l0,
666				X2APIC_MSR(APIC_SELF_IPI),
667				MSR_TYPE_W);
668		}
669	}
670
671	/*
672	 * Always check vmcs01's bitmap to honor userspace MSR filters and any
673	 * other runtime changes to vmcs01's bitmap, e.g. dynamic pass-through.
674	 */
675#ifdef CONFIG_X86_64
676	nested_vmx_set_intercept_for_msr(vmx, msr_bitmap_l1, msr_bitmap_l0,
677					 MSR_FS_BASE, MSR_TYPE_RW);
678
679	nested_vmx_set_intercept_for_msr(vmx, msr_bitmap_l1, msr_bitmap_l0,
680					 MSR_GS_BASE, MSR_TYPE_RW);
681
682	nested_vmx_set_intercept_for_msr(vmx, msr_bitmap_l1, msr_bitmap_l0,
683					 MSR_KERNEL_GS_BASE, MSR_TYPE_RW);
684#endif
685	nested_vmx_set_intercept_for_msr(vmx, msr_bitmap_l1, msr_bitmap_l0,
686					 MSR_IA32_SPEC_CTRL, MSR_TYPE_RW);
687
688	nested_vmx_set_intercept_for_msr(vmx, msr_bitmap_l1, msr_bitmap_l0,
689					 MSR_IA32_PRED_CMD, MSR_TYPE_W);
690
691	nested_vmx_set_intercept_for_msr(vmx, msr_bitmap_l1, msr_bitmap_l0,
692					 MSR_IA32_FLUSH_CMD, MSR_TYPE_W);
693
694	kvm_vcpu_unmap(vcpu, &vmx->nested.msr_bitmap_map, false);
695
696	vmx->nested.force_msr_bitmap_recalc = false;
697
698	return true;
699}
700
701static void nested_cache_shadow_vmcs12(struct kvm_vcpu *vcpu,
702				       struct vmcs12 *vmcs12)
703{
704	struct vcpu_vmx *vmx = to_vmx(vcpu);
705	struct gfn_to_hva_cache *ghc = &vmx->nested.shadow_vmcs12_cache;
706
707	if (!nested_cpu_has_shadow_vmcs(vmcs12) ||
708	    vmcs12->vmcs_link_pointer == INVALID_GPA)
709		return;
710
711	if (ghc->gpa != vmcs12->vmcs_link_pointer &&
712	    kvm_gfn_to_hva_cache_init(vcpu->kvm, ghc,
713				      vmcs12->vmcs_link_pointer, VMCS12_SIZE))
714		return;
715
716	kvm_read_guest_cached(vmx->vcpu.kvm, ghc, get_shadow_vmcs12(vcpu),
717			      VMCS12_SIZE);
718}
719
720static void nested_flush_cached_shadow_vmcs12(struct kvm_vcpu *vcpu,
721					      struct vmcs12 *vmcs12)
722{
723	struct vcpu_vmx *vmx = to_vmx(vcpu);
724	struct gfn_to_hva_cache *ghc = &vmx->nested.shadow_vmcs12_cache;
725
726	if (!nested_cpu_has_shadow_vmcs(vmcs12) ||
727	    vmcs12->vmcs_link_pointer == INVALID_GPA)
728		return;
729
730	if (ghc->gpa != vmcs12->vmcs_link_pointer &&
731	    kvm_gfn_to_hva_cache_init(vcpu->kvm, ghc,
732				      vmcs12->vmcs_link_pointer, VMCS12_SIZE))
733		return;
734
735	kvm_write_guest_cached(vmx->vcpu.kvm, ghc, get_shadow_vmcs12(vcpu),
736			       VMCS12_SIZE);
737}
738
739/*
740 * In nested virtualization, check if L1 has set
741 * VM_EXIT_ACK_INTR_ON_EXIT
742 */
743static bool nested_exit_intr_ack_set(struct kvm_vcpu *vcpu)
744{
745	return get_vmcs12(vcpu)->vm_exit_controls &
746		VM_EXIT_ACK_INTR_ON_EXIT;
747}
748
749static int nested_vmx_check_apic_access_controls(struct kvm_vcpu *vcpu,
750					  struct vmcs12 *vmcs12)
751{
752	if (nested_cpu_has2(vmcs12, SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES) &&
753	    CC(!page_address_valid(vcpu, vmcs12->apic_access_addr)))
754		return -EINVAL;
755	else
756		return 0;
757}
758
759static int nested_vmx_check_apicv_controls(struct kvm_vcpu *vcpu,
760					   struct vmcs12 *vmcs12)
761{
762	if (!nested_cpu_has_virt_x2apic_mode(vmcs12) &&
763	    !nested_cpu_has_apic_reg_virt(vmcs12) &&
764	    !nested_cpu_has_vid(vmcs12) &&
765	    !nested_cpu_has_posted_intr(vmcs12))
766		return 0;
767
768	/*
769	 * If virtualize x2apic mode is enabled,
770	 * virtualize apic access must be disabled.
771	 */
772	if (CC(nested_cpu_has_virt_x2apic_mode(vmcs12) &&
773	       nested_cpu_has2(vmcs12, SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES)))
774		return -EINVAL;
775
776	/*
777	 * If virtual interrupt delivery is enabled,
778	 * we must exit on external interrupts.
779	 */
780	if (CC(nested_cpu_has_vid(vmcs12) && !nested_exit_on_intr(vcpu)))
781		return -EINVAL;
782
783	/*
784	 * bits 15:8 should be zero in posted_intr_nv,
785	 * the descriptor address has been already checked
786	 * in nested_get_vmcs12_pages.
787	 *
788	 * bits 5:0 of posted_intr_desc_addr should be zero.
789	 */
790	if (nested_cpu_has_posted_intr(vmcs12) &&
791	   (CC(!nested_cpu_has_vid(vmcs12)) ||
792	    CC(!nested_exit_intr_ack_set(vcpu)) ||
793	    CC((vmcs12->posted_intr_nv & 0xff00)) ||
794	    CC(!kvm_vcpu_is_legal_aligned_gpa(vcpu, vmcs12->posted_intr_desc_addr, 64))))
795		return -EINVAL;
796
797	/* tpr shadow is needed by all apicv features. */
798	if (CC(!nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW)))
799		return -EINVAL;
800
801	return 0;
802}
803
804static int nested_vmx_check_msr_switch(struct kvm_vcpu *vcpu,
805				       u32 count, u64 addr)
806{
807	if (count == 0)
808		return 0;
809
810	if (!kvm_vcpu_is_legal_aligned_gpa(vcpu, addr, 16) ||
811	    !kvm_vcpu_is_legal_gpa(vcpu, (addr + count * sizeof(struct vmx_msr_entry) - 1)))
812		return -EINVAL;
813
814	return 0;
815}
816
817static int nested_vmx_check_exit_msr_switch_controls(struct kvm_vcpu *vcpu,
818						     struct vmcs12 *vmcs12)
819{
820	if (CC(nested_vmx_check_msr_switch(vcpu,
821					   vmcs12->vm_exit_msr_load_count,
822					   vmcs12->vm_exit_msr_load_addr)) ||
823	    CC(nested_vmx_check_msr_switch(vcpu,
824					   vmcs12->vm_exit_msr_store_count,
825					   vmcs12->vm_exit_msr_store_addr)))
826		return -EINVAL;
827
828	return 0;
829}
830
831static int nested_vmx_check_entry_msr_switch_controls(struct kvm_vcpu *vcpu,
832                                                      struct vmcs12 *vmcs12)
833{
834	if (CC(nested_vmx_check_msr_switch(vcpu,
835					   vmcs12->vm_entry_msr_load_count,
836					   vmcs12->vm_entry_msr_load_addr)))
837                return -EINVAL;
838
839	return 0;
840}
841
842static int nested_vmx_check_pml_controls(struct kvm_vcpu *vcpu,
843					 struct vmcs12 *vmcs12)
844{
845	if (!nested_cpu_has_pml(vmcs12))
846		return 0;
847
848	if (CC(!nested_cpu_has_ept(vmcs12)) ||
849	    CC(!page_address_valid(vcpu, vmcs12->pml_address)))
850		return -EINVAL;
851
852	return 0;
853}
854
855static int nested_vmx_check_unrestricted_guest_controls(struct kvm_vcpu *vcpu,
856							struct vmcs12 *vmcs12)
857{
858	if (CC(nested_cpu_has2(vmcs12, SECONDARY_EXEC_UNRESTRICTED_GUEST) &&
859	       !nested_cpu_has_ept(vmcs12)))
860		return -EINVAL;
861	return 0;
862}
863
864static int nested_vmx_check_mode_based_ept_exec_controls(struct kvm_vcpu *vcpu,
865							 struct vmcs12 *vmcs12)
866{
867	if (CC(nested_cpu_has2(vmcs12, SECONDARY_EXEC_MODE_BASED_EPT_EXEC) &&
868	       !nested_cpu_has_ept(vmcs12)))
869		return -EINVAL;
870	return 0;
871}
872
873static int nested_vmx_check_shadow_vmcs_controls(struct kvm_vcpu *vcpu,
874						 struct vmcs12 *vmcs12)
875{
876	if (!nested_cpu_has_shadow_vmcs(vmcs12))
877		return 0;
878
879	if (CC(!page_address_valid(vcpu, vmcs12->vmread_bitmap)) ||
880	    CC(!page_address_valid(vcpu, vmcs12->vmwrite_bitmap)))
881		return -EINVAL;
882
883	return 0;
884}
885
886static int nested_vmx_msr_check_common(struct kvm_vcpu *vcpu,
887				       struct vmx_msr_entry *e)
888{
889	/* x2APIC MSR accesses are not allowed */
890	if (CC(vcpu->arch.apic_base & X2APIC_ENABLE && e->index >> 8 == 0x8))
891		return -EINVAL;
892	if (CC(e->index == MSR_IA32_UCODE_WRITE) || /* SDM Table 35-2 */
893	    CC(e->index == MSR_IA32_UCODE_REV))
894		return -EINVAL;
895	if (CC(e->reserved != 0))
896		return -EINVAL;
897	return 0;
898}
899
900static int nested_vmx_load_msr_check(struct kvm_vcpu *vcpu,
901				     struct vmx_msr_entry *e)
902{
903	if (CC(e->index == MSR_FS_BASE) ||
904	    CC(e->index == MSR_GS_BASE) ||
905	    CC(e->index == MSR_IA32_SMM_MONITOR_CTL) || /* SMM is not supported */
906	    nested_vmx_msr_check_common(vcpu, e))
907		return -EINVAL;
908	return 0;
909}
910
911static int nested_vmx_store_msr_check(struct kvm_vcpu *vcpu,
912				      struct vmx_msr_entry *e)
913{
914	if (CC(e->index == MSR_IA32_SMBASE) || /* SMM is not supported */
915	    nested_vmx_msr_check_common(vcpu, e))
916		return -EINVAL;
917	return 0;
918}
919
920static u32 nested_vmx_max_atomic_switch_msrs(struct kvm_vcpu *vcpu)
921{
922	struct vcpu_vmx *vmx = to_vmx(vcpu);
923	u64 vmx_misc = vmx_control_msr(vmx->nested.msrs.misc_low,
924				       vmx->nested.msrs.misc_high);
925
926	return (vmx_misc_max_msr(vmx_misc) + 1) * VMX_MISC_MSR_LIST_MULTIPLIER;
927}
928
929/*
930 * Load guest's/host's msr at nested entry/exit.
931 * return 0 for success, entry index for failure.
932 *
933 * One of the failure modes for MSR load/store is when a list exceeds the
934 * virtual hardware's capacity. To maintain compatibility with hardware inasmuch
935 * as possible, process all valid entries before failing rather than precheck
936 * for a capacity violation.
937 */
938static u32 nested_vmx_load_msr(struct kvm_vcpu *vcpu, u64 gpa, u32 count)
939{
940	u32 i;
941	struct vmx_msr_entry e;
942	u32 max_msr_list_size = nested_vmx_max_atomic_switch_msrs(vcpu);
943
944	for (i = 0; i < count; i++) {
945		if (unlikely(i >= max_msr_list_size))
946			goto fail;
947
948		if (kvm_vcpu_read_guest(vcpu, gpa + i * sizeof(e),
949					&e, sizeof(e))) {
950			pr_debug_ratelimited(
951				"%s cannot read MSR entry (%u, 0x%08llx)\n",
952				__func__, i, gpa + i * sizeof(e));
953			goto fail;
954		}
955		if (nested_vmx_load_msr_check(vcpu, &e)) {
956			pr_debug_ratelimited(
957				"%s check failed (%u, 0x%x, 0x%x)\n",
958				__func__, i, e.index, e.reserved);
959			goto fail;
960		}
961		if (kvm_set_msr(vcpu, e.index, e.value)) {
962			pr_debug_ratelimited(
963				"%s cannot write MSR (%u, 0x%x, 0x%llx)\n",
964				__func__, i, e.index, e.value);
965			goto fail;
966		}
967	}
968	return 0;
969fail:
970	/* Note, max_msr_list_size is at most 4096, i.e. this can't wrap. */
971	return i + 1;
972}
973
974static bool nested_vmx_get_vmexit_msr_value(struct kvm_vcpu *vcpu,
975					    u32 msr_index,
976					    u64 *data)
977{
978	struct vcpu_vmx *vmx = to_vmx(vcpu);
979
980	/*
981	 * If the L0 hypervisor stored a more accurate value for the TSC that
982	 * does not include the time taken for emulation of the L2->L1
983	 * VM-exit in L0, use the more accurate value.
984	 */
985	if (msr_index == MSR_IA32_TSC) {
986		int i = vmx_find_loadstore_msr_slot(&vmx->msr_autostore.guest,
987						    MSR_IA32_TSC);
988
989		if (i >= 0) {
990			u64 val = vmx->msr_autostore.guest.val[i].value;
991
992			*data = kvm_read_l1_tsc(vcpu, val);
993			return true;
994		}
995	}
996
997	if (kvm_get_msr(vcpu, msr_index, data)) {
998		pr_debug_ratelimited("%s cannot read MSR (0x%x)\n", __func__,
999			msr_index);
1000		return false;
1001	}
1002	return true;
1003}
1004
1005static bool read_and_check_msr_entry(struct kvm_vcpu *vcpu, u64 gpa, int i,
1006				     struct vmx_msr_entry *e)
1007{
1008	if (kvm_vcpu_read_guest(vcpu,
1009				gpa + i * sizeof(*e),
1010				e, 2 * sizeof(u32))) {
1011		pr_debug_ratelimited(
1012			"%s cannot read MSR entry (%u, 0x%08llx)\n",
1013			__func__, i, gpa + i * sizeof(*e));
1014		return false;
1015	}
1016	if (nested_vmx_store_msr_check(vcpu, e)) {
1017		pr_debug_ratelimited(
1018			"%s check failed (%u, 0x%x, 0x%x)\n",
1019			__func__, i, e->index, e->reserved);
1020		return false;
1021	}
1022	return true;
1023}
1024
1025static int nested_vmx_store_msr(struct kvm_vcpu *vcpu, u64 gpa, u32 count)
1026{
1027	u64 data;
1028	u32 i;
1029	struct vmx_msr_entry e;
1030	u32 max_msr_list_size = nested_vmx_max_atomic_switch_msrs(vcpu);
1031
1032	for (i = 0; i < count; i++) {
1033		if (unlikely(i >= max_msr_list_size))
1034			return -EINVAL;
1035
1036		if (!read_and_check_msr_entry(vcpu, gpa, i, &e))
1037			return -EINVAL;
1038
1039		if (!nested_vmx_get_vmexit_msr_value(vcpu, e.index, &data))
1040			return -EINVAL;
1041
1042		if (kvm_vcpu_write_guest(vcpu,
1043					 gpa + i * sizeof(e) +
1044					     offsetof(struct vmx_msr_entry, value),
1045					 &data, sizeof(data))) {
1046			pr_debug_ratelimited(
1047				"%s cannot write MSR (%u, 0x%x, 0x%llx)\n",
1048				__func__, i, e.index, data);
1049			return -EINVAL;
1050		}
1051	}
1052	return 0;
1053}
1054
1055static bool nested_msr_store_list_has_msr(struct kvm_vcpu *vcpu, u32 msr_index)
1056{
1057	struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
1058	u32 count = vmcs12->vm_exit_msr_store_count;
1059	u64 gpa = vmcs12->vm_exit_msr_store_addr;
1060	struct vmx_msr_entry e;
1061	u32 i;
1062
1063	for (i = 0; i < count; i++) {
1064		if (!read_and_check_msr_entry(vcpu, gpa, i, &e))
1065			return false;
1066
1067		if (e.index == msr_index)
1068			return true;
1069	}
1070	return false;
1071}
1072
1073static void prepare_vmx_msr_autostore_list(struct kvm_vcpu *vcpu,
1074					   u32 msr_index)
1075{
1076	struct vcpu_vmx *vmx = to_vmx(vcpu);
1077	struct vmx_msrs *autostore = &vmx->msr_autostore.guest;
1078	bool in_vmcs12_store_list;
1079	int msr_autostore_slot;
1080	bool in_autostore_list;
1081	int last;
1082
1083	msr_autostore_slot = vmx_find_loadstore_msr_slot(autostore, msr_index);
1084	in_autostore_list = msr_autostore_slot >= 0;
1085	in_vmcs12_store_list = nested_msr_store_list_has_msr(vcpu, msr_index);
1086
1087	if (in_vmcs12_store_list && !in_autostore_list) {
1088		if (autostore->nr == MAX_NR_LOADSTORE_MSRS) {
1089			/*
1090			 * Emulated VMEntry does not fail here.  Instead a less
1091			 * accurate value will be returned by
1092			 * nested_vmx_get_vmexit_msr_value() using kvm_get_msr()
1093			 * instead of reading the value from the vmcs02 VMExit
1094			 * MSR-store area.
1095			 */
1096			pr_warn_ratelimited(
1097				"Not enough msr entries in msr_autostore.  Can't add msr %x\n",
1098				msr_index);
1099			return;
1100		}
1101		last = autostore->nr++;
1102		autostore->val[last].index = msr_index;
1103	} else if (!in_vmcs12_store_list && in_autostore_list) {
1104		last = --autostore->nr;
1105		autostore->val[msr_autostore_slot] = autostore->val[last];
1106	}
1107}
1108
1109/*
1110 * Load guest's/host's cr3 at nested entry/exit.  @nested_ept is true if we are
1111 * emulating VM-Entry into a guest with EPT enabled.  On failure, the expected
1112 * Exit Qualification (for a VM-Entry consistency check VM-Exit) is assigned to
1113 * @entry_failure_code.
1114 */
1115static int nested_vmx_load_cr3(struct kvm_vcpu *vcpu, unsigned long cr3,
1116			       bool nested_ept, bool reload_pdptrs,
1117			       enum vm_entry_failure_code *entry_failure_code)
1118{
1119	if (CC(!kvm_vcpu_is_legal_cr3(vcpu, cr3))) {
1120		*entry_failure_code = ENTRY_FAIL_DEFAULT;
1121		return -EINVAL;
1122	}
1123
1124	/*
1125	 * If PAE paging and EPT are both on, CR3 is not used by the CPU and
1126	 * must not be dereferenced.
1127	 */
1128	if (reload_pdptrs && !nested_ept && is_pae_paging(vcpu) &&
1129	    CC(!load_pdptrs(vcpu, cr3))) {
1130		*entry_failure_code = ENTRY_FAIL_PDPTE;
1131		return -EINVAL;
1132	}
1133
1134	vcpu->arch.cr3 = cr3;
1135	kvm_register_mark_dirty(vcpu, VCPU_EXREG_CR3);
1136
1137	/* Re-initialize the MMU, e.g. to pick up CR4 MMU role changes. */
1138	kvm_init_mmu(vcpu);
1139
1140	if (!nested_ept)
1141		kvm_mmu_new_pgd(vcpu, cr3);
1142
1143	return 0;
1144}
1145
1146/*
1147 * Returns if KVM is able to config CPU to tag TLB entries
1148 * populated by L2 differently than TLB entries populated
1149 * by L1.
1150 *
1151 * If L0 uses EPT, L1 and L2 run with different EPTP because
1152 * guest_mode is part of kvm_mmu_page_role. Thus, TLB entries
1153 * are tagged with different EPTP.
1154 *
1155 * If L1 uses VPID and we allocated a vpid02, TLB entries are tagged
1156 * with different VPID (L1 entries are tagged with vmx->vpid
1157 * while L2 entries are tagged with vmx->nested.vpid02).
1158 */
1159static bool nested_has_guest_tlb_tag(struct kvm_vcpu *vcpu)
1160{
1161	struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
1162
1163	return enable_ept ||
1164	       (nested_cpu_has_vpid(vmcs12) && to_vmx(vcpu)->nested.vpid02);
1165}
1166
1167static void nested_vmx_transition_tlb_flush(struct kvm_vcpu *vcpu,
1168					    struct vmcs12 *vmcs12,
1169					    bool is_vmenter)
1170{
1171	struct vcpu_vmx *vmx = to_vmx(vcpu);
1172
1173	/* Handle pending Hyper-V TLB flush requests */
1174	kvm_hv_nested_transtion_tlb_flush(vcpu, enable_ept);
1175
1176	/*
1177	 * If vmcs12 doesn't use VPID, L1 expects linear and combined mappings
1178	 * for *all* contexts to be flushed on VM-Enter/VM-Exit, i.e. it's a
1179	 * full TLB flush from the guest's perspective.  This is required even
1180	 * if VPID is disabled in the host as KVM may need to synchronize the
1181	 * MMU in response to the guest TLB flush.
1182	 *
1183	 * Note, using TLB_FLUSH_GUEST is correct even if nested EPT is in use.
1184	 * EPT is a special snowflake, as guest-physical mappings aren't
1185	 * flushed on VPID invalidations, including VM-Enter or VM-Exit with
1186	 * VPID disabled.  As a result, KVM _never_ needs to sync nEPT
1187	 * entries on VM-Enter because L1 can't rely on VM-Enter to flush
1188	 * those mappings.
1189	 */
1190	if (!nested_cpu_has_vpid(vmcs12)) {
1191		kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu);
1192		return;
1193	}
1194
1195	/* L2 should never have a VPID if VPID is disabled. */
1196	WARN_ON(!enable_vpid);
1197
1198	/*
1199	 * VPID is enabled and in use by vmcs12.  If vpid12 is changing, then
1200	 * emulate a guest TLB flush as KVM does not track vpid12 history nor
1201	 * is the VPID incorporated into the MMU context.  I.e. KVM must assume
1202	 * that the new vpid12 has never been used and thus represents a new
1203	 * guest ASID that cannot have entries in the TLB.
1204	 */
1205	if (is_vmenter && vmcs12->virtual_processor_id != vmx->nested.last_vpid) {
1206		vmx->nested.last_vpid = vmcs12->virtual_processor_id;
1207		kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu);
1208		return;
1209	}
1210
1211	/*
1212	 * If VPID is enabled, used by vmc12, and vpid12 is not changing but
1213	 * does not have a unique TLB tag (ASID), i.e. EPT is disabled and
1214	 * KVM was unable to allocate a VPID for L2, flush the current context
1215	 * as the effective ASID is common to both L1 and L2.
1216	 */
1217	if (!nested_has_guest_tlb_tag(vcpu))
1218		kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu);
1219}
1220
1221static bool is_bitwise_subset(u64 superset, u64 subset, u64 mask)
1222{
1223	superset &= mask;
1224	subset &= mask;
1225
1226	return (superset | subset) == superset;
1227}
1228
1229static int vmx_restore_vmx_basic(struct vcpu_vmx *vmx, u64 data)
1230{
1231	const u64 feature_and_reserved =
1232		/* feature (except bit 48; see below) */
1233		BIT_ULL(49) | BIT_ULL(54) | BIT_ULL(55) |
1234		/* reserved */
1235		BIT_ULL(31) | GENMASK_ULL(47, 45) | GENMASK_ULL(63, 56);
1236	u64 vmx_basic = vmcs_config.nested.basic;
1237
1238	if (!is_bitwise_subset(vmx_basic, data, feature_and_reserved))
1239		return -EINVAL;
1240
1241	/*
1242	 * KVM does not emulate a version of VMX that constrains physical
1243	 * addresses of VMX structures (e.g. VMCS) to 32-bits.
1244	 */
1245	if (data & BIT_ULL(48))
1246		return -EINVAL;
1247
1248	if (vmx_basic_vmcs_revision_id(vmx_basic) !=
1249	    vmx_basic_vmcs_revision_id(data))
1250		return -EINVAL;
1251
1252	if (vmx_basic_vmcs_size(vmx_basic) > vmx_basic_vmcs_size(data))
1253		return -EINVAL;
1254
1255	vmx->nested.msrs.basic = data;
1256	return 0;
1257}
1258
1259static void vmx_get_control_msr(struct nested_vmx_msrs *msrs, u32 msr_index,
1260				u32 **low, u32 **high)
1261{
1262	switch (msr_index) {
1263	case MSR_IA32_VMX_TRUE_PINBASED_CTLS:
1264		*low = &msrs->pinbased_ctls_low;
1265		*high = &msrs->pinbased_ctls_high;
1266		break;
1267	case MSR_IA32_VMX_TRUE_PROCBASED_CTLS:
1268		*low = &msrs->procbased_ctls_low;
1269		*high = &msrs->procbased_ctls_high;
1270		break;
1271	case MSR_IA32_VMX_TRUE_EXIT_CTLS:
1272		*low = &msrs->exit_ctls_low;
1273		*high = &msrs->exit_ctls_high;
1274		break;
1275	case MSR_IA32_VMX_TRUE_ENTRY_CTLS:
1276		*low = &msrs->entry_ctls_low;
1277		*high = &msrs->entry_ctls_high;
1278		break;
1279	case MSR_IA32_VMX_PROCBASED_CTLS2:
1280		*low = &msrs->secondary_ctls_low;
1281		*high = &msrs->secondary_ctls_high;
1282		break;
1283	default:
1284		BUG();
1285	}
1286}
1287
1288static int
1289vmx_restore_control_msr(struct vcpu_vmx *vmx, u32 msr_index, u64 data)
1290{
1291	u32 *lowp, *highp;
1292	u64 supported;
1293
1294	vmx_get_control_msr(&vmcs_config.nested, msr_index, &lowp, &highp);
1295
1296	supported = vmx_control_msr(*lowp, *highp);
1297
1298	/* Check must-be-1 bits are still 1. */
1299	if (!is_bitwise_subset(data, supported, GENMASK_ULL(31, 0)))
1300		return -EINVAL;
1301
1302	/* Check must-be-0 bits are still 0. */
1303	if (!is_bitwise_subset(supported, data, GENMASK_ULL(63, 32)))
1304		return -EINVAL;
1305
1306	vmx_get_control_msr(&vmx->nested.msrs, msr_index, &lowp, &highp);
1307	*lowp = data;
1308	*highp = data >> 32;
1309	return 0;
1310}
1311
1312static int vmx_restore_vmx_misc(struct vcpu_vmx *vmx, u64 data)
1313{
1314	const u64 feature_and_reserved_bits =
1315		/* feature */
1316		BIT_ULL(5) | GENMASK_ULL(8, 6) | BIT_ULL(14) | BIT_ULL(15) |
1317		BIT_ULL(28) | BIT_ULL(29) | BIT_ULL(30) |
1318		/* reserved */
1319		GENMASK_ULL(13, 9) | BIT_ULL(31);
1320	u64 vmx_misc = vmx_control_msr(vmcs_config.nested.misc_low,
1321				       vmcs_config.nested.misc_high);
1322
1323	if (!is_bitwise_subset(vmx_misc, data, feature_and_reserved_bits))
1324		return -EINVAL;
1325
1326	if ((vmx->nested.msrs.pinbased_ctls_high &
1327	     PIN_BASED_VMX_PREEMPTION_TIMER) &&
1328	    vmx_misc_preemption_timer_rate(data) !=
1329	    vmx_misc_preemption_timer_rate(vmx_misc))
1330		return -EINVAL;
1331
1332	if (vmx_misc_cr3_count(data) > vmx_misc_cr3_count(vmx_misc))
1333		return -EINVAL;
1334
1335	if (vmx_misc_max_msr(data) > vmx_misc_max_msr(vmx_misc))
1336		return -EINVAL;
1337
1338	if (vmx_misc_mseg_revid(data) != vmx_misc_mseg_revid(vmx_misc))
1339		return -EINVAL;
1340
1341	vmx->nested.msrs.misc_low = data;
1342	vmx->nested.msrs.misc_high = data >> 32;
1343
1344	return 0;
1345}
1346
1347static int vmx_restore_vmx_ept_vpid_cap(struct vcpu_vmx *vmx, u64 data)
1348{
1349	u64 vmx_ept_vpid_cap = vmx_control_msr(vmcs_config.nested.ept_caps,
1350					       vmcs_config.nested.vpid_caps);
1351
1352	/* Every bit is either reserved or a feature bit. */
1353	if (!is_bitwise_subset(vmx_ept_vpid_cap, data, -1ULL))
1354		return -EINVAL;
1355
1356	vmx->nested.msrs.ept_caps = data;
1357	vmx->nested.msrs.vpid_caps = data >> 32;
1358	return 0;
1359}
1360
1361static u64 *vmx_get_fixed0_msr(struct nested_vmx_msrs *msrs, u32 msr_index)
1362{
1363	switch (msr_index) {
1364	case MSR_IA32_VMX_CR0_FIXED0:
1365		return &msrs->cr0_fixed0;
1366	case MSR_IA32_VMX_CR4_FIXED0:
1367		return &msrs->cr4_fixed0;
1368	default:
1369		BUG();
1370	}
1371}
1372
1373static int vmx_restore_fixed0_msr(struct vcpu_vmx *vmx, u32 msr_index, u64 data)
1374{
1375	const u64 *msr = vmx_get_fixed0_msr(&vmcs_config.nested, msr_index);
1376
1377	/*
1378	 * 1 bits (which indicates bits which "must-be-1" during VMX operation)
1379	 * must be 1 in the restored value.
1380	 */
1381	if (!is_bitwise_subset(data, *msr, -1ULL))
1382		return -EINVAL;
1383
1384	*vmx_get_fixed0_msr(&vmx->nested.msrs, msr_index) = data;
1385	return 0;
1386}
1387
1388/*
1389 * Called when userspace is restoring VMX MSRs.
1390 *
1391 * Returns 0 on success, non-0 otherwise.
1392 */
1393int vmx_set_vmx_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 data)
1394{
1395	struct vcpu_vmx *vmx = to_vmx(vcpu);
1396
1397	/*
1398	 * Don't allow changes to the VMX capability MSRs while the vCPU
1399	 * is in VMX operation.
1400	 */
1401	if (vmx->nested.vmxon)
1402		return -EBUSY;
1403
1404	switch (msr_index) {
1405	case MSR_IA32_VMX_BASIC:
1406		return vmx_restore_vmx_basic(vmx, data);
1407	case MSR_IA32_VMX_PINBASED_CTLS:
1408	case MSR_IA32_VMX_PROCBASED_CTLS:
1409	case MSR_IA32_VMX_EXIT_CTLS:
1410	case MSR_IA32_VMX_ENTRY_CTLS:
1411		/*
1412		 * The "non-true" VMX capability MSRs are generated from the
1413		 * "true" MSRs, so we do not support restoring them directly.
1414		 *
1415		 * If userspace wants to emulate VMX_BASIC[55]=0, userspace
1416		 * should restore the "true" MSRs with the must-be-1 bits
1417		 * set according to the SDM Vol 3. A.2 "RESERVED CONTROLS AND
1418		 * DEFAULT SETTINGS".
1419		 */
1420		return -EINVAL;
1421	case MSR_IA32_VMX_TRUE_PINBASED_CTLS:
1422	case MSR_IA32_VMX_TRUE_PROCBASED_CTLS:
1423	case MSR_IA32_VMX_TRUE_EXIT_CTLS:
1424	case MSR_IA32_VMX_TRUE_ENTRY_CTLS:
1425	case MSR_IA32_VMX_PROCBASED_CTLS2:
1426		return vmx_restore_control_msr(vmx, msr_index, data);
1427	case MSR_IA32_VMX_MISC:
1428		return vmx_restore_vmx_misc(vmx, data);
1429	case MSR_IA32_VMX_CR0_FIXED0:
1430	case MSR_IA32_VMX_CR4_FIXED0:
1431		return vmx_restore_fixed0_msr(vmx, msr_index, data);
1432	case MSR_IA32_VMX_CR0_FIXED1:
1433	case MSR_IA32_VMX_CR4_FIXED1:
1434		/*
1435		 * These MSRs are generated based on the vCPU's CPUID, so we
1436		 * do not support restoring them directly.
1437		 */
1438		return -EINVAL;
1439	case MSR_IA32_VMX_EPT_VPID_CAP:
1440		return vmx_restore_vmx_ept_vpid_cap(vmx, data);
1441	case MSR_IA32_VMX_VMCS_ENUM:
1442		vmx->nested.msrs.vmcs_enum = data;
1443		return 0;
1444	case MSR_IA32_VMX_VMFUNC:
1445		if (data & ~vmcs_config.nested.vmfunc_controls)
1446			return -EINVAL;
1447		vmx->nested.msrs.vmfunc_controls = data;
1448		return 0;
1449	default:
1450		/*
1451		 * The rest of the VMX capability MSRs do not support restore.
1452		 */
1453		return -EINVAL;
1454	}
1455}
1456
1457/* Returns 0 on success, non-0 otherwise. */
1458int vmx_get_vmx_msr(struct nested_vmx_msrs *msrs, u32 msr_index, u64 *pdata)
1459{
1460	switch (msr_index) {
1461	case MSR_IA32_VMX_BASIC:
1462		*pdata = msrs->basic;
1463		break;
1464	case MSR_IA32_VMX_TRUE_PINBASED_CTLS:
1465	case MSR_IA32_VMX_PINBASED_CTLS:
1466		*pdata = vmx_control_msr(
1467			msrs->pinbased_ctls_low,
1468			msrs->pinbased_ctls_high);
1469		if (msr_index == MSR_IA32_VMX_PINBASED_CTLS)
1470			*pdata |= PIN_BASED_ALWAYSON_WITHOUT_TRUE_MSR;
1471		break;
1472	case MSR_IA32_VMX_TRUE_PROCBASED_CTLS:
1473	case MSR_IA32_VMX_PROCBASED_CTLS:
1474		*pdata = vmx_control_msr(
1475			msrs->procbased_ctls_low,
1476			msrs->procbased_ctls_high);
1477		if (msr_index == MSR_IA32_VMX_PROCBASED_CTLS)
1478			*pdata |= CPU_BASED_ALWAYSON_WITHOUT_TRUE_MSR;
1479		break;
1480	case MSR_IA32_VMX_TRUE_EXIT_CTLS:
1481	case MSR_IA32_VMX_EXIT_CTLS:
1482		*pdata = vmx_control_msr(
1483			msrs->exit_ctls_low,
1484			msrs->exit_ctls_high);
1485		if (msr_index == MSR_IA32_VMX_EXIT_CTLS)
1486			*pdata |= VM_EXIT_ALWAYSON_WITHOUT_TRUE_MSR;
1487		break;
1488	case MSR_IA32_VMX_TRUE_ENTRY_CTLS:
1489	case MSR_IA32_VMX_ENTRY_CTLS:
1490		*pdata = vmx_control_msr(
1491			msrs->entry_ctls_low,
1492			msrs->entry_ctls_high);
1493		if (msr_index == MSR_IA32_VMX_ENTRY_CTLS)
1494			*pdata |= VM_ENTRY_ALWAYSON_WITHOUT_TRUE_MSR;
1495		break;
1496	case MSR_IA32_VMX_MISC:
1497		*pdata = vmx_control_msr(
1498			msrs->misc_low,
1499			msrs->misc_high);
1500		break;
1501	case MSR_IA32_VMX_CR0_FIXED0:
1502		*pdata = msrs->cr0_fixed0;
1503		break;
1504	case MSR_IA32_VMX_CR0_FIXED1:
1505		*pdata = msrs->cr0_fixed1;
1506		break;
1507	case MSR_IA32_VMX_CR4_FIXED0:
1508		*pdata = msrs->cr4_fixed0;
1509		break;
1510	case MSR_IA32_VMX_CR4_FIXED1:
1511		*pdata = msrs->cr4_fixed1;
1512		break;
1513	case MSR_IA32_VMX_VMCS_ENUM:
1514		*pdata = msrs->vmcs_enum;
1515		break;
1516	case MSR_IA32_VMX_PROCBASED_CTLS2:
1517		*pdata = vmx_control_msr(
1518			msrs->secondary_ctls_low,
1519			msrs->secondary_ctls_high);
1520		break;
1521	case MSR_IA32_VMX_EPT_VPID_CAP:
1522		*pdata = msrs->ept_caps |
1523			((u64)msrs->vpid_caps << 32);
1524		break;
1525	case MSR_IA32_VMX_VMFUNC:
1526		*pdata = msrs->vmfunc_controls;
1527		break;
1528	default:
1529		return 1;
1530	}
1531
1532	return 0;
1533}
1534
1535/*
1536 * Copy the writable VMCS shadow fields back to the VMCS12, in case they have
1537 * been modified by the L1 guest.  Note, "writable" in this context means
1538 * "writable by the guest", i.e. tagged SHADOW_FIELD_RW; the set of
1539 * fields tagged SHADOW_FIELD_RO may or may not align with the "read-only"
1540 * VM-exit information fields (which are actually writable if the vCPU is
1541 * configured to support "VMWRITE to any supported field in the VMCS").
1542 */
1543static void copy_shadow_to_vmcs12(struct vcpu_vmx *vmx)
1544{
1545	struct vmcs *shadow_vmcs = vmx->vmcs01.shadow_vmcs;
1546	struct vmcs12 *vmcs12 = get_vmcs12(&vmx->vcpu);
1547	struct shadow_vmcs_field field;
1548	unsigned long val;
1549	int i;
1550
1551	if (WARN_ON(!shadow_vmcs))
1552		return;
1553
1554	preempt_disable();
1555
1556	vmcs_load(shadow_vmcs);
1557
1558	for (i = 0; i < max_shadow_read_write_fields; i++) {
1559		field = shadow_read_write_fields[i];
1560		val = __vmcs_readl(field.encoding);
1561		vmcs12_write_any(vmcs12, field.encoding, field.offset, val);
1562	}
1563
1564	vmcs_clear(shadow_vmcs);
1565	vmcs_load(vmx->loaded_vmcs->vmcs);
1566
1567	preempt_enable();
1568}
1569
1570static void copy_vmcs12_to_shadow(struct vcpu_vmx *vmx)
1571{
1572	const struct shadow_vmcs_field *fields[] = {
1573		shadow_read_write_fields,
1574		shadow_read_only_fields
1575	};
1576	const int max_fields[] = {
1577		max_shadow_read_write_fields,
1578		max_shadow_read_only_fields
1579	};
1580	struct vmcs *shadow_vmcs = vmx->vmcs01.shadow_vmcs;
1581	struct vmcs12 *vmcs12 = get_vmcs12(&vmx->vcpu);
1582	struct shadow_vmcs_field field;
1583	unsigned long val;
1584	int i, q;
1585
1586	if (WARN_ON(!shadow_vmcs))
1587		return;
1588
1589	vmcs_load(shadow_vmcs);
1590
1591	for (q = 0; q < ARRAY_SIZE(fields); q++) {
1592		for (i = 0; i < max_fields[q]; i++) {
1593			field = fields[q][i];
1594			val = vmcs12_read_any(vmcs12, field.encoding,
1595					      field.offset);
1596			__vmcs_writel(field.encoding, val);
1597		}
1598	}
1599
1600	vmcs_clear(shadow_vmcs);
1601	vmcs_load(vmx->loaded_vmcs->vmcs);
1602}
1603
1604static void copy_enlightened_to_vmcs12(struct vcpu_vmx *vmx, u32 hv_clean_fields)
1605{
1606#ifdef CONFIG_KVM_HYPERV
1607	struct vmcs12 *vmcs12 = vmx->nested.cached_vmcs12;
1608	struct hv_enlightened_vmcs *evmcs = nested_vmx_evmcs(vmx);
1609	struct kvm_vcpu_hv *hv_vcpu = to_hv_vcpu(&vmx->vcpu);
1610
1611	/* HV_VMX_ENLIGHTENED_CLEAN_FIELD_NONE */
1612	vmcs12->tpr_threshold = evmcs->tpr_threshold;
1613	vmcs12->guest_rip = evmcs->guest_rip;
1614
1615	if (unlikely(!(hv_clean_fields &
1616		       HV_VMX_ENLIGHTENED_CLEAN_FIELD_ENLIGHTENMENTSCONTROL))) {
1617		hv_vcpu->nested.pa_page_gpa = evmcs->partition_assist_page;
1618		hv_vcpu->nested.vm_id = evmcs->hv_vm_id;
1619		hv_vcpu->nested.vp_id = evmcs->hv_vp_id;
1620	}
1621
1622	if (unlikely(!(hv_clean_fields &
1623		       HV_VMX_ENLIGHTENED_CLEAN_FIELD_GUEST_BASIC))) {
1624		vmcs12->guest_rsp = evmcs->guest_rsp;
1625		vmcs12->guest_rflags = evmcs->guest_rflags;
1626		vmcs12->guest_interruptibility_info =
1627			evmcs->guest_interruptibility_info;
1628		/*
1629		 * Not present in struct vmcs12:
1630		 * vmcs12->guest_ssp = evmcs->guest_ssp;
1631		 */
1632	}
1633
1634	if (unlikely(!(hv_clean_fields &
1635		       HV_VMX_ENLIGHTENED_CLEAN_FIELD_CONTROL_PROC))) {
1636		vmcs12->cpu_based_vm_exec_control =
1637			evmcs->cpu_based_vm_exec_control;
1638	}
1639
1640	if (unlikely(!(hv_clean_fields &
1641		       HV_VMX_ENLIGHTENED_CLEAN_FIELD_CONTROL_EXCPN))) {
1642		vmcs12->exception_bitmap = evmcs->exception_bitmap;
1643	}
1644
1645	if (unlikely(!(hv_clean_fields &
1646		       HV_VMX_ENLIGHTENED_CLEAN_FIELD_CONTROL_ENTRY))) {
1647		vmcs12->vm_entry_controls = evmcs->vm_entry_controls;
1648	}
1649
1650	if (unlikely(!(hv_clean_fields &
1651		       HV_VMX_ENLIGHTENED_CLEAN_FIELD_CONTROL_EVENT))) {
1652		vmcs12->vm_entry_intr_info_field =
1653			evmcs->vm_entry_intr_info_field;
1654		vmcs12->vm_entry_exception_error_code =
1655			evmcs->vm_entry_exception_error_code;
1656		vmcs12->vm_entry_instruction_len =
1657			evmcs->vm_entry_instruction_len;
1658	}
1659
1660	if (unlikely(!(hv_clean_fields &
1661		       HV_VMX_ENLIGHTENED_CLEAN_FIELD_HOST_GRP1))) {
1662		vmcs12->host_ia32_pat = evmcs->host_ia32_pat;
1663		vmcs12->host_ia32_efer = evmcs->host_ia32_efer;
1664		vmcs12->host_cr0 = evmcs->host_cr0;
1665		vmcs12->host_cr3 = evmcs->host_cr3;
1666		vmcs12->host_cr4 = evmcs->host_cr4;
1667		vmcs12->host_ia32_sysenter_esp = evmcs->host_ia32_sysenter_esp;
1668		vmcs12->host_ia32_sysenter_eip = evmcs->host_ia32_sysenter_eip;
1669		vmcs12->host_rip = evmcs->host_rip;
1670		vmcs12->host_ia32_sysenter_cs = evmcs->host_ia32_sysenter_cs;
1671		vmcs12->host_es_selector = evmcs->host_es_selector;
1672		vmcs12->host_cs_selector = evmcs->host_cs_selector;
1673		vmcs12->host_ss_selector = evmcs->host_ss_selector;
1674		vmcs12->host_ds_selector = evmcs->host_ds_selector;
1675		vmcs12->host_fs_selector = evmcs->host_fs_selector;
1676		vmcs12->host_gs_selector = evmcs->host_gs_selector;
1677		vmcs12->host_tr_selector = evmcs->host_tr_selector;
1678		vmcs12->host_ia32_perf_global_ctrl = evmcs->host_ia32_perf_global_ctrl;
1679		/*
1680		 * Not present in struct vmcs12:
1681		 * vmcs12->host_ia32_s_cet = evmcs->host_ia32_s_cet;
1682		 * vmcs12->host_ssp = evmcs->host_ssp;
1683		 * vmcs12->host_ia32_int_ssp_table_addr = evmcs->host_ia32_int_ssp_table_addr;
1684		 */
1685	}
1686
1687	if (unlikely(!(hv_clean_fields &
1688		       HV_VMX_ENLIGHTENED_CLEAN_FIELD_CONTROL_GRP1))) {
1689		vmcs12->pin_based_vm_exec_control =
1690			evmcs->pin_based_vm_exec_control;
1691		vmcs12->vm_exit_controls = evmcs->vm_exit_controls;
1692		vmcs12->secondary_vm_exec_control =
1693			evmcs->secondary_vm_exec_control;
1694	}
1695
1696	if (unlikely(!(hv_clean_fields &
1697		       HV_VMX_ENLIGHTENED_CLEAN_FIELD_IO_BITMAP))) {
1698		vmcs12->io_bitmap_a = evmcs->io_bitmap_a;
1699		vmcs12->io_bitmap_b = evmcs->io_bitmap_b;
1700	}
1701
1702	if (unlikely(!(hv_clean_fields &
1703		       HV_VMX_ENLIGHTENED_CLEAN_FIELD_MSR_BITMAP))) {
1704		vmcs12->msr_bitmap = evmcs->msr_bitmap;
1705	}
1706
1707	if (unlikely(!(hv_clean_fields &
1708		       HV_VMX_ENLIGHTENED_CLEAN_FIELD_GUEST_GRP2))) {
1709		vmcs12->guest_es_base = evmcs->guest_es_base;
1710		vmcs12->guest_cs_base = evmcs->guest_cs_base;
1711		vmcs12->guest_ss_base = evmcs->guest_ss_base;
1712		vmcs12->guest_ds_base = evmcs->guest_ds_base;
1713		vmcs12->guest_fs_base = evmcs->guest_fs_base;
1714		vmcs12->guest_gs_base = evmcs->guest_gs_base;
1715		vmcs12->guest_ldtr_base = evmcs->guest_ldtr_base;
1716		vmcs12->guest_tr_base = evmcs->guest_tr_base;
1717		vmcs12->guest_gdtr_base = evmcs->guest_gdtr_base;
1718		vmcs12->guest_idtr_base = evmcs->guest_idtr_base;
1719		vmcs12->guest_es_limit = evmcs->guest_es_limit;
1720		vmcs12->guest_cs_limit = evmcs->guest_cs_limit;
1721		vmcs12->guest_ss_limit = evmcs->guest_ss_limit;
1722		vmcs12->guest_ds_limit = evmcs->guest_ds_limit;
1723		vmcs12->guest_fs_limit = evmcs->guest_fs_limit;
1724		vmcs12->guest_gs_limit = evmcs->guest_gs_limit;
1725		vmcs12->guest_ldtr_limit = evmcs->guest_ldtr_limit;
1726		vmcs12->guest_tr_limit = evmcs->guest_tr_limit;
1727		vmcs12->guest_gdtr_limit = evmcs->guest_gdtr_limit;
1728		vmcs12->guest_idtr_limit = evmcs->guest_idtr_limit;
1729		vmcs12->guest_es_ar_bytes = evmcs->guest_es_ar_bytes;
1730		vmcs12->guest_cs_ar_bytes = evmcs->guest_cs_ar_bytes;
1731		vmcs12->guest_ss_ar_bytes = evmcs->guest_ss_ar_bytes;
1732		vmcs12->guest_ds_ar_bytes = evmcs->guest_ds_ar_bytes;
1733		vmcs12->guest_fs_ar_bytes = evmcs->guest_fs_ar_bytes;
1734		vmcs12->guest_gs_ar_bytes = evmcs->guest_gs_ar_bytes;
1735		vmcs12->guest_ldtr_ar_bytes = evmcs->guest_ldtr_ar_bytes;
1736		vmcs12->guest_tr_ar_bytes = evmcs->guest_tr_ar_bytes;
1737		vmcs12->guest_es_selector = evmcs->guest_es_selector;
1738		vmcs12->guest_cs_selector = evmcs->guest_cs_selector;
1739		vmcs12->guest_ss_selector = evmcs->guest_ss_selector;
1740		vmcs12->guest_ds_selector = evmcs->guest_ds_selector;
1741		vmcs12->guest_fs_selector = evmcs->guest_fs_selector;
1742		vmcs12->guest_gs_selector = evmcs->guest_gs_selector;
1743		vmcs12->guest_ldtr_selector = evmcs->guest_ldtr_selector;
1744		vmcs12->guest_tr_selector = evmcs->guest_tr_selector;
1745	}
1746
1747	if (unlikely(!(hv_clean_fields &
1748		       HV_VMX_ENLIGHTENED_CLEAN_FIELD_CONTROL_GRP2))) {
1749		vmcs12->tsc_offset = evmcs->tsc_offset;
1750		vmcs12->virtual_apic_page_addr = evmcs->virtual_apic_page_addr;
1751		vmcs12->xss_exit_bitmap = evmcs->xss_exit_bitmap;
1752		vmcs12->encls_exiting_bitmap = evmcs->encls_exiting_bitmap;
1753		vmcs12->tsc_multiplier = evmcs->tsc_multiplier;
1754	}
1755
1756	if (unlikely(!(hv_clean_fields &
1757		       HV_VMX_ENLIGHTENED_CLEAN_FIELD_CRDR))) {
1758		vmcs12->cr0_guest_host_mask = evmcs->cr0_guest_host_mask;
1759		vmcs12->cr4_guest_host_mask = evmcs->cr4_guest_host_mask;
1760		vmcs12->cr0_read_shadow = evmcs->cr0_read_shadow;
1761		vmcs12->cr4_read_shadow = evmcs->cr4_read_shadow;
1762		vmcs12->guest_cr0 = evmcs->guest_cr0;
1763		vmcs12->guest_cr3 = evmcs->guest_cr3;
1764		vmcs12->guest_cr4 = evmcs->guest_cr4;
1765		vmcs12->guest_dr7 = evmcs->guest_dr7;
1766	}
1767
1768	if (unlikely(!(hv_clean_fields &
1769		       HV_VMX_ENLIGHTENED_CLEAN_FIELD_HOST_POINTER))) {
1770		vmcs12->host_fs_base = evmcs->host_fs_base;
1771		vmcs12->host_gs_base = evmcs->host_gs_base;
1772		vmcs12->host_tr_base = evmcs->host_tr_base;
1773		vmcs12->host_gdtr_base = evmcs->host_gdtr_base;
1774		vmcs12->host_idtr_base = evmcs->host_idtr_base;
1775		vmcs12->host_rsp = evmcs->host_rsp;
1776	}
1777
1778	if (unlikely(!(hv_clean_fields &
1779		       HV_VMX_ENLIGHTENED_CLEAN_FIELD_CONTROL_XLAT))) {
1780		vmcs12->ept_pointer = evmcs->ept_pointer;
1781		vmcs12->virtual_processor_id = evmcs->virtual_processor_id;
1782	}
1783
1784	if (unlikely(!(hv_clean_fields &
1785		       HV_VMX_ENLIGHTENED_CLEAN_FIELD_GUEST_GRP1))) {
1786		vmcs12->vmcs_link_pointer = evmcs->vmcs_link_pointer;
1787		vmcs12->guest_ia32_debugctl = evmcs->guest_ia32_debugctl;
1788		vmcs12->guest_ia32_pat = evmcs->guest_ia32_pat;
1789		vmcs12->guest_ia32_efer = evmcs->guest_ia32_efer;
1790		vmcs12->guest_pdptr0 = evmcs->guest_pdptr0;
1791		vmcs12->guest_pdptr1 = evmcs->guest_pdptr1;
1792		vmcs12->guest_pdptr2 = evmcs->guest_pdptr2;
1793		vmcs12->guest_pdptr3 = evmcs->guest_pdptr3;
1794		vmcs12->guest_pending_dbg_exceptions =
1795			evmcs->guest_pending_dbg_exceptions;
1796		vmcs12->guest_sysenter_esp = evmcs->guest_sysenter_esp;
1797		vmcs12->guest_sysenter_eip = evmcs->guest_sysenter_eip;
1798		vmcs12->guest_bndcfgs = evmcs->guest_bndcfgs;
1799		vmcs12->guest_activity_state = evmcs->guest_activity_state;
1800		vmcs12->guest_sysenter_cs = evmcs->guest_sysenter_cs;
1801		vmcs12->guest_ia32_perf_global_ctrl = evmcs->guest_ia32_perf_global_ctrl;
1802		/*
1803		 * Not present in struct vmcs12:
1804		 * vmcs12->guest_ia32_s_cet = evmcs->guest_ia32_s_cet;
1805		 * vmcs12->guest_ia32_lbr_ctl = evmcs->guest_ia32_lbr_ctl;
1806		 * vmcs12->guest_ia32_int_ssp_table_addr = evmcs->guest_ia32_int_ssp_table_addr;
1807		 */
1808	}
1809
1810	/*
1811	 * Not used?
1812	 * vmcs12->vm_exit_msr_store_addr = evmcs->vm_exit_msr_store_addr;
1813	 * vmcs12->vm_exit_msr_load_addr = evmcs->vm_exit_msr_load_addr;
1814	 * vmcs12->vm_entry_msr_load_addr = evmcs->vm_entry_msr_load_addr;
1815	 * vmcs12->page_fault_error_code_mask =
1816	 *		evmcs->page_fault_error_code_mask;
1817	 * vmcs12->page_fault_error_code_match =
1818	 *		evmcs->page_fault_error_code_match;
1819	 * vmcs12->cr3_target_count = evmcs->cr3_target_count;
1820	 * vmcs12->vm_exit_msr_store_count = evmcs->vm_exit_msr_store_count;
1821	 * vmcs12->vm_exit_msr_load_count = evmcs->vm_exit_msr_load_count;
1822	 * vmcs12->vm_entry_msr_load_count = evmcs->vm_entry_msr_load_count;
1823	 */
1824
1825	/*
1826	 * Read only fields:
1827	 * vmcs12->guest_physical_address = evmcs->guest_physical_address;
1828	 * vmcs12->vm_instruction_error = evmcs->vm_instruction_error;
1829	 * vmcs12->vm_exit_reason = evmcs->vm_exit_reason;
1830	 * vmcs12->vm_exit_intr_info = evmcs->vm_exit_intr_info;
1831	 * vmcs12->vm_exit_intr_error_code = evmcs->vm_exit_intr_error_code;
1832	 * vmcs12->idt_vectoring_info_field = evmcs->idt_vectoring_info_field;
1833	 * vmcs12->idt_vectoring_error_code = evmcs->idt_vectoring_error_code;
1834	 * vmcs12->vm_exit_instruction_len = evmcs->vm_exit_instruction_len;
1835	 * vmcs12->vmx_instruction_info = evmcs->vmx_instruction_info;
1836	 * vmcs12->exit_qualification = evmcs->exit_qualification;
1837	 * vmcs12->guest_linear_address = evmcs->guest_linear_address;
1838	 *
1839	 * Not present in struct vmcs12:
1840	 * vmcs12->exit_io_instruction_ecx = evmcs->exit_io_instruction_ecx;
1841	 * vmcs12->exit_io_instruction_esi = evmcs->exit_io_instruction_esi;
1842	 * vmcs12->exit_io_instruction_edi = evmcs->exit_io_instruction_edi;
1843	 * vmcs12->exit_io_instruction_eip = evmcs->exit_io_instruction_eip;
1844	 */
1845
1846	return;
1847#else /* CONFIG_KVM_HYPERV */
1848	KVM_BUG_ON(1, vmx->vcpu.kvm);
1849#endif /* CONFIG_KVM_HYPERV */
1850}
1851
1852static void copy_vmcs12_to_enlightened(struct vcpu_vmx *vmx)
1853{
1854#ifdef CONFIG_KVM_HYPERV
1855	struct vmcs12 *vmcs12 = vmx->nested.cached_vmcs12;
1856	struct hv_enlightened_vmcs *evmcs = nested_vmx_evmcs(vmx);
1857
1858	/*
1859	 * Should not be changed by KVM:
1860	 *
1861	 * evmcs->host_es_selector = vmcs12->host_es_selector;
1862	 * evmcs->host_cs_selector = vmcs12->host_cs_selector;
1863	 * evmcs->host_ss_selector = vmcs12->host_ss_selector;
1864	 * evmcs->host_ds_selector = vmcs12->host_ds_selector;
1865	 * evmcs->host_fs_selector = vmcs12->host_fs_selector;
1866	 * evmcs->host_gs_selector = vmcs12->host_gs_selector;
1867	 * evmcs->host_tr_selector = vmcs12->host_tr_selector;
1868	 * evmcs->host_ia32_pat = vmcs12->host_ia32_pat;
1869	 * evmcs->host_ia32_efer = vmcs12->host_ia32_efer;
1870	 * evmcs->host_cr0 = vmcs12->host_cr0;
1871	 * evmcs->host_cr3 = vmcs12->host_cr3;
1872	 * evmcs->host_cr4 = vmcs12->host_cr4;
1873	 * evmcs->host_ia32_sysenter_esp = vmcs12->host_ia32_sysenter_esp;
1874	 * evmcs->host_ia32_sysenter_eip = vmcs12->host_ia32_sysenter_eip;
1875	 * evmcs->host_rip = vmcs12->host_rip;
1876	 * evmcs->host_ia32_sysenter_cs = vmcs12->host_ia32_sysenter_cs;
1877	 * evmcs->host_fs_base = vmcs12->host_fs_base;
1878	 * evmcs->host_gs_base = vmcs12->host_gs_base;
1879	 * evmcs->host_tr_base = vmcs12->host_tr_base;
1880	 * evmcs->host_gdtr_base = vmcs12->host_gdtr_base;
1881	 * evmcs->host_idtr_base = vmcs12->host_idtr_base;
1882	 * evmcs->host_rsp = vmcs12->host_rsp;
1883	 * sync_vmcs02_to_vmcs12() doesn't read these:
1884	 * evmcs->io_bitmap_a = vmcs12->io_bitmap_a;
1885	 * evmcs->io_bitmap_b = vmcs12->io_bitmap_b;
1886	 * evmcs->msr_bitmap = vmcs12->msr_bitmap;
1887	 * evmcs->ept_pointer = vmcs12->ept_pointer;
1888	 * evmcs->xss_exit_bitmap = vmcs12->xss_exit_bitmap;
1889	 * evmcs->vm_exit_msr_store_addr = vmcs12->vm_exit_msr_store_addr;
1890	 * evmcs->vm_exit_msr_load_addr = vmcs12->vm_exit_msr_load_addr;
1891	 * evmcs->vm_entry_msr_load_addr = vmcs12->vm_entry_msr_load_addr;
1892	 * evmcs->tpr_threshold = vmcs12->tpr_threshold;
1893	 * evmcs->virtual_processor_id = vmcs12->virtual_processor_id;
1894	 * evmcs->exception_bitmap = vmcs12->exception_bitmap;
1895	 * evmcs->vmcs_link_pointer = vmcs12->vmcs_link_pointer;
1896	 * evmcs->pin_based_vm_exec_control = vmcs12->pin_based_vm_exec_control;
1897	 * evmcs->vm_exit_controls = vmcs12->vm_exit_controls;
1898	 * evmcs->secondary_vm_exec_control = vmcs12->secondary_vm_exec_control;
1899	 * evmcs->page_fault_error_code_mask =
1900	 *		vmcs12->page_fault_error_code_mask;
1901	 * evmcs->page_fault_error_code_match =
1902	 *		vmcs12->page_fault_error_code_match;
1903	 * evmcs->cr3_target_count = vmcs12->cr3_target_count;
1904	 * evmcs->virtual_apic_page_addr = vmcs12->virtual_apic_page_addr;
1905	 * evmcs->tsc_offset = vmcs12->tsc_offset;
1906	 * evmcs->guest_ia32_debugctl = vmcs12->guest_ia32_debugctl;
1907	 * evmcs->cr0_guest_host_mask = vmcs12->cr0_guest_host_mask;
1908	 * evmcs->cr4_guest_host_mask = vmcs12->cr4_guest_host_mask;
1909	 * evmcs->cr0_read_shadow = vmcs12->cr0_read_shadow;
1910	 * evmcs->cr4_read_shadow = vmcs12->cr4_read_shadow;
1911	 * evmcs->vm_exit_msr_store_count = vmcs12->vm_exit_msr_store_count;
1912	 * evmcs->vm_exit_msr_load_count = vmcs12->vm_exit_msr_load_count;
1913	 * evmcs->vm_entry_msr_load_count = vmcs12->vm_entry_msr_load_count;
1914	 * evmcs->guest_ia32_perf_global_ctrl = vmcs12->guest_ia32_perf_global_ctrl;
1915	 * evmcs->host_ia32_perf_global_ctrl = vmcs12->host_ia32_perf_global_ctrl;
1916	 * evmcs->encls_exiting_bitmap = vmcs12->encls_exiting_bitmap;
1917	 * evmcs->tsc_multiplier = vmcs12->tsc_multiplier;
1918	 *
1919	 * Not present in struct vmcs12:
1920	 * evmcs->exit_io_instruction_ecx = vmcs12->exit_io_instruction_ecx;
1921	 * evmcs->exit_io_instruction_esi = vmcs12->exit_io_instruction_esi;
1922	 * evmcs->exit_io_instruction_edi = vmcs12->exit_io_instruction_edi;
1923	 * evmcs->exit_io_instruction_eip = vmcs12->exit_io_instruction_eip;
1924	 * evmcs->host_ia32_s_cet = vmcs12->host_ia32_s_cet;
1925	 * evmcs->host_ssp = vmcs12->host_ssp;
1926	 * evmcs->host_ia32_int_ssp_table_addr = vmcs12->host_ia32_int_ssp_table_addr;
1927	 * evmcs->guest_ia32_s_cet = vmcs12->guest_ia32_s_cet;
1928	 * evmcs->guest_ia32_lbr_ctl = vmcs12->guest_ia32_lbr_ctl;
1929	 * evmcs->guest_ia32_int_ssp_table_addr = vmcs12->guest_ia32_int_ssp_table_addr;
1930	 * evmcs->guest_ssp = vmcs12->guest_ssp;
1931	 */
1932
1933	evmcs->guest_es_selector = vmcs12->guest_es_selector;
1934	evmcs->guest_cs_selector = vmcs12->guest_cs_selector;
1935	evmcs->guest_ss_selector = vmcs12->guest_ss_selector;
1936	evmcs->guest_ds_selector = vmcs12->guest_ds_selector;
1937	evmcs->guest_fs_selector = vmcs12->guest_fs_selector;
1938	evmcs->guest_gs_selector = vmcs12->guest_gs_selector;
1939	evmcs->guest_ldtr_selector = vmcs12->guest_ldtr_selector;
1940	evmcs->guest_tr_selector = vmcs12->guest_tr_selector;
1941
1942	evmcs->guest_es_limit = vmcs12->guest_es_limit;
1943	evmcs->guest_cs_limit = vmcs12->guest_cs_limit;
1944	evmcs->guest_ss_limit = vmcs12->guest_ss_limit;
1945	evmcs->guest_ds_limit = vmcs12->guest_ds_limit;
1946	evmcs->guest_fs_limit = vmcs12->guest_fs_limit;
1947	evmcs->guest_gs_limit = vmcs12->guest_gs_limit;
1948	evmcs->guest_ldtr_limit = vmcs12->guest_ldtr_limit;
1949	evmcs->guest_tr_limit = vmcs12->guest_tr_limit;
1950	evmcs->guest_gdtr_limit = vmcs12->guest_gdtr_limit;
1951	evmcs->guest_idtr_limit = vmcs12->guest_idtr_limit;
1952
1953	evmcs->guest_es_ar_bytes = vmcs12->guest_es_ar_bytes;
1954	evmcs->guest_cs_ar_bytes = vmcs12->guest_cs_ar_bytes;
1955	evmcs->guest_ss_ar_bytes = vmcs12->guest_ss_ar_bytes;
1956	evmcs->guest_ds_ar_bytes = vmcs12->guest_ds_ar_bytes;
1957	evmcs->guest_fs_ar_bytes = vmcs12->guest_fs_ar_bytes;
1958	evmcs->guest_gs_ar_bytes = vmcs12->guest_gs_ar_bytes;
1959	evmcs->guest_ldtr_ar_bytes = vmcs12->guest_ldtr_ar_bytes;
1960	evmcs->guest_tr_ar_bytes = vmcs12->guest_tr_ar_bytes;
1961
1962	evmcs->guest_es_base = vmcs12->guest_es_base;
1963	evmcs->guest_cs_base = vmcs12->guest_cs_base;
1964	evmcs->guest_ss_base = vmcs12->guest_ss_base;
1965	evmcs->guest_ds_base = vmcs12->guest_ds_base;
1966	evmcs->guest_fs_base = vmcs12->guest_fs_base;
1967	evmcs->guest_gs_base = vmcs12->guest_gs_base;
1968	evmcs->guest_ldtr_base = vmcs12->guest_ldtr_base;
1969	evmcs->guest_tr_base = vmcs12->guest_tr_base;
1970	evmcs->guest_gdtr_base = vmcs12->guest_gdtr_base;
1971	evmcs->guest_idtr_base = vmcs12->guest_idtr_base;
1972
1973	evmcs->guest_ia32_pat = vmcs12->guest_ia32_pat;
1974	evmcs->guest_ia32_efer = vmcs12->guest_ia32_efer;
1975
1976	evmcs->guest_pdptr0 = vmcs12->guest_pdptr0;
1977	evmcs->guest_pdptr1 = vmcs12->guest_pdptr1;
1978	evmcs->guest_pdptr2 = vmcs12->guest_pdptr2;
1979	evmcs->guest_pdptr3 = vmcs12->guest_pdptr3;
1980
1981	evmcs->guest_pending_dbg_exceptions =
1982		vmcs12->guest_pending_dbg_exceptions;
1983	evmcs->guest_sysenter_esp = vmcs12->guest_sysenter_esp;
1984	evmcs->guest_sysenter_eip = vmcs12->guest_sysenter_eip;
1985
1986	evmcs->guest_activity_state = vmcs12->guest_activity_state;
1987	evmcs->guest_sysenter_cs = vmcs12->guest_sysenter_cs;
1988
1989	evmcs->guest_cr0 = vmcs12->guest_cr0;
1990	evmcs->guest_cr3 = vmcs12->guest_cr3;
1991	evmcs->guest_cr4 = vmcs12->guest_cr4;
1992	evmcs->guest_dr7 = vmcs12->guest_dr7;
1993
1994	evmcs->guest_physical_address = vmcs12->guest_physical_address;
1995
1996	evmcs->vm_instruction_error = vmcs12->vm_instruction_error;
1997	evmcs->vm_exit_reason = vmcs12->vm_exit_reason;
1998	evmcs->vm_exit_intr_info = vmcs12->vm_exit_intr_info;
1999	evmcs->vm_exit_intr_error_code = vmcs12->vm_exit_intr_error_code;
2000	evmcs->idt_vectoring_info_field = vmcs12->idt_vectoring_info_field;
2001	evmcs->idt_vectoring_error_code = vmcs12->idt_vectoring_error_code;
2002	evmcs->vm_exit_instruction_len = vmcs12->vm_exit_instruction_len;
2003	evmcs->vmx_instruction_info = vmcs12->vmx_instruction_info;
2004
2005	evmcs->exit_qualification = vmcs12->exit_qualification;
2006
2007	evmcs->guest_linear_address = vmcs12->guest_linear_address;
2008	evmcs->guest_rsp = vmcs12->guest_rsp;
2009	evmcs->guest_rflags = vmcs12->guest_rflags;
2010
2011	evmcs->guest_interruptibility_info =
2012		vmcs12->guest_interruptibility_info;
2013	evmcs->cpu_based_vm_exec_control = vmcs12->cpu_based_vm_exec_control;
2014	evmcs->vm_entry_controls = vmcs12->vm_entry_controls;
2015	evmcs->vm_entry_intr_info_field = vmcs12->vm_entry_intr_info_field;
2016	evmcs->vm_entry_exception_error_code =
2017		vmcs12->vm_entry_exception_error_code;
2018	evmcs->vm_entry_instruction_len = vmcs12->vm_entry_instruction_len;
2019
2020	evmcs->guest_rip = vmcs12->guest_rip;
2021
2022	evmcs->guest_bndcfgs = vmcs12->guest_bndcfgs;
2023
2024	return;
2025#else /* CONFIG_KVM_HYPERV */
2026	KVM_BUG_ON(1, vmx->vcpu.kvm);
2027#endif /* CONFIG_KVM_HYPERV */
2028}
2029
2030/*
2031 * This is an equivalent of the nested hypervisor executing the vmptrld
2032 * instruction.
2033 */
2034static enum nested_evmptrld_status nested_vmx_handle_enlightened_vmptrld(
2035	struct kvm_vcpu *vcpu, bool from_launch)
2036{
2037#ifdef CONFIG_KVM_HYPERV
2038	struct vcpu_vmx *vmx = to_vmx(vcpu);
2039	bool evmcs_gpa_changed = false;
2040	u64 evmcs_gpa;
2041
2042	if (likely(!guest_cpuid_has_evmcs(vcpu)))
2043		return EVMPTRLD_DISABLED;
2044
2045	evmcs_gpa = nested_get_evmptr(vcpu);
2046	if (!evmptr_is_valid(evmcs_gpa)) {
2047		nested_release_evmcs(vcpu);
2048		return EVMPTRLD_DISABLED;
2049	}
2050
2051	if (unlikely(evmcs_gpa != vmx->nested.hv_evmcs_vmptr)) {
2052		vmx->nested.current_vmptr = INVALID_GPA;
2053
2054		nested_release_evmcs(vcpu);
2055
2056		if (kvm_vcpu_map(vcpu, gpa_to_gfn(evmcs_gpa),
2057				 &vmx->nested.hv_evmcs_map))
2058			return EVMPTRLD_ERROR;
2059
2060		vmx->nested.hv_evmcs = vmx->nested.hv_evmcs_map.hva;
2061
2062		/*
2063		 * Currently, KVM only supports eVMCS version 1
2064		 * (== KVM_EVMCS_VERSION) and thus we expect guest to set this
2065		 * value to first u32 field of eVMCS which should specify eVMCS
2066		 * VersionNumber.
2067		 *
2068		 * Guest should be aware of supported eVMCS versions by host by
2069		 * examining CPUID.0x4000000A.EAX[0:15]. Host userspace VMM is
2070		 * expected to set this CPUID leaf according to the value
2071		 * returned in vmcs_version from nested_enable_evmcs().
2072		 *
2073		 * However, it turns out that Microsoft Hyper-V fails to comply
2074		 * to their own invented interface: When Hyper-V use eVMCS, it
2075		 * just sets first u32 field of eVMCS to revision_id specified
2076		 * in MSR_IA32_VMX_BASIC. Instead of used eVMCS version number
2077		 * which is one of the supported versions specified in
2078		 * CPUID.0x4000000A.EAX[0:15].
2079		 *
2080		 * To overcome Hyper-V bug, we accept here either a supported
2081		 * eVMCS version or VMCS12 revision_id as valid values for first
2082		 * u32 field of eVMCS.
2083		 */
2084		if ((vmx->nested.hv_evmcs->revision_id != KVM_EVMCS_VERSION) &&
2085		    (vmx->nested.hv_evmcs->revision_id != VMCS12_REVISION)) {
2086			nested_release_evmcs(vcpu);
2087			return EVMPTRLD_VMFAIL;
2088		}
2089
2090		vmx->nested.hv_evmcs_vmptr = evmcs_gpa;
2091
2092		evmcs_gpa_changed = true;
2093		/*
2094		 * Unlike normal vmcs12, enlightened vmcs12 is not fully
2095		 * reloaded from guest's memory (read only fields, fields not
2096		 * present in struct hv_enlightened_vmcs, ...). Make sure there
2097		 * are no leftovers.
2098		 */
2099		if (from_launch) {
2100			struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
2101			memset(vmcs12, 0, sizeof(*vmcs12));
2102			vmcs12->hdr.revision_id = VMCS12_REVISION;
2103		}
2104
2105	}
2106
2107	/*
2108	 * Clean fields data can't be used on VMLAUNCH and when we switch
2109	 * between different L2 guests as KVM keeps a single VMCS12 per L1.
2110	 */
2111	if (from_launch || evmcs_gpa_changed) {
2112		vmx->nested.hv_evmcs->hv_clean_fields &=
2113			~HV_VMX_ENLIGHTENED_CLEAN_FIELD_ALL;
2114
2115		vmx->nested.force_msr_bitmap_recalc = true;
2116	}
2117
2118	return EVMPTRLD_SUCCEEDED;
2119#else
2120	return EVMPTRLD_DISABLED;
2121#endif
2122}
2123
2124void nested_sync_vmcs12_to_shadow(struct kvm_vcpu *vcpu)
2125{
2126	struct vcpu_vmx *vmx = to_vmx(vcpu);
2127
2128	if (nested_vmx_is_evmptr12_valid(vmx))
2129		copy_vmcs12_to_enlightened(vmx);
2130	else
2131		copy_vmcs12_to_shadow(vmx);
2132
2133	vmx->nested.need_vmcs12_to_shadow_sync = false;
2134}
2135
2136static enum hrtimer_restart vmx_preemption_timer_fn(struct hrtimer *timer)
2137{
2138	struct vcpu_vmx *vmx =
2139		container_of(timer, struct vcpu_vmx, nested.preemption_timer);
2140
2141	vmx->nested.preemption_timer_expired = true;
2142	kvm_make_request(KVM_REQ_EVENT, &vmx->vcpu);
2143	kvm_vcpu_kick(&vmx->vcpu);
2144
2145	return HRTIMER_NORESTART;
2146}
2147
2148static u64 vmx_calc_preemption_timer_value(struct kvm_vcpu *vcpu)
2149{
2150	struct vcpu_vmx *vmx = to_vmx(vcpu);
2151	struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
2152
2153	u64 l1_scaled_tsc = kvm_read_l1_tsc(vcpu, rdtsc()) >>
2154			    VMX_MISC_EMULATED_PREEMPTION_TIMER_RATE;
2155
2156	if (!vmx->nested.has_preemption_timer_deadline) {
2157		vmx->nested.preemption_timer_deadline =
2158			vmcs12->vmx_preemption_timer_value + l1_scaled_tsc;
2159		vmx->nested.has_preemption_timer_deadline = true;
2160	}
2161	return vmx->nested.preemption_timer_deadline - l1_scaled_tsc;
2162}
2163
2164static void vmx_start_preemption_timer(struct kvm_vcpu *vcpu,
2165					u64 preemption_timeout)
2166{
2167	struct vcpu_vmx *vmx = to_vmx(vcpu);
2168
2169	/*
2170	 * A timer value of zero is architecturally guaranteed to cause
2171	 * a VMExit prior to executing any instructions in the guest.
2172	 */
2173	if (preemption_timeout == 0) {
2174		vmx_preemption_timer_fn(&vmx->nested.preemption_timer);
2175		return;
2176	}
2177
2178	if (vcpu->arch.virtual_tsc_khz == 0)
2179		return;
2180
2181	preemption_timeout <<= VMX_MISC_EMULATED_PREEMPTION_TIMER_RATE;
2182	preemption_timeout *= 1000000;
2183	do_div(preemption_timeout, vcpu->arch.virtual_tsc_khz);
2184	hrtimer_start(&vmx->nested.preemption_timer,
2185		      ktime_add_ns(ktime_get(), preemption_timeout),
2186		      HRTIMER_MODE_ABS_PINNED);
2187}
2188
2189static u64 nested_vmx_calc_efer(struct vcpu_vmx *vmx, struct vmcs12 *vmcs12)
2190{
2191	if (vmx->nested.nested_run_pending &&
2192	    (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_IA32_EFER))
2193		return vmcs12->guest_ia32_efer;
2194	else if (vmcs12->vm_entry_controls & VM_ENTRY_IA32E_MODE)
2195		return vmx->vcpu.arch.efer | (EFER_LMA | EFER_LME);
2196	else
2197		return vmx->vcpu.arch.efer & ~(EFER_LMA | EFER_LME);
2198}
2199
2200static void prepare_vmcs02_constant_state(struct vcpu_vmx *vmx)
2201{
2202	struct kvm *kvm = vmx->vcpu.kvm;
2203
2204	/*
2205	 * If vmcs02 hasn't been initialized, set the constant vmcs02 state
2206	 * according to L0's settings (vmcs12 is irrelevant here).  Host
2207	 * fields that come from L0 and are not constant, e.g. HOST_CR3,
2208	 * will be set as needed prior to VMLAUNCH/VMRESUME.
2209	 */
2210	if (vmx->nested.vmcs02_initialized)
2211		return;
2212	vmx->nested.vmcs02_initialized = true;
2213
2214	/*
2215	 * We don't care what the EPTP value is we just need to guarantee
2216	 * it's valid so we don't get a false positive when doing early
2217	 * consistency checks.
2218	 */
2219	if (enable_ept && nested_early_check)
2220		vmcs_write64(EPT_POINTER,
2221			     construct_eptp(&vmx->vcpu, 0, PT64_ROOT_4LEVEL));
2222
2223	/* All VMFUNCs are currently emulated through L0 vmexits.  */
2224	if (cpu_has_vmx_vmfunc())
2225		vmcs_write64(VM_FUNCTION_CONTROL, 0);
2226
2227	if (cpu_has_vmx_posted_intr())
2228		vmcs_write16(POSTED_INTR_NV, POSTED_INTR_NESTED_VECTOR);
2229
2230	if (cpu_has_vmx_msr_bitmap())
2231		vmcs_write64(MSR_BITMAP, __pa(vmx->nested.vmcs02.msr_bitmap));
2232
2233	/*
2234	 * PML is emulated for L2, but never enabled in hardware as the MMU
2235	 * handles A/D emulation.  Disabling PML for L2 also avoids having to
2236	 * deal with filtering out L2 GPAs from the buffer.
2237	 */
2238	if (enable_pml) {
2239		vmcs_write64(PML_ADDRESS, 0);
2240		vmcs_write16(GUEST_PML_INDEX, -1);
2241	}
2242
2243	if (cpu_has_vmx_encls_vmexit())
2244		vmcs_write64(ENCLS_EXITING_BITMAP, INVALID_GPA);
2245
2246	if (kvm_notify_vmexit_enabled(kvm))
2247		vmcs_write32(NOTIFY_WINDOW, kvm->arch.notify_window);
2248
2249	/*
2250	 * Set the MSR load/store lists to match L0's settings.  Only the
2251	 * addresses are constant (for vmcs02), the counts can change based
2252	 * on L2's behavior, e.g. switching to/from long mode.
2253	 */
2254	vmcs_write64(VM_EXIT_MSR_STORE_ADDR, __pa(vmx->msr_autostore.guest.val));
2255	vmcs_write64(VM_EXIT_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.host.val));
2256	vmcs_write64(VM_ENTRY_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.guest.val));
2257
2258	vmx_set_constant_host_state(vmx);
2259}
2260
2261static void prepare_vmcs02_early_rare(struct vcpu_vmx *vmx,
2262				      struct vmcs12 *vmcs12)
2263{
2264	prepare_vmcs02_constant_state(vmx);
2265
2266	vmcs_write64(VMCS_LINK_POINTER, INVALID_GPA);
2267
2268	if (enable_vpid) {
2269		if (nested_cpu_has_vpid(vmcs12) && vmx->nested.vpid02)
2270			vmcs_write16(VIRTUAL_PROCESSOR_ID, vmx->nested.vpid02);
2271		else
2272			vmcs_write16(VIRTUAL_PROCESSOR_ID, vmx->vpid);
2273	}
2274}
2275
2276static void prepare_vmcs02_early(struct vcpu_vmx *vmx, struct loaded_vmcs *vmcs01,
2277				 struct vmcs12 *vmcs12)
2278{
2279	u32 exec_control;
2280	u64 guest_efer = nested_vmx_calc_efer(vmx, vmcs12);
2281
2282	if (vmx->nested.dirty_vmcs12 || nested_vmx_is_evmptr12_valid(vmx))
2283		prepare_vmcs02_early_rare(vmx, vmcs12);
2284
2285	/*
2286	 * PIN CONTROLS
2287	 */
2288	exec_control = __pin_controls_get(vmcs01);
2289	exec_control |= (vmcs12->pin_based_vm_exec_control &
2290			 ~PIN_BASED_VMX_PREEMPTION_TIMER);
2291
2292	/* Posted interrupts setting is only taken from vmcs12.  */
2293	vmx->nested.pi_pending = false;
2294	if (nested_cpu_has_posted_intr(vmcs12))
2295		vmx->nested.posted_intr_nv = vmcs12->posted_intr_nv;
2296	else
2297		exec_control &= ~PIN_BASED_POSTED_INTR;
2298	pin_controls_set(vmx, exec_control);
2299
2300	/*
2301	 * EXEC CONTROLS
2302	 */
2303	exec_control = __exec_controls_get(vmcs01); /* L0's desires */
2304	exec_control &= ~CPU_BASED_INTR_WINDOW_EXITING;
2305	exec_control &= ~CPU_BASED_NMI_WINDOW_EXITING;
2306	exec_control &= ~CPU_BASED_TPR_SHADOW;
2307	exec_control |= vmcs12->cpu_based_vm_exec_control;
2308
2309	vmx->nested.l1_tpr_threshold = -1;
2310	if (exec_control & CPU_BASED_TPR_SHADOW)
2311		vmcs_write32(TPR_THRESHOLD, vmcs12->tpr_threshold);
2312#ifdef CONFIG_X86_64
2313	else
2314		exec_control |= CPU_BASED_CR8_LOAD_EXITING |
2315				CPU_BASED_CR8_STORE_EXITING;
2316#endif
2317
2318	/*
2319	 * A vmexit (to either L1 hypervisor or L0 userspace) is always needed
2320	 * for I/O port accesses.
2321	 */
2322	exec_control |= CPU_BASED_UNCOND_IO_EXITING;
2323	exec_control &= ~CPU_BASED_USE_IO_BITMAPS;
2324
2325	/*
2326	 * This bit will be computed in nested_get_vmcs12_pages, because
2327	 * we do not have access to L1's MSR bitmap yet.  For now, keep
2328	 * the same bit as before, hoping to avoid multiple VMWRITEs that
2329	 * only set/clear this bit.
2330	 */
2331	exec_control &= ~CPU_BASED_USE_MSR_BITMAPS;
2332	exec_control |= exec_controls_get(vmx) & CPU_BASED_USE_MSR_BITMAPS;
2333
2334	exec_controls_set(vmx, exec_control);
2335
2336	/*
2337	 * SECONDARY EXEC CONTROLS
2338	 */
2339	if (cpu_has_secondary_exec_ctrls()) {
2340		exec_control = __secondary_exec_controls_get(vmcs01);
2341
2342		/* Take the following fields only from vmcs12 */
2343		exec_control &= ~(SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES |
2344				  SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE |
2345				  SECONDARY_EXEC_ENABLE_INVPCID |
2346				  SECONDARY_EXEC_ENABLE_RDTSCP |
2347				  SECONDARY_EXEC_ENABLE_XSAVES |
2348				  SECONDARY_EXEC_ENABLE_USR_WAIT_PAUSE |
2349				  SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY |
2350				  SECONDARY_EXEC_APIC_REGISTER_VIRT |
2351				  SECONDARY_EXEC_ENABLE_VMFUNC |
2352				  SECONDARY_EXEC_DESC);
2353
2354		if (nested_cpu_has(vmcs12,
2355				   CPU_BASED_ACTIVATE_SECONDARY_CONTROLS))
2356			exec_control |= vmcs12->secondary_vm_exec_control;
2357
2358		/* PML is emulated and never enabled in hardware for L2. */
2359		exec_control &= ~SECONDARY_EXEC_ENABLE_PML;
2360
2361		/* VMCS shadowing for L2 is emulated for now */
2362		exec_control &= ~SECONDARY_EXEC_SHADOW_VMCS;
2363
2364		/*
2365		 * Preset *DT exiting when emulating UMIP, so that vmx_set_cr4()
2366		 * will not have to rewrite the controls just for this bit.
2367		 */
2368		if (vmx_umip_emulated() && (vmcs12->guest_cr4 & X86_CR4_UMIP))
2369			exec_control |= SECONDARY_EXEC_DESC;
2370
2371		if (exec_control & SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY)
2372			vmcs_write16(GUEST_INTR_STATUS,
2373				vmcs12->guest_intr_status);
2374
2375		if (!nested_cpu_has2(vmcs12, SECONDARY_EXEC_UNRESTRICTED_GUEST))
2376		    exec_control &= ~SECONDARY_EXEC_UNRESTRICTED_GUEST;
2377
2378		if (exec_control & SECONDARY_EXEC_ENCLS_EXITING)
2379			vmx_write_encls_bitmap(&vmx->vcpu, vmcs12);
2380
2381		secondary_exec_controls_set(vmx, exec_control);
2382	}
2383
2384	/*
2385	 * ENTRY CONTROLS
2386	 *
2387	 * vmcs12's VM_{ENTRY,EXIT}_LOAD_IA32_EFER and VM_ENTRY_IA32E_MODE
2388	 * are emulated by vmx_set_efer() in prepare_vmcs02(), but speculate
2389	 * on the related bits (if supported by the CPU) in the hope that
2390	 * we can avoid VMWrites during vmx_set_efer().
2391	 *
2392	 * Similarly, take vmcs01's PERF_GLOBAL_CTRL in the hope that if KVM is
2393	 * loading PERF_GLOBAL_CTRL via the VMCS for L1, then KVM will want to
2394	 * do the same for L2.
2395	 */
2396	exec_control = __vm_entry_controls_get(vmcs01);
2397	exec_control |= (vmcs12->vm_entry_controls &
2398			 ~VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL);
2399	exec_control &= ~(VM_ENTRY_IA32E_MODE | VM_ENTRY_LOAD_IA32_EFER);
2400	if (cpu_has_load_ia32_efer()) {
2401		if (guest_efer & EFER_LMA)
2402			exec_control |= VM_ENTRY_IA32E_MODE;
2403		if (guest_efer != host_efer)
2404			exec_control |= VM_ENTRY_LOAD_IA32_EFER;
2405	}
2406	vm_entry_controls_set(vmx, exec_control);
2407
2408	/*
2409	 * EXIT CONTROLS
2410	 *
2411	 * L2->L1 exit controls are emulated - the hardware exit is to L0 so
2412	 * we should use its exit controls. Note that VM_EXIT_LOAD_IA32_EFER
2413	 * bits may be modified by vmx_set_efer() in prepare_vmcs02().
2414	 */
2415	exec_control = __vm_exit_controls_get(vmcs01);
2416	if (cpu_has_load_ia32_efer() && guest_efer != host_efer)
2417		exec_control |= VM_EXIT_LOAD_IA32_EFER;
2418	else
2419		exec_control &= ~VM_EXIT_LOAD_IA32_EFER;
2420	vm_exit_controls_set(vmx, exec_control);
2421
2422	/*
2423	 * Interrupt/Exception Fields
2424	 */
2425	if (vmx->nested.nested_run_pending) {
2426		vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
2427			     vmcs12->vm_entry_intr_info_field);
2428		vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE,
2429			     vmcs12->vm_entry_exception_error_code);
2430		vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
2431			     vmcs12->vm_entry_instruction_len);
2432		vmcs_write32(GUEST_INTERRUPTIBILITY_INFO,
2433			     vmcs12->guest_interruptibility_info);
2434		vmx->loaded_vmcs->nmi_known_unmasked =
2435			!(vmcs12->guest_interruptibility_info & GUEST_INTR_STATE_NMI);
2436	} else {
2437		vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0);
2438	}
2439}
2440
2441static void prepare_vmcs02_rare(struct vcpu_vmx *vmx, struct vmcs12 *vmcs12)
2442{
2443	struct hv_enlightened_vmcs *hv_evmcs = nested_vmx_evmcs(vmx);
2444
2445	if (!hv_evmcs || !(hv_evmcs->hv_clean_fields &
2446			   HV_VMX_ENLIGHTENED_CLEAN_FIELD_GUEST_GRP2)) {
2447		vmcs_write16(GUEST_ES_SELECTOR, vmcs12->guest_es_selector);
2448		vmcs_write16(GUEST_CS_SELECTOR, vmcs12->guest_cs_selector);
2449		vmcs_write16(GUEST_SS_SELECTOR, vmcs12->guest_ss_selector);
2450		vmcs_write16(GUEST_DS_SELECTOR, vmcs12->guest_ds_selector);
2451		vmcs_write16(GUEST_FS_SELECTOR, vmcs12->guest_fs_selector);
2452		vmcs_write16(GUEST_GS_SELECTOR, vmcs12->guest_gs_selector);
2453		vmcs_write16(GUEST_LDTR_SELECTOR, vmcs12->guest_ldtr_selector);
2454		vmcs_write16(GUEST_TR_SELECTOR, vmcs12->guest_tr_selector);
2455		vmcs_write32(GUEST_ES_LIMIT, vmcs12->guest_es_limit);
2456		vmcs_write32(GUEST_CS_LIMIT, vmcs12->guest_cs_limit);
2457		vmcs_write32(GUEST_SS_LIMIT, vmcs12->guest_ss_limit);
2458		vmcs_write32(GUEST_DS_LIMIT, vmcs12->guest_ds_limit);
2459		vmcs_write32(GUEST_FS_LIMIT, vmcs12->guest_fs_limit);
2460		vmcs_write32(GUEST_GS_LIMIT, vmcs12->guest_gs_limit);
2461		vmcs_write32(GUEST_LDTR_LIMIT, vmcs12->guest_ldtr_limit);
2462		vmcs_write32(GUEST_TR_LIMIT, vmcs12->guest_tr_limit);
2463		vmcs_write32(GUEST_GDTR_LIMIT, vmcs12->guest_gdtr_limit);
2464		vmcs_write32(GUEST_IDTR_LIMIT, vmcs12->guest_idtr_limit);
2465		vmcs_write32(GUEST_CS_AR_BYTES, vmcs12->guest_cs_ar_bytes);
2466		vmcs_write32(GUEST_SS_AR_BYTES, vmcs12->guest_ss_ar_bytes);
2467		vmcs_write32(GUEST_ES_AR_BYTES, vmcs12->guest_es_ar_bytes);
2468		vmcs_write32(GUEST_DS_AR_BYTES, vmcs12->guest_ds_ar_bytes);
2469		vmcs_write32(GUEST_FS_AR_BYTES, vmcs12->guest_fs_ar_bytes);
2470		vmcs_write32(GUEST_GS_AR_BYTES, vmcs12->guest_gs_ar_bytes);
2471		vmcs_write32(GUEST_LDTR_AR_BYTES, vmcs12->guest_ldtr_ar_bytes);
2472		vmcs_write32(GUEST_TR_AR_BYTES, vmcs12->guest_tr_ar_bytes);
2473		vmcs_writel(GUEST_ES_BASE, vmcs12->guest_es_base);
2474		vmcs_writel(GUEST_CS_BASE, vmcs12->guest_cs_base);
2475		vmcs_writel(GUEST_SS_BASE, vmcs12->guest_ss_base);
2476		vmcs_writel(GUEST_DS_BASE, vmcs12->guest_ds_base);
2477		vmcs_writel(GUEST_FS_BASE, vmcs12->guest_fs_base);
2478		vmcs_writel(GUEST_GS_BASE, vmcs12->guest_gs_base);
2479		vmcs_writel(GUEST_LDTR_BASE, vmcs12->guest_ldtr_base);
2480		vmcs_writel(GUEST_TR_BASE, vmcs12->guest_tr_base);
2481		vmcs_writel(GUEST_GDTR_BASE, vmcs12->guest_gdtr_base);
2482		vmcs_writel(GUEST_IDTR_BASE, vmcs12->guest_idtr_base);
2483
2484		vmx->segment_cache.bitmask = 0;
2485	}
2486
2487	if (!hv_evmcs || !(hv_evmcs->hv_clean_fields &
2488			   HV_VMX_ENLIGHTENED_CLEAN_FIELD_GUEST_GRP1)) {
2489		vmcs_write32(GUEST_SYSENTER_CS, vmcs12->guest_sysenter_cs);
2490		vmcs_writel(GUEST_PENDING_DBG_EXCEPTIONS,
2491			    vmcs12->guest_pending_dbg_exceptions);
2492		vmcs_writel(GUEST_SYSENTER_ESP, vmcs12->guest_sysenter_esp);
2493		vmcs_writel(GUEST_SYSENTER_EIP, vmcs12->guest_sysenter_eip);
2494
2495		/*
2496		 * L1 may access the L2's PDPTR, so save them to construct
2497		 * vmcs12
2498		 */
2499		if (enable_ept) {
2500			vmcs_write64(GUEST_PDPTR0, vmcs12->guest_pdptr0);
2501			vmcs_write64(GUEST_PDPTR1, vmcs12->guest_pdptr1);
2502			vmcs_write64(GUEST_PDPTR2, vmcs12->guest_pdptr2);
2503			vmcs_write64(GUEST_PDPTR3, vmcs12->guest_pdptr3);
2504		}
2505
2506		if (kvm_mpx_supported() && vmx->nested.nested_run_pending &&
2507		    (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_BNDCFGS))
2508			vmcs_write64(GUEST_BNDCFGS, vmcs12->guest_bndcfgs);
2509	}
2510
2511	if (nested_cpu_has_xsaves(vmcs12))
2512		vmcs_write64(XSS_EXIT_BITMAP, vmcs12->xss_exit_bitmap);
2513
2514	/*
2515	 * Whether page-faults are trapped is determined by a combination of
2516	 * 3 settings: PFEC_MASK, PFEC_MATCH and EXCEPTION_BITMAP.PF.  If L0
2517	 * doesn't care about page faults then we should set all of these to
2518	 * L1's desires. However, if L0 does care about (some) page faults, it
2519	 * is not easy (if at all possible?) to merge L0 and L1's desires, we
2520	 * simply ask to exit on each and every L2 page fault. This is done by
2521	 * setting MASK=MATCH=0 and (see below) EB.PF=1.
2522	 * Note that below we don't need special code to set EB.PF beyond the
2523	 * "or"ing of the EB of vmcs01 and vmcs12, because when enable_ept,
2524	 * vmcs01's EB.PF is 0 so the "or" will take vmcs12's value, and when
2525	 * !enable_ept, EB.PF is 1, so the "or" will always be 1.
2526	 */
2527	if (vmx_need_pf_intercept(&vmx->vcpu)) {
2528		/*
2529		 * TODO: if both L0 and L1 need the same MASK and MATCH,
2530		 * go ahead and use it?
2531		 */
2532		vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK, 0);
2533		vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH, 0);
2534	} else {
2535		vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK, vmcs12->page_fault_error_code_mask);
2536		vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH, vmcs12->page_fault_error_code_match);
2537	}
2538
2539	if (cpu_has_vmx_apicv()) {
2540		vmcs_write64(EOI_EXIT_BITMAP0, vmcs12->eoi_exit_bitmap0);
2541		vmcs_write64(EOI_EXIT_BITMAP1, vmcs12->eoi_exit_bitmap1);
2542		vmcs_write64(EOI_EXIT_BITMAP2, vmcs12->eoi_exit_bitmap2);
2543		vmcs_write64(EOI_EXIT_BITMAP3, vmcs12->eoi_exit_bitmap3);
2544	}
2545
2546	/*
2547	 * Make sure the msr_autostore list is up to date before we set the
2548	 * count in the vmcs02.
2549	 */
2550	prepare_vmx_msr_autostore_list(&vmx->vcpu, MSR_IA32_TSC);
2551
2552	vmcs_write32(VM_EXIT_MSR_STORE_COUNT, vmx->msr_autostore.guest.nr);
2553	vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, vmx->msr_autoload.host.nr);
2554	vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, vmx->msr_autoload.guest.nr);
2555
2556	set_cr4_guest_host_mask(vmx);
2557}
2558
2559/*
2560 * prepare_vmcs02 is called when the L1 guest hypervisor runs its nested
2561 * L2 guest. L1 has a vmcs for L2 (vmcs12), and this function "merges" it
2562 * with L0's requirements for its guest (a.k.a. vmcs01), so we can run the L2
2563 * guest in a way that will both be appropriate to L1's requests, and our
2564 * needs. In addition to modifying the active vmcs (which is vmcs02), this
2565 * function also has additional necessary side-effects, like setting various
2566 * vcpu->arch fields.
2567 * Returns 0 on success, 1 on failure. Invalid state exit qualification code
2568 * is assigned to entry_failure_code on failure.
2569 */
2570static int prepare_vmcs02(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12,
2571			  bool from_vmentry,
2572			  enum vm_entry_failure_code *entry_failure_code)
2573{
2574	struct vcpu_vmx *vmx = to_vmx(vcpu);
2575	struct hv_enlightened_vmcs *evmcs = nested_vmx_evmcs(vmx);
2576	bool load_guest_pdptrs_vmcs12 = false;
2577
2578	if (vmx->nested.dirty_vmcs12 || nested_vmx_is_evmptr12_valid(vmx)) {
2579		prepare_vmcs02_rare(vmx, vmcs12);
2580		vmx->nested.dirty_vmcs12 = false;
2581
2582		load_guest_pdptrs_vmcs12 = !nested_vmx_is_evmptr12_valid(vmx) ||
2583			!(evmcs->hv_clean_fields & HV_VMX_ENLIGHTENED_CLEAN_FIELD_GUEST_GRP1);
2584	}
2585
2586	if (vmx->nested.nested_run_pending &&
2587	    (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_DEBUG_CONTROLS)) {
2588		kvm_set_dr(vcpu, 7, vmcs12->guest_dr7);
2589		vmcs_write64(GUEST_IA32_DEBUGCTL, vmcs12->guest_ia32_debugctl);
2590	} else {
2591		kvm_set_dr(vcpu, 7, vcpu->arch.dr7);
2592		vmcs_write64(GUEST_IA32_DEBUGCTL, vmx->nested.pre_vmenter_debugctl);
2593	}
2594	if (kvm_mpx_supported() && (!vmx->nested.nested_run_pending ||
2595	    !(vmcs12->vm_entry_controls & VM_ENTRY_LOAD_BNDCFGS)))
2596		vmcs_write64(GUEST_BNDCFGS, vmx->nested.pre_vmenter_bndcfgs);
2597	vmx_set_rflags(vcpu, vmcs12->guest_rflags);
2598
2599	/* EXCEPTION_BITMAP and CR0_GUEST_HOST_MASK should basically be the
2600	 * bitwise-or of what L1 wants to trap for L2, and what we want to
2601	 * trap. Note that CR0.TS also needs updating - we do this later.
2602	 */
2603	vmx_update_exception_bitmap(vcpu);
2604	vcpu->arch.cr0_guest_owned_bits &= ~vmcs12->cr0_guest_host_mask;
2605	vmcs_writel(CR0_GUEST_HOST_MASK, ~vcpu->arch.cr0_guest_owned_bits);
2606
2607	if (vmx->nested.nested_run_pending &&
2608	    (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_IA32_PAT)) {
2609		vmcs_write64(GUEST_IA32_PAT, vmcs12->guest_ia32_pat);
2610		vcpu->arch.pat = vmcs12->guest_ia32_pat;
2611	} else if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT) {
2612		vmcs_write64(GUEST_IA32_PAT, vmx->vcpu.arch.pat);
2613	}
2614
2615	vcpu->arch.tsc_offset = kvm_calc_nested_tsc_offset(
2616			vcpu->arch.l1_tsc_offset,
2617			vmx_get_l2_tsc_offset(vcpu),
2618			vmx_get_l2_tsc_multiplier(vcpu));
2619
2620	vcpu->arch.tsc_scaling_ratio = kvm_calc_nested_tsc_multiplier(
2621			vcpu->arch.l1_tsc_scaling_ratio,
2622			vmx_get_l2_tsc_multiplier(vcpu));
2623
2624	vmcs_write64(TSC_OFFSET, vcpu->arch.tsc_offset);
2625	if (kvm_caps.has_tsc_control)
2626		vmcs_write64(TSC_MULTIPLIER, vcpu->arch.tsc_scaling_ratio);
2627
2628	nested_vmx_transition_tlb_flush(vcpu, vmcs12, true);
2629
2630	if (nested_cpu_has_ept(vmcs12))
2631		nested_ept_init_mmu_context(vcpu);
2632
2633	/*
2634	 * Override the CR0/CR4 read shadows after setting the effective guest
2635	 * CR0/CR4.  The common helpers also set the shadows, but they don't
2636	 * account for vmcs12's cr0/4_guest_host_mask.
2637	 */
2638	vmx_set_cr0(vcpu, vmcs12->guest_cr0);
2639	vmcs_writel(CR0_READ_SHADOW, nested_read_cr0(vmcs12));
2640
2641	vmx_set_cr4(vcpu, vmcs12->guest_cr4);
2642	vmcs_writel(CR4_READ_SHADOW, nested_read_cr4(vmcs12));
2643
2644	vcpu->arch.efer = nested_vmx_calc_efer(vmx, vmcs12);
2645	/* Note: may modify VM_ENTRY/EXIT_CONTROLS and GUEST/HOST_IA32_EFER */
2646	vmx_set_efer(vcpu, vcpu->arch.efer);
2647
2648	/*
2649	 * Guest state is invalid and unrestricted guest is disabled,
2650	 * which means L1 attempted VMEntry to L2 with invalid state.
2651	 * Fail the VMEntry.
2652	 *
2653	 * However when force loading the guest state (SMM exit or
2654	 * loading nested state after migration, it is possible to
2655	 * have invalid guest state now, which will be later fixed by
2656	 * restoring L2 register state
2657	 */
2658	if (CC(from_vmentry && !vmx_guest_state_valid(vcpu))) {
2659		*entry_failure_code = ENTRY_FAIL_DEFAULT;
2660		return -EINVAL;
2661	}
2662
2663	/* Shadow page tables on either EPT or shadow page tables. */
2664	if (nested_vmx_load_cr3(vcpu, vmcs12->guest_cr3, nested_cpu_has_ept(vmcs12),
2665				from_vmentry, entry_failure_code))
2666		return -EINVAL;
2667
2668	/*
2669	 * Immediately write vmcs02.GUEST_CR3.  It will be propagated to vmcs12
2670	 * on nested VM-Exit, which can occur without actually running L2 and
2671	 * thus without hitting vmx_load_mmu_pgd(), e.g. if L1 is entering L2 with
2672	 * vmcs12.GUEST_ACTIVITYSTATE=HLT, in which case KVM will intercept the
2673	 * transition to HLT instead of running L2.
2674	 */
2675	if (enable_ept)
2676		vmcs_writel(GUEST_CR3, vmcs12->guest_cr3);
2677
2678	/* Late preparation of GUEST_PDPTRs now that EFER and CRs are set. */
2679	if (load_guest_pdptrs_vmcs12 && nested_cpu_has_ept(vmcs12) &&
2680	    is_pae_paging(vcpu)) {
2681		vmcs_write64(GUEST_PDPTR0, vmcs12->guest_pdptr0);
2682		vmcs_write64(GUEST_PDPTR1, vmcs12->guest_pdptr1);
2683		vmcs_write64(GUEST_PDPTR2, vmcs12->guest_pdptr2);
2684		vmcs_write64(GUEST_PDPTR3, vmcs12->guest_pdptr3);
2685	}
2686
2687	if ((vmcs12->vm_entry_controls & VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL) &&
2688	    kvm_pmu_has_perf_global_ctrl(vcpu_to_pmu(vcpu)) &&
2689	    WARN_ON_ONCE(kvm_set_msr(vcpu, MSR_CORE_PERF_GLOBAL_CTRL,
2690				     vmcs12->guest_ia32_perf_global_ctrl))) {
2691		*entry_failure_code = ENTRY_FAIL_DEFAULT;
2692		return -EINVAL;
2693	}
2694
2695	kvm_rsp_write(vcpu, vmcs12->guest_rsp);
2696	kvm_rip_write(vcpu, vmcs12->guest_rip);
2697
2698	/*
2699	 * It was observed that genuine Hyper-V running in L1 doesn't reset
2700	 * 'hv_clean_fields' by itself, it only sets the corresponding dirty
2701	 * bits when it changes a field in eVMCS. Mark all fields as clean
2702	 * here.
2703	 */
2704	if (nested_vmx_is_evmptr12_valid(vmx))
2705		evmcs->hv_clean_fields |= HV_VMX_ENLIGHTENED_CLEAN_FIELD_ALL;
2706
2707	return 0;
2708}
2709
2710static int nested_vmx_check_nmi_controls(struct vmcs12 *vmcs12)
2711{
2712	if (CC(!nested_cpu_has_nmi_exiting(vmcs12) &&
2713	       nested_cpu_has_virtual_nmis(vmcs12)))
2714		return -EINVAL;
2715
2716	if (CC(!nested_cpu_has_virtual_nmis(vmcs12) &&
2717	       nested_cpu_has(vmcs12, CPU_BASED_NMI_WINDOW_EXITING)))
2718		return -EINVAL;
2719
2720	return 0;
2721}
2722
2723static bool nested_vmx_check_eptp(struct kvm_vcpu *vcpu, u64 new_eptp)
2724{
2725	struct vcpu_vmx *vmx = to_vmx(vcpu);
2726
2727	/* Check for memory type validity */
2728	switch (new_eptp & VMX_EPTP_MT_MASK) {
2729	case VMX_EPTP_MT_UC:
2730		if (CC(!(vmx->nested.msrs.ept_caps & VMX_EPTP_UC_BIT)))
2731			return false;
2732		break;
2733	case VMX_EPTP_MT_WB:
2734		if (CC(!(vmx->nested.msrs.ept_caps & VMX_EPTP_WB_BIT)))
2735			return false;
2736		break;
2737	default:
2738		return false;
2739	}
2740
2741	/* Page-walk levels validity. */
2742	switch (new_eptp & VMX_EPTP_PWL_MASK) {
2743	case VMX_EPTP_PWL_5:
2744		if (CC(!(vmx->nested.msrs.ept_caps & VMX_EPT_PAGE_WALK_5_BIT)))
2745			return false;
2746		break;
2747	case VMX_EPTP_PWL_4:
2748		if (CC(!(vmx->nested.msrs.ept_caps & VMX_EPT_PAGE_WALK_4_BIT)))
2749			return false;
2750		break;
2751	default:
2752		return false;
2753	}
2754
2755	/* Reserved bits should not be set */
2756	if (CC(!kvm_vcpu_is_legal_gpa(vcpu, new_eptp) || ((new_eptp >> 7) & 0x1f)))
2757		return false;
2758
2759	/* AD, if set, should be supported */
2760	if (new_eptp & VMX_EPTP_AD_ENABLE_BIT) {
2761		if (CC(!(vmx->nested.msrs.ept_caps & VMX_EPT_AD_BIT)))
2762			return false;
2763	}
2764
2765	return true;
2766}
2767
2768/*
2769 * Checks related to VM-Execution Control Fields
2770 */
2771static int nested_check_vm_execution_controls(struct kvm_vcpu *vcpu,
2772                                              struct vmcs12 *vmcs12)
2773{
2774	struct vcpu_vmx *vmx = to_vmx(vcpu);
2775
2776	if (CC(!vmx_control_verify(vmcs12->pin_based_vm_exec_control,
2777				   vmx->nested.msrs.pinbased_ctls_low,
2778				   vmx->nested.msrs.pinbased_ctls_high)) ||
2779	    CC(!vmx_control_verify(vmcs12->cpu_based_vm_exec_control,
2780				   vmx->nested.msrs.procbased_ctls_low,
2781				   vmx->nested.msrs.procbased_ctls_high)))
2782		return -EINVAL;
2783
2784	if (nested_cpu_has(vmcs12, CPU_BASED_ACTIVATE_SECONDARY_CONTROLS) &&
2785	    CC(!vmx_control_verify(vmcs12->secondary_vm_exec_control,
2786				   vmx->nested.msrs.secondary_ctls_low,
2787				   vmx->nested.msrs.secondary_ctls_high)))
2788		return -EINVAL;
2789
2790	if (CC(vmcs12->cr3_target_count > nested_cpu_vmx_misc_cr3_count(vcpu)) ||
2791	    nested_vmx_check_io_bitmap_controls(vcpu, vmcs12) ||
2792	    nested_vmx_check_msr_bitmap_controls(vcpu, vmcs12) ||
2793	    nested_vmx_check_tpr_shadow_controls(vcpu, vmcs12) ||
2794	    nested_vmx_check_apic_access_controls(vcpu, vmcs12) ||
2795	    nested_vmx_check_apicv_controls(vcpu, vmcs12) ||
2796	    nested_vmx_check_nmi_controls(vmcs12) ||
2797	    nested_vmx_check_pml_controls(vcpu, vmcs12) ||
2798	    nested_vmx_check_unrestricted_guest_controls(vcpu, vmcs12) ||
2799	    nested_vmx_check_mode_based_ept_exec_controls(vcpu, vmcs12) ||
2800	    nested_vmx_check_shadow_vmcs_controls(vcpu, vmcs12) ||
2801	    CC(nested_cpu_has_vpid(vmcs12) && !vmcs12->virtual_processor_id))
2802		return -EINVAL;
2803
2804	if (!nested_cpu_has_preemption_timer(vmcs12) &&
2805	    nested_cpu_has_save_preemption_timer(vmcs12))
2806		return -EINVAL;
2807
2808	if (nested_cpu_has_ept(vmcs12) &&
2809	    CC(!nested_vmx_check_eptp(vcpu, vmcs12->ept_pointer)))
2810		return -EINVAL;
2811
2812	if (nested_cpu_has_vmfunc(vmcs12)) {
2813		if (CC(vmcs12->vm_function_control &
2814		       ~vmx->nested.msrs.vmfunc_controls))
2815			return -EINVAL;
2816
2817		if (nested_cpu_has_eptp_switching(vmcs12)) {
2818			if (CC(!nested_cpu_has_ept(vmcs12)) ||
2819			    CC(!page_address_valid(vcpu, vmcs12->eptp_list_address)))
2820				return -EINVAL;
2821		}
2822	}
2823
2824	return 0;
2825}
2826
2827/*
2828 * Checks related to VM-Exit Control Fields
2829 */
2830static int nested_check_vm_exit_controls(struct kvm_vcpu *vcpu,
2831                                         struct vmcs12 *vmcs12)
2832{
2833	struct vcpu_vmx *vmx = to_vmx(vcpu);
2834
2835	if (CC(!vmx_control_verify(vmcs12->vm_exit_controls,
2836				    vmx->nested.msrs.exit_ctls_low,
2837				    vmx->nested.msrs.exit_ctls_high)) ||
2838	    CC(nested_vmx_check_exit_msr_switch_controls(vcpu, vmcs12)))
2839		return -EINVAL;
2840
2841	return 0;
2842}
2843
2844/*
2845 * Checks related to VM-Entry Control Fields
2846 */
2847static int nested_check_vm_entry_controls(struct kvm_vcpu *vcpu,
2848					  struct vmcs12 *vmcs12)
2849{
2850	struct vcpu_vmx *vmx = to_vmx(vcpu);
2851
2852	if (CC(!vmx_control_verify(vmcs12->vm_entry_controls,
2853				    vmx->nested.msrs.entry_ctls_low,
2854				    vmx->nested.msrs.entry_ctls_high)))
2855		return -EINVAL;
2856
2857	/*
2858	 * From the Intel SDM, volume 3:
2859	 * Fields relevant to VM-entry event injection must be set properly.
2860	 * These fields are the VM-entry interruption-information field, the
2861	 * VM-entry exception error code, and the VM-entry instruction length.
2862	 */
2863	if (vmcs12->vm_entry_intr_info_field & INTR_INFO_VALID_MASK) {
2864		u32 intr_info = vmcs12->vm_entry_intr_info_field;
2865		u8 vector = intr_info & INTR_INFO_VECTOR_MASK;
2866		u32 intr_type = intr_info & INTR_INFO_INTR_TYPE_MASK;
2867		bool has_error_code = intr_info & INTR_INFO_DELIVER_CODE_MASK;
2868		bool should_have_error_code;
2869		bool urg = nested_cpu_has2(vmcs12,
2870					   SECONDARY_EXEC_UNRESTRICTED_GUEST);
2871		bool prot_mode = !urg || vmcs12->guest_cr0 & X86_CR0_PE;
2872
2873		/* VM-entry interruption-info field: interruption type */
2874		if (CC(intr_type == INTR_TYPE_RESERVED) ||
2875		    CC(intr_type == INTR_TYPE_OTHER_EVENT &&
2876		       !nested_cpu_supports_monitor_trap_flag(vcpu)))
2877			return -EINVAL;
2878
2879		/* VM-entry interruption-info field: vector */
2880		if (CC(intr_type == INTR_TYPE_NMI_INTR && vector != NMI_VECTOR) ||
2881		    CC(intr_type == INTR_TYPE_HARD_EXCEPTION && vector > 31) ||
2882		    CC(intr_type == INTR_TYPE_OTHER_EVENT && vector != 0))
2883			return -EINVAL;
2884
2885		/* VM-entry interruption-info field: deliver error code */
2886		should_have_error_code =
2887			intr_type == INTR_TYPE_HARD_EXCEPTION && prot_mode &&
2888			x86_exception_has_error_code(vector);
2889		if (CC(has_error_code != should_have_error_code))
2890			return -EINVAL;
2891
2892		/* VM-entry exception error code */
2893		if (CC(has_error_code &&
2894		       vmcs12->vm_entry_exception_error_code & GENMASK(31, 16)))
2895			return -EINVAL;
2896
2897		/* VM-entry interruption-info field: reserved bits */
2898		if (CC(intr_info & INTR_INFO_RESVD_BITS_MASK))
2899			return -EINVAL;
2900
2901		/* VM-entry instruction length */
2902		switch (intr_type) {
2903		case INTR_TYPE_SOFT_EXCEPTION:
2904		case INTR_TYPE_SOFT_INTR:
2905		case INTR_TYPE_PRIV_SW_EXCEPTION:
2906			if (CC(vmcs12->vm_entry_instruction_len > 15) ||
2907			    CC(vmcs12->vm_entry_instruction_len == 0 &&
2908			    CC(!nested_cpu_has_zero_length_injection(vcpu))))
2909				return -EINVAL;
2910		}
2911	}
2912
2913	if (nested_vmx_check_entry_msr_switch_controls(vcpu, vmcs12))
2914		return -EINVAL;
2915
2916	return 0;
2917}
2918
2919static int nested_vmx_check_controls(struct kvm_vcpu *vcpu,
2920				     struct vmcs12 *vmcs12)
2921{
2922	if (nested_check_vm_execution_controls(vcpu, vmcs12) ||
2923	    nested_check_vm_exit_controls(vcpu, vmcs12) ||
2924	    nested_check_vm_entry_controls(vcpu, vmcs12))
2925		return -EINVAL;
2926
2927#ifdef CONFIG_KVM_HYPERV
2928	if (guest_cpuid_has_evmcs(vcpu))
2929		return nested_evmcs_check_controls(vmcs12);
2930#endif
2931
2932	return 0;
2933}
2934
2935static int nested_vmx_check_address_space_size(struct kvm_vcpu *vcpu,
2936				       struct vmcs12 *vmcs12)
2937{
2938#ifdef CONFIG_X86_64
2939	if (CC(!!(vmcs12->vm_exit_controls & VM_EXIT_HOST_ADDR_SPACE_SIZE) !=
2940		!!(vcpu->arch.efer & EFER_LMA)))
2941		return -EINVAL;
2942#endif
2943	return 0;
2944}
2945
2946static int nested_vmx_check_host_state(struct kvm_vcpu *vcpu,
2947				       struct vmcs12 *vmcs12)
2948{
2949	bool ia32e = !!(vmcs12->vm_exit_controls & VM_EXIT_HOST_ADDR_SPACE_SIZE);
2950
2951	if (CC(!nested_host_cr0_valid(vcpu, vmcs12->host_cr0)) ||
2952	    CC(!nested_host_cr4_valid(vcpu, vmcs12->host_cr4)) ||
2953	    CC(!kvm_vcpu_is_legal_cr3(vcpu, vmcs12->host_cr3)))
2954		return -EINVAL;
2955
2956	if (CC(is_noncanonical_address(vmcs12->host_ia32_sysenter_esp, vcpu)) ||
2957	    CC(is_noncanonical_address(vmcs12->host_ia32_sysenter_eip, vcpu)))
2958		return -EINVAL;
2959
2960	if ((vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_PAT) &&
2961	    CC(!kvm_pat_valid(vmcs12->host_ia32_pat)))
2962		return -EINVAL;
2963
2964	if ((vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL) &&
2965	    CC(!kvm_valid_perf_global_ctrl(vcpu_to_pmu(vcpu),
2966					   vmcs12->host_ia32_perf_global_ctrl)))
2967		return -EINVAL;
2968
2969	if (ia32e) {
2970		if (CC(!(vmcs12->host_cr4 & X86_CR4_PAE)))
2971			return -EINVAL;
2972	} else {
2973		if (CC(vmcs12->vm_entry_controls & VM_ENTRY_IA32E_MODE) ||
2974		    CC(vmcs12->host_cr4 & X86_CR4_PCIDE) ||
2975		    CC((vmcs12->host_rip) >> 32))
2976			return -EINVAL;
2977	}
2978
2979	if (CC(vmcs12->host_cs_selector & (SEGMENT_RPL_MASK | SEGMENT_TI_MASK)) ||
2980	    CC(vmcs12->host_ss_selector & (SEGMENT_RPL_MASK | SEGMENT_TI_MASK)) ||
2981	    CC(vmcs12->host_ds_selector & (SEGMENT_RPL_MASK | SEGMENT_TI_MASK)) ||
2982	    CC(vmcs12->host_es_selector & (SEGMENT_RPL_MASK | SEGMENT_TI_MASK)) ||
2983	    CC(vmcs12->host_fs_selector & (SEGMENT_RPL_MASK | SEGMENT_TI_MASK)) ||
2984	    CC(vmcs12->host_gs_selector & (SEGMENT_RPL_MASK | SEGMENT_TI_MASK)) ||
2985	    CC(vmcs12->host_tr_selector & (SEGMENT_RPL_MASK | SEGMENT_TI_MASK)) ||
2986	    CC(vmcs12->host_cs_selector == 0) ||
2987	    CC(vmcs12->host_tr_selector == 0) ||
2988	    CC(vmcs12->host_ss_selector == 0 && !ia32e))
2989		return -EINVAL;
2990
2991	if (CC(is_noncanonical_address(vmcs12->host_fs_base, vcpu)) ||
2992	    CC(is_noncanonical_address(vmcs12->host_gs_base, vcpu)) ||
2993	    CC(is_noncanonical_address(vmcs12->host_gdtr_base, vcpu)) ||
2994	    CC(is_noncanonical_address(vmcs12->host_idtr_base, vcpu)) ||
2995	    CC(is_noncanonical_address(vmcs12->host_tr_base, vcpu)) ||
2996	    CC(is_noncanonical_address(vmcs12->host_rip, vcpu)))
2997		return -EINVAL;
2998
2999	/*
3000	 * If the load IA32_EFER VM-exit control is 1, bits reserved in the
3001	 * IA32_EFER MSR must be 0 in the field for that register. In addition,
3002	 * the values of the LMA and LME bits in the field must each be that of
3003	 * the host address-space size VM-exit control.
3004	 */
3005	if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_EFER) {
3006		if (CC(!kvm_valid_efer(vcpu, vmcs12->host_ia32_efer)) ||
3007		    CC(ia32e != !!(vmcs12->host_ia32_efer & EFER_LMA)) ||
3008		    CC(ia32e != !!(vmcs12->host_ia32_efer & EFER_LME)))
3009			return -EINVAL;
3010	}
3011
3012	return 0;
3013}
3014
3015static int nested_vmx_check_vmcs_link_ptr(struct kvm_vcpu *vcpu,
3016					  struct vmcs12 *vmcs12)
3017{
3018	struct vcpu_vmx *vmx = to_vmx(vcpu);
3019	struct gfn_to_hva_cache *ghc = &vmx->nested.shadow_vmcs12_cache;
3020	struct vmcs_hdr hdr;
3021
3022	if (vmcs12->vmcs_link_pointer == INVALID_GPA)
3023		return 0;
3024
3025	if (CC(!page_address_valid(vcpu, vmcs12->vmcs_link_pointer)))
3026		return -EINVAL;
3027
3028	if (ghc->gpa != vmcs12->vmcs_link_pointer &&
3029	    CC(kvm_gfn_to_hva_cache_init(vcpu->kvm, ghc,
3030					 vmcs12->vmcs_link_pointer, VMCS12_SIZE)))
3031                return -EINVAL;
3032
3033	if (CC(kvm_read_guest_offset_cached(vcpu->kvm, ghc, &hdr,
3034					    offsetof(struct vmcs12, hdr),
3035					    sizeof(hdr))))
3036		return -EINVAL;
3037
3038	if (CC(hdr.revision_id != VMCS12_REVISION) ||
3039	    CC(hdr.shadow_vmcs != nested_cpu_has_shadow_vmcs(vmcs12)))
3040		return -EINVAL;
3041
3042	return 0;
3043}
3044
3045/*
3046 * Checks related to Guest Non-register State
3047 */
3048static int nested_check_guest_non_reg_state(struct vmcs12 *vmcs12)
3049{
3050	if (CC(vmcs12->guest_activity_state != GUEST_ACTIVITY_ACTIVE &&
3051	       vmcs12->guest_activity_state != GUEST_ACTIVITY_HLT &&
3052	       vmcs12->guest_activity_state != GUEST_ACTIVITY_WAIT_SIPI))
3053		return -EINVAL;
3054
3055	return 0;
3056}
3057
3058static int nested_vmx_check_guest_state(struct kvm_vcpu *vcpu,
3059					struct vmcs12 *vmcs12,
3060					enum vm_entry_failure_code *entry_failure_code)
3061{
3062	bool ia32e = !!(vmcs12->vm_entry_controls & VM_ENTRY_IA32E_MODE);
3063
3064	*entry_failure_code = ENTRY_FAIL_DEFAULT;
3065
3066	if (CC(!nested_guest_cr0_valid(vcpu, vmcs12->guest_cr0)) ||
3067	    CC(!nested_guest_cr4_valid(vcpu, vmcs12->guest_cr4)))
3068		return -EINVAL;
3069
3070	if ((vmcs12->vm_entry_controls & VM_ENTRY_LOAD_DEBUG_CONTROLS) &&
3071	    CC(!kvm_dr7_valid(vmcs12->guest_dr7)))
3072		return -EINVAL;
3073
3074	if ((vmcs12->vm_entry_controls & VM_ENTRY_LOAD_IA32_PAT) &&
3075	    CC(!kvm_pat_valid(vmcs12->guest_ia32_pat)))
3076		return -EINVAL;
3077
3078	if (nested_vmx_check_vmcs_link_ptr(vcpu, vmcs12)) {
3079		*entry_failure_code = ENTRY_FAIL_VMCS_LINK_PTR;
3080		return -EINVAL;
3081	}
3082
3083	if ((vmcs12->vm_entry_controls & VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL) &&
3084	    CC(!kvm_valid_perf_global_ctrl(vcpu_to_pmu(vcpu),
3085					   vmcs12->guest_ia32_perf_global_ctrl)))
3086		return -EINVAL;
3087
3088	if (CC((vmcs12->guest_cr0 & (X86_CR0_PG | X86_CR0_PE)) == X86_CR0_PG))
3089		return -EINVAL;
3090
3091	if (CC(ia32e && !(vmcs12->guest_cr4 & X86_CR4_PAE)) ||
3092	    CC(ia32e && !(vmcs12->guest_cr0 & X86_CR0_PG)))
3093		return -EINVAL;
3094
3095	/*
3096	 * If the load IA32_EFER VM-entry control is 1, the following checks
3097	 * are performed on the field for the IA32_EFER MSR:
3098	 * - Bits reserved in the IA32_EFER MSR must be 0.
3099	 * - Bit 10 (corresponding to IA32_EFER.LMA) must equal the value of
3100	 *   the IA-32e mode guest VM-exit control. It must also be identical
3101	 *   to bit 8 (LME) if bit 31 in the CR0 field (corresponding to
3102	 *   CR0.PG) is 1.
3103	 */
3104	if (to_vmx(vcpu)->nested.nested_run_pending &&
3105	    (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_IA32_EFER)) {
3106		if (CC(!kvm_valid_efer(vcpu, vmcs12->guest_ia32_efer)) ||
3107		    CC(ia32e != !!(vmcs12->guest_ia32_efer & EFER_LMA)) ||
3108		    CC(((vmcs12->guest_cr0 & X86_CR0_PG) &&
3109		     ia32e != !!(vmcs12->guest_ia32_efer & EFER_LME))))
3110			return -EINVAL;
3111	}
3112
3113	if ((vmcs12->vm_entry_controls & VM_ENTRY_LOAD_BNDCFGS) &&
3114	    (CC(is_noncanonical_address(vmcs12->guest_bndcfgs & PAGE_MASK, vcpu)) ||
3115	     CC((vmcs12->guest_bndcfgs & MSR_IA32_BNDCFGS_RSVD))))
3116		return -EINVAL;
3117
3118	if (nested_check_guest_non_reg_state(vmcs12))
3119		return -EINVAL;
3120
3121	return 0;
3122}
3123
3124static int nested_vmx_check_vmentry_hw(struct kvm_vcpu *vcpu)
3125{
3126	struct vcpu_vmx *vmx = to_vmx(vcpu);
3127	unsigned long cr3, cr4;
3128	bool vm_fail;
3129
3130	if (!nested_early_check)
3131		return 0;
3132
3133	if (vmx->msr_autoload.host.nr)
3134		vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, 0);
3135	if (vmx->msr_autoload.guest.nr)
3136		vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, 0);
3137
3138	preempt_disable();
3139
3140	vmx_prepare_switch_to_guest(vcpu);
3141
3142	/*
3143	 * Induce a consistency check VMExit by clearing bit 1 in GUEST_RFLAGS,
3144	 * which is reserved to '1' by hardware.  GUEST_RFLAGS is guaranteed to
3145	 * be written (by prepare_vmcs02()) before the "real" VMEnter, i.e.
3146	 * there is no need to preserve other bits or save/restore the field.
3147	 */
3148	vmcs_writel(GUEST_RFLAGS, 0);
3149
3150	cr3 = __get_current_cr3_fast();
3151	if (unlikely(cr3 != vmx->loaded_vmcs->host_state.cr3)) {
3152		vmcs_writel(HOST_CR3, cr3);
3153		vmx->loaded_vmcs->host_state.cr3 = cr3;
3154	}
3155
3156	cr4 = cr4_read_shadow();
3157	if (unlikely(cr4 != vmx->loaded_vmcs->host_state.cr4)) {
3158		vmcs_writel(HOST_CR4, cr4);
3159		vmx->loaded_vmcs->host_state.cr4 = cr4;
3160	}
3161
3162	vm_fail = __vmx_vcpu_run(vmx, (unsigned long *)&vcpu->arch.regs,
3163				 __vmx_vcpu_run_flags(vmx));
3164
3165	if (vmx->msr_autoload.host.nr)
3166		vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, vmx->msr_autoload.host.nr);
3167	if (vmx->msr_autoload.guest.nr)
3168		vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, vmx->msr_autoload.guest.nr);
3169
3170	if (vm_fail) {
3171		u32 error = vmcs_read32(VM_INSTRUCTION_ERROR);
3172
3173		preempt_enable();
3174
3175		trace_kvm_nested_vmenter_failed(
3176			"early hardware check VM-instruction error: ", error);
3177		WARN_ON_ONCE(error != VMXERR_ENTRY_INVALID_CONTROL_FIELD);
3178		return 1;
3179	}
3180
3181	/*
3182	 * VMExit clears RFLAGS.IF and DR7, even on a consistency check.
3183	 */
3184	if (hw_breakpoint_active())
3185		set_debugreg(__this_cpu_read(cpu_dr7), 7);
3186	local_irq_enable();
3187	preempt_enable();
3188
3189	/*
3190	 * A non-failing VMEntry means we somehow entered guest mode with
3191	 * an illegal RIP, and that's just the tip of the iceberg.  There
3192	 * is no telling what memory has been modified or what state has
3193	 * been exposed to unknown code.  Hitting this all but guarantees
3194	 * a (very critical) hardware issue.
3195	 */
3196	WARN_ON(!(vmcs_read32(VM_EXIT_REASON) &
3197		VMX_EXIT_REASONS_FAILED_VMENTRY));
3198
3199	return 0;
3200}
3201
3202#ifdef CONFIG_KVM_HYPERV
3203static bool nested_get_evmcs_page(struct kvm_vcpu *vcpu)
3204{
3205	struct vcpu_vmx *vmx = to_vmx(vcpu);
3206
3207	/*
3208	 * hv_evmcs may end up being not mapped after migration (when
3209	 * L2 was running), map it here to make sure vmcs12 changes are
3210	 * properly reflected.
3211	 */
3212	if (guest_cpuid_has_evmcs(vcpu) &&
3213	    vmx->nested.hv_evmcs_vmptr == EVMPTR_MAP_PENDING) {
3214		enum nested_evmptrld_status evmptrld_status =
3215			nested_vmx_handle_enlightened_vmptrld(vcpu, false);
3216
3217		if (evmptrld_status == EVMPTRLD_VMFAIL ||
3218		    evmptrld_status == EVMPTRLD_ERROR)
3219			return false;
3220
3221		/*
3222		 * Post migration VMCS12 always provides the most actual
3223		 * information, copy it to eVMCS upon entry.
3224		 */
3225		vmx->nested.need_vmcs12_to_shadow_sync = true;
3226	}
3227
3228	return true;
3229}
3230#endif
3231
3232static bool nested_get_vmcs12_pages(struct kvm_vcpu *vcpu)
3233{
3234	struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
3235	struct vcpu_vmx *vmx = to_vmx(vcpu);
3236	struct kvm_host_map *map;
3237
3238	if (!vcpu->arch.pdptrs_from_userspace &&
3239	    !nested_cpu_has_ept(vmcs12) && is_pae_paging(vcpu)) {
3240		/*
3241		 * Reload the guest's PDPTRs since after a migration
3242		 * the guest CR3 might be restored prior to setting the nested
3243		 * state which can lead to a load of wrong PDPTRs.
3244		 */
3245		if (CC(!load_pdptrs(vcpu, vcpu->arch.cr3)))
3246			return false;
3247	}
3248
3249
3250	if (nested_cpu_has2(vmcs12, SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES)) {
3251		map = &vmx->nested.apic_access_page_map;
3252
3253		if (!kvm_vcpu_map(vcpu, gpa_to_gfn(vmcs12->apic_access_addr), map)) {
3254			vmcs_write64(APIC_ACCESS_ADDR, pfn_to_hpa(map->pfn));
3255		} else {
3256			pr_debug_ratelimited("%s: no backing for APIC-access address in vmcs12\n",
3257					     __func__);
3258			vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
3259			vcpu->run->internal.suberror =
3260				KVM_INTERNAL_ERROR_EMULATION;
3261			vcpu->run->internal.ndata = 0;
3262			return false;
3263		}
3264	}
3265
3266	if (nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW)) {
3267		map = &vmx->nested.virtual_apic_map;
3268
3269		if (!kvm_vcpu_map(vcpu, gpa_to_gfn(vmcs12->virtual_apic_page_addr), map)) {
3270			vmcs_write64(VIRTUAL_APIC_PAGE_ADDR, pfn_to_hpa(map->pfn));
3271		} else if (nested_cpu_has(vmcs12, CPU_BASED_CR8_LOAD_EXITING) &&
3272		           nested_cpu_has(vmcs12, CPU_BASED_CR8_STORE_EXITING) &&
3273			   !nested_cpu_has2(vmcs12, SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES)) {
3274			/*
3275			 * The processor will never use the TPR shadow, simply
3276			 * clear the bit from the execution control.  Such a
3277			 * configuration is useless, but it happens in tests.
3278			 * For any other configuration, failing the vm entry is
3279			 * _not_ what the processor does but it's basically the
3280			 * only possibility we have.
3281			 */
3282			exec_controls_clearbit(vmx, CPU_BASED_TPR_SHADOW);
3283		} else {
3284			/*
3285			 * Write an illegal value to VIRTUAL_APIC_PAGE_ADDR to
3286			 * force VM-Entry to fail.
3287			 */
3288			vmcs_write64(VIRTUAL_APIC_PAGE_ADDR, INVALID_GPA);
3289		}
3290	}
3291
3292	if (nested_cpu_has_posted_intr(vmcs12)) {
3293		map = &vmx->nested.pi_desc_map;
3294
3295		if (!kvm_vcpu_map(vcpu, gpa_to_gfn(vmcs12->posted_intr_desc_addr), map)) {
3296			vmx->nested.pi_desc =
3297				(struct pi_desc *)(((void *)map->hva) +
3298				offset_in_page(vmcs12->posted_intr_desc_addr));
3299			vmcs_write64(POSTED_INTR_DESC_ADDR,
3300				     pfn_to_hpa(map->pfn) + offset_in_page(vmcs12->posted_intr_desc_addr));
3301		} else {
3302			/*
3303			 * Defer the KVM_INTERNAL_EXIT until KVM tries to
3304			 * access the contents of the VMCS12 posted interrupt
3305			 * descriptor. (Note that KVM may do this when it
3306			 * should not, per the architectural specification.)
3307			 */
3308			vmx->nested.pi_desc = NULL;
3309			pin_controls_clearbit(vmx, PIN_BASED_POSTED_INTR);
3310		}
3311	}
3312	if (nested_vmx_prepare_msr_bitmap(vcpu, vmcs12))
3313		exec_controls_setbit(vmx, CPU_BASED_USE_MSR_BITMAPS);
3314	else
3315		exec_controls_clearbit(vmx, CPU_BASED_USE_MSR_BITMAPS);
3316
3317	return true;
3318}
3319
3320static bool vmx_get_nested_state_pages(struct kvm_vcpu *vcpu)
3321{
3322#ifdef CONFIG_KVM_HYPERV
3323	/*
3324	 * Note: nested_get_evmcs_page() also updates 'vp_assist_page' copy
3325	 * in 'struct kvm_vcpu_hv' in case eVMCS is in use, this is mandatory
3326	 * to make nested_evmcs_l2_tlb_flush_enabled() work correctly post
3327	 * migration.
3328	 */
3329	if (!nested_get_evmcs_page(vcpu)) {
3330		pr_debug_ratelimited("%s: enlightened vmptrld failed\n",
3331				     __func__);
3332		vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
3333		vcpu->run->internal.suberror =
3334			KVM_INTERNAL_ERROR_EMULATION;
3335		vcpu->run->internal.ndata = 0;
3336
3337		return false;
3338	}
3339#endif
3340
3341	if (is_guest_mode(vcpu) && !nested_get_vmcs12_pages(vcpu))
3342		return false;
3343
3344	return true;
3345}
3346
3347static int nested_vmx_write_pml_buffer(struct kvm_vcpu *vcpu, gpa_t gpa)
3348{
3349	struct vmcs12 *vmcs12;
3350	struct vcpu_vmx *vmx = to_vmx(vcpu);
3351	gpa_t dst;
3352
3353	if (WARN_ON_ONCE(!is_guest_mode(vcpu)))
3354		return 0;
3355
3356	if (WARN_ON_ONCE(vmx->nested.pml_full))
3357		return 1;
3358
3359	/*
3360	 * Check if PML is enabled for the nested guest. Whether eptp bit 6 is
3361	 * set is already checked as part of A/D emulation.
3362	 */
3363	vmcs12 = get_vmcs12(vcpu);
3364	if (!nested_cpu_has_pml(vmcs12))
3365		return 0;
3366
3367	if (vmcs12->guest_pml_index >= PML_ENTITY_NUM) {
3368		vmx->nested.pml_full = true;
3369		return 1;
3370	}
3371
3372	gpa &= ~0xFFFull;
3373	dst = vmcs12->pml_address + sizeof(u64) * vmcs12->guest_pml_index;
3374
3375	if (kvm_write_guest_page(vcpu->kvm, gpa_to_gfn(dst), &gpa,
3376				 offset_in_page(dst), sizeof(gpa)))
3377		return 0;
3378
3379	vmcs12->guest_pml_index--;
3380
3381	return 0;
3382}
3383
3384/*
3385 * Intel's VMX Instruction Reference specifies a common set of prerequisites
3386 * for running VMX instructions (except VMXON, whose prerequisites are
3387 * slightly different). It also specifies what exception to inject otherwise.
3388 * Note that many of these exceptions have priority over VM exits, so they
3389 * don't have to be checked again here.
3390 */
3391static int nested_vmx_check_permission(struct kvm_vcpu *vcpu)
3392{
3393	if (!to_vmx(vcpu)->nested.vmxon) {
3394		kvm_queue_exception(vcpu, UD_VECTOR);
3395		return 0;
3396	}
3397
3398	if (vmx_get_cpl(vcpu)) {
3399		kvm_inject_gp(vcpu, 0);
3400		return 0;
3401	}
3402
3403	return 1;
3404}
3405
3406static u8 vmx_has_apicv_interrupt(struct kvm_vcpu *vcpu)
3407{
3408	u8 rvi = vmx_get_rvi();
3409	u8 vppr = kvm_lapic_get_reg(vcpu->arch.apic, APIC_PROCPRI);
3410
3411	return ((rvi & 0xf0) > (vppr & 0xf0));
3412}
3413
3414static void load_vmcs12_host_state(struct kvm_vcpu *vcpu,
3415				   struct vmcs12 *vmcs12);
3416
3417/*
3418 * If from_vmentry is false, this is being called from state restore (either RSM
3419 * or KVM_SET_NESTED_STATE).  Otherwise it's called from vmlaunch/vmresume.
3420 *
3421 * Returns:
3422 *	NVMX_VMENTRY_SUCCESS: Entered VMX non-root mode
3423 *	NVMX_VMENTRY_VMFAIL:  Consistency check VMFail
3424 *	NVMX_VMENTRY_VMEXIT:  Consistency check VMExit
3425 *	NVMX_VMENTRY_KVM_INTERNAL_ERROR: KVM internal error
3426 */
3427enum nvmx_vmentry_status nested_vmx_enter_non_root_mode(struct kvm_vcpu *vcpu,
3428							bool from_vmentry)
3429{
3430	struct vcpu_vmx *vmx = to_vmx(vcpu);
3431	struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
3432	enum vm_entry_failure_code entry_failure_code;
3433	bool evaluate_pending_interrupts;
3434	union vmx_exit_reason exit_reason = {
3435		.basic = EXIT_REASON_INVALID_STATE,
3436		.failed_vmentry = 1,
3437	};
3438	u32 failed_index;
3439
3440	trace_kvm_nested_vmenter(kvm_rip_read(vcpu),
3441				 vmx->nested.current_vmptr,
3442				 vmcs12->guest_rip,
3443				 vmcs12->guest_intr_status,
3444				 vmcs12->vm_entry_intr_info_field,
3445				 vmcs12->secondary_vm_exec_control & SECONDARY_EXEC_ENABLE_EPT,
3446				 vmcs12->ept_pointer,
3447				 vmcs12->guest_cr3,
3448				 KVM_ISA_VMX);
3449
3450	kvm_service_local_tlb_flush_requests(vcpu);
3451
3452	evaluate_pending_interrupts = exec_controls_get(vmx) &
3453		(CPU_BASED_INTR_WINDOW_EXITING | CPU_BASED_NMI_WINDOW_EXITING);
3454	if (likely(!evaluate_pending_interrupts) && kvm_vcpu_apicv_active(vcpu))
3455		evaluate_pending_interrupts |= vmx_has_apicv_interrupt(vcpu);
3456	if (!evaluate_pending_interrupts)
3457		evaluate_pending_interrupts |= kvm_apic_has_pending_init_or_sipi(vcpu);
3458
3459	if (!vmx->nested.nested_run_pending ||
3460	    !(vmcs12->vm_entry_controls & VM_ENTRY_LOAD_DEBUG_CONTROLS))
3461		vmx->nested.pre_vmenter_debugctl = vmcs_read64(GUEST_IA32_DEBUGCTL);
3462	if (kvm_mpx_supported() &&
3463	    (!vmx->nested.nested_run_pending ||
3464	     !(vmcs12->vm_entry_controls & VM_ENTRY_LOAD_BNDCFGS)))
3465		vmx->nested.pre_vmenter_bndcfgs = vmcs_read64(GUEST_BNDCFGS);
3466
3467	/*
3468	 * Overwrite vmcs01.GUEST_CR3 with L1's CR3 if EPT is disabled *and*
3469	 * nested early checks are disabled.  In the event of a "late" VM-Fail,
3470	 * i.e. a VM-Fail detected by hardware but not KVM, KVM must unwind its
3471	 * software model to the pre-VMEntry host state.  When EPT is disabled,
3472	 * GUEST_CR3 holds KVM's shadow CR3, not L1's "real" CR3, which causes
3473	 * nested_vmx_restore_host_state() to corrupt vcpu->arch.cr3.  Stuffing
3474	 * vmcs01.GUEST_CR3 results in the unwind naturally setting arch.cr3 to
3475	 * the correct value.  Smashing vmcs01.GUEST_CR3 is safe because nested
3476	 * VM-Exits, and the unwind, reset KVM's MMU, i.e. vmcs01.GUEST_CR3 is
3477	 * guaranteed to be overwritten with a shadow CR3 prior to re-entering
3478	 * L1.  Don't stuff vmcs01.GUEST_CR3 when using nested early checks as
3479	 * KVM modifies vcpu->arch.cr3 if and only if the early hardware checks
3480	 * pass, and early VM-Fails do not reset KVM's MMU, i.e. the VM-Fail
3481	 * path would need to manually save/restore vmcs01.GUEST_CR3.
3482	 */
3483	if (!enable_ept && !nested_early_check)
3484		vmcs_writel(GUEST_CR3, vcpu->arch.cr3);
3485
3486	vmx_switch_vmcs(vcpu, &vmx->nested.vmcs02);
3487
3488	prepare_vmcs02_early(vmx, &vmx->vmcs01, vmcs12);
3489
3490	if (from_vmentry) {
3491		if (unlikely(!nested_get_vmcs12_pages(vcpu))) {
3492			vmx_switch_vmcs(vcpu, &vmx->vmcs01);
3493			return NVMX_VMENTRY_KVM_INTERNAL_ERROR;
3494		}
3495
3496		if (nested_vmx_check_vmentry_hw(vcpu)) {
3497			vmx_switch_vmcs(vcpu, &vmx->vmcs01);
3498			return NVMX_VMENTRY_VMFAIL;
3499		}
3500
3501		if (nested_vmx_check_guest_state(vcpu, vmcs12,
3502						 &entry_failure_code)) {
3503			exit_reason.basic = EXIT_REASON_INVALID_STATE;
3504			vmcs12->exit_qualification = entry_failure_code;
3505			goto vmentry_fail_vmexit;
3506		}
3507	}
3508
3509	enter_guest_mode(vcpu);
3510
3511	if (prepare_vmcs02(vcpu, vmcs12, from_vmentry, &entry_failure_code)) {
3512		exit_reason.basic = EXIT_REASON_INVALID_STATE;
3513		vmcs12->exit_qualification = entry_failure_code;
3514		goto vmentry_fail_vmexit_guest_mode;
3515	}
3516
3517	if (from_vmentry) {
3518		failed_index = nested_vmx_load_msr(vcpu,
3519						   vmcs12->vm_entry_msr_load_addr,
3520						   vmcs12->vm_entry_msr_load_count);
3521		if (failed_index) {
3522			exit_reason.basic = EXIT_REASON_MSR_LOAD_FAIL;
3523			vmcs12->exit_qualification = failed_index;
3524			goto vmentry_fail_vmexit_guest_mode;
3525		}
3526	} else {
3527		/*
3528		 * The MMU is not initialized to point at the right entities yet and
3529		 * "get pages" would need to read data from the guest (i.e. we will
3530		 * need to perform gpa to hpa translation). Request a call
3531		 * to nested_get_vmcs12_pages before the next VM-entry.  The MSRs
3532		 * have already been set at vmentry time and should not be reset.
3533		 */
3534		kvm_make_request(KVM_REQ_GET_NESTED_STATE_PAGES, vcpu);
3535	}
3536
3537	/*
3538	 * Re-evaluate pending events if L1 had a pending IRQ/NMI/INIT/SIPI
3539	 * when it executed VMLAUNCH/VMRESUME, as entering non-root mode can
3540	 * effectively unblock various events, e.g. INIT/SIPI cause VM-Exit
3541	 * unconditionally.
3542	 */
3543	if (unlikely(evaluate_pending_interrupts))
3544		kvm_make_request(KVM_REQ_EVENT, vcpu);
3545
3546	/*
3547	 * Do not start the preemption timer hrtimer until after we know
3548	 * we are successful, so that only nested_vmx_vmexit needs to cancel
3549	 * the timer.
3550	 */
3551	vmx->nested.preemption_timer_expired = false;
3552	if (nested_cpu_has_preemption_timer(vmcs12)) {
3553		u64 timer_value = vmx_calc_preemption_timer_value(vcpu);
3554		vmx_start_preemption_timer(vcpu, timer_value);
3555	}
3556
3557	/*
3558	 * Note no nested_vmx_succeed or nested_vmx_fail here. At this point
3559	 * we are no longer running L1, and VMLAUNCH/VMRESUME has not yet
3560	 * returned as far as L1 is concerned. It will only return (and set
3561	 * the success flag) when L2 exits (see nested_vmx_vmexit()).
3562	 */
3563	return NVMX_VMENTRY_SUCCESS;
3564
3565	/*
3566	 * A failed consistency check that leads to a VMExit during L1's
3567	 * VMEnter to L2 is a variation of a normal VMexit, as explained in
3568	 * 26.7 "VM-entry failures during or after loading guest state".
3569	 */
3570vmentry_fail_vmexit_guest_mode:
3571	if (vmcs12->cpu_based_vm_exec_control & CPU_BASED_USE_TSC_OFFSETTING)
3572		vcpu->arch.tsc_offset -= vmcs12->tsc_offset;
3573	leave_guest_mode(vcpu);
3574
3575vmentry_fail_vmexit:
3576	vmx_switch_vmcs(vcpu, &vmx->vmcs01);
3577
3578	if (!from_vmentry)
3579		return NVMX_VMENTRY_VMEXIT;
3580
3581	load_vmcs12_host_state(vcpu, vmcs12);
3582	vmcs12->vm_exit_reason = exit_reason.full;
3583	if (enable_shadow_vmcs || nested_vmx_is_evmptr12_valid(vmx))
3584		vmx->nested.need_vmcs12_to_shadow_sync = true;
3585	return NVMX_VMENTRY_VMEXIT;
3586}
3587
3588/*
3589 * nested_vmx_run() handles a nested entry, i.e., a VMLAUNCH or VMRESUME on L1
3590 * for running an L2 nested guest.
3591 */
3592static int nested_vmx_run(struct kvm_vcpu *vcpu, bool launch)
3593{
3594	struct vmcs12 *vmcs12;
3595	enum nvmx_vmentry_status status;
3596	struct vcpu_vmx *vmx = to_vmx(vcpu);
3597	u32 interrupt_shadow = vmx_get_interrupt_shadow(vcpu);
3598	enum nested_evmptrld_status evmptrld_status;
3599
3600	if (!nested_vmx_check_permission(vcpu))
3601		return 1;
3602
3603	evmptrld_status = nested_vmx_handle_enlightened_vmptrld(vcpu, launch);
3604	if (evmptrld_status == EVMPTRLD_ERROR) {
3605		kvm_queue_exception(vcpu, UD_VECTOR);
3606		return 1;
3607	}
3608
3609	kvm_pmu_trigger_event(vcpu, kvm_pmu_eventsel.BRANCH_INSTRUCTIONS_RETIRED);
3610
3611	if (CC(evmptrld_status == EVMPTRLD_VMFAIL))
3612		return nested_vmx_failInvalid(vcpu);
3613
3614	if (CC(!nested_vmx_is_evmptr12_valid(vmx) &&
3615	       vmx->nested.current_vmptr == INVALID_GPA))
3616		return nested_vmx_failInvalid(vcpu);
3617
3618	vmcs12 = get_vmcs12(vcpu);
3619
3620	/*
3621	 * Can't VMLAUNCH or VMRESUME a shadow VMCS. Despite the fact
3622	 * that there *is* a valid VMCS pointer, RFLAGS.CF is set
3623	 * rather than RFLAGS.ZF, and no error number is stored to the
3624	 * VM-instruction error field.
3625	 */
3626	if (CC(vmcs12->hdr.shadow_vmcs))
3627		return nested_vmx_failInvalid(vcpu);
3628
3629	if (nested_vmx_is_evmptr12_valid(vmx)) {
3630		struct hv_enlightened_vmcs *evmcs = nested_vmx_evmcs(vmx);
3631
3632		copy_enlightened_to_vmcs12(vmx, evmcs->hv_clean_fields);
3633		/* Enlightened VMCS doesn't have launch state */
3634		vmcs12->launch_state = !launch;
3635	} else if (enable_shadow_vmcs) {
3636		copy_shadow_to_vmcs12(vmx);
3637	}
3638
3639	/*
3640	 * The nested entry process starts with enforcing various prerequisites
3641	 * on vmcs12 as required by the Intel SDM, and act appropriately when
3642	 * they fail: As the SDM explains, some conditions should cause the
3643	 * instruction to fail, while others will cause the instruction to seem
3644	 * to succeed, but return an EXIT_REASON_INVALID_STATE.
3645	 * To speed up the normal (success) code path, we should avoid checking
3646	 * for misconfigurations which will anyway be caught by the processor
3647	 * when using the merged vmcs02.
3648	 */
3649	if (CC(interrupt_shadow & KVM_X86_SHADOW_INT_MOV_SS))
3650		return nested_vmx_fail(vcpu, VMXERR_ENTRY_EVENTS_BLOCKED_BY_MOV_SS);
3651
3652	if (CC(vmcs12->launch_state == launch))
3653		return nested_vmx_fail(vcpu,
3654			launch ? VMXERR_VMLAUNCH_NONCLEAR_VMCS
3655			       : VMXERR_VMRESUME_NONLAUNCHED_VMCS);
3656
3657	if (nested_vmx_check_controls(vcpu, vmcs12))
3658		return nested_vmx_fail(vcpu, VMXERR_ENTRY_INVALID_CONTROL_FIELD);
3659
3660	if (nested_vmx_check_address_space_size(vcpu, vmcs12))
3661		return nested_vmx_fail(vcpu, VMXERR_ENTRY_INVALID_HOST_STATE_FIELD);
3662
3663	if (nested_vmx_check_host_state(vcpu, vmcs12))
3664		return nested_vmx_fail(vcpu, VMXERR_ENTRY_INVALID_HOST_STATE_FIELD);
3665
3666	/*
3667	 * We're finally done with prerequisite checking, and can start with
3668	 * the nested entry.
3669	 */
3670	vmx->nested.nested_run_pending = 1;
3671	vmx->nested.has_preemption_timer_deadline = false;
3672	status = nested_vmx_enter_non_root_mode(vcpu, true);
3673	if (unlikely(status != NVMX_VMENTRY_SUCCESS))
3674		goto vmentry_failed;
3675
3676	/* Emulate processing of posted interrupts on VM-Enter. */
3677	if (nested_cpu_has_posted_intr(vmcs12) &&
3678	    kvm_apic_has_interrupt(vcpu) == vmx->nested.posted_intr_nv) {
3679		vmx->nested.pi_pending = true;
3680		kvm_make_request(KVM_REQ_EVENT, vcpu);
3681		kvm_apic_clear_irr(vcpu, vmx->nested.posted_intr_nv);
3682	}
3683
3684	/* Hide L1D cache contents from the nested guest.  */
3685	vmx->vcpu.arch.l1tf_flush_l1d = true;
3686
3687	/*
3688	 * Must happen outside of nested_vmx_enter_non_root_mode() as it will
3689	 * also be used as part of restoring nVMX state for
3690	 * snapshot restore (migration).
3691	 *
3692	 * In this flow, it is assumed that vmcs12 cache was
3693	 * transferred as part of captured nVMX state and should
3694	 * therefore not be read from guest memory (which may not
3695	 * exist on destination host yet).
3696	 */
3697	nested_cache_shadow_vmcs12(vcpu, vmcs12);
3698
3699	switch (vmcs12->guest_activity_state) {
3700	case GUEST_ACTIVITY_HLT:
3701		/*
3702		 * If we're entering a halted L2 vcpu and the L2 vcpu won't be
3703		 * awakened by event injection or by an NMI-window VM-exit or
3704		 * by an interrupt-window VM-exit, halt the vcpu.
3705		 */
3706		if (!(vmcs12->vm_entry_intr_info_field & INTR_INFO_VALID_MASK) &&
3707		    !nested_cpu_has(vmcs12, CPU_BASED_NMI_WINDOW_EXITING) &&
3708		    !(nested_cpu_has(vmcs12, CPU_BASED_INTR_WINDOW_EXITING) &&
3709		      (vmcs12->guest_rflags & X86_EFLAGS_IF))) {
3710			vmx->nested.nested_run_pending = 0;
3711			return kvm_emulate_halt_noskip(vcpu);
3712		}
3713		break;
3714	case GUEST_ACTIVITY_WAIT_SIPI:
3715		vmx->nested.nested_run_pending = 0;
3716		vcpu->arch.mp_state = KVM_MP_STATE_INIT_RECEIVED;
3717		break;
3718	default:
3719		break;
3720	}
3721
3722	return 1;
3723
3724vmentry_failed:
3725	vmx->nested.nested_run_pending = 0;
3726	if (status == NVMX_VMENTRY_KVM_INTERNAL_ERROR)
3727		return 0;
3728	if (status == NVMX_VMENTRY_VMEXIT)
3729		return 1;
3730	WARN_ON_ONCE(status != NVMX_VMENTRY_VMFAIL);
3731	return nested_vmx_fail(vcpu, VMXERR_ENTRY_INVALID_CONTROL_FIELD);
3732}
3733
3734/*
3735 * On a nested exit from L2 to L1, vmcs12.guest_cr0 might not be up-to-date
3736 * because L2 may have changed some cr0 bits directly (CR0_GUEST_HOST_MASK).
3737 * This function returns the new value we should put in vmcs12.guest_cr0.
3738 * It's not enough to just return the vmcs02 GUEST_CR0. Rather,
3739 *  1. Bits that neither L0 nor L1 trapped, were set directly by L2 and are now
3740 *     available in vmcs02 GUEST_CR0. (Note: It's enough to check that L0
3741 *     didn't trap the bit, because if L1 did, so would L0).
3742 *  2. Bits that L1 asked to trap (and therefore L0 also did) could not have
3743 *     been modified by L2, and L1 knows it. So just leave the old value of
3744 *     the bit from vmcs12.guest_cr0. Note that the bit from vmcs02 GUEST_CR0
3745 *     isn't relevant, because if L0 traps this bit it can set it to anything.
3746 *  3. Bits that L1 didn't trap, but L0 did. L1 believes the guest could have
3747 *     changed these bits, and therefore they need to be updated, but L0
3748 *     didn't necessarily allow them to be changed in GUEST_CR0 - and rather
3749 *     put them in vmcs02 CR0_READ_SHADOW. So take these bits from there.
3750 */
3751static inline unsigned long
3752vmcs12_guest_cr0(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12)
3753{
3754	return
3755	/*1*/	(vmcs_readl(GUEST_CR0) & vcpu->arch.cr0_guest_owned_bits) |
3756	/*2*/	(vmcs12->guest_cr0 & vmcs12->cr0_guest_host_mask) |
3757	/*3*/	(vmcs_readl(CR0_READ_SHADOW) & ~(vmcs12->cr0_guest_host_mask |
3758			vcpu->arch.cr0_guest_owned_bits));
3759}
3760
3761static inline unsigned long
3762vmcs12_guest_cr4(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12)
3763{
3764	return
3765	/*1*/	(vmcs_readl(GUEST_CR4) & vcpu->arch.cr4_guest_owned_bits) |
3766	/*2*/	(vmcs12->guest_cr4 & vmcs12->cr4_guest_host_mask) |
3767	/*3*/	(vmcs_readl(CR4_READ_SHADOW) & ~(vmcs12->cr4_guest_host_mask |
3768			vcpu->arch.cr4_guest_owned_bits));
3769}
3770
3771static void vmcs12_save_pending_event(struct kvm_vcpu *vcpu,
3772				      struct vmcs12 *vmcs12,
3773				      u32 vm_exit_reason, u32 exit_intr_info)
3774{
3775	u32 idt_vectoring;
3776	unsigned int nr;
3777
3778	/*
3779	 * Per the SDM, VM-Exits due to double and triple faults are never
3780	 * considered to occur during event delivery, even if the double/triple
3781	 * fault is the result of an escalating vectoring issue.
3782	 *
3783	 * Note, the SDM qualifies the double fault behavior with "The original
3784	 * event results in a double-fault exception".  It's unclear why the
3785	 * qualification exists since exits due to double fault can occur only
3786	 * while vectoring a different exception (injected events are never
3787	 * subject to interception), i.e. there's _always_ an original event.
3788	 *
3789	 * The SDM also uses NMI as a confusing example for the "original event
3790	 * causes the VM exit directly" clause.  NMI isn't special in any way,
3791	 * the same rule applies to all events that cause an exit directly.
3792	 * NMI is an odd choice for the example because NMIs can only occur on
3793	 * instruction boundaries, i.e. they _can't_ occur during vectoring.
3794	 */
3795	if ((u16)vm_exit_reason == EXIT_REASON_TRIPLE_FAULT ||
3796	    ((u16)vm_exit_reason == EXIT_REASON_EXCEPTION_NMI &&
3797	     is_double_fault(exit_intr_info))) {
3798		vmcs12->idt_vectoring_info_field = 0;
3799	} else if (vcpu->arch.exception.injected) {
3800		nr = vcpu->arch.exception.vector;
3801		idt_vectoring = nr | VECTORING_INFO_VALID_MASK;
3802
3803		if (kvm_exception_is_soft(nr)) {
3804			vmcs12->vm_exit_instruction_len =
3805				vcpu->arch.event_exit_inst_len;
3806			idt_vectoring |= INTR_TYPE_SOFT_EXCEPTION;
3807		} else
3808			idt_vectoring |= INTR_TYPE_HARD_EXCEPTION;
3809
3810		if (vcpu->arch.exception.has_error_code) {
3811			idt_vectoring |= VECTORING_INFO_DELIVER_CODE_MASK;
3812			vmcs12->idt_vectoring_error_code =
3813				vcpu->arch.exception.error_code;
3814		}
3815
3816		vmcs12->idt_vectoring_info_field = idt_vectoring;
3817	} else if (vcpu->arch.nmi_injected) {
3818		vmcs12->idt_vectoring_info_field =
3819			INTR_TYPE_NMI_INTR | INTR_INFO_VALID_MASK | NMI_VECTOR;
3820	} else if (vcpu->arch.interrupt.injected) {
3821		nr = vcpu->arch.interrupt.nr;
3822		idt_vectoring = nr | VECTORING_INFO_VALID_MASK;
3823
3824		if (vcpu->arch.interrupt.soft) {
3825			idt_vectoring |= INTR_TYPE_SOFT_INTR;
3826			vmcs12->vm_entry_instruction_len =
3827				vcpu->arch.event_exit_inst_len;
3828		} else
3829			idt_vectoring |= INTR_TYPE_EXT_INTR;
3830
3831		vmcs12->idt_vectoring_info_field = idt_vectoring;
3832	} else {
3833		vmcs12->idt_vectoring_info_field = 0;
3834	}
3835}
3836
3837
3838void nested_mark_vmcs12_pages_dirty(struct kvm_vcpu *vcpu)
3839{
3840	struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
3841	gfn_t gfn;
3842
3843	/*
3844	 * Don't need to mark the APIC access page dirty; it is never
3845	 * written to by the CPU during APIC virtualization.
3846	 */
3847
3848	if (nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW)) {
3849		gfn = vmcs12->virtual_apic_page_addr >> PAGE_SHIFT;
3850		kvm_vcpu_mark_page_dirty(vcpu, gfn);
3851	}
3852
3853	if (nested_cpu_has_posted_intr(vmcs12)) {
3854		gfn = vmcs12->posted_intr_desc_addr >> PAGE_SHIFT;
3855		kvm_vcpu_mark_page_dirty(vcpu, gfn);
3856	}
3857}
3858
3859static int vmx_complete_nested_posted_interrupt(struct kvm_vcpu *vcpu)
3860{
3861	struct vcpu_vmx *vmx = to_vmx(vcpu);
3862	int max_irr;
3863	void *vapic_page;
3864	u16 status;
3865
3866	if (!vmx->nested.pi_pending)
3867		return 0;
3868
3869	if (!vmx->nested.pi_desc)
3870		goto mmio_needed;
3871
3872	vmx->nested.pi_pending = false;
3873
3874	if (!pi_test_and_clear_on(vmx->nested.pi_desc))
3875		return 0;
3876
3877	max_irr = find_last_bit((unsigned long *)vmx->nested.pi_desc->pir, 256);
3878	if (max_irr != 256) {
3879		vapic_page = vmx->nested.virtual_apic_map.hva;
3880		if (!vapic_page)
3881			goto mmio_needed;
3882
3883		__kvm_apic_update_irr(vmx->nested.pi_desc->pir,
3884			vapic_page, &max_irr);
3885		status = vmcs_read16(GUEST_INTR_STATUS);
3886		if ((u8)max_irr > ((u8)status & 0xff)) {
3887			status &= ~0xff;
3888			status |= (u8)max_irr;
3889			vmcs_write16(GUEST_INTR_STATUS, status);
3890		}
3891	}
3892
3893	nested_mark_vmcs12_pages_dirty(vcpu);
3894	return 0;
3895
3896mmio_needed:
3897	kvm_handle_memory_failure(vcpu, X86EMUL_IO_NEEDED, NULL);
3898	return -ENXIO;
3899}
3900
3901static void nested_vmx_inject_exception_vmexit(struct kvm_vcpu *vcpu)
3902{
3903	struct kvm_queued_exception *ex = &vcpu->arch.exception_vmexit;
3904	u32 intr_info = ex->vector | INTR_INFO_VALID_MASK;
3905	struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
3906	unsigned long exit_qual;
3907
3908	if (ex->has_payload) {
3909		exit_qual = ex->payload;
3910	} else if (ex->vector == PF_VECTOR) {
3911		exit_qual = vcpu->arch.cr2;
3912	} else if (ex->vector == DB_VECTOR) {
3913		exit_qual = vcpu->arch.dr6;
3914		exit_qual &= ~DR6_BT;
3915		exit_qual ^= DR6_ACTIVE_LOW;
3916	} else {
3917		exit_qual = 0;
3918	}
3919
3920	/*
3921	 * Unlike AMD's Paged Real Mode, which reports an error code on #PF
3922	 * VM-Exits even if the CPU is in Real Mode, Intel VMX never sets the
3923	 * "has error code" flags on VM-Exit if the CPU is in Real Mode.
3924	 */
3925	if (ex->has_error_code && is_protmode(vcpu)) {
3926		/*
3927		 * Intel CPUs do not generate error codes with bits 31:16 set,
3928		 * and more importantly VMX disallows setting bits 31:16 in the
3929		 * injected error code for VM-Entry.  Drop the bits to mimic
3930		 * hardware and avoid inducing failure on nested VM-Entry if L1
3931		 * chooses to inject the exception back to L2.  AMD CPUs _do_
3932		 * generate "full" 32-bit error codes, so KVM allows userspace
3933		 * to inject exception error codes with bits 31:16 set.
3934		 */
3935		vmcs12->vm_exit_intr_error_code = (u16)ex->error_code;
3936		intr_info |= INTR_INFO_DELIVER_CODE_MASK;
3937	}
3938
3939	if (kvm_exception_is_soft(ex->vector))
3940		intr_info |= INTR_TYPE_SOFT_EXCEPTION;
3941	else
3942		intr_info |= INTR_TYPE_HARD_EXCEPTION;
3943
3944	if (!(vmcs12->idt_vectoring_info_field & VECTORING_INFO_VALID_MASK) &&
3945	    vmx_get_nmi_mask(vcpu))
3946		intr_info |= INTR_INFO_UNBLOCK_NMI;
3947
3948	nested_vmx_vmexit(vcpu, EXIT_REASON_EXCEPTION_NMI, intr_info, exit_qual);
3949}
3950
3951/*
3952 * Returns true if a debug trap is (likely) pending delivery.  Infer the class
3953 * of a #DB (trap-like vs. fault-like) from the exception payload (to-be-DR6).
3954 * Using the payload is flawed because code breakpoints (fault-like) and data
3955 * breakpoints (trap-like) set the same bits in DR6 (breakpoint detected), i.e.
3956 * this will return false positives if a to-be-injected code breakpoint #DB is
3957 * pending (from KVM's perspective, but not "pending" across an instruction
3958 * boundary).  ICEBP, a.k.a. INT1, is also not reflected here even though it
3959 * too is trap-like.
3960 *
3961 * KVM "works" despite these flaws as ICEBP isn't currently supported by the
3962 * emulator, Monitor Trap Flag is not marked pending on intercepted #DBs (the
3963 * #DB has already happened), and MTF isn't marked pending on code breakpoints
3964 * from the emulator (because such #DBs are fault-like and thus don't trigger
3965 * actions that fire on instruction retire).
3966 */
3967static unsigned long vmx_get_pending_dbg_trap(struct kvm_queued_exception *ex)
3968{
3969	if (!ex->pending || ex->vector != DB_VECTOR)
3970		return 0;
3971
3972	/* General Detect #DBs are always fault-like. */
3973	return ex->payload & ~DR6_BD;
3974}
3975
3976/*
3977 * Returns true if there's a pending #DB exception that is lower priority than
3978 * a pending Monitor Trap Flag VM-Exit.  TSS T-flag #DBs are not emulated by
3979 * KVM, but could theoretically be injected by userspace.  Note, this code is
3980 * imperfect, see above.
3981 */
3982static bool vmx_is_low_priority_db_trap(struct kvm_queued_exception *ex)
3983{
3984	return vmx_get_pending_dbg_trap(ex) & ~DR6_BT;
3985}
3986
3987/*
3988 * Certain VM-exits set the 'pending debug exceptions' field to indicate a
3989 * recognized #DB (data or single-step) that has yet to be delivered. Since KVM
3990 * represents these debug traps with a payload that is said to be compatible
3991 * with the 'pending debug exceptions' field, write the payload to the VMCS
3992 * field if a VM-exit is delivered before the debug trap.
3993 */
3994static void nested_vmx_update_pending_dbg(struct kvm_vcpu *vcpu)
3995{
3996	unsigned long pending_dbg;
3997
3998	pending_dbg = vmx_get_pending_dbg_trap(&vcpu->arch.exception);
3999	if (pending_dbg)
4000		vmcs_writel(GUEST_PENDING_DBG_EXCEPTIONS, pending_dbg);
4001}
4002
4003static bool nested_vmx_preemption_timer_pending(struct kvm_vcpu *vcpu)
4004{
4005	return nested_cpu_has_preemption_timer(get_vmcs12(vcpu)) &&
4006	       to_vmx(vcpu)->nested.preemption_timer_expired;
4007}
4008
4009static bool vmx_has_nested_events(struct kvm_vcpu *vcpu)
4010{
4011	return nested_vmx_preemption_timer_pending(vcpu) ||
4012	       to_vmx(vcpu)->nested.mtf_pending;
4013}
4014
4015/*
4016 * Per the Intel SDM's table "Priority Among Concurrent Events", with minor
4017 * edits to fill in missing examples, e.g. #DB due to split-lock accesses,
4018 * and less minor edits to splice in the priority of VMX Non-Root specific
4019 * events, e.g. MTF and NMI/INTR-window exiting.
4020 *
4021 * 1 Hardware Reset and Machine Checks
4022 *	- RESET
4023 *	- Machine Check
4024 *
4025 * 2 Trap on Task Switch
4026 *	- T flag in TSS is set (on task switch)
4027 *
4028 * 3 External Hardware Interventions
4029 *	- FLUSH
4030 *	- STOPCLK
4031 *	- SMI
4032 *	- INIT
4033 *
4034 * 3.5 Monitor Trap Flag (MTF) VM-exit[1]
4035 *
4036 * 4 Traps on Previous Instruction
4037 *	- Breakpoints
4038 *	- Trap-class Debug Exceptions (#DB due to TF flag set, data/I-O
4039 *	  breakpoint, or #DB due to a split-lock access)
4040 *
4041 * 4.3	VMX-preemption timer expired VM-exit
4042 *
4043 * 4.6	NMI-window exiting VM-exit[2]
4044 *
4045 * 5 Nonmaskable Interrupts (NMI)
4046 *
4047 * 5.5 Interrupt-window exiting VM-exit and Virtual-interrupt delivery
4048 *
4049 * 6 Maskable Hardware Interrupts
4050 *
4051 * 7 Code Breakpoint Fault
4052 *
4053 * 8 Faults from Fetching Next Instruction
4054 *	- Code-Segment Limit Violation
4055 *	- Code Page Fault
4056 *	- Control protection exception (missing ENDBRANCH at target of indirect
4057 *					call or jump)
4058 *
4059 * 9 Faults from Decoding Next Instruction
4060 *	- Instruction length > 15 bytes
4061 *	- Invalid Opcode
4062 *	- Coprocessor Not Available
4063 *
4064 *10 Faults on Executing Instruction
4065 *	- Overflow
4066 *	- Bound error
4067 *	- Invalid TSS
4068 *	- Segment Not Present
4069 *	- Stack fault
4070 *	- General Protection
4071 *	- Data Page Fault
4072 *	- Alignment Check
4073 *	- x86 FPU Floating-point exception
4074 *	- SIMD floating-point exception
4075 *	- Virtualization exception
4076 *	- Control protection exception
4077 *
4078 * [1] Per the "Monitor Trap Flag" section: System-management interrupts (SMIs),
4079 *     INIT signals, and higher priority events take priority over MTF VM exits.
4080 *     MTF VM exits take priority over debug-trap exceptions and lower priority
4081 *     events.
4082 *
4083 * [2] Debug-trap exceptions and higher priority events take priority over VM exits
4084 *     caused by the VMX-preemption timer.  VM exits caused by the VMX-preemption
4085 *     timer take priority over VM exits caused by the "NMI-window exiting"
4086 *     VM-execution control and lower priority events.
4087 *
4088 * [3] Debug-trap exceptions and higher priority events take priority over VM exits
4089 *     caused by "NMI-window exiting".  VM exits caused by this control take
4090 *     priority over non-maskable interrupts (NMIs) and lower priority events.
4091 *
4092 * [4] Virtual-interrupt delivery has the same priority as that of VM exits due to
4093 *     the 1-setting of the "interrupt-window exiting" VM-execution control.  Thus,
4094 *     non-maskable interrupts (NMIs) and higher priority events take priority over
4095 *     delivery of a virtual interrupt; delivery of a virtual interrupt takes
4096 *     priority over external interrupts and lower priority events.
4097 */
4098static int vmx_check_nested_events(struct kvm_vcpu *vcpu)
4099{
4100	struct kvm_lapic *apic = vcpu->arch.apic;
4101	struct vcpu_vmx *vmx = to_vmx(vcpu);
4102	/*
4103	 * Only a pending nested run blocks a pending exception.  If there is a
4104	 * previously injected event, the pending exception occurred while said
4105	 * event was being delivered and thus needs to be handled.
4106	 */
4107	bool block_nested_exceptions = vmx->nested.nested_run_pending;
4108	/*
4109	 * New events (not exceptions) are only recognized at instruction
4110	 * boundaries.  If an event needs reinjection, then KVM is handling a
4111	 * VM-Exit that occurred _during_ instruction execution; new events are
4112	 * blocked until the instruction completes.
4113	 */
4114	bool block_nested_events = block_nested_exceptions ||
4115				   kvm_event_needs_reinjection(vcpu);
4116
4117	if (lapic_in_kernel(vcpu) &&
4118		test_bit(KVM_APIC_INIT, &apic->pending_events)) {
4119		if (block_nested_events)
4120			return -EBUSY;
4121		nested_vmx_update_pending_dbg(vcpu);
4122		clear_bit(KVM_APIC_INIT, &apic->pending_events);
4123		if (vcpu->arch.mp_state != KVM_MP_STATE_INIT_RECEIVED)
4124			nested_vmx_vmexit(vcpu, EXIT_REASON_INIT_SIGNAL, 0, 0);
4125
4126		/* MTF is discarded if the vCPU is in WFS. */
4127		vmx->nested.mtf_pending = false;
4128		return 0;
4129	}
4130
4131	if (lapic_in_kernel(vcpu) &&
4132	    test_bit(KVM_APIC_SIPI, &apic->pending_events)) {
4133		if (block_nested_events)
4134			return -EBUSY;
4135
4136		clear_bit(KVM_APIC_SIPI, &apic->pending_events);
4137		if (vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED) {
4138			nested_vmx_vmexit(vcpu, EXIT_REASON_SIPI_SIGNAL, 0,
4139						apic->sipi_vector & 0xFFUL);
4140			return 0;
4141		}
4142		/* Fallthrough, the SIPI is completely ignored. */
4143	}
4144
4145	/*
4146	 * Process exceptions that are higher priority than Monitor Trap Flag:
4147	 * fault-like exceptions, TSS T flag #DB (not emulated by KVM, but
4148	 * could theoretically come in from userspace), and ICEBP (INT1).
4149	 *
4150	 * TODO: SMIs have higher priority than MTF and trap-like #DBs (except
4151	 * for TSS T flag #DBs).  KVM also doesn't save/restore pending MTF
4152	 * across SMI/RSM as it should; that needs to be addressed in order to
4153	 * prioritize SMI over MTF and trap-like #DBs.
4154	 */
4155	if (vcpu->arch.exception_vmexit.pending &&
4156	    !vmx_is_low_priority_db_trap(&vcpu->arch.exception_vmexit)) {
4157		if (block_nested_exceptions)
4158			return -EBUSY;
4159
4160		nested_vmx_inject_exception_vmexit(vcpu);
4161		return 0;
4162	}
4163
4164	if (vcpu->arch.exception.pending &&
4165	    !vmx_is_low_priority_db_trap(&vcpu->arch.exception)) {
4166		if (block_nested_exceptions)
4167			return -EBUSY;
4168		goto no_vmexit;
4169	}
4170
4171	if (vmx->nested.mtf_pending) {
4172		if (block_nested_events)
4173			return -EBUSY;
4174		nested_vmx_update_pending_dbg(vcpu);
4175		nested_vmx_vmexit(vcpu, EXIT_REASON_MONITOR_TRAP_FLAG, 0, 0);
4176		return 0;
4177	}
4178
4179	if (vcpu->arch.exception_vmexit.pending) {
4180		if (block_nested_exceptions)
4181			return -EBUSY;
4182
4183		nested_vmx_inject_exception_vmexit(vcpu);
4184		return 0;
4185	}
4186
4187	if (vcpu->arch.exception.pending) {
4188		if (block_nested_exceptions)
4189			return -EBUSY;
4190		goto no_vmexit;
4191	}
4192
4193	if (nested_vmx_preemption_timer_pending(vcpu)) {
4194		if (block_nested_events)
4195			return -EBUSY;
4196		nested_vmx_vmexit(vcpu, EXIT_REASON_PREEMPTION_TIMER, 0, 0);
4197		return 0;
4198	}
4199
4200	if (vcpu->arch.smi_pending && !is_smm(vcpu)) {
4201		if (block_nested_events)
4202			return -EBUSY;
4203		goto no_vmexit;
4204	}
4205
4206	if (vcpu->arch.nmi_pending && !vmx_nmi_blocked(vcpu)) {
4207		if (block_nested_events)
4208			return -EBUSY;
4209		if (!nested_exit_on_nmi(vcpu))
4210			goto no_vmexit;
4211
4212		nested_vmx_vmexit(vcpu, EXIT_REASON_EXCEPTION_NMI,
4213				  NMI_VECTOR | INTR_TYPE_NMI_INTR |
4214				  INTR_INFO_VALID_MASK, 0);
4215		/*
4216		 * The NMI-triggered VM exit counts as injection:
4217		 * clear this one and block further NMIs.
4218		 */
4219		vcpu->arch.nmi_pending = 0;
4220		vmx_set_nmi_mask(vcpu, true);
4221		return 0;
4222	}
4223
4224	if (kvm_cpu_has_interrupt(vcpu) && !vmx_interrupt_blocked(vcpu)) {
4225		if (block_nested_events)
4226			return -EBUSY;
4227		if (!nested_exit_on_intr(vcpu))
4228			goto no_vmexit;
4229		nested_vmx_vmexit(vcpu, EXIT_REASON_EXTERNAL_INTERRUPT, 0, 0);
4230		return 0;
4231	}
4232
4233no_vmexit:
4234	return vmx_complete_nested_posted_interrupt(vcpu);
4235}
4236
4237static u32 vmx_get_preemption_timer_value(struct kvm_vcpu *vcpu)
4238{
4239	ktime_t remaining =
4240		hrtimer_get_remaining(&to_vmx(vcpu)->nested.preemption_timer);
4241	u64 value;
4242
4243	if (ktime_to_ns(remaining) <= 0)
4244		return 0;
4245
4246	value = ktime_to_ns(remaining) * vcpu->arch.virtual_tsc_khz;
4247	do_div(value, 1000000);
4248	return value >> VMX_MISC_EMULATED_PREEMPTION_TIMER_RATE;
4249}
4250
4251static bool is_vmcs12_ext_field(unsigned long field)
4252{
4253	switch (field) {
4254	case GUEST_ES_SELECTOR:
4255	case GUEST_CS_SELECTOR:
4256	case GUEST_SS_SELECTOR:
4257	case GUEST_DS_SELECTOR:
4258	case GUEST_FS_SELECTOR:
4259	case GUEST_GS_SELECTOR:
4260	case GUEST_LDTR_SELECTOR:
4261	case GUEST_TR_SELECTOR:
4262	case GUEST_ES_LIMIT:
4263	case GUEST_CS_LIMIT:
4264	case GUEST_SS_LIMIT:
4265	case GUEST_DS_LIMIT:
4266	case GUEST_FS_LIMIT:
4267	case GUEST_GS_LIMIT:
4268	case GUEST_LDTR_LIMIT:
4269	case GUEST_TR_LIMIT:
4270	case GUEST_GDTR_LIMIT:
4271	case GUEST_IDTR_LIMIT:
4272	case GUEST_ES_AR_BYTES:
4273	case GUEST_DS_AR_BYTES:
4274	case GUEST_FS_AR_BYTES:
4275	case GUEST_GS_AR_BYTES:
4276	case GUEST_LDTR_AR_BYTES:
4277	case GUEST_TR_AR_BYTES:
4278	case GUEST_ES_BASE:
4279	case GUEST_CS_BASE:
4280	case GUEST_SS_BASE:
4281	case GUEST_DS_BASE:
4282	case GUEST_FS_BASE:
4283	case GUEST_GS_BASE:
4284	case GUEST_LDTR_BASE:
4285	case GUEST_TR_BASE:
4286	case GUEST_GDTR_BASE:
4287	case GUEST_IDTR_BASE:
4288	case GUEST_PENDING_DBG_EXCEPTIONS:
4289	case GUEST_BNDCFGS:
4290		return true;
4291	default:
4292		break;
4293	}
4294
4295	return false;
4296}
4297
4298static void sync_vmcs02_to_vmcs12_rare(struct kvm_vcpu *vcpu,
4299				       struct vmcs12 *vmcs12)
4300{
4301	struct vcpu_vmx *vmx = to_vmx(vcpu);
4302
4303	vmcs12->guest_es_selector = vmcs_read16(GUEST_ES_SELECTOR);
4304	vmcs12->guest_cs_selector = vmcs_read16(GUEST_CS_SELECTOR);
4305	vmcs12->guest_ss_selector = vmcs_read16(GUEST_SS_SELECTOR);
4306	vmcs12->guest_ds_selector = vmcs_read16(GUEST_DS_SELECTOR);
4307	vmcs12->guest_fs_selector = vmcs_read16(GUEST_FS_SELECTOR);
4308	vmcs12->guest_gs_selector = vmcs_read16(GUEST_GS_SELECTOR);
4309	vmcs12->guest_ldtr_selector = vmcs_read16(GUEST_LDTR_SELECTOR);
4310	vmcs12->guest_tr_selector = vmcs_read16(GUEST_TR_SELECTOR);
4311	vmcs12->guest_es_limit = vmcs_read32(GUEST_ES_LIMIT);
4312	vmcs12->guest_cs_limit = vmcs_read32(GUEST_CS_LIMIT);
4313	vmcs12->guest_ss_limit = vmcs_read32(GUEST_SS_LIMIT);
4314	vmcs12->guest_ds_limit = vmcs_read32(GUEST_DS_LIMIT);
4315	vmcs12->guest_fs_limit = vmcs_read32(GUEST_FS_LIMIT);
4316	vmcs12->guest_gs_limit = vmcs_read32(GUEST_GS_LIMIT);
4317	vmcs12->guest_ldtr_limit = vmcs_read32(GUEST_LDTR_LIMIT);
4318	vmcs12->guest_tr_limit = vmcs_read32(GUEST_TR_LIMIT);
4319	vmcs12->guest_gdtr_limit = vmcs_read32(GUEST_GDTR_LIMIT);
4320	vmcs12->guest_idtr_limit = vmcs_read32(GUEST_IDTR_LIMIT);
4321	vmcs12->guest_es_ar_bytes = vmcs_read32(GUEST_ES_AR_BYTES);
4322	vmcs12->guest_ds_ar_bytes = vmcs_read32(GUEST_DS_AR_BYTES);
4323	vmcs12->guest_fs_ar_bytes = vmcs_read32(GUEST_FS_AR_BYTES);
4324	vmcs12->guest_gs_ar_bytes = vmcs_read32(GUEST_GS_AR_BYTES);
4325	vmcs12->guest_ldtr_ar_bytes = vmcs_read32(GUEST_LDTR_AR_BYTES);
4326	vmcs12->guest_tr_ar_bytes = vmcs_read32(GUEST_TR_AR_BYTES);
4327	vmcs12->guest_es_base = vmcs_readl(GUEST_ES_BASE);
4328	vmcs12->guest_cs_base = vmcs_readl(GUEST_CS_BASE);
4329	vmcs12->guest_ss_base = vmcs_readl(GUEST_SS_BASE);
4330	vmcs12->guest_ds_base = vmcs_readl(GUEST_DS_BASE);
4331	vmcs12->guest_fs_base = vmcs_readl(GUEST_FS_BASE);
4332	vmcs12->guest_gs_base = vmcs_readl(GUEST_GS_BASE);
4333	vmcs12->guest_ldtr_base = vmcs_readl(GUEST_LDTR_BASE);
4334	vmcs12->guest_tr_base = vmcs_readl(GUEST_TR_BASE);
4335	vmcs12->guest_gdtr_base = vmcs_readl(GUEST_GDTR_BASE);
4336	vmcs12->guest_idtr_base = vmcs_readl(GUEST_IDTR_BASE);
4337	vmcs12->guest_pending_dbg_exceptions =
4338		vmcs_readl(GUEST_PENDING_DBG_EXCEPTIONS);
4339
4340	vmx->nested.need_sync_vmcs02_to_vmcs12_rare = false;
4341}
4342
4343static void copy_vmcs02_to_vmcs12_rare(struct kvm_vcpu *vcpu,
4344				       struct vmcs12 *vmcs12)
4345{
4346	struct vcpu_vmx *vmx = to_vmx(vcpu);
4347	int cpu;
4348
4349	if (!vmx->nested.need_sync_vmcs02_to_vmcs12_rare)
4350		return;
4351
4352
4353	WARN_ON_ONCE(vmx->loaded_vmcs != &vmx->vmcs01);
4354
4355	cpu = get_cpu();
4356	vmx->loaded_vmcs = &vmx->nested.vmcs02;
4357	vmx_vcpu_load_vmcs(vcpu, cpu, &vmx->vmcs01);
4358
4359	sync_vmcs02_to_vmcs12_rare(vcpu, vmcs12);
4360
4361	vmx->loaded_vmcs = &vmx->vmcs01;
4362	vmx_vcpu_load_vmcs(vcpu, cpu, &vmx->nested.vmcs02);
4363	put_cpu();
4364}
4365
4366/*
4367 * Update the guest state fields of vmcs12 to reflect changes that
4368 * occurred while L2 was running. (The "IA-32e mode guest" bit of the
4369 * VM-entry controls is also updated, since this is really a guest
4370 * state bit.)
4371 */
4372static void sync_vmcs02_to_vmcs12(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12)
4373{
4374	struct vcpu_vmx *vmx = to_vmx(vcpu);
4375
4376	if (nested_vmx_is_evmptr12_valid(vmx))
4377		sync_vmcs02_to_vmcs12_rare(vcpu, vmcs12);
4378
4379	vmx->nested.need_sync_vmcs02_to_vmcs12_rare =
4380		!nested_vmx_is_evmptr12_valid(vmx);
4381
4382	vmcs12->guest_cr0 = vmcs12_guest_cr0(vcpu, vmcs12);
4383	vmcs12->guest_cr4 = vmcs12_guest_cr4(vcpu, vmcs12);
4384
4385	vmcs12->guest_rsp = kvm_rsp_read(vcpu);
4386	vmcs12->guest_rip = kvm_rip_read(vcpu);
4387	vmcs12->guest_rflags = vmcs_readl(GUEST_RFLAGS);
4388
4389	vmcs12->guest_cs_ar_bytes = vmcs_read32(GUEST_CS_AR_BYTES);
4390	vmcs12->guest_ss_ar_bytes = vmcs_read32(GUEST_SS_AR_BYTES);
4391
4392	vmcs12->guest_interruptibility_info =
4393		vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
4394
4395	if (vcpu->arch.mp_state == KVM_MP_STATE_HALTED)
4396		vmcs12->guest_activity_state = GUEST_ACTIVITY_HLT;
4397	else if (vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED)
4398		vmcs12->guest_activity_state = GUEST_ACTIVITY_WAIT_SIPI;
4399	else
4400		vmcs12->guest_activity_state = GUEST_ACTIVITY_ACTIVE;
4401
4402	if (nested_cpu_has_preemption_timer(vmcs12) &&
4403	    vmcs12->vm_exit_controls & VM_EXIT_SAVE_VMX_PREEMPTION_TIMER &&
4404	    !vmx->nested.nested_run_pending)
4405		vmcs12->vmx_preemption_timer_value =
4406			vmx_get_preemption_timer_value(vcpu);
4407
4408	/*
4409	 * In some cases (usually, nested EPT), L2 is allowed to change its
4410	 * own CR3 without exiting. If it has changed it, we must keep it.
4411	 * Of course, if L0 is using shadow page tables, GUEST_CR3 was defined
4412	 * by L0, not L1 or L2, so we mustn't unconditionally copy it to vmcs12.
4413	 *
4414	 * Additionally, restore L2's PDPTR to vmcs12.
4415	 */
4416	if (enable_ept) {
4417		vmcs12->guest_cr3 = vmcs_readl(GUEST_CR3);
4418		if (nested_cpu_has_ept(vmcs12) && is_pae_paging(vcpu)) {
4419			vmcs12->guest_pdptr0 = vmcs_read64(GUEST_PDPTR0);
4420			vmcs12->guest_pdptr1 = vmcs_read64(GUEST_PDPTR1);
4421			vmcs12->guest_pdptr2 = vmcs_read64(GUEST_PDPTR2);
4422			vmcs12->guest_pdptr3 = vmcs_read64(GUEST_PDPTR3);
4423		}
4424	}
4425
4426	vmcs12->guest_linear_address = vmcs_readl(GUEST_LINEAR_ADDRESS);
4427
4428	if (nested_cpu_has_vid(vmcs12))
4429		vmcs12->guest_intr_status = vmcs_read16(GUEST_INTR_STATUS);
4430
4431	vmcs12->vm_entry_controls =
4432		(vmcs12->vm_entry_controls & ~VM_ENTRY_IA32E_MODE) |
4433		(vm_entry_controls_get(to_vmx(vcpu)) & VM_ENTRY_IA32E_MODE);
4434
4435	if (vmcs12->vm_exit_controls & VM_EXIT_SAVE_DEBUG_CONTROLS)
4436		vmcs12->guest_dr7 = vcpu->arch.dr7;
4437
4438	if (vmcs12->vm_exit_controls & VM_EXIT_SAVE_IA32_EFER)
4439		vmcs12->guest_ia32_efer = vcpu->arch.efer;
4440}
4441
4442/*
4443 * prepare_vmcs12 is part of what we need to do when the nested L2 guest exits
4444 * and we want to prepare to run its L1 parent. L1 keeps a vmcs for L2 (vmcs12),
4445 * and this function updates it to reflect the changes to the guest state while
4446 * L2 was running (and perhaps made some exits which were handled directly by L0
4447 * without going back to L1), and to reflect the exit reason.
4448 * Note that we do not have to copy here all VMCS fields, just those that
4449 * could have changed by the L2 guest or the exit - i.e., the guest-state and
4450 * exit-information fields only. Other fields are modified by L1 with VMWRITE,
4451 * which already writes to vmcs12 directly.
4452 */
4453static void prepare_vmcs12(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12,
4454			   u32 vm_exit_reason, u32 exit_intr_info,
4455			   unsigned long exit_qualification)
4456{
4457	/* update exit information fields: */
4458	vmcs12->vm_exit_reason = vm_exit_reason;
4459	if (to_vmx(vcpu)->exit_reason.enclave_mode)
4460		vmcs12->vm_exit_reason |= VMX_EXIT_REASONS_SGX_ENCLAVE_MODE;
4461	vmcs12->exit_qualification = exit_qualification;
4462
4463	/*
4464	 * On VM-Exit due to a failed VM-Entry, the VMCS isn't marked launched
4465	 * and only EXIT_REASON and EXIT_QUALIFICATION are updated, all other
4466	 * exit info fields are unmodified.
4467	 */
4468	if (!(vmcs12->vm_exit_reason & VMX_EXIT_REASONS_FAILED_VMENTRY)) {
4469		vmcs12->launch_state = 1;
4470
4471		/* vm_entry_intr_info_field is cleared on exit. Emulate this
4472		 * instead of reading the real value. */
4473		vmcs12->vm_entry_intr_info_field &= ~INTR_INFO_VALID_MASK;
4474
4475		/*
4476		 * Transfer the event that L0 or L1 may wanted to inject into
4477		 * L2 to IDT_VECTORING_INFO_FIELD.
4478		 */
4479		vmcs12_save_pending_event(vcpu, vmcs12,
4480					  vm_exit_reason, exit_intr_info);
4481
4482		vmcs12->vm_exit_intr_info = exit_intr_info;
4483		vmcs12->vm_exit_instruction_len = vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
4484		vmcs12->vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
4485
4486		/*
4487		 * According to spec, there's no need to store the guest's
4488		 * MSRs if the exit is due to a VM-entry failure that occurs
4489		 * during or after loading the guest state. Since this exit
4490		 * does not fall in that category, we need to save the MSRs.
4491		 */
4492		if (nested_vmx_store_msr(vcpu,
4493					 vmcs12->vm_exit_msr_store_addr,
4494					 vmcs12->vm_exit_msr_store_count))
4495			nested_vmx_abort(vcpu,
4496					 VMX_ABORT_SAVE_GUEST_MSR_FAIL);
4497	}
4498}
4499
4500/*
4501 * A part of what we need to when the nested L2 guest exits and we want to
4502 * run its L1 parent, is to reset L1's guest state to the host state specified
4503 * in vmcs12.
4504 * This function is to be called not only on normal nested exit, but also on
4505 * a nested entry failure, as explained in Intel's spec, 3B.23.7 ("VM-Entry
4506 * Failures During or After Loading Guest State").
4507 * This function should be called when the active VMCS is L1's (vmcs01).
4508 */
4509static void load_vmcs12_host_state(struct kvm_vcpu *vcpu,
4510				   struct vmcs12 *vmcs12)
4511{
4512	enum vm_entry_failure_code ignored;
4513	struct kvm_segment seg;
4514
4515	if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_EFER)
4516		vcpu->arch.efer = vmcs12->host_ia32_efer;
4517	else if (vmcs12->vm_exit_controls & VM_EXIT_HOST_ADDR_SPACE_SIZE)
4518		vcpu->arch.efer |= (EFER_LMA | EFER_LME);
4519	else
4520		vcpu->arch.efer &= ~(EFER_LMA | EFER_LME);
4521	vmx_set_efer(vcpu, vcpu->arch.efer);
4522
4523	kvm_rsp_write(vcpu, vmcs12->host_rsp);
4524	kvm_rip_write(vcpu, vmcs12->host_rip);
4525	vmx_set_rflags(vcpu, X86_EFLAGS_FIXED);
4526	vmx_set_interrupt_shadow(vcpu, 0);
4527
4528	/*
4529	 * Note that calling vmx_set_cr0 is important, even if cr0 hasn't
4530	 * actually changed, because vmx_set_cr0 refers to efer set above.
4531	 *
4532	 * CR0_GUEST_HOST_MASK is already set in the original vmcs01
4533	 * (KVM doesn't change it);
4534	 */
4535	vcpu->arch.cr0_guest_owned_bits = vmx_l1_guest_owned_cr0_bits();
4536	vmx_set_cr0(vcpu, vmcs12->host_cr0);
4537
4538	/* Same as above - no reason to call set_cr4_guest_host_mask().  */
4539	vcpu->arch.cr4_guest_owned_bits = ~vmcs_readl(CR4_GUEST_HOST_MASK);
4540	vmx_set_cr4(vcpu, vmcs12->host_cr4);
4541
4542	nested_ept_uninit_mmu_context(vcpu);
4543
4544	/*
4545	 * Only PDPTE load can fail as the value of cr3 was checked on entry and
4546	 * couldn't have changed.
4547	 */
4548	if (nested_vmx_load_cr3(vcpu, vmcs12->host_cr3, false, true, &ignored))
4549		nested_vmx_abort(vcpu, VMX_ABORT_LOAD_HOST_PDPTE_FAIL);
4550
4551	nested_vmx_transition_tlb_flush(vcpu, vmcs12, false);
4552
4553	vmcs_write32(GUEST_SYSENTER_CS, vmcs12->host_ia32_sysenter_cs);
4554	vmcs_writel(GUEST_SYSENTER_ESP, vmcs12->host_ia32_sysenter_esp);
4555	vmcs_writel(GUEST_SYSENTER_EIP, vmcs12->host_ia32_sysenter_eip);
4556	vmcs_writel(GUEST_IDTR_BASE, vmcs12->host_idtr_base);
4557	vmcs_writel(GUEST_GDTR_BASE, vmcs12->host_gdtr_base);
4558	vmcs_write32(GUEST_IDTR_LIMIT, 0xFFFF);
4559	vmcs_write32(GUEST_GDTR_LIMIT, 0xFFFF);
4560
4561	/* If not VM_EXIT_CLEAR_BNDCFGS, the L2 value propagates to L1.  */
4562	if (vmcs12->vm_exit_controls & VM_EXIT_CLEAR_BNDCFGS)
4563		vmcs_write64(GUEST_BNDCFGS, 0);
4564
4565	if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_PAT) {
4566		vmcs_write64(GUEST_IA32_PAT, vmcs12->host_ia32_pat);
4567		vcpu->arch.pat = vmcs12->host_ia32_pat;
4568	}
4569	if ((vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL) &&
4570	    kvm_pmu_has_perf_global_ctrl(vcpu_to_pmu(vcpu)))
4571		WARN_ON_ONCE(kvm_set_msr(vcpu, MSR_CORE_PERF_GLOBAL_CTRL,
4572					 vmcs12->host_ia32_perf_global_ctrl));
4573
4574	/* Set L1 segment info according to Intel SDM
4575	    27.5.2 Loading Host Segment and Descriptor-Table Registers */
4576	seg = (struct kvm_segment) {
4577		.base = 0,
4578		.limit = 0xFFFFFFFF,
4579		.selector = vmcs12->host_cs_selector,
4580		.type = 11,
4581		.present = 1,
4582		.s = 1,
4583		.g = 1
4584	};
4585	if (vmcs12->vm_exit_controls & VM_EXIT_HOST_ADDR_SPACE_SIZE)
4586		seg.l = 1;
4587	else
4588		seg.db = 1;
4589	__vmx_set_segment(vcpu, &seg, VCPU_SREG_CS);
4590	seg = (struct kvm_segment) {
4591		.base = 0,
4592		.limit = 0xFFFFFFFF,
4593		.type = 3,
4594		.present = 1,
4595		.s = 1,
4596		.db = 1,
4597		.g = 1
4598	};
4599	seg.selector = vmcs12->host_ds_selector;
4600	__vmx_set_segment(vcpu, &seg, VCPU_SREG_DS);
4601	seg.selector = vmcs12->host_es_selector;
4602	__vmx_set_segment(vcpu, &seg, VCPU_SREG_ES);
4603	seg.selector = vmcs12->host_ss_selector;
4604	__vmx_set_segment(vcpu, &seg, VCPU_SREG_SS);
4605	seg.selector = vmcs12->host_fs_selector;
4606	seg.base = vmcs12->host_fs_base;
4607	__vmx_set_segment(vcpu, &seg, VCPU_SREG_FS);
4608	seg.selector = vmcs12->host_gs_selector;
4609	seg.base = vmcs12->host_gs_base;
4610	__vmx_set_segment(vcpu, &seg, VCPU_SREG_GS);
4611	seg = (struct kvm_segment) {
4612		.base = vmcs12->host_tr_base,
4613		.limit = 0x67,
4614		.selector = vmcs12->host_tr_selector,
4615		.type = 11,
4616		.present = 1
4617	};
4618	__vmx_set_segment(vcpu, &seg, VCPU_SREG_TR);
4619
4620	memset(&seg, 0, sizeof(seg));
4621	seg.unusable = 1;
4622	__vmx_set_segment(vcpu, &seg, VCPU_SREG_LDTR);
4623
4624	kvm_set_dr(vcpu, 7, 0x400);
4625	vmcs_write64(GUEST_IA32_DEBUGCTL, 0);
4626
4627	if (nested_vmx_load_msr(vcpu, vmcs12->vm_exit_msr_load_addr,
4628				vmcs12->vm_exit_msr_load_count))
4629		nested_vmx_abort(vcpu, VMX_ABORT_LOAD_HOST_MSR_FAIL);
4630
4631	to_vmx(vcpu)->emulation_required = vmx_emulation_required(vcpu);
4632}
4633
4634static inline u64 nested_vmx_get_vmcs01_guest_efer(struct vcpu_vmx *vmx)
4635{
4636	struct vmx_uret_msr *efer_msr;
4637	unsigned int i;
4638
4639	if (vm_entry_controls_get(vmx) & VM_ENTRY_LOAD_IA32_EFER)
4640		return vmcs_read64(GUEST_IA32_EFER);
4641
4642	if (cpu_has_load_ia32_efer())
4643		return host_efer;
4644
4645	for (i = 0; i < vmx->msr_autoload.guest.nr; ++i) {
4646		if (vmx->msr_autoload.guest.val[i].index == MSR_EFER)
4647			return vmx->msr_autoload.guest.val[i].value;
4648	}
4649
4650	efer_msr = vmx_find_uret_msr(vmx, MSR_EFER);
4651	if (efer_msr)
4652		return efer_msr->data;
4653
4654	return host_efer;
4655}
4656
4657static void nested_vmx_restore_host_state(struct kvm_vcpu *vcpu)
4658{
4659	struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
4660	struct vcpu_vmx *vmx = to_vmx(vcpu);
4661	struct vmx_msr_entry g, h;
4662	gpa_t gpa;
4663	u32 i, j;
4664
4665	vcpu->arch.pat = vmcs_read64(GUEST_IA32_PAT);
4666
4667	if (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_DEBUG_CONTROLS) {
4668		/*
4669		 * L1's host DR7 is lost if KVM_GUESTDBG_USE_HW_BP is set
4670		 * as vmcs01.GUEST_DR7 contains a userspace defined value
4671		 * and vcpu->arch.dr7 is not squirreled away before the
4672		 * nested VMENTER (not worth adding a variable in nested_vmx).
4673		 */
4674		if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)
4675			kvm_set_dr(vcpu, 7, DR7_FIXED_1);
4676		else
4677			WARN_ON(kvm_set_dr(vcpu, 7, vmcs_readl(GUEST_DR7)));
4678	}
4679
4680	/*
4681	 * Note that calling vmx_set_{efer,cr0,cr4} is important as they
4682	 * handle a variety of side effects to KVM's software model.
4683	 */
4684	vmx_set_efer(vcpu, nested_vmx_get_vmcs01_guest_efer(vmx));
4685
4686	vcpu->arch.cr0_guest_owned_bits = vmx_l1_guest_owned_cr0_bits();
4687	vmx_set_cr0(vcpu, vmcs_readl(CR0_READ_SHADOW));
4688
4689	vcpu->arch.cr4_guest_owned_bits = ~vmcs_readl(CR4_GUEST_HOST_MASK);
4690	vmx_set_cr4(vcpu, vmcs_readl(CR4_READ_SHADOW));
4691
4692	nested_ept_uninit_mmu_context(vcpu);
4693	vcpu->arch.cr3 = vmcs_readl(GUEST_CR3);
4694	kvm_register_mark_available(vcpu, VCPU_EXREG_CR3);
4695
4696	/*
4697	 * Use ept_save_pdptrs(vcpu) to load the MMU's cached PDPTRs
4698	 * from vmcs01 (if necessary).  The PDPTRs are not loaded on
4699	 * VMFail, like everything else we just need to ensure our
4700	 * software model is up-to-date.
4701	 */
4702	if (enable_ept && is_pae_paging(vcpu))
4703		ept_save_pdptrs(vcpu);
4704
4705	kvm_mmu_reset_context(vcpu);
4706
4707	/*
4708	 * This nasty bit of open coding is a compromise between blindly
4709	 * loading L1's MSRs using the exit load lists (incorrect emulation
4710	 * of VMFail), leaving the nested VM's MSRs in the software model
4711	 * (incorrect behavior) and snapshotting the modified MSRs (too
4712	 * expensive since the lists are unbound by hardware).  For each
4713	 * MSR that was (prematurely) loaded from the nested VMEntry load
4714	 * list, reload it from the exit load list if it exists and differs
4715	 * from the guest value.  The intent is to stuff host state as
4716	 * silently as possible, not to fully process the exit load list.
4717	 */
4718	for (i = 0; i < vmcs12->vm_entry_msr_load_count; i++) {
4719		gpa = vmcs12->vm_entry_msr_load_addr + (i * sizeof(g));
4720		if (kvm_vcpu_read_guest(vcpu, gpa, &g, sizeof(g))) {
4721			pr_debug_ratelimited(
4722				"%s read MSR index failed (%u, 0x%08llx)\n",
4723				__func__, i, gpa);
4724			goto vmabort;
4725		}
4726
4727		for (j = 0; j < vmcs12->vm_exit_msr_load_count; j++) {
4728			gpa = vmcs12->vm_exit_msr_load_addr + (j * sizeof(h));
4729			if (kvm_vcpu_read_guest(vcpu, gpa, &h, sizeof(h))) {
4730				pr_debug_ratelimited(
4731					"%s read MSR failed (%u, 0x%08llx)\n",
4732					__func__, j, gpa);
4733				goto vmabort;
4734			}
4735			if (h.index != g.index)
4736				continue;
4737			if (h.value == g.value)
4738				break;
4739
4740			if (nested_vmx_load_msr_check(vcpu, &h)) {
4741				pr_debug_ratelimited(
4742					"%s check failed (%u, 0x%x, 0x%x)\n",
4743					__func__, j, h.index, h.reserved);
4744				goto vmabort;
4745			}
4746
4747			if (kvm_set_msr(vcpu, h.index, h.value)) {
4748				pr_debug_ratelimited(
4749					"%s WRMSR failed (%u, 0x%x, 0x%llx)\n",
4750					__func__, j, h.index, h.value);
4751				goto vmabort;
4752			}
4753		}
4754	}
4755
4756	return;
4757
4758vmabort:
4759	nested_vmx_abort(vcpu, VMX_ABORT_LOAD_HOST_MSR_FAIL);
4760}
4761
4762/*
4763 * Emulate an exit from nested guest (L2) to L1, i.e., prepare to run L1
4764 * and modify vmcs12 to make it see what it would expect to see there if
4765 * L2 was its real guest. Must only be called when in L2 (is_guest_mode())
4766 */
4767void nested_vmx_vmexit(struct kvm_vcpu *vcpu, u32 vm_exit_reason,
4768		       u32 exit_intr_info, unsigned long exit_qualification)
4769{
4770	struct vcpu_vmx *vmx = to_vmx(vcpu);
4771	struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
4772
4773	/* Pending MTF traps are discarded on VM-Exit. */
4774	vmx->nested.mtf_pending = false;
4775
4776	/* trying to cancel vmlaunch/vmresume is a bug */
4777	WARN_ON_ONCE(vmx->nested.nested_run_pending);
4778
4779#ifdef CONFIG_KVM_HYPERV
4780	if (kvm_check_request(KVM_REQ_GET_NESTED_STATE_PAGES, vcpu)) {
4781		/*
4782		 * KVM_REQ_GET_NESTED_STATE_PAGES is also used to map
4783		 * Enlightened VMCS after migration and we still need to
4784		 * do that when something is forcing L2->L1 exit prior to
4785		 * the first L2 run.
4786		 */
4787		(void)nested_get_evmcs_page(vcpu);
4788	}
4789#endif
4790
4791	/* Service pending TLB flush requests for L2 before switching to L1. */
4792	kvm_service_local_tlb_flush_requests(vcpu);
4793
4794	/*
4795	 * VCPU_EXREG_PDPTR will be clobbered in arch/x86/kvm/vmx/vmx.h between
4796	 * now and the new vmentry.  Ensure that the VMCS02 PDPTR fields are
4797	 * up-to-date before switching to L1.
4798	 */
4799	if (enable_ept && is_pae_paging(vcpu))
4800		vmx_ept_load_pdptrs(vcpu);
4801
4802	leave_guest_mode(vcpu);
4803
4804	if (nested_cpu_has_preemption_timer(vmcs12))
4805		hrtimer_cancel(&to_vmx(vcpu)->nested.preemption_timer);
4806
4807	if (nested_cpu_has(vmcs12, CPU_BASED_USE_TSC_OFFSETTING)) {
4808		vcpu->arch.tsc_offset = vcpu->arch.l1_tsc_offset;
4809		if (nested_cpu_has2(vmcs12, SECONDARY_EXEC_TSC_SCALING))
4810			vcpu->arch.tsc_scaling_ratio = vcpu->arch.l1_tsc_scaling_ratio;
4811	}
4812
4813	if (likely(!vmx->fail)) {
4814		sync_vmcs02_to_vmcs12(vcpu, vmcs12);
4815
4816		if (vm_exit_reason != -1)
4817			prepare_vmcs12(vcpu, vmcs12, vm_exit_reason,
4818				       exit_intr_info, exit_qualification);
4819
4820		/*
4821		 * Must happen outside of sync_vmcs02_to_vmcs12() as it will
4822		 * also be used to capture vmcs12 cache as part of
4823		 * capturing nVMX state for snapshot (migration).
4824		 *
4825		 * Otherwise, this flush will dirty guest memory at a
4826		 * point it is already assumed by user-space to be
4827		 * immutable.
4828		 */
4829		nested_flush_cached_shadow_vmcs12(vcpu, vmcs12);
4830	} else {
4831		/*
4832		 * The only expected VM-instruction error is "VM entry with
4833		 * invalid control field(s)." Anything else indicates a
4834		 * problem with L0.  And we should never get here with a
4835		 * VMFail of any type if early consistency checks are enabled.
4836		 */
4837		WARN_ON_ONCE(vmcs_read32(VM_INSTRUCTION_ERROR) !=
4838			     VMXERR_ENTRY_INVALID_CONTROL_FIELD);
4839		WARN_ON_ONCE(nested_early_check);
4840	}
4841
4842	/*
4843	 * Drop events/exceptions that were queued for re-injection to L2
4844	 * (picked up via vmx_complete_interrupts()), as well as exceptions
4845	 * that were pending for L2.  Note, this must NOT be hoisted above
4846	 * prepare_vmcs12(), events/exceptions queued for re-injection need to
4847	 * be captured in vmcs12 (see vmcs12_save_pending_event()).
4848	 */
4849	vcpu->arch.nmi_injected = false;
4850	kvm_clear_exception_queue(vcpu);
4851	kvm_clear_interrupt_queue(vcpu);
4852
4853	vmx_switch_vmcs(vcpu, &vmx->vmcs01);
4854
4855	/*
4856	 * If IBRS is advertised to the vCPU, KVM must flush the indirect
4857	 * branch predictors when transitioning from L2 to L1, as L1 expects
4858	 * hardware (KVM in this case) to provide separate predictor modes.
4859	 * Bare metal isolates VMX root (host) from VMX non-root (guest), but
4860	 * doesn't isolate different VMCSs, i.e. in this case, doesn't provide
4861	 * separate modes for L2 vs L1.
4862	 */
4863	if (guest_cpuid_has(vcpu, X86_FEATURE_SPEC_CTRL))
4864		indirect_branch_prediction_barrier();
4865
4866	/* Update any VMCS fields that might have changed while L2 ran */
4867	vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, vmx->msr_autoload.host.nr);
4868	vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, vmx->msr_autoload.guest.nr);
4869	vmcs_write64(TSC_OFFSET, vcpu->arch.tsc_offset);
4870	if (kvm_caps.has_tsc_control)
4871		vmcs_write64(TSC_MULTIPLIER, vcpu->arch.tsc_scaling_ratio);
4872
4873	if (vmx->nested.l1_tpr_threshold != -1)
4874		vmcs_write32(TPR_THRESHOLD, vmx->nested.l1_tpr_threshold);
4875
4876	if (vmx->nested.change_vmcs01_virtual_apic_mode) {
4877		vmx->nested.change_vmcs01_virtual_apic_mode = false;
4878		vmx_set_virtual_apic_mode(vcpu);
4879	}
4880
4881	if (vmx->nested.update_vmcs01_cpu_dirty_logging) {
4882		vmx->nested.update_vmcs01_cpu_dirty_logging = false;
4883		vmx_update_cpu_dirty_logging(vcpu);
4884	}
4885
4886	/* Unpin physical memory we referred to in vmcs02 */
4887	kvm_vcpu_unmap(vcpu, &vmx->nested.apic_access_page_map, false);
4888	kvm_vcpu_unmap(vcpu, &vmx->nested.virtual_apic_map, true);
4889	kvm_vcpu_unmap(vcpu, &vmx->nested.pi_desc_map, true);
4890	vmx->nested.pi_desc = NULL;
4891
4892	if (vmx->nested.reload_vmcs01_apic_access_page) {
4893		vmx->nested.reload_vmcs01_apic_access_page = false;
4894		kvm_make_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu);
4895	}
4896
4897	if (vmx->nested.update_vmcs01_apicv_status) {
4898		vmx->nested.update_vmcs01_apicv_status = false;
4899		kvm_make_request(KVM_REQ_APICV_UPDATE, vcpu);
4900	}
4901
4902	if ((vm_exit_reason != -1) &&
4903	    (enable_shadow_vmcs || nested_vmx_is_evmptr12_valid(vmx)))
4904		vmx->nested.need_vmcs12_to_shadow_sync = true;
4905
4906	/* in case we halted in L2 */
4907	vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
4908
4909	if (likely(!vmx->fail)) {
4910		if ((u16)vm_exit_reason == EXIT_REASON_EXTERNAL_INTERRUPT &&
4911		    nested_exit_intr_ack_set(vcpu)) {
4912			int irq = kvm_cpu_get_interrupt(vcpu);
4913			WARN_ON(irq < 0);
4914			vmcs12->vm_exit_intr_info = irq |
4915				INTR_INFO_VALID_MASK | INTR_TYPE_EXT_INTR;
4916		}
4917
4918		if (vm_exit_reason != -1)
4919			trace_kvm_nested_vmexit_inject(vmcs12->vm_exit_reason,
4920						       vmcs12->exit_qualification,
4921						       vmcs12->idt_vectoring_info_field,
4922						       vmcs12->vm_exit_intr_info,
4923						       vmcs12->vm_exit_intr_error_code,
4924						       KVM_ISA_VMX);
4925
4926		load_vmcs12_host_state(vcpu, vmcs12);
4927
4928		return;
4929	}
4930
4931	/*
4932	 * After an early L2 VM-entry failure, we're now back
4933	 * in L1 which thinks it just finished a VMLAUNCH or
4934	 * VMRESUME instruction, so we need to set the failure
4935	 * flag and the VM-instruction error field of the VMCS
4936	 * accordingly, and skip the emulated instruction.
4937	 */
4938	(void)nested_vmx_fail(vcpu, VMXERR_ENTRY_INVALID_CONTROL_FIELD);
4939
4940	/*
4941	 * Restore L1's host state to KVM's software model.  We're here
4942	 * because a consistency check was caught by hardware, which
4943	 * means some amount of guest state has been propagated to KVM's
4944	 * model and needs to be unwound to the host's state.
4945	 */
4946	nested_vmx_restore_host_state(vcpu);
4947
4948	vmx->fail = 0;
4949}
4950
4951static void nested_vmx_triple_fault(struct kvm_vcpu *vcpu)
4952{
4953	kvm_clear_request(KVM_REQ_TRIPLE_FAULT, vcpu);
4954	nested_vmx_vmexit(vcpu, EXIT_REASON_TRIPLE_FAULT, 0, 0);
4955}
4956
4957/*
4958 * Decode the memory-address operand of a vmx instruction, as recorded on an
4959 * exit caused by such an instruction (run by a guest hypervisor).
4960 * On success, returns 0. When the operand is invalid, returns 1 and throws
4961 * #UD, #GP, or #SS.
4962 */
4963int get_vmx_mem_address(struct kvm_vcpu *vcpu, unsigned long exit_qualification,
4964			u32 vmx_instruction_info, bool wr, int len, gva_t *ret)
4965{
4966	gva_t off;
4967	bool exn;
4968	struct kvm_segment s;
4969
4970	/*
4971	 * According to Vol. 3B, "Information for VM Exits Due to Instruction
4972	 * Execution", on an exit, vmx_instruction_info holds most of the
4973	 * addressing components of the operand. Only the displacement part
4974	 * is put in exit_qualification (see 3B, "Basic VM-Exit Information").
4975	 * For how an actual address is calculated from all these components,
4976	 * refer to Vol. 1, "Operand Addressing".
4977	 */
4978	int  scaling = vmx_instruction_info & 3;
4979	int  addr_size = (vmx_instruction_info >> 7) & 7;
4980	bool is_reg = vmx_instruction_info & (1u << 10);
4981	int  seg_reg = (vmx_instruction_info >> 15) & 7;
4982	int  index_reg = (vmx_instruction_info >> 18) & 0xf;
4983	bool index_is_valid = !(vmx_instruction_info & (1u << 22));
4984	int  base_reg       = (vmx_instruction_info >> 23) & 0xf;
4985	bool base_is_valid  = !(vmx_instruction_info & (1u << 27));
4986
4987	if (is_reg) {
4988		kvm_queue_exception(vcpu, UD_VECTOR);
4989		return 1;
4990	}
4991
4992	/* Addr = segment_base + offset */
4993	/* offset = base + [index * scale] + displacement */
4994	off = exit_qualification; /* holds the displacement */
4995	if (addr_size == 1)
4996		off = (gva_t)sign_extend64(off, 31);
4997	else if (addr_size == 0)
4998		off = (gva_t)sign_extend64(off, 15);
4999	if (base_is_valid)
5000		off += kvm_register_read(vcpu, base_reg);
5001	if (index_is_valid)
5002		off += kvm_register_read(vcpu, index_reg) << scaling;
5003	vmx_get_segment(vcpu, &s, seg_reg);
5004
5005	/*
5006	 * The effective address, i.e. @off, of a memory operand is truncated
5007	 * based on the address size of the instruction.  Note that this is
5008	 * the *effective address*, i.e. the address prior to accounting for
5009	 * the segment's base.
5010	 */
5011	if (addr_size == 1) /* 32 bit */
5012		off &= 0xffffffff;
5013	else if (addr_size == 0) /* 16 bit */
5014		off &= 0xffff;
5015
5016	/* Checks for #GP/#SS exceptions. */
5017	exn = false;
5018	if (is_long_mode(vcpu)) {
5019		/*
5020		 * The virtual/linear address is never truncated in 64-bit
5021		 * mode, e.g. a 32-bit address size can yield a 64-bit virtual
5022		 * address when using FS/GS with a non-zero base.
5023		 */
5024		if (seg_reg == VCPU_SREG_FS || seg_reg == VCPU_SREG_GS)
5025			*ret = s.base + off;
5026		else
5027			*ret = off;
5028
5029		*ret = vmx_get_untagged_addr(vcpu, *ret, 0);
5030		/* Long mode: #GP(0)/#SS(0) if the memory address is in a
5031		 * non-canonical form. This is the only check on the memory
5032		 * destination for long mode!
5033		 */
5034		exn = is_noncanonical_address(*ret, vcpu);
5035	} else {
5036		/*
5037		 * When not in long mode, the virtual/linear address is
5038		 * unconditionally truncated to 32 bits regardless of the
5039		 * address size.
5040		 */
5041		*ret = (s.base + off) & 0xffffffff;
5042
5043		/* Protected mode: apply checks for segment validity in the
5044		 * following order:
5045		 * - segment type check (#GP(0) may be thrown)
5046		 * - usability check (#GP(0)/#SS(0))
5047		 * - limit check (#GP(0)/#SS(0))
5048		 */
5049		if (wr)
5050			/* #GP(0) if the destination operand is located in a
5051			 * read-only data segment or any code segment.
5052			 */
5053			exn = ((s.type & 0xa) == 0 || (s.type & 8));
5054		else
5055			/* #GP(0) if the source operand is located in an
5056			 * execute-only code segment
5057			 */
5058			exn = ((s.type & 0xa) == 8);
5059		if (exn) {
5060			kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
5061			return 1;
5062		}
5063		/* Protected mode: #GP(0)/#SS(0) if the segment is unusable.
5064		 */
5065		exn = (s.unusable != 0);
5066
5067		/*
5068		 * Protected mode: #GP(0)/#SS(0) if the memory operand is
5069		 * outside the segment limit.  All CPUs that support VMX ignore
5070		 * limit checks for flat segments, i.e. segments with base==0,
5071		 * limit==0xffffffff and of type expand-up data or code.
5072		 */
5073		if (!(s.base == 0 && s.limit == 0xffffffff &&
5074		     ((s.type & 8) || !(s.type & 4))))
5075			exn = exn || ((u64)off + len - 1 > s.limit);
5076	}
5077	if (exn) {
5078		kvm_queue_exception_e(vcpu,
5079				      seg_reg == VCPU_SREG_SS ?
5080						SS_VECTOR : GP_VECTOR,
5081				      0);
5082		return 1;
5083	}
5084
5085	return 0;
5086}
5087
5088static int nested_vmx_get_vmptr(struct kvm_vcpu *vcpu, gpa_t *vmpointer,
5089				int *ret)
5090{
5091	gva_t gva;
5092	struct x86_exception e;
5093	int r;
5094
5095	if (get_vmx_mem_address(vcpu, vmx_get_exit_qual(vcpu),
5096				vmcs_read32(VMX_INSTRUCTION_INFO), false,
5097				sizeof(*vmpointer), &gva)) {
5098		*ret = 1;
5099		return -EINVAL;
5100	}
5101
5102	r = kvm_read_guest_virt(vcpu, gva, vmpointer, sizeof(*vmpointer), &e);
5103	if (r != X86EMUL_CONTINUE) {
5104		*ret = kvm_handle_memory_failure(vcpu, r, &e);
5105		return -EINVAL;
5106	}
5107
5108	return 0;
5109}
5110
5111/*
5112 * Allocate a shadow VMCS and associate it with the currently loaded
5113 * VMCS, unless such a shadow VMCS already exists. The newly allocated
5114 * VMCS is also VMCLEARed, so that it is ready for use.
5115 */
5116static struct vmcs *alloc_shadow_vmcs(struct kvm_vcpu *vcpu)
5117{
5118	struct vcpu_vmx *vmx = to_vmx(vcpu);
5119	struct loaded_vmcs *loaded_vmcs = vmx->loaded_vmcs;
5120
5121	/*
5122	 * KVM allocates a shadow VMCS only when L1 executes VMXON and frees it
5123	 * when L1 executes VMXOFF or the vCPU is forced out of nested
5124	 * operation.  VMXON faults if the CPU is already post-VMXON, so it
5125	 * should be impossible to already have an allocated shadow VMCS.  KVM
5126	 * doesn't support virtualization of VMCS shadowing, so vmcs01 should
5127	 * always be the loaded VMCS.
5128	 */
5129	if (WARN_ON(loaded_vmcs != &vmx->vmcs01 || loaded_vmcs->shadow_vmcs))
5130		return loaded_vmcs->shadow_vmcs;
5131
5132	loaded_vmcs->shadow_vmcs = alloc_vmcs(true);
5133	if (loaded_vmcs->shadow_vmcs)
5134		vmcs_clear(loaded_vmcs->shadow_vmcs);
5135
5136	return loaded_vmcs->shadow_vmcs;
5137}
5138
5139static int enter_vmx_operation(struct kvm_vcpu *vcpu)
5140{
5141	struct vcpu_vmx *vmx = to_vmx(vcpu);
5142	int r;
5143
5144	r = alloc_loaded_vmcs(&vmx->nested.vmcs02);
5145	if (r < 0)
5146		goto out_vmcs02;
5147
5148	vmx->nested.cached_vmcs12 = kzalloc(VMCS12_SIZE, GFP_KERNEL_ACCOUNT);
5149	if (!vmx->nested.cached_vmcs12)
5150		goto out_cached_vmcs12;
5151
5152	vmx->nested.shadow_vmcs12_cache.gpa = INVALID_GPA;
5153	vmx->nested.cached_shadow_vmcs12 = kzalloc(VMCS12_SIZE, GFP_KERNEL_ACCOUNT);
5154	if (!vmx->nested.cached_shadow_vmcs12)
5155		goto out_cached_shadow_vmcs12;
5156
5157	if (enable_shadow_vmcs && !alloc_shadow_vmcs(vcpu))
5158		goto out_shadow_vmcs;
5159
5160	hrtimer_init(&vmx->nested.preemption_timer, CLOCK_MONOTONIC,
5161		     HRTIMER_MODE_ABS_PINNED);
5162	vmx->nested.preemption_timer.function = vmx_preemption_timer_fn;
5163
5164	vmx->nested.vpid02 = allocate_vpid();
5165
5166	vmx->nested.vmcs02_initialized = false;
5167	vmx->nested.vmxon = true;
5168
5169	if (vmx_pt_mode_is_host_guest()) {
5170		vmx->pt_desc.guest.ctl = 0;
5171		pt_update_intercept_for_msr(vcpu);
5172	}
5173
5174	return 0;
5175
5176out_shadow_vmcs:
5177	kfree(vmx->nested.cached_shadow_vmcs12);
5178
5179out_cached_shadow_vmcs12:
5180	kfree(vmx->nested.cached_vmcs12);
5181
5182out_cached_vmcs12:
5183	free_loaded_vmcs(&vmx->nested.vmcs02);
5184
5185out_vmcs02:
5186	return -ENOMEM;
5187}
5188
5189/* Emulate the VMXON instruction. */
5190static int handle_vmxon(struct kvm_vcpu *vcpu)
5191{
5192	int ret;
5193	gpa_t vmptr;
5194	uint32_t revision;
5195	struct vcpu_vmx *vmx = to_vmx(vcpu);
5196	const u64 VMXON_NEEDED_FEATURES = FEAT_CTL_LOCKED
5197		| FEAT_CTL_VMX_ENABLED_OUTSIDE_SMX;
5198
5199	/*
5200	 * Manually check CR4.VMXE checks, KVM must force CR4.VMXE=1 to enter
5201	 * the guest and so cannot rely on hardware to perform the check,
5202	 * which has higher priority than VM-Exit (see Intel SDM's pseudocode
5203	 * for VMXON).
5204	 *
5205	 * Rely on hardware for the other pre-VM-Exit checks, CR0.PE=1, !VM86
5206	 * and !COMPATIBILITY modes.  For an unrestricted guest, KVM doesn't
5207	 * force any of the relevant guest state.  For a restricted guest, KVM
5208	 * does force CR0.PE=1, but only to also force VM86 in order to emulate
5209	 * Real Mode, and so there's no need to check CR0.PE manually.
5210	 */
5211	if (!kvm_is_cr4_bit_set(vcpu, X86_CR4_VMXE)) {
5212		kvm_queue_exception(vcpu, UD_VECTOR);
5213		return 1;
5214	}
5215
5216	/*
5217	 * The CPL is checked for "not in VMX operation" and for "in VMX root",
5218	 * and has higher priority than the VM-Fail due to being post-VMXON,
5219	 * i.e. VMXON #GPs outside of VMX non-root if CPL!=0.  In VMX non-root,
5220	 * VMXON causes VM-Exit and KVM unconditionally forwards VMXON VM-Exits
5221	 * from L2 to L1, i.e. there's no need to check for the vCPU being in
5222	 * VMX non-root.
5223	 *
5224	 * Forwarding the VM-Exit unconditionally, i.e. without performing the
5225	 * #UD checks (see above), is functionally ok because KVM doesn't allow
5226	 * L1 to run L2 without CR4.VMXE=0, and because KVM never modifies L2's
5227	 * CR0 or CR4, i.e. it's L2's responsibility to emulate #UDs that are
5228	 * missed by hardware due to shadowing CR0 and/or CR4.
5229	 */
5230	if (vmx_get_cpl(vcpu)) {
5231		kvm_inject_gp(vcpu, 0);
5232		return 1;
5233	}
5234
5235	if (vmx->nested.vmxon)
5236		return nested_vmx_fail(vcpu, VMXERR_VMXON_IN_VMX_ROOT_OPERATION);
5237
5238	/*
5239	 * Invalid CR0/CR4 generates #GP.  These checks are performed if and
5240	 * only if the vCPU isn't already in VMX operation, i.e. effectively
5241	 * have lower priority than the VM-Fail above.
5242	 */
5243	if (!nested_host_cr0_valid(vcpu, kvm_read_cr0(vcpu)) ||
5244	    !nested_host_cr4_valid(vcpu, kvm_read_cr4(vcpu))) {
5245		kvm_inject_gp(vcpu, 0);
5246		return 1;
5247	}
5248
5249	if ((vmx->msr_ia32_feature_control & VMXON_NEEDED_FEATURES)
5250			!= VMXON_NEEDED_FEATURES) {
5251		kvm_inject_gp(vcpu, 0);
5252		return 1;
5253	}
5254
5255	if (nested_vmx_get_vmptr(vcpu, &vmptr, &ret))
5256		return ret;
5257
5258	/*
5259	 * SDM 3: 24.11.5
5260	 * The first 4 bytes of VMXON region contain the supported
5261	 * VMCS revision identifier
5262	 *
5263	 * Note - IA32_VMX_BASIC[48] will never be 1 for the nested case;
5264	 * which replaces physical address width with 32
5265	 */
5266	if (!page_address_valid(vcpu, vmptr))
5267		return nested_vmx_failInvalid(vcpu);
5268
5269	if (kvm_read_guest(vcpu->kvm, vmptr, &revision, sizeof(revision)) ||
5270	    revision != VMCS12_REVISION)
5271		return nested_vmx_failInvalid(vcpu);
5272
5273	vmx->nested.vmxon_ptr = vmptr;
5274	ret = enter_vmx_operation(vcpu);
5275	if (ret)
5276		return ret;
5277
5278	return nested_vmx_succeed(vcpu);
5279}
5280
5281static inline void nested_release_vmcs12(struct kvm_vcpu *vcpu)
5282{
5283	struct vcpu_vmx *vmx = to_vmx(vcpu);
5284
5285	if (vmx->nested.current_vmptr == INVALID_GPA)
5286		return;
5287
5288	copy_vmcs02_to_vmcs12_rare(vcpu, get_vmcs12(vcpu));
5289
5290	if (enable_shadow_vmcs) {
5291		/* copy to memory all shadowed fields in case
5292		   they were modified */
5293		copy_shadow_to_vmcs12(vmx);
5294		vmx_disable_shadow_vmcs(vmx);
5295	}
5296	vmx->nested.posted_intr_nv = -1;
5297
5298	/* Flush VMCS12 to guest memory */
5299	kvm_vcpu_write_guest_page(vcpu,
5300				  vmx->nested.current_vmptr >> PAGE_SHIFT,
5301				  vmx->nested.cached_vmcs12, 0, VMCS12_SIZE);
5302
5303	kvm_mmu_free_roots(vcpu->kvm, &vcpu->arch.guest_mmu, KVM_MMU_ROOTS_ALL);
5304
5305	vmx->nested.current_vmptr = INVALID_GPA;
5306}
5307
5308/* Emulate the VMXOFF instruction */
5309static int handle_vmxoff(struct kvm_vcpu *vcpu)
5310{
5311	if (!nested_vmx_check_permission(vcpu))
5312		return 1;
5313
5314	free_nested(vcpu);
5315
5316	if (kvm_apic_has_pending_init_or_sipi(vcpu))
5317		kvm_make_request(KVM_REQ_EVENT, vcpu);
5318
5319	return nested_vmx_succeed(vcpu);
5320}
5321
5322/* Emulate the VMCLEAR instruction */
5323static int handle_vmclear(struct kvm_vcpu *vcpu)
5324{
5325	struct vcpu_vmx *vmx = to_vmx(vcpu);
5326	u32 zero = 0;
5327	gpa_t vmptr;
5328	int r;
5329
5330	if (!nested_vmx_check_permission(vcpu))
5331		return 1;
5332
5333	if (nested_vmx_get_vmptr(vcpu, &vmptr, &r))
5334		return r;
5335
5336	if (!page_address_valid(vcpu, vmptr))
5337		return nested_vmx_fail(vcpu, VMXERR_VMCLEAR_INVALID_ADDRESS);
5338
5339	if (vmptr == vmx->nested.vmxon_ptr)
5340		return nested_vmx_fail(vcpu, VMXERR_VMCLEAR_VMXON_POINTER);
5341
5342	if (likely(!nested_evmcs_handle_vmclear(vcpu, vmptr))) {
5343		if (vmptr == vmx->nested.current_vmptr)
5344			nested_release_vmcs12(vcpu);
5345
5346		/*
5347		 * Silently ignore memory errors on VMCLEAR, Intel's pseudocode
5348		 * for VMCLEAR includes a "ensure that data for VMCS referenced
5349		 * by the operand is in memory" clause that guards writes to
5350		 * memory, i.e. doing nothing for I/O is architecturally valid.
5351		 *
5352		 * FIXME: Suppress failures if and only if no memslot is found,
5353		 * i.e. exit to userspace if __copy_to_user() fails.
5354		 */
5355		(void)kvm_vcpu_write_guest(vcpu,
5356					   vmptr + offsetof(struct vmcs12,
5357							    launch_state),
5358					   &zero, sizeof(zero));
5359	}
5360
5361	return nested_vmx_succeed(vcpu);
5362}
5363
5364/* Emulate the VMLAUNCH instruction */
5365static int handle_vmlaunch(struct kvm_vcpu *vcpu)
5366{
5367	return nested_vmx_run(vcpu, true);
5368}
5369
5370/* Emulate the VMRESUME instruction */
5371static int handle_vmresume(struct kvm_vcpu *vcpu)
5372{
5373
5374	return nested_vmx_run(vcpu, false);
5375}
5376
5377static int handle_vmread(struct kvm_vcpu *vcpu)
5378{
5379	struct vmcs12 *vmcs12 = is_guest_mode(vcpu) ? get_shadow_vmcs12(vcpu)
5380						    : get_vmcs12(vcpu);
5381	unsigned long exit_qualification = vmx_get_exit_qual(vcpu);
5382	u32 instr_info = vmcs_read32(VMX_INSTRUCTION_INFO);
5383	struct vcpu_vmx *vmx = to_vmx(vcpu);
5384	struct x86_exception e;
5385	unsigned long field;
5386	u64 value;
5387	gva_t gva = 0;
5388	short offset;
5389	int len, r;
5390
5391	if (!nested_vmx_check_permission(vcpu))
5392		return 1;
5393
5394	/* Decode instruction info and find the field to read */
5395	field = kvm_register_read(vcpu, (((instr_info) >> 28) & 0xf));
5396
5397	if (!nested_vmx_is_evmptr12_valid(vmx)) {
5398		/*
5399		 * In VMX non-root operation, when the VMCS-link pointer is INVALID_GPA,
5400		 * any VMREAD sets the ALU flags for VMfailInvalid.
5401		 */
5402		if (vmx->nested.current_vmptr == INVALID_GPA ||
5403		    (is_guest_mode(vcpu) &&
5404		     get_vmcs12(vcpu)->vmcs_link_pointer == INVALID_GPA))
5405			return nested_vmx_failInvalid(vcpu);
5406
5407		offset = get_vmcs12_field_offset(field);
5408		if (offset < 0)
5409			return nested_vmx_fail(vcpu, VMXERR_UNSUPPORTED_VMCS_COMPONENT);
5410
5411		if (!is_guest_mode(vcpu) && is_vmcs12_ext_field(field))
5412			copy_vmcs02_to_vmcs12_rare(vcpu, vmcs12);
5413
5414		/* Read the field, zero-extended to a u64 value */
5415		value = vmcs12_read_any(vmcs12, field, offset);
5416	} else {
5417		/*
5418		 * Hyper-V TLFS (as of 6.0b) explicitly states, that while an
5419		 * enlightened VMCS is active VMREAD/VMWRITE instructions are
5420		 * unsupported. Unfortunately, certain versions of Windows 11
5421		 * don't comply with this requirement which is not enforced in
5422		 * genuine Hyper-V. Allow VMREAD from an enlightened VMCS as a
5423		 * workaround, as misbehaving guests will panic on VM-Fail.
5424		 * Note, enlightened VMCS is incompatible with shadow VMCS so
5425		 * all VMREADs from L2 should go to L1.
5426		 */
5427		if (WARN_ON_ONCE(is_guest_mode(vcpu)))
5428			return nested_vmx_failInvalid(vcpu);
5429
5430		offset = evmcs_field_offset(field, NULL);
5431		if (offset < 0)
5432			return nested_vmx_fail(vcpu, VMXERR_UNSUPPORTED_VMCS_COMPONENT);
5433
5434		/* Read the field, zero-extended to a u64 value */
5435		value = evmcs_read_any(nested_vmx_evmcs(vmx), field, offset);
5436	}
5437
5438	/*
5439	 * Now copy part of this value to register or memory, as requested.
5440	 * Note that the number of bits actually copied is 32 or 64 depending
5441	 * on the guest's mode (32 or 64 bit), not on the given field's length.
5442	 */
5443	if (instr_info & BIT(10)) {
5444		kvm_register_write(vcpu, (((instr_info) >> 3) & 0xf), value);
5445	} else {
5446		len = is_64_bit_mode(vcpu) ? 8 : 4;
5447		if (get_vmx_mem_address(vcpu, exit_qualification,
5448					instr_info, true, len, &gva))
5449			return 1;
5450		/* _system ok, nested_vmx_check_permission has verified cpl=0 */
5451		r = kvm_write_guest_virt_system(vcpu, gva, &value, len, &e);
5452		if (r != X86EMUL_CONTINUE)
5453			return kvm_handle_memory_failure(vcpu, r, &e);
5454	}
5455
5456	return nested_vmx_succeed(vcpu);
5457}
5458
5459static bool is_shadow_field_rw(unsigned long field)
5460{
5461	switch (field) {
5462#define SHADOW_FIELD_RW(x, y) case x:
5463#include "vmcs_shadow_fields.h"
5464		return true;
5465	default:
5466		break;
5467	}
5468	return false;
5469}
5470
5471static bool is_shadow_field_ro(unsigned long field)
5472{
5473	switch (field) {
5474#define SHADOW_FIELD_RO(x, y) case x:
5475#include "vmcs_shadow_fields.h"
5476		return true;
5477	default:
5478		break;
5479	}
5480	return false;
5481}
5482
5483static int handle_vmwrite(struct kvm_vcpu *vcpu)
5484{
5485	struct vmcs12 *vmcs12 = is_guest_mode(vcpu) ? get_shadow_vmcs12(vcpu)
5486						    : get_vmcs12(vcpu);
5487	unsigned long exit_qualification = vmx_get_exit_qual(vcpu);
5488	u32 instr_info = vmcs_read32(VMX_INSTRUCTION_INFO);
5489	struct vcpu_vmx *vmx = to_vmx(vcpu);
5490	struct x86_exception e;
5491	unsigned long field;
5492	short offset;
5493	gva_t gva;
5494	int len, r;
5495
5496	/*
5497	 * The value to write might be 32 or 64 bits, depending on L1's long
5498	 * mode, and eventually we need to write that into a field of several
5499	 * possible lengths. The code below first zero-extends the value to 64
5500	 * bit (value), and then copies only the appropriate number of
5501	 * bits into the vmcs12 field.
5502	 */
5503	u64 value = 0;
5504
5505	if (!nested_vmx_check_permission(vcpu))
5506		return 1;
5507
5508	/*
5509	 * In VMX non-root operation, when the VMCS-link pointer is INVALID_GPA,
5510	 * any VMWRITE sets the ALU flags for VMfailInvalid.
5511	 */
5512	if (vmx->nested.current_vmptr == INVALID_GPA ||
5513	    (is_guest_mode(vcpu) &&
5514	     get_vmcs12(vcpu)->vmcs_link_pointer == INVALID_GPA))
5515		return nested_vmx_failInvalid(vcpu);
5516
5517	if (instr_info & BIT(10))
5518		value = kvm_register_read(vcpu, (((instr_info) >> 3) & 0xf));
5519	else {
5520		len = is_64_bit_mode(vcpu) ? 8 : 4;
5521		if (get_vmx_mem_address(vcpu, exit_qualification,
5522					instr_info, false, len, &gva))
5523			return 1;
5524		r = kvm_read_guest_virt(vcpu, gva, &value, len, &e);
5525		if (r != X86EMUL_CONTINUE)
5526			return kvm_handle_memory_failure(vcpu, r, &e);
5527	}
5528
5529	field = kvm_register_read(vcpu, (((instr_info) >> 28) & 0xf));
5530
5531	offset = get_vmcs12_field_offset(field);
5532	if (offset < 0)
5533		return nested_vmx_fail(vcpu, VMXERR_UNSUPPORTED_VMCS_COMPONENT);
5534
5535	/*
5536	 * If the vCPU supports "VMWRITE to any supported field in the
5537	 * VMCS," then the "read-only" fields are actually read/write.
5538	 */
5539	if (vmcs_field_readonly(field) &&
5540	    !nested_cpu_has_vmwrite_any_field(vcpu))
5541		return nested_vmx_fail(vcpu, VMXERR_VMWRITE_READ_ONLY_VMCS_COMPONENT);
5542
5543	/*
5544	 * Ensure vmcs12 is up-to-date before any VMWRITE that dirties
5545	 * vmcs12, else we may crush a field or consume a stale value.
5546	 */
5547	if (!is_guest_mode(vcpu) && !is_shadow_field_rw(field))
5548		copy_vmcs02_to_vmcs12_rare(vcpu, vmcs12);
5549
5550	/*
5551	 * Some Intel CPUs intentionally drop the reserved bits of the AR byte
5552	 * fields on VMWRITE.  Emulate this behavior to ensure consistent KVM
5553	 * behavior regardless of the underlying hardware, e.g. if an AR_BYTE
5554	 * field is intercepted for VMWRITE but not VMREAD (in L1), then VMREAD
5555	 * from L1 will return a different value than VMREAD from L2 (L1 sees
5556	 * the stripped down value, L2 sees the full value as stored by KVM).
5557	 */
5558	if (field >= GUEST_ES_AR_BYTES && field <= GUEST_TR_AR_BYTES)
5559		value &= 0x1f0ff;
5560
5561	vmcs12_write_any(vmcs12, field, offset, value);
5562
5563	/*
5564	 * Do not track vmcs12 dirty-state if in guest-mode as we actually
5565	 * dirty shadow vmcs12 instead of vmcs12.  Fields that can be updated
5566	 * by L1 without a vmexit are always updated in the vmcs02, i.e. don't
5567	 * "dirty" vmcs12, all others go down the prepare_vmcs02() slow path.
5568	 */
5569	if (!is_guest_mode(vcpu) && !is_shadow_field_rw(field)) {
5570		/*
5571		 * L1 can read these fields without exiting, ensure the
5572		 * shadow VMCS is up-to-date.
5573		 */
5574		if (enable_shadow_vmcs && is_shadow_field_ro(field)) {
5575			preempt_disable();
5576			vmcs_load(vmx->vmcs01.shadow_vmcs);
5577
5578			__vmcs_writel(field, value);
5579
5580			vmcs_clear(vmx->vmcs01.shadow_vmcs);
5581			vmcs_load(vmx->loaded_vmcs->vmcs);
5582			preempt_enable();
5583		}
5584		vmx->nested.dirty_vmcs12 = true;
5585	}
5586
5587	return nested_vmx_succeed(vcpu);
5588}
5589
5590static void set_current_vmptr(struct vcpu_vmx *vmx, gpa_t vmptr)
5591{
5592	vmx->nested.current_vmptr = vmptr;
5593	if (enable_shadow_vmcs) {
5594		secondary_exec_controls_setbit(vmx, SECONDARY_EXEC_SHADOW_VMCS);
5595		vmcs_write64(VMCS_LINK_POINTER,
5596			     __pa(vmx->vmcs01.shadow_vmcs));
5597		vmx->nested.need_vmcs12_to_shadow_sync = true;
5598	}
5599	vmx->nested.dirty_vmcs12 = true;
5600	vmx->nested.force_msr_bitmap_recalc = true;
5601}
5602
5603/* Emulate the VMPTRLD instruction */
5604static int handle_vmptrld(struct kvm_vcpu *vcpu)
5605{
5606	struct vcpu_vmx *vmx = to_vmx(vcpu);
5607	gpa_t vmptr;
5608	int r;
5609
5610	if (!nested_vmx_check_permission(vcpu))
5611		return 1;
5612
5613	if (nested_vmx_get_vmptr(vcpu, &vmptr, &r))
5614		return r;
5615
5616	if (!page_address_valid(vcpu, vmptr))
5617		return nested_vmx_fail(vcpu, VMXERR_VMPTRLD_INVALID_ADDRESS);
5618
5619	if (vmptr == vmx->nested.vmxon_ptr)
5620		return nested_vmx_fail(vcpu, VMXERR_VMPTRLD_VMXON_POINTER);
5621
5622	/* Forbid normal VMPTRLD if Enlightened version was used */
5623	if (nested_vmx_is_evmptr12_valid(vmx))
5624		return 1;
5625
5626	if (vmx->nested.current_vmptr != vmptr) {
5627		struct gfn_to_hva_cache *ghc = &vmx->nested.vmcs12_cache;
5628		struct vmcs_hdr hdr;
5629
5630		if (kvm_gfn_to_hva_cache_init(vcpu->kvm, ghc, vmptr, VMCS12_SIZE)) {
5631			/*
5632			 * Reads from an unbacked page return all 1s,
5633			 * which means that the 32 bits located at the
5634			 * given physical address won't match the required
5635			 * VMCS12_REVISION identifier.
5636			 */
5637			return nested_vmx_fail(vcpu,
5638				VMXERR_VMPTRLD_INCORRECT_VMCS_REVISION_ID);
5639		}
5640
5641		if (kvm_read_guest_offset_cached(vcpu->kvm, ghc, &hdr,
5642						 offsetof(struct vmcs12, hdr),
5643						 sizeof(hdr))) {
5644			return nested_vmx_fail(vcpu,
5645				VMXERR_VMPTRLD_INCORRECT_VMCS_REVISION_ID);
5646		}
5647
5648		if (hdr.revision_id != VMCS12_REVISION ||
5649		    (hdr.shadow_vmcs &&
5650		     !nested_cpu_has_vmx_shadow_vmcs(vcpu))) {
5651			return nested_vmx_fail(vcpu,
5652				VMXERR_VMPTRLD_INCORRECT_VMCS_REVISION_ID);
5653		}
5654
5655		nested_release_vmcs12(vcpu);
5656
5657		/*
5658		 * Load VMCS12 from guest memory since it is not already
5659		 * cached.
5660		 */
5661		if (kvm_read_guest_cached(vcpu->kvm, ghc, vmx->nested.cached_vmcs12,
5662					  VMCS12_SIZE)) {
5663			return nested_vmx_fail(vcpu,
5664				VMXERR_VMPTRLD_INCORRECT_VMCS_REVISION_ID);
5665		}
5666
5667		set_current_vmptr(vmx, vmptr);
5668	}
5669
5670	return nested_vmx_succeed(vcpu);
5671}
5672
5673/* Emulate the VMPTRST instruction */
5674static int handle_vmptrst(struct kvm_vcpu *vcpu)
5675{
5676	unsigned long exit_qual = vmx_get_exit_qual(vcpu);
5677	u32 instr_info = vmcs_read32(VMX_INSTRUCTION_INFO);
5678	gpa_t current_vmptr = to_vmx(vcpu)->nested.current_vmptr;
5679	struct x86_exception e;
5680	gva_t gva;
5681	int r;
5682
5683	if (!nested_vmx_check_permission(vcpu))
5684		return 1;
5685
5686	if (unlikely(nested_vmx_is_evmptr12_valid(to_vmx(vcpu))))
5687		return 1;
5688
5689	if (get_vmx_mem_address(vcpu, exit_qual, instr_info,
5690				true, sizeof(gpa_t), &gva))
5691		return 1;
5692	/* *_system ok, nested_vmx_check_permission has verified cpl=0 */
5693	r = kvm_write_guest_virt_system(vcpu, gva, (void *)&current_vmptr,
5694					sizeof(gpa_t), &e);
5695	if (r != X86EMUL_CONTINUE)
5696		return kvm_handle_memory_failure(vcpu, r, &e);
5697
5698	return nested_vmx_succeed(vcpu);
5699}
5700
5701/* Emulate the INVEPT instruction */
5702static int handle_invept(struct kvm_vcpu *vcpu)
5703{
5704	struct vcpu_vmx *vmx = to_vmx(vcpu);
5705	u32 vmx_instruction_info, types;
5706	unsigned long type, roots_to_free;
5707	struct kvm_mmu *mmu;
5708	gva_t gva;
5709	struct x86_exception e;
5710	struct {
5711		u64 eptp, gpa;
5712	} operand;
5713	int i, r, gpr_index;
5714
5715	if (!(vmx->nested.msrs.secondary_ctls_high &
5716	      SECONDARY_EXEC_ENABLE_EPT) ||
5717	    !(vmx->nested.msrs.ept_caps & VMX_EPT_INVEPT_BIT)) {
5718		kvm_queue_exception(vcpu, UD_VECTOR);
5719		return 1;
5720	}
5721
5722	if (!nested_vmx_check_permission(vcpu))
5723		return 1;
5724
5725	vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
5726	gpr_index = vmx_get_instr_info_reg2(vmx_instruction_info);
5727	type = kvm_register_read(vcpu, gpr_index);
5728
5729	types = (vmx->nested.msrs.ept_caps >> VMX_EPT_EXTENT_SHIFT) & 6;
5730
5731	if (type >= 32 || !(types & (1 << type)))
5732		return nested_vmx_fail(vcpu, VMXERR_INVALID_OPERAND_TO_INVEPT_INVVPID);
5733
5734	/* According to the Intel VMX instruction reference, the memory
5735	 * operand is read even if it isn't needed (e.g., for type==global)
5736	 */
5737	if (get_vmx_mem_address(vcpu, vmx_get_exit_qual(vcpu),
5738			vmx_instruction_info, false, sizeof(operand), &gva))
5739		return 1;
5740	r = kvm_read_guest_virt(vcpu, gva, &operand, sizeof(operand), &e);
5741	if (r != X86EMUL_CONTINUE)
5742		return kvm_handle_memory_failure(vcpu, r, &e);
5743
5744	/*
5745	 * Nested EPT roots are always held through guest_mmu,
5746	 * not root_mmu.
5747	 */
5748	mmu = &vcpu->arch.guest_mmu;
5749
5750	switch (type) {
5751	case VMX_EPT_EXTENT_CONTEXT:
5752		if (!nested_vmx_check_eptp(vcpu, operand.eptp))
5753			return nested_vmx_fail(vcpu,
5754				VMXERR_INVALID_OPERAND_TO_INVEPT_INVVPID);
5755
5756		roots_to_free = 0;
5757		if (nested_ept_root_matches(mmu->root.hpa, mmu->root.pgd,
5758					    operand.eptp))
5759			roots_to_free |= KVM_MMU_ROOT_CURRENT;
5760
5761		for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) {
5762			if (nested_ept_root_matches(mmu->prev_roots[i].hpa,
5763						    mmu->prev_roots[i].pgd,
5764						    operand.eptp))
5765				roots_to_free |= KVM_MMU_ROOT_PREVIOUS(i);
5766		}
5767		break;
5768	case VMX_EPT_EXTENT_GLOBAL:
5769		roots_to_free = KVM_MMU_ROOTS_ALL;
5770		break;
5771	default:
5772		BUG();
5773		break;
5774	}
5775
5776	if (roots_to_free)
5777		kvm_mmu_free_roots(vcpu->kvm, mmu, roots_to_free);
5778
5779	return nested_vmx_succeed(vcpu);
5780}
5781
5782static int handle_invvpid(struct kvm_vcpu *vcpu)
5783{
5784	struct vcpu_vmx *vmx = to_vmx(vcpu);
5785	u32 vmx_instruction_info;
5786	unsigned long type, types;
5787	gva_t gva;
5788	struct x86_exception e;
5789	struct {
5790		u64 vpid;
5791		u64 gla;
5792	} operand;
5793	u16 vpid02;
5794	int r, gpr_index;
5795
5796	if (!(vmx->nested.msrs.secondary_ctls_high &
5797	      SECONDARY_EXEC_ENABLE_VPID) ||
5798			!(vmx->nested.msrs.vpid_caps & VMX_VPID_INVVPID_BIT)) {
5799		kvm_queue_exception(vcpu, UD_VECTOR);
5800		return 1;
5801	}
5802
5803	if (!nested_vmx_check_permission(vcpu))
5804		return 1;
5805
5806	vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
5807	gpr_index = vmx_get_instr_info_reg2(vmx_instruction_info);
5808	type = kvm_register_read(vcpu, gpr_index);
5809
5810	types = (vmx->nested.msrs.vpid_caps &
5811			VMX_VPID_EXTENT_SUPPORTED_MASK) >> 8;
5812
5813	if (type >= 32 || !(types & (1 << type)))
5814		return nested_vmx_fail(vcpu,
5815			VMXERR_INVALID_OPERAND_TO_INVEPT_INVVPID);
5816
5817	/* according to the intel vmx instruction reference, the memory
5818	 * operand is read even if it isn't needed (e.g., for type==global)
5819	 */
5820	if (get_vmx_mem_address(vcpu, vmx_get_exit_qual(vcpu),
5821			vmx_instruction_info, false, sizeof(operand), &gva))
5822		return 1;
5823	r = kvm_read_guest_virt(vcpu, gva, &operand, sizeof(operand), &e);
5824	if (r != X86EMUL_CONTINUE)
5825		return kvm_handle_memory_failure(vcpu, r, &e);
5826
5827	if (operand.vpid >> 16)
5828		return nested_vmx_fail(vcpu,
5829			VMXERR_INVALID_OPERAND_TO_INVEPT_INVVPID);
5830
5831	vpid02 = nested_get_vpid02(vcpu);
5832	switch (type) {
5833	case VMX_VPID_EXTENT_INDIVIDUAL_ADDR:
5834		/*
5835		 * LAM doesn't apply to addresses that are inputs to TLB
5836		 * invalidation.
5837		 */
5838		if (!operand.vpid ||
5839		    is_noncanonical_address(operand.gla, vcpu))
5840			return nested_vmx_fail(vcpu,
5841				VMXERR_INVALID_OPERAND_TO_INVEPT_INVVPID);
5842		vpid_sync_vcpu_addr(vpid02, operand.gla);
5843		break;
5844	case VMX_VPID_EXTENT_SINGLE_CONTEXT:
5845	case VMX_VPID_EXTENT_SINGLE_NON_GLOBAL:
5846		if (!operand.vpid)
5847			return nested_vmx_fail(vcpu,
5848				VMXERR_INVALID_OPERAND_TO_INVEPT_INVVPID);
5849		vpid_sync_context(vpid02);
5850		break;
5851	case VMX_VPID_EXTENT_ALL_CONTEXT:
5852		vpid_sync_context(vpid02);
5853		break;
5854	default:
5855		WARN_ON_ONCE(1);
5856		return kvm_skip_emulated_instruction(vcpu);
5857	}
5858
5859	/*
5860	 * Sync the shadow page tables if EPT is disabled, L1 is invalidating
5861	 * linear mappings for L2 (tagged with L2's VPID).  Free all guest
5862	 * roots as VPIDs are not tracked in the MMU role.
5863	 *
5864	 * Note, this operates on root_mmu, not guest_mmu, as L1 and L2 share
5865	 * an MMU when EPT is disabled.
5866	 *
5867	 * TODO: sync only the affected SPTEs for INVDIVIDUAL_ADDR.
5868	 */
5869	if (!enable_ept)
5870		kvm_mmu_free_guest_mode_roots(vcpu->kvm, &vcpu->arch.root_mmu);
5871
5872	return nested_vmx_succeed(vcpu);
5873}
5874
5875static int nested_vmx_eptp_switching(struct kvm_vcpu *vcpu,
5876				     struct vmcs12 *vmcs12)
5877{
5878	u32 index = kvm_rcx_read(vcpu);
5879	u64 new_eptp;
5880
5881	if (WARN_ON_ONCE(!nested_cpu_has_ept(vmcs12)))
5882		return 1;
5883	if (index >= VMFUNC_EPTP_ENTRIES)
5884		return 1;
5885
5886	if (kvm_vcpu_read_guest_page(vcpu, vmcs12->eptp_list_address >> PAGE_SHIFT,
5887				     &new_eptp, index * 8, 8))
5888		return 1;
5889
5890	/*
5891	 * If the (L2) guest does a vmfunc to the currently
5892	 * active ept pointer, we don't have to do anything else
5893	 */
5894	if (vmcs12->ept_pointer != new_eptp) {
5895		if (!nested_vmx_check_eptp(vcpu, new_eptp))
5896			return 1;
5897
5898		vmcs12->ept_pointer = new_eptp;
5899		nested_ept_new_eptp(vcpu);
5900
5901		if (!nested_cpu_has_vpid(vmcs12))
5902			kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu);
5903	}
5904
5905	return 0;
5906}
5907
5908static int handle_vmfunc(struct kvm_vcpu *vcpu)
5909{
5910	struct vcpu_vmx *vmx = to_vmx(vcpu);
5911	struct vmcs12 *vmcs12;
5912	u32 function = kvm_rax_read(vcpu);
5913
5914	/*
5915	 * VMFUNC should never execute cleanly while L1 is active; KVM supports
5916	 * VMFUNC for nested VMs, but not for L1.
5917	 */
5918	if (WARN_ON_ONCE(!is_guest_mode(vcpu))) {
5919		kvm_queue_exception(vcpu, UD_VECTOR);
5920		return 1;
5921	}
5922
5923	vmcs12 = get_vmcs12(vcpu);
5924
5925	/*
5926	 * #UD on out-of-bounds function has priority over VM-Exit, and VMFUNC
5927	 * is enabled in vmcs02 if and only if it's enabled in vmcs12.
5928	 */
5929	if (WARN_ON_ONCE((function > 63) || !nested_cpu_has_vmfunc(vmcs12))) {
5930		kvm_queue_exception(vcpu, UD_VECTOR);
5931		return 1;
5932	}
5933
5934	if (!(vmcs12->vm_function_control & BIT_ULL(function)))
5935		goto fail;
5936
5937	switch (function) {
5938	case 0:
5939		if (nested_vmx_eptp_switching(vcpu, vmcs12))
5940			goto fail;
5941		break;
5942	default:
5943		goto fail;
5944	}
5945	return kvm_skip_emulated_instruction(vcpu);
5946
5947fail:
5948	/*
5949	 * This is effectively a reflected VM-Exit, as opposed to a synthesized
5950	 * nested VM-Exit.  Pass the original exit reason, i.e. don't hardcode
5951	 * EXIT_REASON_VMFUNC as the exit reason.
5952	 */
5953	nested_vmx_vmexit(vcpu, vmx->exit_reason.full,
5954			  vmx_get_intr_info(vcpu),
5955			  vmx_get_exit_qual(vcpu));
5956	return 1;
5957}
5958
5959/*
5960 * Return true if an IO instruction with the specified port and size should cause
5961 * a VM-exit into L1.
5962 */
5963bool nested_vmx_check_io_bitmaps(struct kvm_vcpu *vcpu, unsigned int port,
5964				 int size)
5965{
5966	struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
5967	gpa_t bitmap, last_bitmap;
5968	u8 b;
5969
5970	last_bitmap = INVALID_GPA;
5971	b = -1;
5972
5973	while (size > 0) {
5974		if (port < 0x8000)
5975			bitmap = vmcs12->io_bitmap_a;
5976		else if (port < 0x10000)
5977			bitmap = vmcs12->io_bitmap_b;
5978		else
5979			return true;
5980		bitmap += (port & 0x7fff) / 8;
5981
5982		if (last_bitmap != bitmap)
5983			if (kvm_vcpu_read_guest(vcpu, bitmap, &b, 1))
5984				return true;
5985		if (b & (1 << (port & 7)))
5986			return true;
5987
5988		port++;
5989		size--;
5990		last_bitmap = bitmap;
5991	}
5992
5993	return false;
5994}
5995
5996static bool nested_vmx_exit_handled_io(struct kvm_vcpu *vcpu,
5997				       struct vmcs12 *vmcs12)
5998{
5999	unsigned long exit_qualification;
6000	unsigned short port;
6001	int size;
6002
6003	if (!nested_cpu_has(vmcs12, CPU_BASED_USE_IO_BITMAPS))
6004		return nested_cpu_has(vmcs12, CPU_BASED_UNCOND_IO_EXITING);
6005
6006	exit_qualification = vmx_get_exit_qual(vcpu);
6007
6008	port = exit_qualification >> 16;
6009	size = (exit_qualification & 7) + 1;
6010
6011	return nested_vmx_check_io_bitmaps(vcpu, port, size);
6012}
6013
6014/*
6015 * Return 1 if we should exit from L2 to L1 to handle an MSR access,
6016 * rather than handle it ourselves in L0. I.e., check whether L1 expressed
6017 * disinterest in the current event (read or write a specific MSR) by using an
6018 * MSR bitmap. This may be the case even when L0 doesn't use MSR bitmaps.
6019 */
6020static bool nested_vmx_exit_handled_msr(struct kvm_vcpu *vcpu,
6021					struct vmcs12 *vmcs12,
6022					union vmx_exit_reason exit_reason)
6023{
6024	u32 msr_index = kvm_rcx_read(vcpu);
6025	gpa_t bitmap;
6026
6027	if (!nested_cpu_has(vmcs12, CPU_BASED_USE_MSR_BITMAPS))
6028		return true;
6029
6030	/*
6031	 * The MSR_BITMAP page is divided into four 1024-byte bitmaps,
6032	 * for the four combinations of read/write and low/high MSR numbers.
6033	 * First we need to figure out which of the four to use:
6034	 */
6035	bitmap = vmcs12->msr_bitmap;
6036	if (exit_reason.basic == EXIT_REASON_MSR_WRITE)
6037		bitmap += 2048;
6038	if (msr_index >= 0xc0000000) {
6039		msr_index -= 0xc0000000;
6040		bitmap += 1024;
6041	}
6042
6043	/* Then read the msr_index'th bit from this bitmap: */
6044	if (msr_index < 1024*8) {
6045		unsigned char b;
6046		if (kvm_vcpu_read_guest(vcpu, bitmap + msr_index/8, &b, 1))
6047			return true;
6048		return 1 & (b >> (msr_index & 7));
6049	} else
6050		return true; /* let L1 handle the wrong parameter */
6051}
6052
6053/*
6054 * Return 1 if we should exit from L2 to L1 to handle a CR access exit,
6055 * rather than handle it ourselves in L0. I.e., check if L1 wanted to
6056 * intercept (via guest_host_mask etc.) the current event.
6057 */
6058static bool nested_vmx_exit_handled_cr(struct kvm_vcpu *vcpu,
6059	struct vmcs12 *vmcs12)
6060{
6061	unsigned long exit_qualification = vmx_get_exit_qual(vcpu);
6062	int cr = exit_qualification & 15;
6063	int reg;
6064	unsigned long val;
6065
6066	switch ((exit_qualification >> 4) & 3) {
6067	case 0: /* mov to cr */
6068		reg = (exit_qualification >> 8) & 15;
6069		val = kvm_register_read(vcpu, reg);
6070		switch (cr) {
6071		case 0:
6072			if (vmcs12->cr0_guest_host_mask &
6073			    (val ^ vmcs12->cr0_read_shadow))
6074				return true;
6075			break;
6076		case 3:
6077			if (nested_cpu_has(vmcs12, CPU_BASED_CR3_LOAD_EXITING))
6078				return true;
6079			break;
6080		case 4:
6081			if (vmcs12->cr4_guest_host_mask &
6082			    (vmcs12->cr4_read_shadow ^ val))
6083				return true;
6084			break;
6085		case 8:
6086			if (nested_cpu_has(vmcs12, CPU_BASED_CR8_LOAD_EXITING))
6087				return true;
6088			break;
6089		}
6090		break;
6091	case 2: /* clts */
6092		if ((vmcs12->cr0_guest_host_mask & X86_CR0_TS) &&
6093		    (vmcs12->cr0_read_shadow & X86_CR0_TS))
6094			return true;
6095		break;
6096	case 1: /* mov from cr */
6097		switch (cr) {
6098		case 3:
6099			if (vmcs12->cpu_based_vm_exec_control &
6100			    CPU_BASED_CR3_STORE_EXITING)
6101				return true;
6102			break;
6103		case 8:
6104			if (vmcs12->cpu_based_vm_exec_control &
6105			    CPU_BASED_CR8_STORE_EXITING)
6106				return true;
6107			break;
6108		}
6109		break;
6110	case 3: /* lmsw */
6111		/*
6112		 * lmsw can change bits 1..3 of cr0, and only set bit 0 of
6113		 * cr0. Other attempted changes are ignored, with no exit.
6114		 */
6115		val = (exit_qualification >> LMSW_SOURCE_DATA_SHIFT) & 0x0f;
6116		if (vmcs12->cr0_guest_host_mask & 0xe &
6117		    (val ^ vmcs12->cr0_read_shadow))
6118			return true;
6119		if ((vmcs12->cr0_guest_host_mask & 0x1) &&
6120		    !(vmcs12->cr0_read_shadow & 0x1) &&
6121		    (val & 0x1))
6122			return true;
6123		break;
6124	}
6125	return false;
6126}
6127
6128static bool nested_vmx_exit_handled_encls(struct kvm_vcpu *vcpu,
6129					  struct vmcs12 *vmcs12)
6130{
6131	u32 encls_leaf;
6132
6133	if (!guest_cpuid_has(vcpu, X86_FEATURE_SGX) ||
6134	    !nested_cpu_has2(vmcs12, SECONDARY_EXEC_ENCLS_EXITING))
6135		return false;
6136
6137	encls_leaf = kvm_rax_read(vcpu);
6138	if (encls_leaf > 62)
6139		encls_leaf = 63;
6140	return vmcs12->encls_exiting_bitmap & BIT_ULL(encls_leaf);
6141}
6142
6143static bool nested_vmx_exit_handled_vmcs_access(struct kvm_vcpu *vcpu,
6144	struct vmcs12 *vmcs12, gpa_t bitmap)
6145{
6146	u32 vmx_instruction_info;
6147	unsigned long field;
6148	u8 b;
6149
6150	if (!nested_cpu_has_shadow_vmcs(vmcs12))
6151		return true;
6152
6153	/* Decode instruction info and find the field to access */
6154	vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
6155	field = kvm_register_read(vcpu, (((vmx_instruction_info) >> 28) & 0xf));
6156
6157	/* Out-of-range fields always cause a VM exit from L2 to L1 */
6158	if (field >> 15)
6159		return true;
6160
6161	if (kvm_vcpu_read_guest(vcpu, bitmap + field/8, &b, 1))
6162		return true;
6163
6164	return 1 & (b >> (field & 7));
6165}
6166
6167static bool nested_vmx_exit_handled_mtf(struct vmcs12 *vmcs12)
6168{
6169	u32 entry_intr_info = vmcs12->vm_entry_intr_info_field;
6170
6171	if (nested_cpu_has_mtf(vmcs12))
6172		return true;
6173
6174	/*
6175	 * An MTF VM-exit may be injected into the guest by setting the
6176	 * interruption-type to 7 (other event) and the vector field to 0. Such
6177	 * is the case regardless of the 'monitor trap flag' VM-execution
6178	 * control.
6179	 */
6180	return entry_intr_info == (INTR_INFO_VALID_MASK
6181				   | INTR_TYPE_OTHER_EVENT);
6182}
6183
6184/*
6185 * Return true if L0 wants to handle an exit from L2 regardless of whether or not
6186 * L1 wants the exit.  Only call this when in is_guest_mode (L2).
6187 */
6188static bool nested_vmx_l0_wants_exit(struct kvm_vcpu *vcpu,
6189				     union vmx_exit_reason exit_reason)
6190{
6191	u32 intr_info;
6192
6193	switch ((u16)exit_reason.basic) {
6194	case EXIT_REASON_EXCEPTION_NMI:
6195		intr_info = vmx_get_intr_info(vcpu);
6196		if (is_nmi(intr_info))
6197			return true;
6198		else if (is_page_fault(intr_info))
6199			return vcpu->arch.apf.host_apf_flags ||
6200			       vmx_need_pf_intercept(vcpu);
6201		else if (is_debug(intr_info) &&
6202			 vcpu->guest_debug &
6203			 (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP))
6204			return true;
6205		else if (is_breakpoint(intr_info) &&
6206			 vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP)
6207			return true;
6208		else if (is_alignment_check(intr_info) &&
6209			 !vmx_guest_inject_ac(vcpu))
6210			return true;
6211		return false;
6212	case EXIT_REASON_EXTERNAL_INTERRUPT:
6213		return true;
6214	case EXIT_REASON_MCE_DURING_VMENTRY:
6215		return true;
6216	case EXIT_REASON_EPT_VIOLATION:
6217		/*
6218		 * L0 always deals with the EPT violation. If nested EPT is
6219		 * used, and the nested mmu code discovers that the address is
6220		 * missing in the guest EPT table (EPT12), the EPT violation
6221		 * will be injected with nested_ept_inject_page_fault()
6222		 */
6223		return true;
6224	case EXIT_REASON_EPT_MISCONFIG:
6225		/*
6226		 * L2 never uses directly L1's EPT, but rather L0's own EPT
6227		 * table (shadow on EPT) or a merged EPT table that L0 built
6228		 * (EPT on EPT). So any problems with the structure of the
6229		 * table is L0's fault.
6230		 */
6231		return true;
6232	case EXIT_REASON_PREEMPTION_TIMER:
6233		return true;
6234	case EXIT_REASON_PML_FULL:
6235		/*
6236		 * PML is emulated for an L1 VMM and should never be enabled in
6237		 * vmcs02, always "handle" PML_FULL by exiting to userspace.
6238		 */
6239		return true;
6240	case EXIT_REASON_VMFUNC:
6241		/* VM functions are emulated through L2->L0 vmexits. */
6242		return true;
6243	case EXIT_REASON_BUS_LOCK:
6244		/*
6245		 * At present, bus lock VM exit is never exposed to L1.
6246		 * Handle L2's bus locks in L0 directly.
6247		 */
6248		return true;
6249#ifdef CONFIG_KVM_HYPERV
6250	case EXIT_REASON_VMCALL:
6251		/* Hyper-V L2 TLB flush hypercall is handled by L0 */
6252		return guest_hv_cpuid_has_l2_tlb_flush(vcpu) &&
6253			nested_evmcs_l2_tlb_flush_enabled(vcpu) &&
6254			kvm_hv_is_tlb_flush_hcall(vcpu);
6255#endif
6256	default:
6257		break;
6258	}
6259	return false;
6260}
6261
6262/*
6263 * Return 1 if L1 wants to intercept an exit from L2.  Only call this when in
6264 * is_guest_mode (L2).
6265 */
6266static bool nested_vmx_l1_wants_exit(struct kvm_vcpu *vcpu,
6267				     union vmx_exit_reason exit_reason)
6268{
6269	struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
6270	u32 intr_info;
6271
6272	switch ((u16)exit_reason.basic) {
6273	case EXIT_REASON_EXCEPTION_NMI:
6274		intr_info = vmx_get_intr_info(vcpu);
6275		if (is_nmi(intr_info))
6276			return true;
6277		else if (is_page_fault(intr_info))
6278			return true;
6279		return vmcs12->exception_bitmap &
6280				(1u << (intr_info & INTR_INFO_VECTOR_MASK));
6281	case EXIT_REASON_EXTERNAL_INTERRUPT:
6282		return nested_exit_on_intr(vcpu);
6283	case EXIT_REASON_TRIPLE_FAULT:
6284		return true;
6285	case EXIT_REASON_INTERRUPT_WINDOW:
6286		return nested_cpu_has(vmcs12, CPU_BASED_INTR_WINDOW_EXITING);
6287	case EXIT_REASON_NMI_WINDOW:
6288		return nested_cpu_has(vmcs12, CPU_BASED_NMI_WINDOW_EXITING);
6289	case EXIT_REASON_TASK_SWITCH:
6290		return true;
6291	case EXIT_REASON_CPUID:
6292		return true;
6293	case EXIT_REASON_HLT:
6294		return nested_cpu_has(vmcs12, CPU_BASED_HLT_EXITING);
6295	case EXIT_REASON_INVD:
6296		return true;
6297	case EXIT_REASON_INVLPG:
6298		return nested_cpu_has(vmcs12, CPU_BASED_INVLPG_EXITING);
6299	case EXIT_REASON_RDPMC:
6300		return nested_cpu_has(vmcs12, CPU_BASED_RDPMC_EXITING);
6301	case EXIT_REASON_RDRAND:
6302		return nested_cpu_has2(vmcs12, SECONDARY_EXEC_RDRAND_EXITING);
6303	case EXIT_REASON_RDSEED:
6304		return nested_cpu_has2(vmcs12, SECONDARY_EXEC_RDSEED_EXITING);
6305	case EXIT_REASON_RDTSC: case EXIT_REASON_RDTSCP:
6306		return nested_cpu_has(vmcs12, CPU_BASED_RDTSC_EXITING);
6307	case EXIT_REASON_VMREAD:
6308		return nested_vmx_exit_handled_vmcs_access(vcpu, vmcs12,
6309			vmcs12->vmread_bitmap);
6310	case EXIT_REASON_VMWRITE:
6311		return nested_vmx_exit_handled_vmcs_access(vcpu, vmcs12,
6312			vmcs12->vmwrite_bitmap);
6313	case EXIT_REASON_VMCALL: case EXIT_REASON_VMCLEAR:
6314	case EXIT_REASON_VMLAUNCH: case EXIT_REASON_VMPTRLD:
6315	case EXIT_REASON_VMPTRST: case EXIT_REASON_VMRESUME:
6316	case EXIT_REASON_VMOFF: case EXIT_REASON_VMON:
6317	case EXIT_REASON_INVEPT: case EXIT_REASON_INVVPID:
6318		/*
6319		 * VMX instructions trap unconditionally. This allows L1 to
6320		 * emulate them for its L2 guest, i.e., allows 3-level nesting!
6321		 */
6322		return true;
6323	case EXIT_REASON_CR_ACCESS:
6324		return nested_vmx_exit_handled_cr(vcpu, vmcs12);
6325	case EXIT_REASON_DR_ACCESS:
6326		return nested_cpu_has(vmcs12, CPU_BASED_MOV_DR_EXITING);
6327	case EXIT_REASON_IO_INSTRUCTION:
6328		return nested_vmx_exit_handled_io(vcpu, vmcs12);
6329	case EXIT_REASON_GDTR_IDTR: case EXIT_REASON_LDTR_TR:
6330		return nested_cpu_has2(vmcs12, SECONDARY_EXEC_DESC);
6331	case EXIT_REASON_MSR_READ:
6332	case EXIT_REASON_MSR_WRITE:
6333		return nested_vmx_exit_handled_msr(vcpu, vmcs12, exit_reason);
6334	case EXIT_REASON_INVALID_STATE:
6335		return true;
6336	case EXIT_REASON_MWAIT_INSTRUCTION:
6337		return nested_cpu_has(vmcs12, CPU_BASED_MWAIT_EXITING);
6338	case EXIT_REASON_MONITOR_TRAP_FLAG:
6339		return nested_vmx_exit_handled_mtf(vmcs12);
6340	case EXIT_REASON_MONITOR_INSTRUCTION:
6341		return nested_cpu_has(vmcs12, CPU_BASED_MONITOR_EXITING);
6342	case EXIT_REASON_PAUSE_INSTRUCTION:
6343		return nested_cpu_has(vmcs12, CPU_BASED_PAUSE_EXITING) ||
6344			nested_cpu_has2(vmcs12,
6345				SECONDARY_EXEC_PAUSE_LOOP_EXITING);
6346	case EXIT_REASON_MCE_DURING_VMENTRY:
6347		return true;
6348	case EXIT_REASON_TPR_BELOW_THRESHOLD:
6349		return nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW);
6350	case EXIT_REASON_APIC_ACCESS:
6351	case EXIT_REASON_APIC_WRITE:
6352	case EXIT_REASON_EOI_INDUCED:
6353		/*
6354		 * The controls for "virtualize APIC accesses," "APIC-
6355		 * register virtualization," and "virtual-interrupt
6356		 * delivery" only come from vmcs12.
6357		 */
6358		return true;
6359	case EXIT_REASON_INVPCID:
6360		return
6361			nested_cpu_has2(vmcs12, SECONDARY_EXEC_ENABLE_INVPCID) &&
6362			nested_cpu_has(vmcs12, CPU_BASED_INVLPG_EXITING);
6363	case EXIT_REASON_WBINVD:
6364		return nested_cpu_has2(vmcs12, SECONDARY_EXEC_WBINVD_EXITING);
6365	case EXIT_REASON_XSETBV:
6366		return true;
6367	case EXIT_REASON_XSAVES: case EXIT_REASON_XRSTORS:
6368		/*
6369		 * This should never happen, since it is not possible to
6370		 * set XSS to a non-zero value---neither in L1 nor in L2.
6371		 * If if it were, XSS would have to be checked against
6372		 * the XSS exit bitmap in vmcs12.
6373		 */
6374		return nested_cpu_has2(vmcs12, SECONDARY_EXEC_ENABLE_XSAVES);
6375	case EXIT_REASON_UMWAIT:
6376	case EXIT_REASON_TPAUSE:
6377		return nested_cpu_has2(vmcs12,
6378			SECONDARY_EXEC_ENABLE_USR_WAIT_PAUSE);
6379	case EXIT_REASON_ENCLS:
6380		return nested_vmx_exit_handled_encls(vcpu, vmcs12);
6381	case EXIT_REASON_NOTIFY:
6382		/* Notify VM exit is not exposed to L1 */
6383		return false;
6384	default:
6385		return true;
6386	}
6387}
6388
6389/*
6390 * Conditionally reflect a VM-Exit into L1.  Returns %true if the VM-Exit was
6391 * reflected into L1.
6392 */
6393bool nested_vmx_reflect_vmexit(struct kvm_vcpu *vcpu)
6394{
6395	struct vcpu_vmx *vmx = to_vmx(vcpu);
6396	union vmx_exit_reason exit_reason = vmx->exit_reason;
6397	unsigned long exit_qual;
6398	u32 exit_intr_info;
6399
6400	WARN_ON_ONCE(vmx->nested.nested_run_pending);
6401
6402	/*
6403	 * Late nested VM-Fail shares the same flow as nested VM-Exit since KVM
6404	 * has already loaded L2's state.
6405	 */
6406	if (unlikely(vmx->fail)) {
6407		trace_kvm_nested_vmenter_failed(
6408			"hardware VM-instruction error: ",
6409			vmcs_read32(VM_INSTRUCTION_ERROR));
6410		exit_intr_info = 0;
6411		exit_qual = 0;
6412		goto reflect_vmexit;
6413	}
6414
6415	trace_kvm_nested_vmexit(vcpu, KVM_ISA_VMX);
6416
6417	/* If L0 (KVM) wants the exit, it trumps L1's desires. */
6418	if (nested_vmx_l0_wants_exit(vcpu, exit_reason))
6419		return false;
6420
6421	/* If L1 doesn't want the exit, handle it in L0. */
6422	if (!nested_vmx_l1_wants_exit(vcpu, exit_reason))
6423		return false;
6424
6425	/*
6426	 * vmcs.VM_EXIT_INTR_INFO is only valid for EXCEPTION_NMI exits.  For
6427	 * EXTERNAL_INTERRUPT, the value for vmcs12->vm_exit_intr_info would
6428	 * need to be synthesized by querying the in-kernel LAPIC, but external
6429	 * interrupts are never reflected to L1 so it's a non-issue.
6430	 */
6431	exit_intr_info = vmx_get_intr_info(vcpu);
6432	if (is_exception_with_error_code(exit_intr_info)) {
6433		struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
6434
6435		vmcs12->vm_exit_intr_error_code =
6436			vmcs_read32(VM_EXIT_INTR_ERROR_CODE);
6437	}
6438	exit_qual = vmx_get_exit_qual(vcpu);
6439
6440reflect_vmexit:
6441	nested_vmx_vmexit(vcpu, exit_reason.full, exit_intr_info, exit_qual);
6442	return true;
6443}
6444
6445static int vmx_get_nested_state(struct kvm_vcpu *vcpu,
6446				struct kvm_nested_state __user *user_kvm_nested_state,
6447				u32 user_data_size)
6448{
6449	struct vcpu_vmx *vmx;
6450	struct vmcs12 *vmcs12;
6451	struct kvm_nested_state kvm_state = {
6452		.flags = 0,
6453		.format = KVM_STATE_NESTED_FORMAT_VMX,
6454		.size = sizeof(kvm_state),
6455		.hdr.vmx.flags = 0,
6456		.hdr.vmx.vmxon_pa = INVALID_GPA,
6457		.hdr.vmx.vmcs12_pa = INVALID_GPA,
6458		.hdr.vmx.preemption_timer_deadline = 0,
6459	};
6460	struct kvm_vmx_nested_state_data __user *user_vmx_nested_state =
6461		&user_kvm_nested_state->data.vmx[0];
6462
6463	if (!vcpu)
6464		return kvm_state.size + sizeof(*user_vmx_nested_state);
6465
6466	vmx = to_vmx(vcpu);
6467	vmcs12 = get_vmcs12(vcpu);
6468
6469	if (guest_can_use(vcpu, X86_FEATURE_VMX) &&
6470	    (vmx->nested.vmxon || vmx->nested.smm.vmxon)) {
6471		kvm_state.hdr.vmx.vmxon_pa = vmx->nested.vmxon_ptr;
6472		kvm_state.hdr.vmx.vmcs12_pa = vmx->nested.current_vmptr;
6473
6474		if (vmx_has_valid_vmcs12(vcpu)) {
6475			kvm_state.size += sizeof(user_vmx_nested_state->vmcs12);
6476
6477			/* 'hv_evmcs_vmptr' can also be EVMPTR_MAP_PENDING here */
6478			if (nested_vmx_is_evmptr12_set(vmx))
6479				kvm_state.flags |= KVM_STATE_NESTED_EVMCS;
6480
6481			if (is_guest_mode(vcpu) &&
6482			    nested_cpu_has_shadow_vmcs(vmcs12) &&
6483			    vmcs12->vmcs_link_pointer != INVALID_GPA)
6484				kvm_state.size += sizeof(user_vmx_nested_state->shadow_vmcs12);
6485		}
6486
6487		if (vmx->nested.smm.vmxon)
6488			kvm_state.hdr.vmx.smm.flags |= KVM_STATE_NESTED_SMM_VMXON;
6489
6490		if (vmx->nested.smm.guest_mode)
6491			kvm_state.hdr.vmx.smm.flags |= KVM_STATE_NESTED_SMM_GUEST_MODE;
6492
6493		if (is_guest_mode(vcpu)) {
6494			kvm_state.flags |= KVM_STATE_NESTED_GUEST_MODE;
6495
6496			if (vmx->nested.nested_run_pending)
6497				kvm_state.flags |= KVM_STATE_NESTED_RUN_PENDING;
6498
6499			if (vmx->nested.mtf_pending)
6500				kvm_state.flags |= KVM_STATE_NESTED_MTF_PENDING;
6501
6502			if (nested_cpu_has_preemption_timer(vmcs12) &&
6503			    vmx->nested.has_preemption_timer_deadline) {
6504				kvm_state.hdr.vmx.flags |=
6505					KVM_STATE_VMX_PREEMPTION_TIMER_DEADLINE;
6506				kvm_state.hdr.vmx.preemption_timer_deadline =
6507					vmx->nested.preemption_timer_deadline;
6508			}
6509		}
6510	}
6511
6512	if (user_data_size < kvm_state.size)
6513		goto out;
6514
6515	if (copy_to_user(user_kvm_nested_state, &kvm_state, sizeof(kvm_state)))
6516		return -EFAULT;
6517
6518	if (!vmx_has_valid_vmcs12(vcpu))
6519		goto out;
6520
6521	/*
6522	 * When running L2, the authoritative vmcs12 state is in the
6523	 * vmcs02. When running L1, the authoritative vmcs12 state is
6524	 * in the shadow or enlightened vmcs linked to vmcs01, unless
6525	 * need_vmcs12_to_shadow_sync is set, in which case, the authoritative
6526	 * vmcs12 state is in the vmcs12 already.
6527	 */
6528	if (is_guest_mode(vcpu)) {
6529		sync_vmcs02_to_vmcs12(vcpu, vmcs12);
6530		sync_vmcs02_to_vmcs12_rare(vcpu, vmcs12);
6531	} else  {
6532		copy_vmcs02_to_vmcs12_rare(vcpu, get_vmcs12(vcpu));
6533		if (!vmx->nested.need_vmcs12_to_shadow_sync) {
6534			if (nested_vmx_is_evmptr12_valid(vmx))
6535				/*
6536				 * L1 hypervisor is not obliged to keep eVMCS
6537				 * clean fields data always up-to-date while
6538				 * not in guest mode, 'hv_clean_fields' is only
6539				 * supposed to be actual upon vmentry so we need
6540				 * to ignore it here and do full copy.
6541				 */
6542				copy_enlightened_to_vmcs12(vmx, 0);
6543			else if (enable_shadow_vmcs)
6544				copy_shadow_to_vmcs12(vmx);
6545		}
6546	}
6547
6548	BUILD_BUG_ON(sizeof(user_vmx_nested_state->vmcs12) < VMCS12_SIZE);
6549	BUILD_BUG_ON(sizeof(user_vmx_nested_state->shadow_vmcs12) < VMCS12_SIZE);
6550
6551	/*
6552	 * Copy over the full allocated size of vmcs12 rather than just the size
6553	 * of the struct.
6554	 */
6555	if (copy_to_user(user_vmx_nested_state->vmcs12, vmcs12, VMCS12_SIZE))
6556		return -EFAULT;
6557
6558	if (nested_cpu_has_shadow_vmcs(vmcs12) &&
6559	    vmcs12->vmcs_link_pointer != INVALID_GPA) {
6560		if (copy_to_user(user_vmx_nested_state->shadow_vmcs12,
6561				 get_shadow_vmcs12(vcpu), VMCS12_SIZE))
6562			return -EFAULT;
6563	}
6564out:
6565	return kvm_state.size;
6566}
6567
6568void vmx_leave_nested(struct kvm_vcpu *vcpu)
6569{
6570	if (is_guest_mode(vcpu)) {
6571		to_vmx(vcpu)->nested.nested_run_pending = 0;
6572		nested_vmx_vmexit(vcpu, -1, 0, 0);
6573	}
6574	free_nested(vcpu);
6575}
6576
6577static int vmx_set_nested_state(struct kvm_vcpu *vcpu,
6578				struct kvm_nested_state __user *user_kvm_nested_state,
6579				struct kvm_nested_state *kvm_state)
6580{
6581	struct vcpu_vmx *vmx = to_vmx(vcpu);
6582	struct vmcs12 *vmcs12;
6583	enum vm_entry_failure_code ignored;
6584	struct kvm_vmx_nested_state_data __user *user_vmx_nested_state =
6585		&user_kvm_nested_state->data.vmx[0];
6586	int ret;
6587
6588	if (kvm_state->format != KVM_STATE_NESTED_FORMAT_VMX)
6589		return -EINVAL;
6590
6591	if (kvm_state->hdr.vmx.vmxon_pa == INVALID_GPA) {
6592		if (kvm_state->hdr.vmx.smm.flags)
6593			return -EINVAL;
6594
6595		if (kvm_state->hdr.vmx.vmcs12_pa != INVALID_GPA)
6596			return -EINVAL;
6597
6598		/*
6599		 * KVM_STATE_NESTED_EVMCS used to signal that KVM should
6600		 * enable eVMCS capability on vCPU. However, since then
6601		 * code was changed such that flag signals vmcs12 should
6602		 * be copied into eVMCS in guest memory.
6603		 *
6604		 * To preserve backwards compatibility, allow user
6605		 * to set this flag even when there is no VMXON region.
6606		 */
6607		if (kvm_state->flags & ~KVM_STATE_NESTED_EVMCS)
6608			return -EINVAL;
6609	} else {
6610		if (!guest_can_use(vcpu, X86_FEATURE_VMX))
6611			return -EINVAL;
6612
6613		if (!page_address_valid(vcpu, kvm_state->hdr.vmx.vmxon_pa))
6614			return -EINVAL;
6615	}
6616
6617	if ((kvm_state->hdr.vmx.smm.flags & KVM_STATE_NESTED_SMM_GUEST_MODE) &&
6618	    (kvm_state->flags & KVM_STATE_NESTED_GUEST_MODE))
6619		return -EINVAL;
6620
6621	if (kvm_state->hdr.vmx.smm.flags &
6622	    ~(KVM_STATE_NESTED_SMM_GUEST_MODE | KVM_STATE_NESTED_SMM_VMXON))
6623		return -EINVAL;
6624
6625	if (kvm_state->hdr.vmx.flags & ~KVM_STATE_VMX_PREEMPTION_TIMER_DEADLINE)
6626		return -EINVAL;
6627
6628	/*
6629	 * SMM temporarily disables VMX, so we cannot be in guest mode,
6630	 * nor can VMLAUNCH/VMRESUME be pending.  Outside SMM, SMM flags
6631	 * must be zero.
6632	 */
6633	if (is_smm(vcpu) ?
6634		(kvm_state->flags &
6635		 (KVM_STATE_NESTED_GUEST_MODE | KVM_STATE_NESTED_RUN_PENDING))
6636		: kvm_state->hdr.vmx.smm.flags)
6637		return -EINVAL;
6638
6639	if ((kvm_state->hdr.vmx.smm.flags & KVM_STATE_NESTED_SMM_GUEST_MODE) &&
6640	    !(kvm_state->hdr.vmx.smm.flags & KVM_STATE_NESTED_SMM_VMXON))
6641		return -EINVAL;
6642
6643	if ((kvm_state->flags & KVM_STATE_NESTED_EVMCS) &&
6644	    (!guest_can_use(vcpu, X86_FEATURE_VMX) ||
6645	     !vmx->nested.enlightened_vmcs_enabled))
6646			return -EINVAL;
6647
6648	vmx_leave_nested(vcpu);
6649
6650	if (kvm_state->hdr.vmx.vmxon_pa == INVALID_GPA)
6651		return 0;
6652
6653	vmx->nested.vmxon_ptr = kvm_state->hdr.vmx.vmxon_pa;
6654	ret = enter_vmx_operation(vcpu);
6655	if (ret)
6656		return ret;
6657
6658	/* Empty 'VMXON' state is permitted if no VMCS loaded */
6659	if (kvm_state->size < sizeof(*kvm_state) + sizeof(*vmcs12)) {
6660		/* See vmx_has_valid_vmcs12.  */
6661		if ((kvm_state->flags & KVM_STATE_NESTED_GUEST_MODE) ||
6662		    (kvm_state->flags & KVM_STATE_NESTED_EVMCS) ||
6663		    (kvm_state->hdr.vmx.vmcs12_pa != INVALID_GPA))
6664			return -EINVAL;
6665		else
6666			return 0;
6667	}
6668
6669	if (kvm_state->hdr.vmx.vmcs12_pa != INVALID_GPA) {
6670		if (kvm_state->hdr.vmx.vmcs12_pa == kvm_state->hdr.vmx.vmxon_pa ||
6671		    !page_address_valid(vcpu, kvm_state->hdr.vmx.vmcs12_pa))
6672			return -EINVAL;
6673
6674		set_current_vmptr(vmx, kvm_state->hdr.vmx.vmcs12_pa);
6675#ifdef CONFIG_KVM_HYPERV
6676	} else if (kvm_state->flags & KVM_STATE_NESTED_EVMCS) {
6677		/*
6678		 * nested_vmx_handle_enlightened_vmptrld() cannot be called
6679		 * directly from here as HV_X64_MSR_VP_ASSIST_PAGE may not be
6680		 * restored yet. EVMCS will be mapped from
6681		 * nested_get_vmcs12_pages().
6682		 */
6683		vmx->nested.hv_evmcs_vmptr = EVMPTR_MAP_PENDING;
6684		kvm_make_request(KVM_REQ_GET_NESTED_STATE_PAGES, vcpu);
6685#endif
6686	} else {
6687		return -EINVAL;
6688	}
6689
6690	if (kvm_state->hdr.vmx.smm.flags & KVM_STATE_NESTED_SMM_VMXON) {
6691		vmx->nested.smm.vmxon = true;
6692		vmx->nested.vmxon = false;
6693
6694		if (kvm_state->hdr.vmx.smm.flags & KVM_STATE_NESTED_SMM_GUEST_MODE)
6695			vmx->nested.smm.guest_mode = true;
6696	}
6697
6698	vmcs12 = get_vmcs12(vcpu);
6699	if (copy_from_user(vmcs12, user_vmx_nested_state->vmcs12, sizeof(*vmcs12)))
6700		return -EFAULT;
6701
6702	if (vmcs12->hdr.revision_id != VMCS12_REVISION)
6703		return -EINVAL;
6704
6705	if (!(kvm_state->flags & KVM_STATE_NESTED_GUEST_MODE))
6706		return 0;
6707
6708	vmx->nested.nested_run_pending =
6709		!!(kvm_state->flags & KVM_STATE_NESTED_RUN_PENDING);
6710
6711	vmx->nested.mtf_pending =
6712		!!(kvm_state->flags & KVM_STATE_NESTED_MTF_PENDING);
6713
6714	ret = -EINVAL;
6715	if (nested_cpu_has_shadow_vmcs(vmcs12) &&
6716	    vmcs12->vmcs_link_pointer != INVALID_GPA) {
6717		struct vmcs12 *shadow_vmcs12 = get_shadow_vmcs12(vcpu);
6718
6719		if (kvm_state->size <
6720		    sizeof(*kvm_state) +
6721		    sizeof(user_vmx_nested_state->vmcs12) + sizeof(*shadow_vmcs12))
6722			goto error_guest_mode;
6723
6724		if (copy_from_user(shadow_vmcs12,
6725				   user_vmx_nested_state->shadow_vmcs12,
6726				   sizeof(*shadow_vmcs12))) {
6727			ret = -EFAULT;
6728			goto error_guest_mode;
6729		}
6730
6731		if (shadow_vmcs12->hdr.revision_id != VMCS12_REVISION ||
6732		    !shadow_vmcs12->hdr.shadow_vmcs)
6733			goto error_guest_mode;
6734	}
6735
6736	vmx->nested.has_preemption_timer_deadline = false;
6737	if (kvm_state->hdr.vmx.flags & KVM_STATE_VMX_PREEMPTION_TIMER_DEADLINE) {
6738		vmx->nested.has_preemption_timer_deadline = true;
6739		vmx->nested.preemption_timer_deadline =
6740			kvm_state->hdr.vmx.preemption_timer_deadline;
6741	}
6742
6743	if (nested_vmx_check_controls(vcpu, vmcs12) ||
6744	    nested_vmx_check_host_state(vcpu, vmcs12) ||
6745	    nested_vmx_check_guest_state(vcpu, vmcs12, &ignored))
6746		goto error_guest_mode;
6747
6748	vmx->nested.dirty_vmcs12 = true;
6749	vmx->nested.force_msr_bitmap_recalc = true;
6750	ret = nested_vmx_enter_non_root_mode(vcpu, false);
6751	if (ret)
6752		goto error_guest_mode;
6753
6754	if (vmx->nested.mtf_pending)
6755		kvm_make_request(KVM_REQ_EVENT, vcpu);
6756
6757	return 0;
6758
6759error_guest_mode:
6760	vmx->nested.nested_run_pending = 0;
6761	return ret;
6762}
6763
6764void nested_vmx_set_vmcs_shadowing_bitmap(void)
6765{
6766	if (enable_shadow_vmcs) {
6767		vmcs_write64(VMREAD_BITMAP, __pa(vmx_vmread_bitmap));
6768		vmcs_write64(VMWRITE_BITMAP, __pa(vmx_vmwrite_bitmap));
6769	}
6770}
6771
6772/*
6773 * Indexing into the vmcs12 uses the VMCS encoding rotated left by 6.  Undo
6774 * that madness to get the encoding for comparison.
6775 */
6776#define VMCS12_IDX_TO_ENC(idx) ((u16)(((u16)(idx) >> 6) | ((u16)(idx) << 10)))
6777
6778static u64 nested_vmx_calc_vmcs_enum_msr(void)
6779{
6780	/*
6781	 * Note these are the so called "index" of the VMCS field encoding, not
6782	 * the index into vmcs12.
6783	 */
6784	unsigned int max_idx, idx;
6785	int i;
6786
6787	/*
6788	 * For better or worse, KVM allows VMREAD/VMWRITE to all fields in
6789	 * vmcs12, regardless of whether or not the associated feature is
6790	 * exposed to L1.  Simply find the field with the highest index.
6791	 */
6792	max_idx = 0;
6793	for (i = 0; i < nr_vmcs12_fields; i++) {
6794		/* The vmcs12 table is very, very sparsely populated. */
6795		if (!vmcs12_field_offsets[i])
6796			continue;
6797
6798		idx = vmcs_field_index(VMCS12_IDX_TO_ENC(i));
6799		if (idx > max_idx)
6800			max_idx = idx;
6801	}
6802
6803	return (u64)max_idx << VMCS_FIELD_INDEX_SHIFT;
6804}
6805
6806static void nested_vmx_setup_pinbased_ctls(struct vmcs_config *vmcs_conf,
6807					   struct nested_vmx_msrs *msrs)
6808{
6809	msrs->pinbased_ctls_low =
6810		PIN_BASED_ALWAYSON_WITHOUT_TRUE_MSR;
6811
6812	msrs->pinbased_ctls_high = vmcs_conf->pin_based_exec_ctrl;
6813	msrs->pinbased_ctls_high &=
6814		PIN_BASED_EXT_INTR_MASK |
6815		PIN_BASED_NMI_EXITING |
6816		PIN_BASED_VIRTUAL_NMIS |
6817		(enable_apicv ? PIN_BASED_POSTED_INTR : 0);
6818	msrs->pinbased_ctls_high |=
6819		PIN_BASED_ALWAYSON_WITHOUT_TRUE_MSR |
6820		PIN_BASED_VMX_PREEMPTION_TIMER;
6821}
6822
6823static void nested_vmx_setup_exit_ctls(struct vmcs_config *vmcs_conf,
6824				       struct nested_vmx_msrs *msrs)
6825{
6826	msrs->exit_ctls_low =
6827		VM_EXIT_ALWAYSON_WITHOUT_TRUE_MSR;
6828
6829	msrs->exit_ctls_high = vmcs_conf->vmexit_ctrl;
6830	msrs->exit_ctls_high &=
6831#ifdef CONFIG_X86_64
6832		VM_EXIT_HOST_ADDR_SPACE_SIZE |
6833#endif
6834		VM_EXIT_LOAD_IA32_PAT | VM_EXIT_SAVE_IA32_PAT |
6835		VM_EXIT_CLEAR_BNDCFGS;
6836	msrs->exit_ctls_high |=
6837		VM_EXIT_ALWAYSON_WITHOUT_TRUE_MSR |
6838		VM_EXIT_LOAD_IA32_EFER | VM_EXIT_SAVE_IA32_EFER |
6839		VM_EXIT_SAVE_VMX_PREEMPTION_TIMER | VM_EXIT_ACK_INTR_ON_EXIT |
6840		VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL;
6841
6842	/* We support free control of debug control saving. */
6843	msrs->exit_ctls_low &= ~VM_EXIT_SAVE_DEBUG_CONTROLS;
6844}
6845
6846static void nested_vmx_setup_entry_ctls(struct vmcs_config *vmcs_conf,
6847					struct nested_vmx_msrs *msrs)
6848{
6849	msrs->entry_ctls_low =
6850		VM_ENTRY_ALWAYSON_WITHOUT_TRUE_MSR;
6851
6852	msrs->entry_ctls_high = vmcs_conf->vmentry_ctrl;
6853	msrs->entry_ctls_high &=
6854#ifdef CONFIG_X86_64
6855		VM_ENTRY_IA32E_MODE |
6856#endif
6857		VM_ENTRY_LOAD_IA32_PAT | VM_ENTRY_LOAD_BNDCFGS;
6858	msrs->entry_ctls_high |=
6859		(VM_ENTRY_ALWAYSON_WITHOUT_TRUE_MSR | VM_ENTRY_LOAD_IA32_EFER |
6860		 VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL);
6861
6862	/* We support free control of debug control loading. */
6863	msrs->entry_ctls_low &= ~VM_ENTRY_LOAD_DEBUG_CONTROLS;
6864}
6865
6866static void nested_vmx_setup_cpubased_ctls(struct vmcs_config *vmcs_conf,
6867					   struct nested_vmx_msrs *msrs)
6868{
6869	msrs->procbased_ctls_low =
6870		CPU_BASED_ALWAYSON_WITHOUT_TRUE_MSR;
6871
6872	msrs->procbased_ctls_high = vmcs_conf->cpu_based_exec_ctrl;
6873	msrs->procbased_ctls_high &=
6874		CPU_BASED_INTR_WINDOW_EXITING |
6875		CPU_BASED_NMI_WINDOW_EXITING | CPU_BASED_USE_TSC_OFFSETTING |
6876		CPU_BASED_HLT_EXITING | CPU_BASED_INVLPG_EXITING |
6877		CPU_BASED_MWAIT_EXITING | CPU_BASED_CR3_LOAD_EXITING |
6878		CPU_BASED_CR3_STORE_EXITING |
6879#ifdef CONFIG_X86_64
6880		CPU_BASED_CR8_LOAD_EXITING | CPU_BASED_CR8_STORE_EXITING |
6881#endif
6882		CPU_BASED_MOV_DR_EXITING | CPU_BASED_UNCOND_IO_EXITING |
6883		CPU_BASED_USE_IO_BITMAPS | CPU_BASED_MONITOR_TRAP_FLAG |
6884		CPU_BASED_MONITOR_EXITING | CPU_BASED_RDPMC_EXITING |
6885		CPU_BASED_RDTSC_EXITING | CPU_BASED_PAUSE_EXITING |
6886		CPU_BASED_TPR_SHADOW | CPU_BASED_ACTIVATE_SECONDARY_CONTROLS;
6887	/*
6888	 * We can allow some features even when not supported by the
6889	 * hardware. For example, L1 can specify an MSR bitmap - and we
6890	 * can use it to avoid exits to L1 - even when L0 runs L2
6891	 * without MSR bitmaps.
6892	 */
6893	msrs->procbased_ctls_high |=
6894		CPU_BASED_ALWAYSON_WITHOUT_TRUE_MSR |
6895		CPU_BASED_USE_MSR_BITMAPS;
6896
6897	/* We support free control of CR3 access interception. */
6898	msrs->procbased_ctls_low &=
6899		~(CPU_BASED_CR3_LOAD_EXITING | CPU_BASED_CR3_STORE_EXITING);
6900}
6901
6902static void nested_vmx_setup_secondary_ctls(u32 ept_caps,
6903					    struct vmcs_config *vmcs_conf,
6904					    struct nested_vmx_msrs *msrs)
6905{
6906	msrs->secondary_ctls_low = 0;
6907
6908	msrs->secondary_ctls_high = vmcs_conf->cpu_based_2nd_exec_ctrl;
6909	msrs->secondary_ctls_high &=
6910		SECONDARY_EXEC_DESC |
6911		SECONDARY_EXEC_ENABLE_RDTSCP |
6912		SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE |
6913		SECONDARY_EXEC_WBINVD_EXITING |
6914		SECONDARY_EXEC_APIC_REGISTER_VIRT |
6915		SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY |
6916		SECONDARY_EXEC_RDRAND_EXITING |
6917		SECONDARY_EXEC_ENABLE_INVPCID |
6918		SECONDARY_EXEC_ENABLE_VMFUNC |
6919		SECONDARY_EXEC_RDSEED_EXITING |
6920		SECONDARY_EXEC_ENABLE_XSAVES |
6921		SECONDARY_EXEC_TSC_SCALING |
6922		SECONDARY_EXEC_ENABLE_USR_WAIT_PAUSE;
6923
6924	/*
6925	 * We can emulate "VMCS shadowing," even if the hardware
6926	 * doesn't support it.
6927	 */
6928	msrs->secondary_ctls_high |=
6929		SECONDARY_EXEC_SHADOW_VMCS;
6930
6931	if (enable_ept) {
6932		/* nested EPT: emulate EPT also to L1 */
6933		msrs->secondary_ctls_high |=
6934			SECONDARY_EXEC_ENABLE_EPT;
6935		msrs->ept_caps =
6936			VMX_EPT_PAGE_WALK_4_BIT |
6937			VMX_EPT_PAGE_WALK_5_BIT |
6938			VMX_EPTP_WB_BIT |
6939			VMX_EPT_INVEPT_BIT |
6940			VMX_EPT_EXECUTE_ONLY_BIT;
6941
6942		msrs->ept_caps &= ept_caps;
6943		msrs->ept_caps |= VMX_EPT_EXTENT_GLOBAL_BIT |
6944			VMX_EPT_EXTENT_CONTEXT_BIT | VMX_EPT_2MB_PAGE_BIT |
6945			VMX_EPT_1GB_PAGE_BIT;
6946		if (enable_ept_ad_bits) {
6947			msrs->secondary_ctls_high |=
6948				SECONDARY_EXEC_ENABLE_PML;
6949			msrs->ept_caps |= VMX_EPT_AD_BIT;
6950		}
6951
6952		/*
6953		 * Advertise EPTP switching irrespective of hardware support,
6954		 * KVM emulates it in software so long as VMFUNC is supported.
6955		 */
6956		if (cpu_has_vmx_vmfunc())
6957			msrs->vmfunc_controls = VMX_VMFUNC_EPTP_SWITCHING;
6958	}
6959
6960	/*
6961	 * Old versions of KVM use the single-context version without
6962	 * checking for support, so declare that it is supported even
6963	 * though it is treated as global context.  The alternative is
6964	 * not failing the single-context invvpid, and it is worse.
6965	 */
6966	if (enable_vpid) {
6967		msrs->secondary_ctls_high |=
6968			SECONDARY_EXEC_ENABLE_VPID;
6969		msrs->vpid_caps = VMX_VPID_INVVPID_BIT |
6970			VMX_VPID_EXTENT_SUPPORTED_MASK;
6971	}
6972
6973	if (enable_unrestricted_guest)
6974		msrs->secondary_ctls_high |=
6975			SECONDARY_EXEC_UNRESTRICTED_GUEST;
6976
6977	if (flexpriority_enabled)
6978		msrs->secondary_ctls_high |=
6979			SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
6980
6981	if (enable_sgx)
6982		msrs->secondary_ctls_high |= SECONDARY_EXEC_ENCLS_EXITING;
6983}
6984
6985static void nested_vmx_setup_misc_data(struct vmcs_config *vmcs_conf,
6986				       struct nested_vmx_msrs *msrs)
6987{
6988	msrs->misc_low = (u32)vmcs_conf->misc & VMX_MISC_SAVE_EFER_LMA;
6989	msrs->misc_low |=
6990		MSR_IA32_VMX_MISC_VMWRITE_SHADOW_RO_FIELDS |
6991		VMX_MISC_EMULATED_PREEMPTION_TIMER_RATE |
6992		VMX_MISC_ACTIVITY_HLT |
6993		VMX_MISC_ACTIVITY_WAIT_SIPI;
6994	msrs->misc_high = 0;
6995}
6996
6997static void nested_vmx_setup_basic(struct nested_vmx_msrs *msrs)
6998{
6999	/*
7000	 * This MSR reports some information about VMX support. We
7001	 * should return information about the VMX we emulate for the
7002	 * guest, and the VMCS structure we give it - not about the
7003	 * VMX support of the underlying hardware.
7004	 */
7005	msrs->basic =
7006		VMCS12_REVISION |
7007		VMX_BASIC_TRUE_CTLS |
7008		((u64)VMCS12_SIZE << VMX_BASIC_VMCS_SIZE_SHIFT) |
7009		(VMX_BASIC_MEM_TYPE_WB << VMX_BASIC_MEM_TYPE_SHIFT);
7010
7011	if (cpu_has_vmx_basic_inout())
7012		msrs->basic |= VMX_BASIC_INOUT;
7013}
7014
7015static void nested_vmx_setup_cr_fixed(struct nested_vmx_msrs *msrs)
7016{
7017	/*
7018	 * These MSRs specify bits which the guest must keep fixed on
7019	 * while L1 is in VMXON mode (in L1's root mode, or running an L2).
7020	 * We picked the standard core2 setting.
7021	 */
7022#define VMXON_CR0_ALWAYSON     (X86_CR0_PE | X86_CR0_PG | X86_CR0_NE)
7023#define VMXON_CR4_ALWAYSON     X86_CR4_VMXE
7024	msrs->cr0_fixed0 = VMXON_CR0_ALWAYSON;
7025	msrs->cr4_fixed0 = VMXON_CR4_ALWAYSON;
7026
7027	/* These MSRs specify bits which the guest must keep fixed off. */
7028	rdmsrl(MSR_IA32_VMX_CR0_FIXED1, msrs->cr0_fixed1);
7029	rdmsrl(MSR_IA32_VMX_CR4_FIXED1, msrs->cr4_fixed1);
7030
7031	if (vmx_umip_emulated())
7032		msrs->cr4_fixed1 |= X86_CR4_UMIP;
7033}
7034
7035/*
7036 * nested_vmx_setup_ctls_msrs() sets up variables containing the values to be
7037 * returned for the various VMX controls MSRs when nested VMX is enabled.
7038 * The same values should also be used to verify that vmcs12 control fields are
7039 * valid during nested entry from L1 to L2.
7040 * Each of these control msrs has a low and high 32-bit half: A low bit is on
7041 * if the corresponding bit in the (32-bit) control field *must* be on, and a
7042 * bit in the high half is on if the corresponding bit in the control field
7043 * may be on. See also vmx_control_verify().
7044 */
7045void nested_vmx_setup_ctls_msrs(struct vmcs_config *vmcs_conf, u32 ept_caps)
7046{
7047	struct nested_vmx_msrs *msrs = &vmcs_conf->nested;
7048
7049	/*
7050	 * Note that as a general rule, the high half of the MSRs (bits in
7051	 * the control fields which may be 1) should be initialized by the
7052	 * intersection of the underlying hardware's MSR (i.e., features which
7053	 * can be supported) and the list of features we want to expose -
7054	 * because they are known to be properly supported in our code.
7055	 * Also, usually, the low half of the MSRs (bits which must be 1) can
7056	 * be set to 0, meaning that L1 may turn off any of these bits. The
7057	 * reason is that if one of these bits is necessary, it will appear
7058	 * in vmcs01 and prepare_vmcs02, when it bitwise-or's the control
7059	 * fields of vmcs01 and vmcs02, will turn these bits off - and
7060	 * nested_vmx_l1_wants_exit() will not pass related exits to L1.
7061	 * These rules have exceptions below.
7062	 */
7063	nested_vmx_setup_pinbased_ctls(vmcs_conf, msrs);
7064
7065	nested_vmx_setup_exit_ctls(vmcs_conf, msrs);
7066
7067	nested_vmx_setup_entry_ctls(vmcs_conf, msrs);
7068
7069	nested_vmx_setup_cpubased_ctls(vmcs_conf, msrs);
7070
7071	nested_vmx_setup_secondary_ctls(ept_caps, vmcs_conf, msrs);
7072
7073	nested_vmx_setup_misc_data(vmcs_conf, msrs);
7074
7075	nested_vmx_setup_basic(msrs);
7076
7077	nested_vmx_setup_cr_fixed(msrs);
7078
7079	msrs->vmcs_enum = nested_vmx_calc_vmcs_enum_msr();
7080}
7081
7082void nested_vmx_hardware_unsetup(void)
7083{
7084	int i;
7085
7086	if (enable_shadow_vmcs) {
7087		for (i = 0; i < VMX_BITMAP_NR; i++)
7088			free_page((unsigned long)vmx_bitmap[i]);
7089	}
7090}
7091
7092__init int nested_vmx_hardware_setup(int (*exit_handlers[])(struct kvm_vcpu *))
7093{
7094	int i;
7095
7096	if (!cpu_has_vmx_shadow_vmcs())
7097		enable_shadow_vmcs = 0;
7098	if (enable_shadow_vmcs) {
7099		for (i = 0; i < VMX_BITMAP_NR; i++) {
7100			/*
7101			 * The vmx_bitmap is not tied to a VM and so should
7102			 * not be charged to a memcg.
7103			 */
7104			vmx_bitmap[i] = (unsigned long *)
7105				__get_free_page(GFP_KERNEL);
7106			if (!vmx_bitmap[i]) {
7107				nested_vmx_hardware_unsetup();
7108				return -ENOMEM;
7109			}
7110		}
7111
7112		init_vmcs_shadow_fields();
7113	}
7114
7115	exit_handlers[EXIT_REASON_VMCLEAR]	= handle_vmclear;
7116	exit_handlers[EXIT_REASON_VMLAUNCH]	= handle_vmlaunch;
7117	exit_handlers[EXIT_REASON_VMPTRLD]	= handle_vmptrld;
7118	exit_handlers[EXIT_REASON_VMPTRST]	= handle_vmptrst;
7119	exit_handlers[EXIT_REASON_VMREAD]	= handle_vmread;
7120	exit_handlers[EXIT_REASON_VMRESUME]	= handle_vmresume;
7121	exit_handlers[EXIT_REASON_VMWRITE]	= handle_vmwrite;
7122	exit_handlers[EXIT_REASON_VMOFF]	= handle_vmxoff;
7123	exit_handlers[EXIT_REASON_VMON]		= handle_vmxon;
7124	exit_handlers[EXIT_REASON_INVEPT]	= handle_invept;
7125	exit_handlers[EXIT_REASON_INVVPID]	= handle_invvpid;
7126	exit_handlers[EXIT_REASON_VMFUNC]	= handle_vmfunc;
7127
7128	return 0;
7129}
7130
7131struct kvm_x86_nested_ops vmx_nested_ops = {
7132	.leave_nested = vmx_leave_nested,
7133	.is_exception_vmexit = nested_vmx_is_exception_vmexit,
7134	.check_events = vmx_check_nested_events,
7135	.has_events = vmx_has_nested_events,
7136	.triple_fault = nested_vmx_triple_fault,
7137	.get_state = vmx_get_nested_state,
7138	.set_state = vmx_set_nested_state,
7139	.get_nested_state_pages = vmx_get_nested_state_pages,
7140	.write_log_dirty = nested_vmx_write_pml_buffer,
7141#ifdef CONFIG_KVM_HYPERV
7142	.enable_evmcs = nested_enable_evmcs,
7143	.get_evmcs_version = nested_get_evmcs_version,
7144	.hv_inject_synthetic_vmexit_post_tlb_flush = vmx_hv_inject_synthetic_vmexit_post_tlb_flush,
7145#endif
7146};
7147