1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * Kernel-based Virtual Machine driver for Linux
4 *
5 * AMD SVM-SEV support
6 *
7 * Copyright 2010 Red Hat, Inc. and/or its affiliates.
8 */
9#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
10
11#include <linux/kvm_types.h>
12#include <linux/kvm_host.h>
13#include <linux/kernel.h>
14#include <linux/highmem.h>
15#include <linux/psp.h>
16#include <linux/psp-sev.h>
17#include <linux/pagemap.h>
18#include <linux/swap.h>
19#include <linux/misc_cgroup.h>
20#include <linux/processor.h>
21#include <linux/trace_events.h>
22
23#include <asm/pkru.h>
24#include <asm/trapnr.h>
25#include <asm/fpu/xcr.h>
26#include <asm/debugreg.h>
27
28#include "mmu.h"
29#include "x86.h"
30#include "svm.h"
31#include "svm_ops.h"
32#include "cpuid.h"
33#include "trace.h"
34
35#ifndef CONFIG_KVM_AMD_SEV
36/*
37 * When this config is not defined, SEV feature is not supported and APIs in
38 * this file are not used but this file still gets compiled into the KVM AMD
39 * module.
40 *
41 * We will not have MISC_CG_RES_SEV and MISC_CG_RES_SEV_ES entries in the enum
42 * misc_res_type {} defined in linux/misc_cgroup.h.
43 *
44 * Below macros allow compilation to succeed.
45 */
46#define MISC_CG_RES_SEV MISC_CG_RES_TYPES
47#define MISC_CG_RES_SEV_ES MISC_CG_RES_TYPES
48#endif
49
50#ifdef CONFIG_KVM_AMD_SEV
51/* enable/disable SEV support */
52static bool sev_enabled = true;
53module_param_named(sev, sev_enabled, bool, 0444);
54
55/* enable/disable SEV-ES support */
56static bool sev_es_enabled = true;
57module_param_named(sev_es, sev_es_enabled, bool, 0444);
58
59/* enable/disable SEV-ES DebugSwap support */
60static bool sev_es_debug_swap_enabled = false;
61module_param_named(debug_swap, sev_es_debug_swap_enabled, bool, 0444);
62#else
63#define sev_enabled false
64#define sev_es_enabled false
65#define sev_es_debug_swap_enabled false
66#endif /* CONFIG_KVM_AMD_SEV */
67
68static u8 sev_enc_bit;
69static DECLARE_RWSEM(sev_deactivate_lock);
70static DEFINE_MUTEX(sev_bitmap_lock);
71unsigned int max_sev_asid;
72static unsigned int min_sev_asid;
73static unsigned long sev_me_mask;
74static unsigned int nr_asids;
75static unsigned long *sev_asid_bitmap;
76static unsigned long *sev_reclaim_asid_bitmap;
77
78struct enc_region {
79	struct list_head list;
80	unsigned long npages;
81	struct page **pages;
82	unsigned long uaddr;
83	unsigned long size;
84};
85
86/* Called with the sev_bitmap_lock held, or on shutdown  */
87static int sev_flush_asids(unsigned int min_asid, unsigned int max_asid)
88{
89	int ret, error = 0;
90	unsigned int asid;
91
92	/* Check if there are any ASIDs to reclaim before performing a flush */
93	asid = find_next_bit(sev_reclaim_asid_bitmap, nr_asids, min_asid);
94	if (asid > max_asid)
95		return -EBUSY;
96
97	/*
98	 * DEACTIVATE will clear the WBINVD indicator causing DF_FLUSH to fail,
99	 * so it must be guarded.
100	 */
101	down_write(&sev_deactivate_lock);
102
103	wbinvd_on_all_cpus();
104	ret = sev_guest_df_flush(&error);
105
106	up_write(&sev_deactivate_lock);
107
108	if (ret)
109		pr_err("SEV: DF_FLUSH failed, ret=%d, error=%#x\n", ret, error);
110
111	return ret;
112}
113
114static inline bool is_mirroring_enc_context(struct kvm *kvm)
115{
116	return !!to_kvm_svm(kvm)->sev_info.enc_context_owner;
117}
118
119/* Must be called with the sev_bitmap_lock held */
120static bool __sev_recycle_asids(unsigned int min_asid, unsigned int max_asid)
121{
122	if (sev_flush_asids(min_asid, max_asid))
123		return false;
124
125	/* The flush process will flush all reclaimable SEV and SEV-ES ASIDs */
126	bitmap_xor(sev_asid_bitmap, sev_asid_bitmap, sev_reclaim_asid_bitmap,
127		   nr_asids);
128	bitmap_zero(sev_reclaim_asid_bitmap, nr_asids);
129
130	return true;
131}
132
133static int sev_misc_cg_try_charge(struct kvm_sev_info *sev)
134{
135	enum misc_res_type type = sev->es_active ? MISC_CG_RES_SEV_ES : MISC_CG_RES_SEV;
136	return misc_cg_try_charge(type, sev->misc_cg, 1);
137}
138
139static void sev_misc_cg_uncharge(struct kvm_sev_info *sev)
140{
141	enum misc_res_type type = sev->es_active ? MISC_CG_RES_SEV_ES : MISC_CG_RES_SEV;
142	misc_cg_uncharge(type, sev->misc_cg, 1);
143}
144
145static int sev_asid_new(struct kvm_sev_info *sev)
146{
147	/*
148	 * SEV-enabled guests must use asid from min_sev_asid to max_sev_asid.
149	 * SEV-ES-enabled guest can use from 1 to min_sev_asid - 1.
150	 * Note: min ASID can end up larger than the max if basic SEV support is
151	 * effectively disabled by disallowing use of ASIDs for SEV guests.
152	 */
153	unsigned int min_asid = sev->es_active ? 1 : min_sev_asid;
154	unsigned int max_asid = sev->es_active ? min_sev_asid - 1 : max_sev_asid;
155	unsigned int asid;
156	bool retry = true;
157	int ret;
158
159	if (min_asid > max_asid)
160		return -ENOTTY;
161
162	WARN_ON(sev->misc_cg);
163	sev->misc_cg = get_current_misc_cg();
164	ret = sev_misc_cg_try_charge(sev);
165	if (ret) {
166		put_misc_cg(sev->misc_cg);
167		sev->misc_cg = NULL;
168		return ret;
169	}
170
171	mutex_lock(&sev_bitmap_lock);
172
173again:
174	asid = find_next_zero_bit(sev_asid_bitmap, max_asid + 1, min_asid);
175	if (asid > max_asid) {
176		if (retry && __sev_recycle_asids(min_asid, max_asid)) {
177			retry = false;
178			goto again;
179		}
180		mutex_unlock(&sev_bitmap_lock);
181		ret = -EBUSY;
182		goto e_uncharge;
183	}
184
185	__set_bit(asid, sev_asid_bitmap);
186
187	mutex_unlock(&sev_bitmap_lock);
188
189	sev->asid = asid;
190	return 0;
191e_uncharge:
192	sev_misc_cg_uncharge(sev);
193	put_misc_cg(sev->misc_cg);
194	sev->misc_cg = NULL;
195	return ret;
196}
197
198static unsigned int sev_get_asid(struct kvm *kvm)
199{
200	struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
201
202	return sev->asid;
203}
204
205static void sev_asid_free(struct kvm_sev_info *sev)
206{
207	struct svm_cpu_data *sd;
208	int cpu;
209
210	mutex_lock(&sev_bitmap_lock);
211
212	__set_bit(sev->asid, sev_reclaim_asid_bitmap);
213
214	for_each_possible_cpu(cpu) {
215		sd = per_cpu_ptr(&svm_data, cpu);
216		sd->sev_vmcbs[sev->asid] = NULL;
217	}
218
219	mutex_unlock(&sev_bitmap_lock);
220
221	sev_misc_cg_uncharge(sev);
222	put_misc_cg(sev->misc_cg);
223	sev->misc_cg = NULL;
224}
225
226static void sev_decommission(unsigned int handle)
227{
228	struct sev_data_decommission decommission;
229
230	if (!handle)
231		return;
232
233	decommission.handle = handle;
234	sev_guest_decommission(&decommission, NULL);
235}
236
237static void sev_unbind_asid(struct kvm *kvm, unsigned int handle)
238{
239	struct sev_data_deactivate deactivate;
240
241	if (!handle)
242		return;
243
244	deactivate.handle = handle;
245
246	/* Guard DEACTIVATE against WBINVD/DF_FLUSH used in ASID recycling */
247	down_read(&sev_deactivate_lock);
248	sev_guest_deactivate(&deactivate, NULL);
249	up_read(&sev_deactivate_lock);
250
251	sev_decommission(handle);
252}
253
254static int sev_guest_init(struct kvm *kvm, struct kvm_sev_cmd *argp)
255{
256	struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
257	struct sev_platform_init_args init_args = {0};
258	int ret;
259
260	if (kvm->created_vcpus)
261		return -EINVAL;
262
263	if (unlikely(sev->active))
264		return -EINVAL;
265
266	sev->active = true;
267	sev->es_active = argp->id == KVM_SEV_ES_INIT;
268	ret = sev_asid_new(sev);
269	if (ret)
270		goto e_no_asid;
271
272	init_args.probe = false;
273	ret = sev_platform_init(&init_args);
274	if (ret)
275		goto e_free;
276
277	INIT_LIST_HEAD(&sev->regions_list);
278	INIT_LIST_HEAD(&sev->mirror_vms);
279
280	kvm_set_apicv_inhibit(kvm, APICV_INHIBIT_REASON_SEV);
281
282	return 0;
283
284e_free:
285	argp->error = init_args.error;
286	sev_asid_free(sev);
287	sev->asid = 0;
288e_no_asid:
289	sev->es_active = false;
290	sev->active = false;
291	return ret;
292}
293
294static int sev_bind_asid(struct kvm *kvm, unsigned int handle, int *error)
295{
296	unsigned int asid = sev_get_asid(kvm);
297	struct sev_data_activate activate;
298	int ret;
299
300	/* activate ASID on the given handle */
301	activate.handle = handle;
302	activate.asid   = asid;
303	ret = sev_guest_activate(&activate, error);
304
305	return ret;
306}
307
308static int __sev_issue_cmd(int fd, int id, void *data, int *error)
309{
310	struct fd f;
311	int ret;
312
313	f = fdget(fd);
314	if (!f.file)
315		return -EBADF;
316
317	ret = sev_issue_cmd_external_user(f.file, id, data, error);
318
319	fdput(f);
320	return ret;
321}
322
323static int sev_issue_cmd(struct kvm *kvm, int id, void *data, int *error)
324{
325	struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
326
327	return __sev_issue_cmd(sev->fd, id, data, error);
328}
329
330static int sev_launch_start(struct kvm *kvm, struct kvm_sev_cmd *argp)
331{
332	struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
333	struct sev_data_launch_start start;
334	struct kvm_sev_launch_start params;
335	void *dh_blob, *session_blob;
336	int *error = &argp->error;
337	int ret;
338
339	if (!sev_guest(kvm))
340		return -ENOTTY;
341
342	if (copy_from_user(&params, (void __user *)(uintptr_t)argp->data, sizeof(params)))
343		return -EFAULT;
344
345	memset(&start, 0, sizeof(start));
346
347	dh_blob = NULL;
348	if (params.dh_uaddr) {
349		dh_blob = psp_copy_user_blob(params.dh_uaddr, params.dh_len);
350		if (IS_ERR(dh_blob))
351			return PTR_ERR(dh_blob);
352
353		start.dh_cert_address = __sme_set(__pa(dh_blob));
354		start.dh_cert_len = params.dh_len;
355	}
356
357	session_blob = NULL;
358	if (params.session_uaddr) {
359		session_blob = psp_copy_user_blob(params.session_uaddr, params.session_len);
360		if (IS_ERR(session_blob)) {
361			ret = PTR_ERR(session_blob);
362			goto e_free_dh;
363		}
364
365		start.session_address = __sme_set(__pa(session_blob));
366		start.session_len = params.session_len;
367	}
368
369	start.handle = params.handle;
370	start.policy = params.policy;
371
372	/* create memory encryption context */
373	ret = __sev_issue_cmd(argp->sev_fd, SEV_CMD_LAUNCH_START, &start, error);
374	if (ret)
375		goto e_free_session;
376
377	/* Bind ASID to this guest */
378	ret = sev_bind_asid(kvm, start.handle, error);
379	if (ret) {
380		sev_decommission(start.handle);
381		goto e_free_session;
382	}
383
384	/* return handle to userspace */
385	params.handle = start.handle;
386	if (copy_to_user((void __user *)(uintptr_t)argp->data, &params, sizeof(params))) {
387		sev_unbind_asid(kvm, start.handle);
388		ret = -EFAULT;
389		goto e_free_session;
390	}
391
392	sev->handle = start.handle;
393	sev->fd = argp->sev_fd;
394
395e_free_session:
396	kfree(session_blob);
397e_free_dh:
398	kfree(dh_blob);
399	return ret;
400}
401
402static struct page **sev_pin_memory(struct kvm *kvm, unsigned long uaddr,
403				    unsigned long ulen, unsigned long *n,
404				    int write)
405{
406	struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
407	unsigned long npages, size;
408	int npinned;
409	unsigned long locked, lock_limit;
410	struct page **pages;
411	unsigned long first, last;
412	int ret;
413
414	lockdep_assert_held(&kvm->lock);
415
416	if (ulen == 0 || uaddr + ulen < uaddr)
417		return ERR_PTR(-EINVAL);
418
419	/* Calculate number of pages. */
420	first = (uaddr & PAGE_MASK) >> PAGE_SHIFT;
421	last = ((uaddr + ulen - 1) & PAGE_MASK) >> PAGE_SHIFT;
422	npages = (last - first + 1);
423
424	locked = sev->pages_locked + npages;
425	lock_limit = rlimit(RLIMIT_MEMLOCK) >> PAGE_SHIFT;
426	if (locked > lock_limit && !capable(CAP_IPC_LOCK)) {
427		pr_err("SEV: %lu locked pages exceed the lock limit of %lu.\n", locked, lock_limit);
428		return ERR_PTR(-ENOMEM);
429	}
430
431	if (WARN_ON_ONCE(npages > INT_MAX))
432		return ERR_PTR(-EINVAL);
433
434	/* Avoid using vmalloc for smaller buffers. */
435	size = npages * sizeof(struct page *);
436	if (size > PAGE_SIZE)
437		pages = __vmalloc(size, GFP_KERNEL_ACCOUNT);
438	else
439		pages = kmalloc(size, GFP_KERNEL_ACCOUNT);
440
441	if (!pages)
442		return ERR_PTR(-ENOMEM);
443
444	/* Pin the user virtual address. */
445	npinned = pin_user_pages_fast(uaddr, npages, write ? FOLL_WRITE : 0, pages);
446	if (npinned != npages) {
447		pr_err("SEV: Failure locking %lu pages.\n", npages);
448		ret = -ENOMEM;
449		goto err;
450	}
451
452	*n = npages;
453	sev->pages_locked = locked;
454
455	return pages;
456
457err:
458	if (npinned > 0)
459		unpin_user_pages(pages, npinned);
460
461	kvfree(pages);
462	return ERR_PTR(ret);
463}
464
465static void sev_unpin_memory(struct kvm *kvm, struct page **pages,
466			     unsigned long npages)
467{
468	struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
469
470	unpin_user_pages(pages, npages);
471	kvfree(pages);
472	sev->pages_locked -= npages;
473}
474
475static void sev_clflush_pages(struct page *pages[], unsigned long npages)
476{
477	uint8_t *page_virtual;
478	unsigned long i;
479
480	if (this_cpu_has(X86_FEATURE_SME_COHERENT) || npages == 0 ||
481	    pages == NULL)
482		return;
483
484	for (i = 0; i < npages; i++) {
485		page_virtual = kmap_local_page(pages[i]);
486		clflush_cache_range(page_virtual, PAGE_SIZE);
487		kunmap_local(page_virtual);
488		cond_resched();
489	}
490}
491
492static unsigned long get_num_contig_pages(unsigned long idx,
493				struct page **inpages, unsigned long npages)
494{
495	unsigned long paddr, next_paddr;
496	unsigned long i = idx + 1, pages = 1;
497
498	/* find the number of contiguous pages starting from idx */
499	paddr = __sme_page_pa(inpages[idx]);
500	while (i < npages) {
501		next_paddr = __sme_page_pa(inpages[i++]);
502		if ((paddr + PAGE_SIZE) == next_paddr) {
503			pages++;
504			paddr = next_paddr;
505			continue;
506		}
507		break;
508	}
509
510	return pages;
511}
512
513static int sev_launch_update_data(struct kvm *kvm, struct kvm_sev_cmd *argp)
514{
515	unsigned long vaddr, vaddr_end, next_vaddr, npages, pages, size, i;
516	struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
517	struct kvm_sev_launch_update_data params;
518	struct sev_data_launch_update_data data;
519	struct page **inpages;
520	int ret;
521
522	if (!sev_guest(kvm))
523		return -ENOTTY;
524
525	if (copy_from_user(&params, (void __user *)(uintptr_t)argp->data, sizeof(params)))
526		return -EFAULT;
527
528	vaddr = params.uaddr;
529	size = params.len;
530	vaddr_end = vaddr + size;
531
532	/* Lock the user memory. */
533	inpages = sev_pin_memory(kvm, vaddr, size, &npages, 1);
534	if (IS_ERR(inpages))
535		return PTR_ERR(inpages);
536
537	/*
538	 * Flush (on non-coherent CPUs) before LAUNCH_UPDATE encrypts pages in
539	 * place; the cache may contain the data that was written unencrypted.
540	 */
541	sev_clflush_pages(inpages, npages);
542
543	data.reserved = 0;
544	data.handle = sev->handle;
545
546	for (i = 0; vaddr < vaddr_end; vaddr = next_vaddr, i += pages) {
547		int offset, len;
548
549		/*
550		 * If the user buffer is not page-aligned, calculate the offset
551		 * within the page.
552		 */
553		offset = vaddr & (PAGE_SIZE - 1);
554
555		/* Calculate the number of pages that can be encrypted in one go. */
556		pages = get_num_contig_pages(i, inpages, npages);
557
558		len = min_t(size_t, ((pages * PAGE_SIZE) - offset), size);
559
560		data.len = len;
561		data.address = __sme_page_pa(inpages[i]) + offset;
562		ret = sev_issue_cmd(kvm, SEV_CMD_LAUNCH_UPDATE_DATA, &data, &argp->error);
563		if (ret)
564			goto e_unpin;
565
566		size -= len;
567		next_vaddr = vaddr + len;
568	}
569
570e_unpin:
571	/* content of memory is updated, mark pages dirty */
572	for (i = 0; i < npages; i++) {
573		set_page_dirty_lock(inpages[i]);
574		mark_page_accessed(inpages[i]);
575	}
576	/* unlock the user pages */
577	sev_unpin_memory(kvm, inpages, npages);
578	return ret;
579}
580
581static int sev_es_sync_vmsa(struct vcpu_svm *svm)
582{
583	struct sev_es_save_area *save = svm->sev_es.vmsa;
584
585	/* Check some debug related fields before encrypting the VMSA */
586	if (svm->vcpu.guest_debug || (svm->vmcb->save.dr7 & ~DR7_FIXED_1))
587		return -EINVAL;
588
589	/*
590	 * SEV-ES will use a VMSA that is pointed to by the VMCB, not
591	 * the traditional VMSA that is part of the VMCB. Copy the
592	 * traditional VMSA as it has been built so far (in prep
593	 * for LAUNCH_UPDATE_VMSA) to be the initial SEV-ES state.
594	 */
595	memcpy(save, &svm->vmcb->save, sizeof(svm->vmcb->save));
596
597	/* Sync registgers */
598	save->rax = svm->vcpu.arch.regs[VCPU_REGS_RAX];
599	save->rbx = svm->vcpu.arch.regs[VCPU_REGS_RBX];
600	save->rcx = svm->vcpu.arch.regs[VCPU_REGS_RCX];
601	save->rdx = svm->vcpu.arch.regs[VCPU_REGS_RDX];
602	save->rsp = svm->vcpu.arch.regs[VCPU_REGS_RSP];
603	save->rbp = svm->vcpu.arch.regs[VCPU_REGS_RBP];
604	save->rsi = svm->vcpu.arch.regs[VCPU_REGS_RSI];
605	save->rdi = svm->vcpu.arch.regs[VCPU_REGS_RDI];
606#ifdef CONFIG_X86_64
607	save->r8  = svm->vcpu.arch.regs[VCPU_REGS_R8];
608	save->r9  = svm->vcpu.arch.regs[VCPU_REGS_R9];
609	save->r10 = svm->vcpu.arch.regs[VCPU_REGS_R10];
610	save->r11 = svm->vcpu.arch.regs[VCPU_REGS_R11];
611	save->r12 = svm->vcpu.arch.regs[VCPU_REGS_R12];
612	save->r13 = svm->vcpu.arch.regs[VCPU_REGS_R13];
613	save->r14 = svm->vcpu.arch.regs[VCPU_REGS_R14];
614	save->r15 = svm->vcpu.arch.regs[VCPU_REGS_R15];
615#endif
616	save->rip = svm->vcpu.arch.regs[VCPU_REGS_RIP];
617
618	/* Sync some non-GPR registers before encrypting */
619	save->xcr0 = svm->vcpu.arch.xcr0;
620	save->pkru = svm->vcpu.arch.pkru;
621	save->xss  = svm->vcpu.arch.ia32_xss;
622	save->dr6  = svm->vcpu.arch.dr6;
623
624	if (sev_es_debug_swap_enabled) {
625		save->sev_features |= SVM_SEV_FEAT_DEBUG_SWAP;
626		pr_warn_once("Enabling DebugSwap with KVM_SEV_ES_INIT. "
627			     "This will not work starting with Linux 6.10\n");
628	}
629
630	pr_debug("Virtual Machine Save Area (VMSA):\n");
631	print_hex_dump_debug("", DUMP_PREFIX_NONE, 16, 1, save, sizeof(*save), false);
632
633	return 0;
634}
635
636static int __sev_launch_update_vmsa(struct kvm *kvm, struct kvm_vcpu *vcpu,
637				    int *error)
638{
639	struct sev_data_launch_update_vmsa vmsa;
640	struct vcpu_svm *svm = to_svm(vcpu);
641	int ret;
642
643	if (vcpu->guest_debug) {
644		pr_warn_once("KVM_SET_GUEST_DEBUG for SEV-ES guest is not supported");
645		return -EINVAL;
646	}
647
648	/* Perform some pre-encryption checks against the VMSA */
649	ret = sev_es_sync_vmsa(svm);
650	if (ret)
651		return ret;
652
653	/*
654	 * The LAUNCH_UPDATE_VMSA command will perform in-place encryption of
655	 * the VMSA memory content (i.e it will write the same memory region
656	 * with the guest's key), so invalidate it first.
657	 */
658	clflush_cache_range(svm->sev_es.vmsa, PAGE_SIZE);
659
660	vmsa.reserved = 0;
661	vmsa.handle = to_kvm_svm(kvm)->sev_info.handle;
662	vmsa.address = __sme_pa(svm->sev_es.vmsa);
663	vmsa.len = PAGE_SIZE;
664	ret = sev_issue_cmd(kvm, SEV_CMD_LAUNCH_UPDATE_VMSA, &vmsa, error);
665	if (ret)
666	  return ret;
667
668	vcpu->arch.guest_state_protected = true;
669	return 0;
670}
671
672static int sev_launch_update_vmsa(struct kvm *kvm, struct kvm_sev_cmd *argp)
673{
674	struct kvm_vcpu *vcpu;
675	unsigned long i;
676	int ret;
677
678	if (!sev_es_guest(kvm))
679		return -ENOTTY;
680
681	kvm_for_each_vcpu(i, vcpu, kvm) {
682		ret = mutex_lock_killable(&vcpu->mutex);
683		if (ret)
684			return ret;
685
686		ret = __sev_launch_update_vmsa(kvm, vcpu, &argp->error);
687
688		mutex_unlock(&vcpu->mutex);
689		if (ret)
690			return ret;
691	}
692
693	return 0;
694}
695
696static int sev_launch_measure(struct kvm *kvm, struct kvm_sev_cmd *argp)
697{
698	void __user *measure = (void __user *)(uintptr_t)argp->data;
699	struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
700	struct sev_data_launch_measure data;
701	struct kvm_sev_launch_measure params;
702	void __user *p = NULL;
703	void *blob = NULL;
704	int ret;
705
706	if (!sev_guest(kvm))
707		return -ENOTTY;
708
709	if (copy_from_user(&params, measure, sizeof(params)))
710		return -EFAULT;
711
712	memset(&data, 0, sizeof(data));
713
714	/* User wants to query the blob length */
715	if (!params.len)
716		goto cmd;
717
718	p = (void __user *)(uintptr_t)params.uaddr;
719	if (p) {
720		if (params.len > SEV_FW_BLOB_MAX_SIZE)
721			return -EINVAL;
722
723		blob = kzalloc(params.len, GFP_KERNEL_ACCOUNT);
724		if (!blob)
725			return -ENOMEM;
726
727		data.address = __psp_pa(blob);
728		data.len = params.len;
729	}
730
731cmd:
732	data.handle = sev->handle;
733	ret = sev_issue_cmd(kvm, SEV_CMD_LAUNCH_MEASURE, &data, &argp->error);
734
735	/*
736	 * If we query the session length, FW responded with expected data.
737	 */
738	if (!params.len)
739		goto done;
740
741	if (ret)
742		goto e_free_blob;
743
744	if (blob) {
745		if (copy_to_user(p, blob, params.len))
746			ret = -EFAULT;
747	}
748
749done:
750	params.len = data.len;
751	if (copy_to_user(measure, &params, sizeof(params)))
752		ret = -EFAULT;
753e_free_blob:
754	kfree(blob);
755	return ret;
756}
757
758static int sev_launch_finish(struct kvm *kvm, struct kvm_sev_cmd *argp)
759{
760	struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
761	struct sev_data_launch_finish data;
762
763	if (!sev_guest(kvm))
764		return -ENOTTY;
765
766	data.handle = sev->handle;
767	return sev_issue_cmd(kvm, SEV_CMD_LAUNCH_FINISH, &data, &argp->error);
768}
769
770static int sev_guest_status(struct kvm *kvm, struct kvm_sev_cmd *argp)
771{
772	struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
773	struct kvm_sev_guest_status params;
774	struct sev_data_guest_status data;
775	int ret;
776
777	if (!sev_guest(kvm))
778		return -ENOTTY;
779
780	memset(&data, 0, sizeof(data));
781
782	data.handle = sev->handle;
783	ret = sev_issue_cmd(kvm, SEV_CMD_GUEST_STATUS, &data, &argp->error);
784	if (ret)
785		return ret;
786
787	params.policy = data.policy;
788	params.state = data.state;
789	params.handle = data.handle;
790
791	if (copy_to_user((void __user *)(uintptr_t)argp->data, &params, sizeof(params)))
792		ret = -EFAULT;
793
794	return ret;
795}
796
797static int __sev_issue_dbg_cmd(struct kvm *kvm, unsigned long src,
798			       unsigned long dst, int size,
799			       int *error, bool enc)
800{
801	struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
802	struct sev_data_dbg data;
803
804	data.reserved = 0;
805	data.handle = sev->handle;
806	data.dst_addr = dst;
807	data.src_addr = src;
808	data.len = size;
809
810	return sev_issue_cmd(kvm,
811			     enc ? SEV_CMD_DBG_ENCRYPT : SEV_CMD_DBG_DECRYPT,
812			     &data, error);
813}
814
815static int __sev_dbg_decrypt(struct kvm *kvm, unsigned long src_paddr,
816			     unsigned long dst_paddr, int sz, int *err)
817{
818	int offset;
819
820	/*
821	 * Its safe to read more than we are asked, caller should ensure that
822	 * destination has enough space.
823	 */
824	offset = src_paddr & 15;
825	src_paddr = round_down(src_paddr, 16);
826	sz = round_up(sz + offset, 16);
827
828	return __sev_issue_dbg_cmd(kvm, src_paddr, dst_paddr, sz, err, false);
829}
830
831static int __sev_dbg_decrypt_user(struct kvm *kvm, unsigned long paddr,
832				  void __user *dst_uaddr,
833				  unsigned long dst_paddr,
834				  int size, int *err)
835{
836	struct page *tpage = NULL;
837	int ret, offset;
838
839	/* if inputs are not 16-byte then use intermediate buffer */
840	if (!IS_ALIGNED(dst_paddr, 16) ||
841	    !IS_ALIGNED(paddr,     16) ||
842	    !IS_ALIGNED(size,      16)) {
843		tpage = (void *)alloc_page(GFP_KERNEL_ACCOUNT | __GFP_ZERO);
844		if (!tpage)
845			return -ENOMEM;
846
847		dst_paddr = __sme_page_pa(tpage);
848	}
849
850	ret = __sev_dbg_decrypt(kvm, paddr, dst_paddr, size, err);
851	if (ret)
852		goto e_free;
853
854	if (tpage) {
855		offset = paddr & 15;
856		if (copy_to_user(dst_uaddr, page_address(tpage) + offset, size))
857			ret = -EFAULT;
858	}
859
860e_free:
861	if (tpage)
862		__free_page(tpage);
863
864	return ret;
865}
866
867static int __sev_dbg_encrypt_user(struct kvm *kvm, unsigned long paddr,
868				  void __user *vaddr,
869				  unsigned long dst_paddr,
870				  void __user *dst_vaddr,
871				  int size, int *error)
872{
873	struct page *src_tpage = NULL;
874	struct page *dst_tpage = NULL;
875	int ret, len = size;
876
877	/* If source buffer is not aligned then use an intermediate buffer */
878	if (!IS_ALIGNED((unsigned long)vaddr, 16)) {
879		src_tpage = alloc_page(GFP_KERNEL_ACCOUNT);
880		if (!src_tpage)
881			return -ENOMEM;
882
883		if (copy_from_user(page_address(src_tpage), vaddr, size)) {
884			__free_page(src_tpage);
885			return -EFAULT;
886		}
887
888		paddr = __sme_page_pa(src_tpage);
889	}
890
891	/*
892	 *  If destination buffer or length is not aligned then do read-modify-write:
893	 *   - decrypt destination in an intermediate buffer
894	 *   - copy the source buffer in an intermediate buffer
895	 *   - use the intermediate buffer as source buffer
896	 */
897	if (!IS_ALIGNED((unsigned long)dst_vaddr, 16) || !IS_ALIGNED(size, 16)) {
898		int dst_offset;
899
900		dst_tpage = alloc_page(GFP_KERNEL_ACCOUNT);
901		if (!dst_tpage) {
902			ret = -ENOMEM;
903			goto e_free;
904		}
905
906		ret = __sev_dbg_decrypt(kvm, dst_paddr,
907					__sme_page_pa(dst_tpage), size, error);
908		if (ret)
909			goto e_free;
910
911		/*
912		 *  If source is kernel buffer then use memcpy() otherwise
913		 *  copy_from_user().
914		 */
915		dst_offset = dst_paddr & 15;
916
917		if (src_tpage)
918			memcpy(page_address(dst_tpage) + dst_offset,
919			       page_address(src_tpage), size);
920		else {
921			if (copy_from_user(page_address(dst_tpage) + dst_offset,
922					   vaddr, size)) {
923				ret = -EFAULT;
924				goto e_free;
925			}
926		}
927
928		paddr = __sme_page_pa(dst_tpage);
929		dst_paddr = round_down(dst_paddr, 16);
930		len = round_up(size, 16);
931	}
932
933	ret = __sev_issue_dbg_cmd(kvm, paddr, dst_paddr, len, error, true);
934
935e_free:
936	if (src_tpage)
937		__free_page(src_tpage);
938	if (dst_tpage)
939		__free_page(dst_tpage);
940	return ret;
941}
942
943static int sev_dbg_crypt(struct kvm *kvm, struct kvm_sev_cmd *argp, bool dec)
944{
945	unsigned long vaddr, vaddr_end, next_vaddr;
946	unsigned long dst_vaddr;
947	struct page **src_p, **dst_p;
948	struct kvm_sev_dbg debug;
949	unsigned long n;
950	unsigned int size;
951	int ret;
952
953	if (!sev_guest(kvm))
954		return -ENOTTY;
955
956	if (copy_from_user(&debug, (void __user *)(uintptr_t)argp->data, sizeof(debug)))
957		return -EFAULT;
958
959	if (!debug.len || debug.src_uaddr + debug.len < debug.src_uaddr)
960		return -EINVAL;
961	if (!debug.dst_uaddr)
962		return -EINVAL;
963
964	vaddr = debug.src_uaddr;
965	size = debug.len;
966	vaddr_end = vaddr + size;
967	dst_vaddr = debug.dst_uaddr;
968
969	for (; vaddr < vaddr_end; vaddr = next_vaddr) {
970		int len, s_off, d_off;
971
972		/* lock userspace source and destination page */
973		src_p = sev_pin_memory(kvm, vaddr & PAGE_MASK, PAGE_SIZE, &n, 0);
974		if (IS_ERR(src_p))
975			return PTR_ERR(src_p);
976
977		dst_p = sev_pin_memory(kvm, dst_vaddr & PAGE_MASK, PAGE_SIZE, &n, 1);
978		if (IS_ERR(dst_p)) {
979			sev_unpin_memory(kvm, src_p, n);
980			return PTR_ERR(dst_p);
981		}
982
983		/*
984		 * Flush (on non-coherent CPUs) before DBG_{DE,EN}CRYPT read or modify
985		 * the pages; flush the destination too so that future accesses do not
986		 * see stale data.
987		 */
988		sev_clflush_pages(src_p, 1);
989		sev_clflush_pages(dst_p, 1);
990
991		/*
992		 * Since user buffer may not be page aligned, calculate the
993		 * offset within the page.
994		 */
995		s_off = vaddr & ~PAGE_MASK;
996		d_off = dst_vaddr & ~PAGE_MASK;
997		len = min_t(size_t, (PAGE_SIZE - s_off), size);
998
999		if (dec)
1000			ret = __sev_dbg_decrypt_user(kvm,
1001						     __sme_page_pa(src_p[0]) + s_off,
1002						     (void __user *)dst_vaddr,
1003						     __sme_page_pa(dst_p[0]) + d_off,
1004						     len, &argp->error);
1005		else
1006			ret = __sev_dbg_encrypt_user(kvm,
1007						     __sme_page_pa(src_p[0]) + s_off,
1008						     (void __user *)vaddr,
1009						     __sme_page_pa(dst_p[0]) + d_off,
1010						     (void __user *)dst_vaddr,
1011						     len, &argp->error);
1012
1013		sev_unpin_memory(kvm, src_p, n);
1014		sev_unpin_memory(kvm, dst_p, n);
1015
1016		if (ret)
1017			goto err;
1018
1019		next_vaddr = vaddr + len;
1020		dst_vaddr = dst_vaddr + len;
1021		size -= len;
1022	}
1023err:
1024	return ret;
1025}
1026
1027static int sev_launch_secret(struct kvm *kvm, struct kvm_sev_cmd *argp)
1028{
1029	struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
1030	struct sev_data_launch_secret data;
1031	struct kvm_sev_launch_secret params;
1032	struct page **pages;
1033	void *blob, *hdr;
1034	unsigned long n, i;
1035	int ret, offset;
1036
1037	if (!sev_guest(kvm))
1038		return -ENOTTY;
1039
1040	if (copy_from_user(&params, (void __user *)(uintptr_t)argp->data, sizeof(params)))
1041		return -EFAULT;
1042
1043	pages = sev_pin_memory(kvm, params.guest_uaddr, params.guest_len, &n, 1);
1044	if (IS_ERR(pages))
1045		return PTR_ERR(pages);
1046
1047	/*
1048	 * Flush (on non-coherent CPUs) before LAUNCH_SECRET encrypts pages in
1049	 * place; the cache may contain the data that was written unencrypted.
1050	 */
1051	sev_clflush_pages(pages, n);
1052
1053	/*
1054	 * The secret must be copied into contiguous memory region, lets verify
1055	 * that userspace memory pages are contiguous before we issue command.
1056	 */
1057	if (get_num_contig_pages(0, pages, n) != n) {
1058		ret = -EINVAL;
1059		goto e_unpin_memory;
1060	}
1061
1062	memset(&data, 0, sizeof(data));
1063
1064	offset = params.guest_uaddr & (PAGE_SIZE - 1);
1065	data.guest_address = __sme_page_pa(pages[0]) + offset;
1066	data.guest_len = params.guest_len;
1067
1068	blob = psp_copy_user_blob(params.trans_uaddr, params.trans_len);
1069	if (IS_ERR(blob)) {
1070		ret = PTR_ERR(blob);
1071		goto e_unpin_memory;
1072	}
1073
1074	data.trans_address = __psp_pa(blob);
1075	data.trans_len = params.trans_len;
1076
1077	hdr = psp_copy_user_blob(params.hdr_uaddr, params.hdr_len);
1078	if (IS_ERR(hdr)) {
1079		ret = PTR_ERR(hdr);
1080		goto e_free_blob;
1081	}
1082	data.hdr_address = __psp_pa(hdr);
1083	data.hdr_len = params.hdr_len;
1084
1085	data.handle = sev->handle;
1086	ret = sev_issue_cmd(kvm, SEV_CMD_LAUNCH_UPDATE_SECRET, &data, &argp->error);
1087
1088	kfree(hdr);
1089
1090e_free_blob:
1091	kfree(blob);
1092e_unpin_memory:
1093	/* content of memory is updated, mark pages dirty */
1094	for (i = 0; i < n; i++) {
1095		set_page_dirty_lock(pages[i]);
1096		mark_page_accessed(pages[i]);
1097	}
1098	sev_unpin_memory(kvm, pages, n);
1099	return ret;
1100}
1101
1102static int sev_get_attestation_report(struct kvm *kvm, struct kvm_sev_cmd *argp)
1103{
1104	void __user *report = (void __user *)(uintptr_t)argp->data;
1105	struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
1106	struct sev_data_attestation_report data;
1107	struct kvm_sev_attestation_report params;
1108	void __user *p;
1109	void *blob = NULL;
1110	int ret;
1111
1112	if (!sev_guest(kvm))
1113		return -ENOTTY;
1114
1115	if (copy_from_user(&params, (void __user *)(uintptr_t)argp->data, sizeof(params)))
1116		return -EFAULT;
1117
1118	memset(&data, 0, sizeof(data));
1119
1120	/* User wants to query the blob length */
1121	if (!params.len)
1122		goto cmd;
1123
1124	p = (void __user *)(uintptr_t)params.uaddr;
1125	if (p) {
1126		if (params.len > SEV_FW_BLOB_MAX_SIZE)
1127			return -EINVAL;
1128
1129		blob = kzalloc(params.len, GFP_KERNEL_ACCOUNT);
1130		if (!blob)
1131			return -ENOMEM;
1132
1133		data.address = __psp_pa(blob);
1134		data.len = params.len;
1135		memcpy(data.mnonce, params.mnonce, sizeof(params.mnonce));
1136	}
1137cmd:
1138	data.handle = sev->handle;
1139	ret = sev_issue_cmd(kvm, SEV_CMD_ATTESTATION_REPORT, &data, &argp->error);
1140	/*
1141	 * If we query the session length, FW responded with expected data.
1142	 */
1143	if (!params.len)
1144		goto done;
1145
1146	if (ret)
1147		goto e_free_blob;
1148
1149	if (blob) {
1150		if (copy_to_user(p, blob, params.len))
1151			ret = -EFAULT;
1152	}
1153
1154done:
1155	params.len = data.len;
1156	if (copy_to_user(report, &params, sizeof(params)))
1157		ret = -EFAULT;
1158e_free_blob:
1159	kfree(blob);
1160	return ret;
1161}
1162
1163/* Userspace wants to query session length. */
1164static int
1165__sev_send_start_query_session_length(struct kvm *kvm, struct kvm_sev_cmd *argp,
1166				      struct kvm_sev_send_start *params)
1167{
1168	struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
1169	struct sev_data_send_start data;
1170	int ret;
1171
1172	memset(&data, 0, sizeof(data));
1173	data.handle = sev->handle;
1174	ret = sev_issue_cmd(kvm, SEV_CMD_SEND_START, &data, &argp->error);
1175
1176	params->session_len = data.session_len;
1177	if (copy_to_user((void __user *)(uintptr_t)argp->data, params,
1178				sizeof(struct kvm_sev_send_start)))
1179		ret = -EFAULT;
1180
1181	return ret;
1182}
1183
1184static int sev_send_start(struct kvm *kvm, struct kvm_sev_cmd *argp)
1185{
1186	struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
1187	struct sev_data_send_start data;
1188	struct kvm_sev_send_start params;
1189	void *amd_certs, *session_data;
1190	void *pdh_cert, *plat_certs;
1191	int ret;
1192
1193	if (!sev_guest(kvm))
1194		return -ENOTTY;
1195
1196	if (copy_from_user(&params, (void __user *)(uintptr_t)argp->data,
1197				sizeof(struct kvm_sev_send_start)))
1198		return -EFAULT;
1199
1200	/* if session_len is zero, userspace wants to query the session length */
1201	if (!params.session_len)
1202		return __sev_send_start_query_session_length(kvm, argp,
1203				&params);
1204
1205	/* some sanity checks */
1206	if (!params.pdh_cert_uaddr || !params.pdh_cert_len ||
1207	    !params.session_uaddr || params.session_len > SEV_FW_BLOB_MAX_SIZE)
1208		return -EINVAL;
1209
1210	/* allocate the memory to hold the session data blob */
1211	session_data = kzalloc(params.session_len, GFP_KERNEL_ACCOUNT);
1212	if (!session_data)
1213		return -ENOMEM;
1214
1215	/* copy the certificate blobs from userspace */
1216	pdh_cert = psp_copy_user_blob(params.pdh_cert_uaddr,
1217				params.pdh_cert_len);
1218	if (IS_ERR(pdh_cert)) {
1219		ret = PTR_ERR(pdh_cert);
1220		goto e_free_session;
1221	}
1222
1223	plat_certs = psp_copy_user_blob(params.plat_certs_uaddr,
1224				params.plat_certs_len);
1225	if (IS_ERR(plat_certs)) {
1226		ret = PTR_ERR(plat_certs);
1227		goto e_free_pdh;
1228	}
1229
1230	amd_certs = psp_copy_user_blob(params.amd_certs_uaddr,
1231				params.amd_certs_len);
1232	if (IS_ERR(amd_certs)) {
1233		ret = PTR_ERR(amd_certs);
1234		goto e_free_plat_cert;
1235	}
1236
1237	/* populate the FW SEND_START field with system physical address */
1238	memset(&data, 0, sizeof(data));
1239	data.pdh_cert_address = __psp_pa(pdh_cert);
1240	data.pdh_cert_len = params.pdh_cert_len;
1241	data.plat_certs_address = __psp_pa(plat_certs);
1242	data.plat_certs_len = params.plat_certs_len;
1243	data.amd_certs_address = __psp_pa(amd_certs);
1244	data.amd_certs_len = params.amd_certs_len;
1245	data.session_address = __psp_pa(session_data);
1246	data.session_len = params.session_len;
1247	data.handle = sev->handle;
1248
1249	ret = sev_issue_cmd(kvm, SEV_CMD_SEND_START, &data, &argp->error);
1250
1251	if (!ret && copy_to_user((void __user *)(uintptr_t)params.session_uaddr,
1252			session_data, params.session_len)) {
1253		ret = -EFAULT;
1254		goto e_free_amd_cert;
1255	}
1256
1257	params.policy = data.policy;
1258	params.session_len = data.session_len;
1259	if (copy_to_user((void __user *)(uintptr_t)argp->data, &params,
1260				sizeof(struct kvm_sev_send_start)))
1261		ret = -EFAULT;
1262
1263e_free_amd_cert:
1264	kfree(amd_certs);
1265e_free_plat_cert:
1266	kfree(plat_certs);
1267e_free_pdh:
1268	kfree(pdh_cert);
1269e_free_session:
1270	kfree(session_data);
1271	return ret;
1272}
1273
1274/* Userspace wants to query either header or trans length. */
1275static int
1276__sev_send_update_data_query_lengths(struct kvm *kvm, struct kvm_sev_cmd *argp,
1277				     struct kvm_sev_send_update_data *params)
1278{
1279	struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
1280	struct sev_data_send_update_data data;
1281	int ret;
1282
1283	memset(&data, 0, sizeof(data));
1284	data.handle = sev->handle;
1285	ret = sev_issue_cmd(kvm, SEV_CMD_SEND_UPDATE_DATA, &data, &argp->error);
1286
1287	params->hdr_len = data.hdr_len;
1288	params->trans_len = data.trans_len;
1289
1290	if (copy_to_user((void __user *)(uintptr_t)argp->data, params,
1291			 sizeof(struct kvm_sev_send_update_data)))
1292		ret = -EFAULT;
1293
1294	return ret;
1295}
1296
1297static int sev_send_update_data(struct kvm *kvm, struct kvm_sev_cmd *argp)
1298{
1299	struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
1300	struct sev_data_send_update_data data;
1301	struct kvm_sev_send_update_data params;
1302	void *hdr, *trans_data;
1303	struct page **guest_page;
1304	unsigned long n;
1305	int ret, offset;
1306
1307	if (!sev_guest(kvm))
1308		return -ENOTTY;
1309
1310	if (copy_from_user(&params, (void __user *)(uintptr_t)argp->data,
1311			sizeof(struct kvm_sev_send_update_data)))
1312		return -EFAULT;
1313
1314	/* userspace wants to query either header or trans length */
1315	if (!params.trans_len || !params.hdr_len)
1316		return __sev_send_update_data_query_lengths(kvm, argp, &params);
1317
1318	if (!params.trans_uaddr || !params.guest_uaddr ||
1319	    !params.guest_len || !params.hdr_uaddr)
1320		return -EINVAL;
1321
1322	/* Check if we are crossing the page boundary */
1323	offset = params.guest_uaddr & (PAGE_SIZE - 1);
1324	if (params.guest_len > PAGE_SIZE || (params.guest_len + offset) > PAGE_SIZE)
1325		return -EINVAL;
1326
1327	/* Pin guest memory */
1328	guest_page = sev_pin_memory(kvm, params.guest_uaddr & PAGE_MASK,
1329				    PAGE_SIZE, &n, 0);
1330	if (IS_ERR(guest_page))
1331		return PTR_ERR(guest_page);
1332
1333	/* allocate memory for header and transport buffer */
1334	ret = -ENOMEM;
1335	hdr = kzalloc(params.hdr_len, GFP_KERNEL_ACCOUNT);
1336	if (!hdr)
1337		goto e_unpin;
1338
1339	trans_data = kzalloc(params.trans_len, GFP_KERNEL_ACCOUNT);
1340	if (!trans_data)
1341		goto e_free_hdr;
1342
1343	memset(&data, 0, sizeof(data));
1344	data.hdr_address = __psp_pa(hdr);
1345	data.hdr_len = params.hdr_len;
1346	data.trans_address = __psp_pa(trans_data);
1347	data.trans_len = params.trans_len;
1348
1349	/* The SEND_UPDATE_DATA command requires C-bit to be always set. */
1350	data.guest_address = (page_to_pfn(guest_page[0]) << PAGE_SHIFT) + offset;
1351	data.guest_address |= sev_me_mask;
1352	data.guest_len = params.guest_len;
1353	data.handle = sev->handle;
1354
1355	ret = sev_issue_cmd(kvm, SEV_CMD_SEND_UPDATE_DATA, &data, &argp->error);
1356
1357	if (ret)
1358		goto e_free_trans_data;
1359
1360	/* copy transport buffer to user space */
1361	if (copy_to_user((void __user *)(uintptr_t)params.trans_uaddr,
1362			 trans_data, params.trans_len)) {
1363		ret = -EFAULT;
1364		goto e_free_trans_data;
1365	}
1366
1367	/* Copy packet header to userspace. */
1368	if (copy_to_user((void __user *)(uintptr_t)params.hdr_uaddr, hdr,
1369			 params.hdr_len))
1370		ret = -EFAULT;
1371
1372e_free_trans_data:
1373	kfree(trans_data);
1374e_free_hdr:
1375	kfree(hdr);
1376e_unpin:
1377	sev_unpin_memory(kvm, guest_page, n);
1378
1379	return ret;
1380}
1381
1382static int sev_send_finish(struct kvm *kvm, struct kvm_sev_cmd *argp)
1383{
1384	struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
1385	struct sev_data_send_finish data;
1386
1387	if (!sev_guest(kvm))
1388		return -ENOTTY;
1389
1390	data.handle = sev->handle;
1391	return sev_issue_cmd(kvm, SEV_CMD_SEND_FINISH, &data, &argp->error);
1392}
1393
1394static int sev_send_cancel(struct kvm *kvm, struct kvm_sev_cmd *argp)
1395{
1396	struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
1397	struct sev_data_send_cancel data;
1398
1399	if (!sev_guest(kvm))
1400		return -ENOTTY;
1401
1402	data.handle = sev->handle;
1403	return sev_issue_cmd(kvm, SEV_CMD_SEND_CANCEL, &data, &argp->error);
1404}
1405
1406static int sev_receive_start(struct kvm *kvm, struct kvm_sev_cmd *argp)
1407{
1408	struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
1409	struct sev_data_receive_start start;
1410	struct kvm_sev_receive_start params;
1411	int *error = &argp->error;
1412	void *session_data;
1413	void *pdh_data;
1414	int ret;
1415
1416	if (!sev_guest(kvm))
1417		return -ENOTTY;
1418
1419	/* Get parameter from the userspace */
1420	if (copy_from_user(&params, (void __user *)(uintptr_t)argp->data,
1421			sizeof(struct kvm_sev_receive_start)))
1422		return -EFAULT;
1423
1424	/* some sanity checks */
1425	if (!params.pdh_uaddr || !params.pdh_len ||
1426	    !params.session_uaddr || !params.session_len)
1427		return -EINVAL;
1428
1429	pdh_data = psp_copy_user_blob(params.pdh_uaddr, params.pdh_len);
1430	if (IS_ERR(pdh_data))
1431		return PTR_ERR(pdh_data);
1432
1433	session_data = psp_copy_user_blob(params.session_uaddr,
1434			params.session_len);
1435	if (IS_ERR(session_data)) {
1436		ret = PTR_ERR(session_data);
1437		goto e_free_pdh;
1438	}
1439
1440	memset(&start, 0, sizeof(start));
1441	start.handle = params.handle;
1442	start.policy = params.policy;
1443	start.pdh_cert_address = __psp_pa(pdh_data);
1444	start.pdh_cert_len = params.pdh_len;
1445	start.session_address = __psp_pa(session_data);
1446	start.session_len = params.session_len;
1447
1448	/* create memory encryption context */
1449	ret = __sev_issue_cmd(argp->sev_fd, SEV_CMD_RECEIVE_START, &start,
1450				error);
1451	if (ret)
1452		goto e_free_session;
1453
1454	/* Bind ASID to this guest */
1455	ret = sev_bind_asid(kvm, start.handle, error);
1456	if (ret) {
1457		sev_decommission(start.handle);
1458		goto e_free_session;
1459	}
1460
1461	params.handle = start.handle;
1462	if (copy_to_user((void __user *)(uintptr_t)argp->data,
1463			 &params, sizeof(struct kvm_sev_receive_start))) {
1464		ret = -EFAULT;
1465		sev_unbind_asid(kvm, start.handle);
1466		goto e_free_session;
1467	}
1468
1469    	sev->handle = start.handle;
1470	sev->fd = argp->sev_fd;
1471
1472e_free_session:
1473	kfree(session_data);
1474e_free_pdh:
1475	kfree(pdh_data);
1476
1477	return ret;
1478}
1479
1480static int sev_receive_update_data(struct kvm *kvm, struct kvm_sev_cmd *argp)
1481{
1482	struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
1483	struct kvm_sev_receive_update_data params;
1484	struct sev_data_receive_update_data data;
1485	void *hdr = NULL, *trans = NULL;
1486	struct page **guest_page;
1487	unsigned long n;
1488	int ret, offset;
1489
1490	if (!sev_guest(kvm))
1491		return -EINVAL;
1492
1493	if (copy_from_user(&params, (void __user *)(uintptr_t)argp->data,
1494			sizeof(struct kvm_sev_receive_update_data)))
1495		return -EFAULT;
1496
1497	if (!params.hdr_uaddr || !params.hdr_len ||
1498	    !params.guest_uaddr || !params.guest_len ||
1499	    !params.trans_uaddr || !params.trans_len)
1500		return -EINVAL;
1501
1502	/* Check if we are crossing the page boundary */
1503	offset = params.guest_uaddr & (PAGE_SIZE - 1);
1504	if (params.guest_len > PAGE_SIZE || (params.guest_len + offset) > PAGE_SIZE)
1505		return -EINVAL;
1506
1507	hdr = psp_copy_user_blob(params.hdr_uaddr, params.hdr_len);
1508	if (IS_ERR(hdr))
1509		return PTR_ERR(hdr);
1510
1511	trans = psp_copy_user_blob(params.trans_uaddr, params.trans_len);
1512	if (IS_ERR(trans)) {
1513		ret = PTR_ERR(trans);
1514		goto e_free_hdr;
1515	}
1516
1517	memset(&data, 0, sizeof(data));
1518	data.hdr_address = __psp_pa(hdr);
1519	data.hdr_len = params.hdr_len;
1520	data.trans_address = __psp_pa(trans);
1521	data.trans_len = params.trans_len;
1522
1523	/* Pin guest memory */
1524	guest_page = sev_pin_memory(kvm, params.guest_uaddr & PAGE_MASK,
1525				    PAGE_SIZE, &n, 1);
1526	if (IS_ERR(guest_page)) {
1527		ret = PTR_ERR(guest_page);
1528		goto e_free_trans;
1529	}
1530
1531	/*
1532	 * Flush (on non-coherent CPUs) before RECEIVE_UPDATE_DATA, the PSP
1533	 * encrypts the written data with the guest's key, and the cache may
1534	 * contain dirty, unencrypted data.
1535	 */
1536	sev_clflush_pages(guest_page, n);
1537
1538	/* The RECEIVE_UPDATE_DATA command requires C-bit to be always set. */
1539	data.guest_address = (page_to_pfn(guest_page[0]) << PAGE_SHIFT) + offset;
1540	data.guest_address |= sev_me_mask;
1541	data.guest_len = params.guest_len;
1542	data.handle = sev->handle;
1543
1544	ret = sev_issue_cmd(kvm, SEV_CMD_RECEIVE_UPDATE_DATA, &data,
1545				&argp->error);
1546
1547	sev_unpin_memory(kvm, guest_page, n);
1548
1549e_free_trans:
1550	kfree(trans);
1551e_free_hdr:
1552	kfree(hdr);
1553
1554	return ret;
1555}
1556
1557static int sev_receive_finish(struct kvm *kvm, struct kvm_sev_cmd *argp)
1558{
1559	struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
1560	struct sev_data_receive_finish data;
1561
1562	if (!sev_guest(kvm))
1563		return -ENOTTY;
1564
1565	data.handle = sev->handle;
1566	return sev_issue_cmd(kvm, SEV_CMD_RECEIVE_FINISH, &data, &argp->error);
1567}
1568
1569static bool is_cmd_allowed_from_mirror(u32 cmd_id)
1570{
1571	/*
1572	 * Allow mirrors VM to call KVM_SEV_LAUNCH_UPDATE_VMSA to enable SEV-ES
1573	 * active mirror VMs. Also allow the debugging and status commands.
1574	 */
1575	if (cmd_id == KVM_SEV_LAUNCH_UPDATE_VMSA ||
1576	    cmd_id == KVM_SEV_GUEST_STATUS || cmd_id == KVM_SEV_DBG_DECRYPT ||
1577	    cmd_id == KVM_SEV_DBG_ENCRYPT)
1578		return true;
1579
1580	return false;
1581}
1582
1583static int sev_lock_two_vms(struct kvm *dst_kvm, struct kvm *src_kvm)
1584{
1585	struct kvm_sev_info *dst_sev = &to_kvm_svm(dst_kvm)->sev_info;
1586	struct kvm_sev_info *src_sev = &to_kvm_svm(src_kvm)->sev_info;
1587	int r = -EBUSY;
1588
1589	if (dst_kvm == src_kvm)
1590		return -EINVAL;
1591
1592	/*
1593	 * Bail if these VMs are already involved in a migration to avoid
1594	 * deadlock between two VMs trying to migrate to/from each other.
1595	 */
1596	if (atomic_cmpxchg_acquire(&dst_sev->migration_in_progress, 0, 1))
1597		return -EBUSY;
1598
1599	if (atomic_cmpxchg_acquire(&src_sev->migration_in_progress, 0, 1))
1600		goto release_dst;
1601
1602	r = -EINTR;
1603	if (mutex_lock_killable(&dst_kvm->lock))
1604		goto release_src;
1605	if (mutex_lock_killable_nested(&src_kvm->lock, SINGLE_DEPTH_NESTING))
1606		goto unlock_dst;
1607	return 0;
1608
1609unlock_dst:
1610	mutex_unlock(&dst_kvm->lock);
1611release_src:
1612	atomic_set_release(&src_sev->migration_in_progress, 0);
1613release_dst:
1614	atomic_set_release(&dst_sev->migration_in_progress, 0);
1615	return r;
1616}
1617
1618static void sev_unlock_two_vms(struct kvm *dst_kvm, struct kvm *src_kvm)
1619{
1620	struct kvm_sev_info *dst_sev = &to_kvm_svm(dst_kvm)->sev_info;
1621	struct kvm_sev_info *src_sev = &to_kvm_svm(src_kvm)->sev_info;
1622
1623	mutex_unlock(&dst_kvm->lock);
1624	mutex_unlock(&src_kvm->lock);
1625	atomic_set_release(&dst_sev->migration_in_progress, 0);
1626	atomic_set_release(&src_sev->migration_in_progress, 0);
1627}
1628
1629/* vCPU mutex subclasses.  */
1630enum sev_migration_role {
1631	SEV_MIGRATION_SOURCE = 0,
1632	SEV_MIGRATION_TARGET,
1633	SEV_NR_MIGRATION_ROLES,
1634};
1635
1636static int sev_lock_vcpus_for_migration(struct kvm *kvm,
1637					enum sev_migration_role role)
1638{
1639	struct kvm_vcpu *vcpu;
1640	unsigned long i, j;
1641
1642	kvm_for_each_vcpu(i, vcpu, kvm) {
1643		if (mutex_lock_killable_nested(&vcpu->mutex, role))
1644			goto out_unlock;
1645
1646#ifdef CONFIG_PROVE_LOCKING
1647		if (!i)
1648			/*
1649			 * Reset the role to one that avoids colliding with
1650			 * the role used for the first vcpu mutex.
1651			 */
1652			role = SEV_NR_MIGRATION_ROLES;
1653		else
1654			mutex_release(&vcpu->mutex.dep_map, _THIS_IP_);
1655#endif
1656	}
1657
1658	return 0;
1659
1660out_unlock:
1661
1662	kvm_for_each_vcpu(j, vcpu, kvm) {
1663		if (i == j)
1664			break;
1665
1666#ifdef CONFIG_PROVE_LOCKING
1667		if (j)
1668			mutex_acquire(&vcpu->mutex.dep_map, role, 0, _THIS_IP_);
1669#endif
1670
1671		mutex_unlock(&vcpu->mutex);
1672	}
1673	return -EINTR;
1674}
1675
1676static void sev_unlock_vcpus_for_migration(struct kvm *kvm)
1677{
1678	struct kvm_vcpu *vcpu;
1679	unsigned long i;
1680	bool first = true;
1681
1682	kvm_for_each_vcpu(i, vcpu, kvm) {
1683		if (first)
1684			first = false;
1685		else
1686			mutex_acquire(&vcpu->mutex.dep_map,
1687				      SEV_NR_MIGRATION_ROLES, 0, _THIS_IP_);
1688
1689		mutex_unlock(&vcpu->mutex);
1690	}
1691}
1692
1693static void sev_migrate_from(struct kvm *dst_kvm, struct kvm *src_kvm)
1694{
1695	struct kvm_sev_info *dst = &to_kvm_svm(dst_kvm)->sev_info;
1696	struct kvm_sev_info *src = &to_kvm_svm(src_kvm)->sev_info;
1697	struct kvm_vcpu *dst_vcpu, *src_vcpu;
1698	struct vcpu_svm *dst_svm, *src_svm;
1699	struct kvm_sev_info *mirror;
1700	unsigned long i;
1701
1702	dst->active = true;
1703	dst->asid = src->asid;
1704	dst->handle = src->handle;
1705	dst->pages_locked = src->pages_locked;
1706	dst->enc_context_owner = src->enc_context_owner;
1707	dst->es_active = src->es_active;
1708
1709	src->asid = 0;
1710	src->active = false;
1711	src->handle = 0;
1712	src->pages_locked = 0;
1713	src->enc_context_owner = NULL;
1714	src->es_active = false;
1715
1716	list_cut_before(&dst->regions_list, &src->regions_list, &src->regions_list);
1717
1718	/*
1719	 * If this VM has mirrors, "transfer" each mirror's refcount of the
1720	 * source to the destination (this KVM).  The caller holds a reference
1721	 * to the source, so there's no danger of use-after-free.
1722	 */
1723	list_cut_before(&dst->mirror_vms, &src->mirror_vms, &src->mirror_vms);
1724	list_for_each_entry(mirror, &dst->mirror_vms, mirror_entry) {
1725		kvm_get_kvm(dst_kvm);
1726		kvm_put_kvm(src_kvm);
1727		mirror->enc_context_owner = dst_kvm;
1728	}
1729
1730	/*
1731	 * If this VM is a mirror, remove the old mirror from the owners list
1732	 * and add the new mirror to the list.
1733	 */
1734	if (is_mirroring_enc_context(dst_kvm)) {
1735		struct kvm_sev_info *owner_sev_info =
1736			&to_kvm_svm(dst->enc_context_owner)->sev_info;
1737
1738		list_del(&src->mirror_entry);
1739		list_add_tail(&dst->mirror_entry, &owner_sev_info->mirror_vms);
1740	}
1741
1742	kvm_for_each_vcpu(i, dst_vcpu, dst_kvm) {
1743		dst_svm = to_svm(dst_vcpu);
1744
1745		sev_init_vmcb(dst_svm);
1746
1747		if (!dst->es_active)
1748			continue;
1749
1750		/*
1751		 * Note, the source is not required to have the same number of
1752		 * vCPUs as the destination when migrating a vanilla SEV VM.
1753		 */
1754		src_vcpu = kvm_get_vcpu(src_kvm, i);
1755		src_svm = to_svm(src_vcpu);
1756
1757		/*
1758		 * Transfer VMSA and GHCB state to the destination.  Nullify and
1759		 * clear source fields as appropriate, the state now belongs to
1760		 * the destination.
1761		 */
1762		memcpy(&dst_svm->sev_es, &src_svm->sev_es, sizeof(src_svm->sev_es));
1763		dst_svm->vmcb->control.ghcb_gpa = src_svm->vmcb->control.ghcb_gpa;
1764		dst_svm->vmcb->control.vmsa_pa = src_svm->vmcb->control.vmsa_pa;
1765		dst_vcpu->arch.guest_state_protected = true;
1766
1767		memset(&src_svm->sev_es, 0, sizeof(src_svm->sev_es));
1768		src_svm->vmcb->control.ghcb_gpa = INVALID_PAGE;
1769		src_svm->vmcb->control.vmsa_pa = INVALID_PAGE;
1770		src_vcpu->arch.guest_state_protected = false;
1771	}
1772}
1773
1774static int sev_check_source_vcpus(struct kvm *dst, struct kvm *src)
1775{
1776	struct kvm_vcpu *src_vcpu;
1777	unsigned long i;
1778
1779	if (!sev_es_guest(src))
1780		return 0;
1781
1782	if (atomic_read(&src->online_vcpus) != atomic_read(&dst->online_vcpus))
1783		return -EINVAL;
1784
1785	kvm_for_each_vcpu(i, src_vcpu, src) {
1786		if (!src_vcpu->arch.guest_state_protected)
1787			return -EINVAL;
1788	}
1789
1790	return 0;
1791}
1792
1793int sev_vm_move_enc_context_from(struct kvm *kvm, unsigned int source_fd)
1794{
1795	struct kvm_sev_info *dst_sev = &to_kvm_svm(kvm)->sev_info;
1796	struct kvm_sev_info *src_sev, *cg_cleanup_sev;
1797	struct fd f = fdget(source_fd);
1798	struct kvm *source_kvm;
1799	bool charged = false;
1800	int ret;
1801
1802	if (!f.file)
1803		return -EBADF;
1804
1805	if (!file_is_kvm(f.file)) {
1806		ret = -EBADF;
1807		goto out_fput;
1808	}
1809
1810	source_kvm = f.file->private_data;
1811	ret = sev_lock_two_vms(kvm, source_kvm);
1812	if (ret)
1813		goto out_fput;
1814
1815	if (sev_guest(kvm) || !sev_guest(source_kvm)) {
1816		ret = -EINVAL;
1817		goto out_unlock;
1818	}
1819
1820	src_sev = &to_kvm_svm(source_kvm)->sev_info;
1821
1822	dst_sev->misc_cg = get_current_misc_cg();
1823	cg_cleanup_sev = dst_sev;
1824	if (dst_sev->misc_cg != src_sev->misc_cg) {
1825		ret = sev_misc_cg_try_charge(dst_sev);
1826		if (ret)
1827			goto out_dst_cgroup;
1828		charged = true;
1829	}
1830
1831	ret = sev_lock_vcpus_for_migration(kvm, SEV_MIGRATION_SOURCE);
1832	if (ret)
1833		goto out_dst_cgroup;
1834	ret = sev_lock_vcpus_for_migration(source_kvm, SEV_MIGRATION_TARGET);
1835	if (ret)
1836		goto out_dst_vcpu;
1837
1838	ret = sev_check_source_vcpus(kvm, source_kvm);
1839	if (ret)
1840		goto out_source_vcpu;
1841
1842	sev_migrate_from(kvm, source_kvm);
1843	kvm_vm_dead(source_kvm);
1844	cg_cleanup_sev = src_sev;
1845	ret = 0;
1846
1847out_source_vcpu:
1848	sev_unlock_vcpus_for_migration(source_kvm);
1849out_dst_vcpu:
1850	sev_unlock_vcpus_for_migration(kvm);
1851out_dst_cgroup:
1852	/* Operates on the source on success, on the destination on failure.  */
1853	if (charged)
1854		sev_misc_cg_uncharge(cg_cleanup_sev);
1855	put_misc_cg(cg_cleanup_sev->misc_cg);
1856	cg_cleanup_sev->misc_cg = NULL;
1857out_unlock:
1858	sev_unlock_two_vms(kvm, source_kvm);
1859out_fput:
1860	fdput(f);
1861	return ret;
1862}
1863
1864int sev_mem_enc_ioctl(struct kvm *kvm, void __user *argp)
1865{
1866	struct kvm_sev_cmd sev_cmd;
1867	int r;
1868
1869	if (!sev_enabled)
1870		return -ENOTTY;
1871
1872	if (!argp)
1873		return 0;
1874
1875	if (copy_from_user(&sev_cmd, argp, sizeof(struct kvm_sev_cmd)))
1876		return -EFAULT;
1877
1878	mutex_lock(&kvm->lock);
1879
1880	/* Only the enc_context_owner handles some memory enc operations. */
1881	if (is_mirroring_enc_context(kvm) &&
1882	    !is_cmd_allowed_from_mirror(sev_cmd.id)) {
1883		r = -EINVAL;
1884		goto out;
1885	}
1886
1887	switch (sev_cmd.id) {
1888	case KVM_SEV_ES_INIT:
1889		if (!sev_es_enabled) {
1890			r = -ENOTTY;
1891			goto out;
1892		}
1893		fallthrough;
1894	case KVM_SEV_INIT:
1895		r = sev_guest_init(kvm, &sev_cmd);
1896		break;
1897	case KVM_SEV_LAUNCH_START:
1898		r = sev_launch_start(kvm, &sev_cmd);
1899		break;
1900	case KVM_SEV_LAUNCH_UPDATE_DATA:
1901		r = sev_launch_update_data(kvm, &sev_cmd);
1902		break;
1903	case KVM_SEV_LAUNCH_UPDATE_VMSA:
1904		r = sev_launch_update_vmsa(kvm, &sev_cmd);
1905		break;
1906	case KVM_SEV_LAUNCH_MEASURE:
1907		r = sev_launch_measure(kvm, &sev_cmd);
1908		break;
1909	case KVM_SEV_LAUNCH_FINISH:
1910		r = sev_launch_finish(kvm, &sev_cmd);
1911		break;
1912	case KVM_SEV_GUEST_STATUS:
1913		r = sev_guest_status(kvm, &sev_cmd);
1914		break;
1915	case KVM_SEV_DBG_DECRYPT:
1916		r = sev_dbg_crypt(kvm, &sev_cmd, true);
1917		break;
1918	case KVM_SEV_DBG_ENCRYPT:
1919		r = sev_dbg_crypt(kvm, &sev_cmd, false);
1920		break;
1921	case KVM_SEV_LAUNCH_SECRET:
1922		r = sev_launch_secret(kvm, &sev_cmd);
1923		break;
1924	case KVM_SEV_GET_ATTESTATION_REPORT:
1925		r = sev_get_attestation_report(kvm, &sev_cmd);
1926		break;
1927	case KVM_SEV_SEND_START:
1928		r = sev_send_start(kvm, &sev_cmd);
1929		break;
1930	case KVM_SEV_SEND_UPDATE_DATA:
1931		r = sev_send_update_data(kvm, &sev_cmd);
1932		break;
1933	case KVM_SEV_SEND_FINISH:
1934		r = sev_send_finish(kvm, &sev_cmd);
1935		break;
1936	case KVM_SEV_SEND_CANCEL:
1937		r = sev_send_cancel(kvm, &sev_cmd);
1938		break;
1939	case KVM_SEV_RECEIVE_START:
1940		r = sev_receive_start(kvm, &sev_cmd);
1941		break;
1942	case KVM_SEV_RECEIVE_UPDATE_DATA:
1943		r = sev_receive_update_data(kvm, &sev_cmd);
1944		break;
1945	case KVM_SEV_RECEIVE_FINISH:
1946		r = sev_receive_finish(kvm, &sev_cmd);
1947		break;
1948	default:
1949		r = -EINVAL;
1950		goto out;
1951	}
1952
1953	if (copy_to_user(argp, &sev_cmd, sizeof(struct kvm_sev_cmd)))
1954		r = -EFAULT;
1955
1956out:
1957	mutex_unlock(&kvm->lock);
1958	return r;
1959}
1960
1961int sev_mem_enc_register_region(struct kvm *kvm,
1962				struct kvm_enc_region *range)
1963{
1964	struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
1965	struct enc_region *region;
1966	int ret = 0;
1967
1968	if (!sev_guest(kvm))
1969		return -ENOTTY;
1970
1971	/* If kvm is mirroring encryption context it isn't responsible for it */
1972	if (is_mirroring_enc_context(kvm))
1973		return -EINVAL;
1974
1975	if (range->addr > ULONG_MAX || range->size > ULONG_MAX)
1976		return -EINVAL;
1977
1978	region = kzalloc(sizeof(*region), GFP_KERNEL_ACCOUNT);
1979	if (!region)
1980		return -ENOMEM;
1981
1982	mutex_lock(&kvm->lock);
1983	region->pages = sev_pin_memory(kvm, range->addr, range->size, &region->npages, 1);
1984	if (IS_ERR(region->pages)) {
1985		ret = PTR_ERR(region->pages);
1986		mutex_unlock(&kvm->lock);
1987		goto e_free;
1988	}
1989
1990	/*
1991	 * The guest may change the memory encryption attribute from C=0 -> C=1
1992	 * or vice versa for this memory range. Lets make sure caches are
1993	 * flushed to ensure that guest data gets written into memory with
1994	 * correct C-bit.  Note, this must be done before dropping kvm->lock,
1995	 * as region and its array of pages can be freed by a different task
1996	 * once kvm->lock is released.
1997	 */
1998	sev_clflush_pages(region->pages, region->npages);
1999
2000	region->uaddr = range->addr;
2001	region->size = range->size;
2002
2003	list_add_tail(&region->list, &sev->regions_list);
2004	mutex_unlock(&kvm->lock);
2005
2006	return ret;
2007
2008e_free:
2009	kfree(region);
2010	return ret;
2011}
2012
2013static struct enc_region *
2014find_enc_region(struct kvm *kvm, struct kvm_enc_region *range)
2015{
2016	struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
2017	struct list_head *head = &sev->regions_list;
2018	struct enc_region *i;
2019
2020	list_for_each_entry(i, head, list) {
2021		if (i->uaddr == range->addr &&
2022		    i->size == range->size)
2023			return i;
2024	}
2025
2026	return NULL;
2027}
2028
2029static void __unregister_enc_region_locked(struct kvm *kvm,
2030					   struct enc_region *region)
2031{
2032	sev_unpin_memory(kvm, region->pages, region->npages);
2033	list_del(&region->list);
2034	kfree(region);
2035}
2036
2037int sev_mem_enc_unregister_region(struct kvm *kvm,
2038				  struct kvm_enc_region *range)
2039{
2040	struct enc_region *region;
2041	int ret;
2042
2043	/* If kvm is mirroring encryption context it isn't responsible for it */
2044	if (is_mirroring_enc_context(kvm))
2045		return -EINVAL;
2046
2047	mutex_lock(&kvm->lock);
2048
2049	if (!sev_guest(kvm)) {
2050		ret = -ENOTTY;
2051		goto failed;
2052	}
2053
2054	region = find_enc_region(kvm, range);
2055	if (!region) {
2056		ret = -EINVAL;
2057		goto failed;
2058	}
2059
2060	/*
2061	 * Ensure that all guest tagged cache entries are flushed before
2062	 * releasing the pages back to the system for use. CLFLUSH will
2063	 * not do this, so issue a WBINVD.
2064	 */
2065	wbinvd_on_all_cpus();
2066
2067	__unregister_enc_region_locked(kvm, region);
2068
2069	mutex_unlock(&kvm->lock);
2070	return 0;
2071
2072failed:
2073	mutex_unlock(&kvm->lock);
2074	return ret;
2075}
2076
2077int sev_vm_copy_enc_context_from(struct kvm *kvm, unsigned int source_fd)
2078{
2079	struct fd f = fdget(source_fd);
2080	struct kvm *source_kvm;
2081	struct kvm_sev_info *source_sev, *mirror_sev;
2082	int ret;
2083
2084	if (!f.file)
2085		return -EBADF;
2086
2087	if (!file_is_kvm(f.file)) {
2088		ret = -EBADF;
2089		goto e_source_fput;
2090	}
2091
2092	source_kvm = f.file->private_data;
2093	ret = sev_lock_two_vms(kvm, source_kvm);
2094	if (ret)
2095		goto e_source_fput;
2096
2097	/*
2098	 * Mirrors of mirrors should work, but let's not get silly.  Also
2099	 * disallow out-of-band SEV/SEV-ES init if the target is already an
2100	 * SEV guest, or if vCPUs have been created.  KVM relies on vCPUs being
2101	 * created after SEV/SEV-ES initialization, e.g. to init intercepts.
2102	 */
2103	if (sev_guest(kvm) || !sev_guest(source_kvm) ||
2104	    is_mirroring_enc_context(source_kvm) || kvm->created_vcpus) {
2105		ret = -EINVAL;
2106		goto e_unlock;
2107	}
2108
2109	/*
2110	 * The mirror kvm holds an enc_context_owner ref so its asid can't
2111	 * disappear until we're done with it
2112	 */
2113	source_sev = &to_kvm_svm(source_kvm)->sev_info;
2114	kvm_get_kvm(source_kvm);
2115	mirror_sev = &to_kvm_svm(kvm)->sev_info;
2116	list_add_tail(&mirror_sev->mirror_entry, &source_sev->mirror_vms);
2117
2118	/* Set enc_context_owner and copy its encryption context over */
2119	mirror_sev->enc_context_owner = source_kvm;
2120	mirror_sev->active = true;
2121	mirror_sev->asid = source_sev->asid;
2122	mirror_sev->fd = source_sev->fd;
2123	mirror_sev->es_active = source_sev->es_active;
2124	mirror_sev->handle = source_sev->handle;
2125	INIT_LIST_HEAD(&mirror_sev->regions_list);
2126	INIT_LIST_HEAD(&mirror_sev->mirror_vms);
2127	ret = 0;
2128
2129	/*
2130	 * Do not copy ap_jump_table. Since the mirror does not share the same
2131	 * KVM contexts as the original, and they may have different
2132	 * memory-views.
2133	 */
2134
2135e_unlock:
2136	sev_unlock_two_vms(kvm, source_kvm);
2137e_source_fput:
2138	fdput(f);
2139	return ret;
2140}
2141
2142void sev_vm_destroy(struct kvm *kvm)
2143{
2144	struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
2145	struct list_head *head = &sev->regions_list;
2146	struct list_head *pos, *q;
2147
2148	if (!sev_guest(kvm))
2149		return;
2150
2151	WARN_ON(!list_empty(&sev->mirror_vms));
2152
2153	/* If this is a mirror_kvm release the enc_context_owner and skip sev cleanup */
2154	if (is_mirroring_enc_context(kvm)) {
2155		struct kvm *owner_kvm = sev->enc_context_owner;
2156
2157		mutex_lock(&owner_kvm->lock);
2158		list_del(&sev->mirror_entry);
2159		mutex_unlock(&owner_kvm->lock);
2160		kvm_put_kvm(owner_kvm);
2161		return;
2162	}
2163
2164	/*
2165	 * Ensure that all guest tagged cache entries are flushed before
2166	 * releasing the pages back to the system for use. CLFLUSH will
2167	 * not do this, so issue a WBINVD.
2168	 */
2169	wbinvd_on_all_cpus();
2170
2171	/*
2172	 * if userspace was terminated before unregistering the memory regions
2173	 * then lets unpin all the registered memory.
2174	 */
2175	if (!list_empty(head)) {
2176		list_for_each_safe(pos, q, head) {
2177			__unregister_enc_region_locked(kvm,
2178				list_entry(pos, struct enc_region, list));
2179			cond_resched();
2180		}
2181	}
2182
2183	sev_unbind_asid(kvm, sev->handle);
2184	sev_asid_free(sev);
2185}
2186
2187void __init sev_set_cpu_caps(void)
2188{
2189	if (!sev_enabled)
2190		kvm_cpu_cap_clear(X86_FEATURE_SEV);
2191	if (!sev_es_enabled)
2192		kvm_cpu_cap_clear(X86_FEATURE_SEV_ES);
2193}
2194
2195void __init sev_hardware_setup(void)
2196{
2197#ifdef CONFIG_KVM_AMD_SEV
2198	unsigned int eax, ebx, ecx, edx, sev_asid_count, sev_es_asid_count;
2199	bool sev_es_supported = false;
2200	bool sev_supported = false;
2201
2202	if (!sev_enabled || !npt_enabled || !nrips)
2203		goto out;
2204
2205	/*
2206	 * SEV must obviously be supported in hardware.  Sanity check that the
2207	 * CPU supports decode assists, which is mandatory for SEV guests to
2208	 * support instruction emulation.  Ditto for flushing by ASID, as SEV
2209	 * guests are bound to a single ASID, i.e. KVM can't rotate to a new
2210	 * ASID to effect a TLB flush.
2211	 */
2212	if (!boot_cpu_has(X86_FEATURE_SEV) ||
2213	    WARN_ON_ONCE(!boot_cpu_has(X86_FEATURE_DECODEASSISTS)) ||
2214	    WARN_ON_ONCE(!boot_cpu_has(X86_FEATURE_FLUSHBYASID)))
2215		goto out;
2216
2217	/* Retrieve SEV CPUID information */
2218	cpuid(0x8000001f, &eax, &ebx, &ecx, &edx);
2219
2220	/* Set encryption bit location for SEV-ES guests */
2221	sev_enc_bit = ebx & 0x3f;
2222
2223	/* Maximum number of encrypted guests supported simultaneously */
2224	max_sev_asid = ecx;
2225	if (!max_sev_asid)
2226		goto out;
2227
2228	/* Minimum ASID value that should be used for SEV guest */
2229	min_sev_asid = edx;
2230	sev_me_mask = 1UL << (ebx & 0x3f);
2231
2232	/*
2233	 * Initialize SEV ASID bitmaps. Allocate space for ASID 0 in the bitmap,
2234	 * even though it's never used, so that the bitmap is indexed by the
2235	 * actual ASID.
2236	 */
2237	nr_asids = max_sev_asid + 1;
2238	sev_asid_bitmap = bitmap_zalloc(nr_asids, GFP_KERNEL);
2239	if (!sev_asid_bitmap)
2240		goto out;
2241
2242	sev_reclaim_asid_bitmap = bitmap_zalloc(nr_asids, GFP_KERNEL);
2243	if (!sev_reclaim_asid_bitmap) {
2244		bitmap_free(sev_asid_bitmap);
2245		sev_asid_bitmap = NULL;
2246		goto out;
2247	}
2248
2249	if (min_sev_asid <= max_sev_asid) {
2250		sev_asid_count = max_sev_asid - min_sev_asid + 1;
2251		WARN_ON_ONCE(misc_cg_set_capacity(MISC_CG_RES_SEV, sev_asid_count));
2252	}
2253	sev_supported = true;
2254
2255	/* SEV-ES support requested? */
2256	if (!sev_es_enabled)
2257		goto out;
2258
2259	/*
2260	 * SEV-ES requires MMIO caching as KVM doesn't have access to the guest
2261	 * instruction stream, i.e. can't emulate in response to a #NPF and
2262	 * instead relies on #NPF(RSVD) being reflected into the guest as #VC
2263	 * (the guest can then do a #VMGEXIT to request MMIO emulation).
2264	 */
2265	if (!enable_mmio_caching)
2266		goto out;
2267
2268	/* Does the CPU support SEV-ES? */
2269	if (!boot_cpu_has(X86_FEATURE_SEV_ES))
2270		goto out;
2271
2272	/* Has the system been allocated ASIDs for SEV-ES? */
2273	if (min_sev_asid == 1)
2274		goto out;
2275
2276	sev_es_asid_count = min_sev_asid - 1;
2277	WARN_ON_ONCE(misc_cg_set_capacity(MISC_CG_RES_SEV_ES, sev_es_asid_count));
2278	sev_es_supported = true;
2279
2280out:
2281	if (boot_cpu_has(X86_FEATURE_SEV))
2282		pr_info("SEV %s (ASIDs %u - %u)\n",
2283			sev_supported ? min_sev_asid <= max_sev_asid ? "enabled" :
2284								       "unusable" :
2285								       "disabled",
2286			min_sev_asid, max_sev_asid);
2287	if (boot_cpu_has(X86_FEATURE_SEV_ES))
2288		pr_info("SEV-ES %s (ASIDs %u - %u)\n",
2289			sev_es_supported ? "enabled" : "disabled",
2290			min_sev_asid > 1 ? 1 : 0, min_sev_asid - 1);
2291
2292	sev_enabled = sev_supported;
2293	sev_es_enabled = sev_es_supported;
2294	if (!sev_es_enabled || !cpu_feature_enabled(X86_FEATURE_DEBUG_SWAP) ||
2295	    !cpu_feature_enabled(X86_FEATURE_NO_NESTED_DATA_BP))
2296		sev_es_debug_swap_enabled = false;
2297#endif
2298}
2299
2300void sev_hardware_unsetup(void)
2301{
2302	if (!sev_enabled)
2303		return;
2304
2305	/* No need to take sev_bitmap_lock, all VMs have been destroyed. */
2306	sev_flush_asids(1, max_sev_asid);
2307
2308	bitmap_free(sev_asid_bitmap);
2309	bitmap_free(sev_reclaim_asid_bitmap);
2310
2311	misc_cg_set_capacity(MISC_CG_RES_SEV, 0);
2312	misc_cg_set_capacity(MISC_CG_RES_SEV_ES, 0);
2313}
2314
2315int sev_cpu_init(struct svm_cpu_data *sd)
2316{
2317	if (!sev_enabled)
2318		return 0;
2319
2320	sd->sev_vmcbs = kcalloc(nr_asids, sizeof(void *), GFP_KERNEL);
2321	if (!sd->sev_vmcbs)
2322		return -ENOMEM;
2323
2324	return 0;
2325}
2326
2327/*
2328 * Pages used by hardware to hold guest encrypted state must be flushed before
2329 * returning them to the system.
2330 */
2331static void sev_flush_encrypted_page(struct kvm_vcpu *vcpu, void *va)
2332{
2333	unsigned int asid = sev_get_asid(vcpu->kvm);
2334
2335	/*
2336	 * Note!  The address must be a kernel address, as regular page walk
2337	 * checks are performed by VM_PAGE_FLUSH, i.e. operating on a user
2338	 * address is non-deterministic and unsafe.  This function deliberately
2339	 * takes a pointer to deter passing in a user address.
2340	 */
2341	unsigned long addr = (unsigned long)va;
2342
2343	/*
2344	 * If CPU enforced cache coherency for encrypted mappings of the
2345	 * same physical page is supported, use CLFLUSHOPT instead. NOTE: cache
2346	 * flush is still needed in order to work properly with DMA devices.
2347	 */
2348	if (boot_cpu_has(X86_FEATURE_SME_COHERENT)) {
2349		clflush_cache_range(va, PAGE_SIZE);
2350		return;
2351	}
2352
2353	/*
2354	 * VM Page Flush takes a host virtual address and a guest ASID.  Fall
2355	 * back to WBINVD if this faults so as not to make any problems worse
2356	 * by leaving stale encrypted data in the cache.
2357	 */
2358	if (WARN_ON_ONCE(wrmsrl_safe(MSR_AMD64_VM_PAGE_FLUSH, addr | asid)))
2359		goto do_wbinvd;
2360
2361	return;
2362
2363do_wbinvd:
2364	wbinvd_on_all_cpus();
2365}
2366
2367void sev_guest_memory_reclaimed(struct kvm *kvm)
2368{
2369	if (!sev_guest(kvm))
2370		return;
2371
2372	wbinvd_on_all_cpus();
2373}
2374
2375void sev_free_vcpu(struct kvm_vcpu *vcpu)
2376{
2377	struct vcpu_svm *svm;
2378
2379	if (!sev_es_guest(vcpu->kvm))
2380		return;
2381
2382	svm = to_svm(vcpu);
2383
2384	if (vcpu->arch.guest_state_protected)
2385		sev_flush_encrypted_page(vcpu, svm->sev_es.vmsa);
2386
2387	__free_page(virt_to_page(svm->sev_es.vmsa));
2388
2389	if (svm->sev_es.ghcb_sa_free)
2390		kvfree(svm->sev_es.ghcb_sa);
2391}
2392
2393static void dump_ghcb(struct vcpu_svm *svm)
2394{
2395	struct ghcb *ghcb = svm->sev_es.ghcb;
2396	unsigned int nbits;
2397
2398	/* Re-use the dump_invalid_vmcb module parameter */
2399	if (!dump_invalid_vmcb) {
2400		pr_warn_ratelimited("set kvm_amd.dump_invalid_vmcb=1 to dump internal KVM state.\n");
2401		return;
2402	}
2403
2404	nbits = sizeof(ghcb->save.valid_bitmap) * 8;
2405
2406	pr_err("GHCB (GPA=%016llx):\n", svm->vmcb->control.ghcb_gpa);
2407	pr_err("%-20s%016llx is_valid: %u\n", "sw_exit_code",
2408	       ghcb->save.sw_exit_code, ghcb_sw_exit_code_is_valid(ghcb));
2409	pr_err("%-20s%016llx is_valid: %u\n", "sw_exit_info_1",
2410	       ghcb->save.sw_exit_info_1, ghcb_sw_exit_info_1_is_valid(ghcb));
2411	pr_err("%-20s%016llx is_valid: %u\n", "sw_exit_info_2",
2412	       ghcb->save.sw_exit_info_2, ghcb_sw_exit_info_2_is_valid(ghcb));
2413	pr_err("%-20s%016llx is_valid: %u\n", "sw_scratch",
2414	       ghcb->save.sw_scratch, ghcb_sw_scratch_is_valid(ghcb));
2415	pr_err("%-20s%*pb\n", "valid_bitmap", nbits, ghcb->save.valid_bitmap);
2416}
2417
2418static void sev_es_sync_to_ghcb(struct vcpu_svm *svm)
2419{
2420	struct kvm_vcpu *vcpu = &svm->vcpu;
2421	struct ghcb *ghcb = svm->sev_es.ghcb;
2422
2423	/*
2424	 * The GHCB protocol so far allows for the following data
2425	 * to be returned:
2426	 *   GPRs RAX, RBX, RCX, RDX
2427	 *
2428	 * Copy their values, even if they may not have been written during the
2429	 * VM-Exit.  It's the guest's responsibility to not consume random data.
2430	 */
2431	ghcb_set_rax(ghcb, vcpu->arch.regs[VCPU_REGS_RAX]);
2432	ghcb_set_rbx(ghcb, vcpu->arch.regs[VCPU_REGS_RBX]);
2433	ghcb_set_rcx(ghcb, vcpu->arch.regs[VCPU_REGS_RCX]);
2434	ghcb_set_rdx(ghcb, vcpu->arch.regs[VCPU_REGS_RDX]);
2435}
2436
2437static void sev_es_sync_from_ghcb(struct vcpu_svm *svm)
2438{
2439	struct vmcb_control_area *control = &svm->vmcb->control;
2440	struct kvm_vcpu *vcpu = &svm->vcpu;
2441	struct ghcb *ghcb = svm->sev_es.ghcb;
2442	u64 exit_code;
2443
2444	/*
2445	 * The GHCB protocol so far allows for the following data
2446	 * to be supplied:
2447	 *   GPRs RAX, RBX, RCX, RDX
2448	 *   XCR0
2449	 *   CPL
2450	 *
2451	 * VMMCALL allows the guest to provide extra registers. KVM also
2452	 * expects RSI for hypercalls, so include that, too.
2453	 *
2454	 * Copy their values to the appropriate location if supplied.
2455	 */
2456	memset(vcpu->arch.regs, 0, sizeof(vcpu->arch.regs));
2457
2458	BUILD_BUG_ON(sizeof(svm->sev_es.valid_bitmap) != sizeof(ghcb->save.valid_bitmap));
2459	memcpy(&svm->sev_es.valid_bitmap, &ghcb->save.valid_bitmap, sizeof(ghcb->save.valid_bitmap));
2460
2461	vcpu->arch.regs[VCPU_REGS_RAX] = kvm_ghcb_get_rax_if_valid(svm, ghcb);
2462	vcpu->arch.regs[VCPU_REGS_RBX] = kvm_ghcb_get_rbx_if_valid(svm, ghcb);
2463	vcpu->arch.regs[VCPU_REGS_RCX] = kvm_ghcb_get_rcx_if_valid(svm, ghcb);
2464	vcpu->arch.regs[VCPU_REGS_RDX] = kvm_ghcb_get_rdx_if_valid(svm, ghcb);
2465	vcpu->arch.regs[VCPU_REGS_RSI] = kvm_ghcb_get_rsi_if_valid(svm, ghcb);
2466
2467	svm->vmcb->save.cpl = kvm_ghcb_get_cpl_if_valid(svm, ghcb);
2468
2469	if (kvm_ghcb_xcr0_is_valid(svm)) {
2470		vcpu->arch.xcr0 = ghcb_get_xcr0(ghcb);
2471		kvm_update_cpuid_runtime(vcpu);
2472	}
2473
2474	/* Copy the GHCB exit information into the VMCB fields */
2475	exit_code = ghcb_get_sw_exit_code(ghcb);
2476	control->exit_code = lower_32_bits(exit_code);
2477	control->exit_code_hi = upper_32_bits(exit_code);
2478	control->exit_info_1 = ghcb_get_sw_exit_info_1(ghcb);
2479	control->exit_info_2 = ghcb_get_sw_exit_info_2(ghcb);
2480	svm->sev_es.sw_scratch = kvm_ghcb_get_sw_scratch_if_valid(svm, ghcb);
2481
2482	/* Clear the valid entries fields */
2483	memset(ghcb->save.valid_bitmap, 0, sizeof(ghcb->save.valid_bitmap));
2484}
2485
2486static u64 kvm_ghcb_get_sw_exit_code(struct vmcb_control_area *control)
2487{
2488	return (((u64)control->exit_code_hi) << 32) | control->exit_code;
2489}
2490
2491static int sev_es_validate_vmgexit(struct vcpu_svm *svm)
2492{
2493	struct vmcb_control_area *control = &svm->vmcb->control;
2494	struct kvm_vcpu *vcpu = &svm->vcpu;
2495	u64 exit_code;
2496	u64 reason;
2497
2498	/*
2499	 * Retrieve the exit code now even though it may not be marked valid
2500	 * as it could help with debugging.
2501	 */
2502	exit_code = kvm_ghcb_get_sw_exit_code(control);
2503
2504	/* Only GHCB Usage code 0 is supported */
2505	if (svm->sev_es.ghcb->ghcb_usage) {
2506		reason = GHCB_ERR_INVALID_USAGE;
2507		goto vmgexit_err;
2508	}
2509
2510	reason = GHCB_ERR_MISSING_INPUT;
2511
2512	if (!kvm_ghcb_sw_exit_code_is_valid(svm) ||
2513	    !kvm_ghcb_sw_exit_info_1_is_valid(svm) ||
2514	    !kvm_ghcb_sw_exit_info_2_is_valid(svm))
2515		goto vmgexit_err;
2516
2517	switch (exit_code) {
2518	case SVM_EXIT_READ_DR7:
2519		break;
2520	case SVM_EXIT_WRITE_DR7:
2521		if (!kvm_ghcb_rax_is_valid(svm))
2522			goto vmgexit_err;
2523		break;
2524	case SVM_EXIT_RDTSC:
2525		break;
2526	case SVM_EXIT_RDPMC:
2527		if (!kvm_ghcb_rcx_is_valid(svm))
2528			goto vmgexit_err;
2529		break;
2530	case SVM_EXIT_CPUID:
2531		if (!kvm_ghcb_rax_is_valid(svm) ||
2532		    !kvm_ghcb_rcx_is_valid(svm))
2533			goto vmgexit_err;
2534		if (vcpu->arch.regs[VCPU_REGS_RAX] == 0xd)
2535			if (!kvm_ghcb_xcr0_is_valid(svm))
2536				goto vmgexit_err;
2537		break;
2538	case SVM_EXIT_INVD:
2539		break;
2540	case SVM_EXIT_IOIO:
2541		if (control->exit_info_1 & SVM_IOIO_STR_MASK) {
2542			if (!kvm_ghcb_sw_scratch_is_valid(svm))
2543				goto vmgexit_err;
2544		} else {
2545			if (!(control->exit_info_1 & SVM_IOIO_TYPE_MASK))
2546				if (!kvm_ghcb_rax_is_valid(svm))
2547					goto vmgexit_err;
2548		}
2549		break;
2550	case SVM_EXIT_MSR:
2551		if (!kvm_ghcb_rcx_is_valid(svm))
2552			goto vmgexit_err;
2553		if (control->exit_info_1) {
2554			if (!kvm_ghcb_rax_is_valid(svm) ||
2555			    !kvm_ghcb_rdx_is_valid(svm))
2556				goto vmgexit_err;
2557		}
2558		break;
2559	case SVM_EXIT_VMMCALL:
2560		if (!kvm_ghcb_rax_is_valid(svm) ||
2561		    !kvm_ghcb_cpl_is_valid(svm))
2562			goto vmgexit_err;
2563		break;
2564	case SVM_EXIT_RDTSCP:
2565		break;
2566	case SVM_EXIT_WBINVD:
2567		break;
2568	case SVM_EXIT_MONITOR:
2569		if (!kvm_ghcb_rax_is_valid(svm) ||
2570		    !kvm_ghcb_rcx_is_valid(svm) ||
2571		    !kvm_ghcb_rdx_is_valid(svm))
2572			goto vmgexit_err;
2573		break;
2574	case SVM_EXIT_MWAIT:
2575		if (!kvm_ghcb_rax_is_valid(svm) ||
2576		    !kvm_ghcb_rcx_is_valid(svm))
2577			goto vmgexit_err;
2578		break;
2579	case SVM_VMGEXIT_MMIO_READ:
2580	case SVM_VMGEXIT_MMIO_WRITE:
2581		if (!kvm_ghcb_sw_scratch_is_valid(svm))
2582			goto vmgexit_err;
2583		break;
2584	case SVM_VMGEXIT_NMI_COMPLETE:
2585	case SVM_VMGEXIT_AP_HLT_LOOP:
2586	case SVM_VMGEXIT_AP_JUMP_TABLE:
2587	case SVM_VMGEXIT_UNSUPPORTED_EVENT:
2588		break;
2589	default:
2590		reason = GHCB_ERR_INVALID_EVENT;
2591		goto vmgexit_err;
2592	}
2593
2594	return 0;
2595
2596vmgexit_err:
2597	if (reason == GHCB_ERR_INVALID_USAGE) {
2598		vcpu_unimpl(vcpu, "vmgexit: ghcb usage %#x is not valid\n",
2599			    svm->sev_es.ghcb->ghcb_usage);
2600	} else if (reason == GHCB_ERR_INVALID_EVENT) {
2601		vcpu_unimpl(vcpu, "vmgexit: exit code %#llx is not valid\n",
2602			    exit_code);
2603	} else {
2604		vcpu_unimpl(vcpu, "vmgexit: exit code %#llx input is not valid\n",
2605			    exit_code);
2606		dump_ghcb(svm);
2607	}
2608
2609	ghcb_set_sw_exit_info_1(svm->sev_es.ghcb, 2);
2610	ghcb_set_sw_exit_info_2(svm->sev_es.ghcb, reason);
2611
2612	/* Resume the guest to "return" the error code. */
2613	return 1;
2614}
2615
2616void sev_es_unmap_ghcb(struct vcpu_svm *svm)
2617{
2618	if (!svm->sev_es.ghcb)
2619		return;
2620
2621	if (svm->sev_es.ghcb_sa_free) {
2622		/*
2623		 * The scratch area lives outside the GHCB, so there is a
2624		 * buffer that, depending on the operation performed, may
2625		 * need to be synced, then freed.
2626		 */
2627		if (svm->sev_es.ghcb_sa_sync) {
2628			kvm_write_guest(svm->vcpu.kvm,
2629					svm->sev_es.sw_scratch,
2630					svm->sev_es.ghcb_sa,
2631					svm->sev_es.ghcb_sa_len);
2632			svm->sev_es.ghcb_sa_sync = false;
2633		}
2634
2635		kvfree(svm->sev_es.ghcb_sa);
2636		svm->sev_es.ghcb_sa = NULL;
2637		svm->sev_es.ghcb_sa_free = false;
2638	}
2639
2640	trace_kvm_vmgexit_exit(svm->vcpu.vcpu_id, svm->sev_es.ghcb);
2641
2642	sev_es_sync_to_ghcb(svm);
2643
2644	kvm_vcpu_unmap(&svm->vcpu, &svm->sev_es.ghcb_map, true);
2645	svm->sev_es.ghcb = NULL;
2646}
2647
2648void pre_sev_run(struct vcpu_svm *svm, int cpu)
2649{
2650	struct svm_cpu_data *sd = per_cpu_ptr(&svm_data, cpu);
2651	unsigned int asid = sev_get_asid(svm->vcpu.kvm);
2652
2653	/* Assign the asid allocated with this SEV guest */
2654	svm->asid = asid;
2655
2656	/*
2657	 * Flush guest TLB:
2658	 *
2659	 * 1) when different VMCB for the same ASID is to be run on the same host CPU.
2660	 * 2) or this VMCB was executed on different host CPU in previous VMRUNs.
2661	 */
2662	if (sd->sev_vmcbs[asid] == svm->vmcb &&
2663	    svm->vcpu.arch.last_vmentry_cpu == cpu)
2664		return;
2665
2666	sd->sev_vmcbs[asid] = svm->vmcb;
2667	svm->vmcb->control.tlb_ctl = TLB_CONTROL_FLUSH_ASID;
2668	vmcb_mark_dirty(svm->vmcb, VMCB_ASID);
2669}
2670
2671#define GHCB_SCRATCH_AREA_LIMIT		(16ULL * PAGE_SIZE)
2672static int setup_vmgexit_scratch(struct vcpu_svm *svm, bool sync, u64 len)
2673{
2674	struct vmcb_control_area *control = &svm->vmcb->control;
2675	u64 ghcb_scratch_beg, ghcb_scratch_end;
2676	u64 scratch_gpa_beg, scratch_gpa_end;
2677	void *scratch_va;
2678
2679	scratch_gpa_beg = svm->sev_es.sw_scratch;
2680	if (!scratch_gpa_beg) {
2681		pr_err("vmgexit: scratch gpa not provided\n");
2682		goto e_scratch;
2683	}
2684
2685	scratch_gpa_end = scratch_gpa_beg + len;
2686	if (scratch_gpa_end < scratch_gpa_beg) {
2687		pr_err("vmgexit: scratch length (%#llx) not valid for scratch address (%#llx)\n",
2688		       len, scratch_gpa_beg);
2689		goto e_scratch;
2690	}
2691
2692	if ((scratch_gpa_beg & PAGE_MASK) == control->ghcb_gpa) {
2693		/* Scratch area begins within GHCB */
2694		ghcb_scratch_beg = control->ghcb_gpa +
2695				   offsetof(struct ghcb, shared_buffer);
2696		ghcb_scratch_end = control->ghcb_gpa +
2697				   offsetof(struct ghcb, reserved_0xff0);
2698
2699		/*
2700		 * If the scratch area begins within the GHCB, it must be
2701		 * completely contained in the GHCB shared buffer area.
2702		 */
2703		if (scratch_gpa_beg < ghcb_scratch_beg ||
2704		    scratch_gpa_end > ghcb_scratch_end) {
2705			pr_err("vmgexit: scratch area is outside of GHCB shared buffer area (%#llx - %#llx)\n",
2706			       scratch_gpa_beg, scratch_gpa_end);
2707			goto e_scratch;
2708		}
2709
2710		scratch_va = (void *)svm->sev_es.ghcb;
2711		scratch_va += (scratch_gpa_beg - control->ghcb_gpa);
2712	} else {
2713		/*
2714		 * The guest memory must be read into a kernel buffer, so
2715		 * limit the size
2716		 */
2717		if (len > GHCB_SCRATCH_AREA_LIMIT) {
2718			pr_err("vmgexit: scratch area exceeds KVM limits (%#llx requested, %#llx limit)\n",
2719			       len, GHCB_SCRATCH_AREA_LIMIT);
2720			goto e_scratch;
2721		}
2722		scratch_va = kvzalloc(len, GFP_KERNEL_ACCOUNT);
2723		if (!scratch_va)
2724			return -ENOMEM;
2725
2726		if (kvm_read_guest(svm->vcpu.kvm, scratch_gpa_beg, scratch_va, len)) {
2727			/* Unable to copy scratch area from guest */
2728			pr_err("vmgexit: kvm_read_guest for scratch area failed\n");
2729
2730			kvfree(scratch_va);
2731			return -EFAULT;
2732		}
2733
2734		/*
2735		 * The scratch area is outside the GHCB. The operation will
2736		 * dictate whether the buffer needs to be synced before running
2737		 * the vCPU next time (i.e. a read was requested so the data
2738		 * must be written back to the guest memory).
2739		 */
2740		svm->sev_es.ghcb_sa_sync = sync;
2741		svm->sev_es.ghcb_sa_free = true;
2742	}
2743
2744	svm->sev_es.ghcb_sa = scratch_va;
2745	svm->sev_es.ghcb_sa_len = len;
2746
2747	return 0;
2748
2749e_scratch:
2750	ghcb_set_sw_exit_info_1(svm->sev_es.ghcb, 2);
2751	ghcb_set_sw_exit_info_2(svm->sev_es.ghcb, GHCB_ERR_INVALID_SCRATCH_AREA);
2752
2753	return 1;
2754}
2755
2756static void set_ghcb_msr_bits(struct vcpu_svm *svm, u64 value, u64 mask,
2757			      unsigned int pos)
2758{
2759	svm->vmcb->control.ghcb_gpa &= ~(mask << pos);
2760	svm->vmcb->control.ghcb_gpa |= (value & mask) << pos;
2761}
2762
2763static u64 get_ghcb_msr_bits(struct vcpu_svm *svm, u64 mask, unsigned int pos)
2764{
2765	return (svm->vmcb->control.ghcb_gpa >> pos) & mask;
2766}
2767
2768static void set_ghcb_msr(struct vcpu_svm *svm, u64 value)
2769{
2770	svm->vmcb->control.ghcb_gpa = value;
2771}
2772
2773static int sev_handle_vmgexit_msr_protocol(struct vcpu_svm *svm)
2774{
2775	struct vmcb_control_area *control = &svm->vmcb->control;
2776	struct kvm_vcpu *vcpu = &svm->vcpu;
2777	u64 ghcb_info;
2778	int ret = 1;
2779
2780	ghcb_info = control->ghcb_gpa & GHCB_MSR_INFO_MASK;
2781
2782	trace_kvm_vmgexit_msr_protocol_enter(svm->vcpu.vcpu_id,
2783					     control->ghcb_gpa);
2784
2785	switch (ghcb_info) {
2786	case GHCB_MSR_SEV_INFO_REQ:
2787		set_ghcb_msr(svm, GHCB_MSR_SEV_INFO(GHCB_VERSION_MAX,
2788						    GHCB_VERSION_MIN,
2789						    sev_enc_bit));
2790		break;
2791	case GHCB_MSR_CPUID_REQ: {
2792		u64 cpuid_fn, cpuid_reg, cpuid_value;
2793
2794		cpuid_fn = get_ghcb_msr_bits(svm,
2795					     GHCB_MSR_CPUID_FUNC_MASK,
2796					     GHCB_MSR_CPUID_FUNC_POS);
2797
2798		/* Initialize the registers needed by the CPUID intercept */
2799		vcpu->arch.regs[VCPU_REGS_RAX] = cpuid_fn;
2800		vcpu->arch.regs[VCPU_REGS_RCX] = 0;
2801
2802		ret = svm_invoke_exit_handler(vcpu, SVM_EXIT_CPUID);
2803		if (!ret) {
2804			/* Error, keep GHCB MSR value as-is */
2805			break;
2806		}
2807
2808		cpuid_reg = get_ghcb_msr_bits(svm,
2809					      GHCB_MSR_CPUID_REG_MASK,
2810					      GHCB_MSR_CPUID_REG_POS);
2811		if (cpuid_reg == 0)
2812			cpuid_value = vcpu->arch.regs[VCPU_REGS_RAX];
2813		else if (cpuid_reg == 1)
2814			cpuid_value = vcpu->arch.regs[VCPU_REGS_RBX];
2815		else if (cpuid_reg == 2)
2816			cpuid_value = vcpu->arch.regs[VCPU_REGS_RCX];
2817		else
2818			cpuid_value = vcpu->arch.regs[VCPU_REGS_RDX];
2819
2820		set_ghcb_msr_bits(svm, cpuid_value,
2821				  GHCB_MSR_CPUID_VALUE_MASK,
2822				  GHCB_MSR_CPUID_VALUE_POS);
2823
2824		set_ghcb_msr_bits(svm, GHCB_MSR_CPUID_RESP,
2825				  GHCB_MSR_INFO_MASK,
2826				  GHCB_MSR_INFO_POS);
2827		break;
2828	}
2829	case GHCB_MSR_TERM_REQ: {
2830		u64 reason_set, reason_code;
2831
2832		reason_set = get_ghcb_msr_bits(svm,
2833					       GHCB_MSR_TERM_REASON_SET_MASK,
2834					       GHCB_MSR_TERM_REASON_SET_POS);
2835		reason_code = get_ghcb_msr_bits(svm,
2836						GHCB_MSR_TERM_REASON_MASK,
2837						GHCB_MSR_TERM_REASON_POS);
2838		pr_info("SEV-ES guest requested termination: %#llx:%#llx\n",
2839			reason_set, reason_code);
2840
2841		vcpu->run->exit_reason = KVM_EXIT_SYSTEM_EVENT;
2842		vcpu->run->system_event.type = KVM_SYSTEM_EVENT_SEV_TERM;
2843		vcpu->run->system_event.ndata = 1;
2844		vcpu->run->system_event.data[0] = control->ghcb_gpa;
2845
2846		return 0;
2847	}
2848	default:
2849		/* Error, keep GHCB MSR value as-is */
2850		break;
2851	}
2852
2853	trace_kvm_vmgexit_msr_protocol_exit(svm->vcpu.vcpu_id,
2854					    control->ghcb_gpa, ret);
2855
2856	return ret;
2857}
2858
2859int sev_handle_vmgexit(struct kvm_vcpu *vcpu)
2860{
2861	struct vcpu_svm *svm = to_svm(vcpu);
2862	struct vmcb_control_area *control = &svm->vmcb->control;
2863	u64 ghcb_gpa, exit_code;
2864	int ret;
2865
2866	/* Validate the GHCB */
2867	ghcb_gpa = control->ghcb_gpa;
2868	if (ghcb_gpa & GHCB_MSR_INFO_MASK)
2869		return sev_handle_vmgexit_msr_protocol(svm);
2870
2871	if (!ghcb_gpa) {
2872		vcpu_unimpl(vcpu, "vmgexit: GHCB gpa is not set\n");
2873
2874		/* Without a GHCB, just return right back to the guest */
2875		return 1;
2876	}
2877
2878	if (kvm_vcpu_map(vcpu, ghcb_gpa >> PAGE_SHIFT, &svm->sev_es.ghcb_map)) {
2879		/* Unable to map GHCB from guest */
2880		vcpu_unimpl(vcpu, "vmgexit: error mapping GHCB [%#llx] from guest\n",
2881			    ghcb_gpa);
2882
2883		/* Without a GHCB, just return right back to the guest */
2884		return 1;
2885	}
2886
2887	svm->sev_es.ghcb = svm->sev_es.ghcb_map.hva;
2888
2889	trace_kvm_vmgexit_enter(vcpu->vcpu_id, svm->sev_es.ghcb);
2890
2891	sev_es_sync_from_ghcb(svm);
2892	ret = sev_es_validate_vmgexit(svm);
2893	if (ret)
2894		return ret;
2895
2896	ghcb_set_sw_exit_info_1(svm->sev_es.ghcb, 0);
2897	ghcb_set_sw_exit_info_2(svm->sev_es.ghcb, 0);
2898
2899	exit_code = kvm_ghcb_get_sw_exit_code(control);
2900	switch (exit_code) {
2901	case SVM_VMGEXIT_MMIO_READ:
2902		ret = setup_vmgexit_scratch(svm, true, control->exit_info_2);
2903		if (ret)
2904			break;
2905
2906		ret = kvm_sev_es_mmio_read(vcpu,
2907					   control->exit_info_1,
2908					   control->exit_info_2,
2909					   svm->sev_es.ghcb_sa);
2910		break;
2911	case SVM_VMGEXIT_MMIO_WRITE:
2912		ret = setup_vmgexit_scratch(svm, false, control->exit_info_2);
2913		if (ret)
2914			break;
2915
2916		ret = kvm_sev_es_mmio_write(vcpu,
2917					    control->exit_info_1,
2918					    control->exit_info_2,
2919					    svm->sev_es.ghcb_sa);
2920		break;
2921	case SVM_VMGEXIT_NMI_COMPLETE:
2922		++vcpu->stat.nmi_window_exits;
2923		svm->nmi_masked = false;
2924		kvm_make_request(KVM_REQ_EVENT, vcpu);
2925		ret = 1;
2926		break;
2927	case SVM_VMGEXIT_AP_HLT_LOOP:
2928		ret = kvm_emulate_ap_reset_hold(vcpu);
2929		break;
2930	case SVM_VMGEXIT_AP_JUMP_TABLE: {
2931		struct kvm_sev_info *sev = &to_kvm_svm(vcpu->kvm)->sev_info;
2932
2933		switch (control->exit_info_1) {
2934		case 0:
2935			/* Set AP jump table address */
2936			sev->ap_jump_table = control->exit_info_2;
2937			break;
2938		case 1:
2939			/* Get AP jump table address */
2940			ghcb_set_sw_exit_info_2(svm->sev_es.ghcb, sev->ap_jump_table);
2941			break;
2942		default:
2943			pr_err("svm: vmgexit: unsupported AP jump table request - exit_info_1=%#llx\n",
2944			       control->exit_info_1);
2945			ghcb_set_sw_exit_info_1(svm->sev_es.ghcb, 2);
2946			ghcb_set_sw_exit_info_2(svm->sev_es.ghcb, GHCB_ERR_INVALID_INPUT);
2947		}
2948
2949		ret = 1;
2950		break;
2951	}
2952	case SVM_VMGEXIT_UNSUPPORTED_EVENT:
2953		vcpu_unimpl(vcpu,
2954			    "vmgexit: unsupported event - exit_info_1=%#llx, exit_info_2=%#llx\n",
2955			    control->exit_info_1, control->exit_info_2);
2956		ret = -EINVAL;
2957		break;
2958	default:
2959		ret = svm_invoke_exit_handler(vcpu, exit_code);
2960	}
2961
2962	return ret;
2963}
2964
2965int sev_es_string_io(struct vcpu_svm *svm, int size, unsigned int port, int in)
2966{
2967	int count;
2968	int bytes;
2969	int r;
2970
2971	if (svm->vmcb->control.exit_info_2 > INT_MAX)
2972		return -EINVAL;
2973
2974	count = svm->vmcb->control.exit_info_2;
2975	if (unlikely(check_mul_overflow(count, size, &bytes)))
2976		return -EINVAL;
2977
2978	r = setup_vmgexit_scratch(svm, in, bytes);
2979	if (r)
2980		return r;
2981
2982	return kvm_sev_es_string_io(&svm->vcpu, size, port, svm->sev_es.ghcb_sa,
2983				    count, in);
2984}
2985
2986static void sev_es_vcpu_after_set_cpuid(struct vcpu_svm *svm)
2987{
2988	struct kvm_vcpu *vcpu = &svm->vcpu;
2989
2990	if (boot_cpu_has(X86_FEATURE_V_TSC_AUX)) {
2991		bool v_tsc_aux = guest_cpuid_has(vcpu, X86_FEATURE_RDTSCP) ||
2992				 guest_cpuid_has(vcpu, X86_FEATURE_RDPID);
2993
2994		set_msr_interception(vcpu, svm->msrpm, MSR_TSC_AUX, v_tsc_aux, v_tsc_aux);
2995	}
2996
2997	/*
2998	 * For SEV-ES, accesses to MSR_IA32_XSS should not be intercepted if
2999	 * the host/guest supports its use.
3000	 *
3001	 * guest_can_use() checks a number of requirements on the host/guest to
3002	 * ensure that MSR_IA32_XSS is available, but it might report true even
3003	 * if X86_FEATURE_XSAVES isn't configured in the guest to ensure host
3004	 * MSR_IA32_XSS is always properly restored. For SEV-ES, it is better
3005	 * to further check that the guest CPUID actually supports
3006	 * X86_FEATURE_XSAVES so that accesses to MSR_IA32_XSS by misbehaved
3007	 * guests will still get intercepted and caught in the normal
3008	 * kvm_emulate_rdmsr()/kvm_emulated_wrmsr() paths.
3009	 */
3010	if (guest_can_use(vcpu, X86_FEATURE_XSAVES) &&
3011	    guest_cpuid_has(vcpu, X86_FEATURE_XSAVES))
3012		set_msr_interception(vcpu, svm->msrpm, MSR_IA32_XSS, 1, 1);
3013	else
3014		set_msr_interception(vcpu, svm->msrpm, MSR_IA32_XSS, 0, 0);
3015}
3016
3017void sev_vcpu_after_set_cpuid(struct vcpu_svm *svm)
3018{
3019	struct kvm_vcpu *vcpu = &svm->vcpu;
3020	struct kvm_cpuid_entry2 *best;
3021
3022	/* For sev guests, the memory encryption bit is not reserved in CR3.  */
3023	best = kvm_find_cpuid_entry(vcpu, 0x8000001F);
3024	if (best)
3025		vcpu->arch.reserved_gpa_bits &= ~(1UL << (best->ebx & 0x3f));
3026
3027	if (sev_es_guest(svm->vcpu.kvm))
3028		sev_es_vcpu_after_set_cpuid(svm);
3029}
3030
3031static void sev_es_init_vmcb(struct vcpu_svm *svm)
3032{
3033	struct vmcb *vmcb = svm->vmcb01.ptr;
3034	struct kvm_vcpu *vcpu = &svm->vcpu;
3035
3036	svm->vmcb->control.nested_ctl |= SVM_NESTED_CTL_SEV_ES_ENABLE;
3037	svm->vmcb->control.virt_ext |= LBR_CTL_ENABLE_MASK;
3038
3039	/*
3040	 * An SEV-ES guest requires a VMSA area that is a separate from the
3041	 * VMCB page. Do not include the encryption mask on the VMSA physical
3042	 * address since hardware will access it using the guest key.  Note,
3043	 * the VMSA will be NULL if this vCPU is the destination for intrahost
3044	 * migration, and will be copied later.
3045	 */
3046	if (svm->sev_es.vmsa)
3047		svm->vmcb->control.vmsa_pa = __pa(svm->sev_es.vmsa);
3048
3049	/* Can't intercept CR register access, HV can't modify CR registers */
3050	svm_clr_intercept(svm, INTERCEPT_CR0_READ);
3051	svm_clr_intercept(svm, INTERCEPT_CR4_READ);
3052	svm_clr_intercept(svm, INTERCEPT_CR8_READ);
3053	svm_clr_intercept(svm, INTERCEPT_CR0_WRITE);
3054	svm_clr_intercept(svm, INTERCEPT_CR4_WRITE);
3055	svm_clr_intercept(svm, INTERCEPT_CR8_WRITE);
3056
3057	svm_clr_intercept(svm, INTERCEPT_SELECTIVE_CR0);
3058
3059	/* Track EFER/CR register changes */
3060	svm_set_intercept(svm, TRAP_EFER_WRITE);
3061	svm_set_intercept(svm, TRAP_CR0_WRITE);
3062	svm_set_intercept(svm, TRAP_CR4_WRITE);
3063	svm_set_intercept(svm, TRAP_CR8_WRITE);
3064
3065	vmcb->control.intercepts[INTERCEPT_DR] = 0;
3066	if (!sev_es_debug_swap_enabled) {
3067		vmcb_set_intercept(&vmcb->control, INTERCEPT_DR7_READ);
3068		vmcb_set_intercept(&vmcb->control, INTERCEPT_DR7_WRITE);
3069		recalc_intercepts(svm);
3070	} else {
3071		/*
3072		 * Disable #DB intercept iff DebugSwap is enabled.  KVM doesn't
3073		 * allow debugging SEV-ES guests, and enables DebugSwap iff
3074		 * NO_NESTED_DATA_BP is supported, so there's no reason to
3075		 * intercept #DB when DebugSwap is enabled.  For simplicity
3076		 * with respect to guest debug, intercept #DB for other VMs
3077		 * even if NO_NESTED_DATA_BP is supported, i.e. even if the
3078		 * guest can't DoS the CPU with infinite #DB vectoring.
3079		 */
3080		clr_exception_intercept(svm, DB_VECTOR);
3081	}
3082
3083	/* Can't intercept XSETBV, HV can't modify XCR0 directly */
3084	svm_clr_intercept(svm, INTERCEPT_XSETBV);
3085
3086	/* Clear intercepts on selected MSRs */
3087	set_msr_interception(vcpu, svm->msrpm, MSR_EFER, 1, 1);
3088	set_msr_interception(vcpu, svm->msrpm, MSR_IA32_CR_PAT, 1, 1);
3089	set_msr_interception(vcpu, svm->msrpm, MSR_IA32_LASTBRANCHFROMIP, 1, 1);
3090	set_msr_interception(vcpu, svm->msrpm, MSR_IA32_LASTBRANCHTOIP, 1, 1);
3091	set_msr_interception(vcpu, svm->msrpm, MSR_IA32_LASTINTFROMIP, 1, 1);
3092	set_msr_interception(vcpu, svm->msrpm, MSR_IA32_LASTINTTOIP, 1, 1);
3093}
3094
3095void sev_init_vmcb(struct vcpu_svm *svm)
3096{
3097	svm->vmcb->control.nested_ctl |= SVM_NESTED_CTL_SEV_ENABLE;
3098	clr_exception_intercept(svm, UD_VECTOR);
3099
3100	/*
3101	 * Don't intercept #GP for SEV guests, e.g. for the VMware backdoor, as
3102	 * KVM can't decrypt guest memory to decode the faulting instruction.
3103	 */
3104	clr_exception_intercept(svm, GP_VECTOR);
3105
3106	if (sev_es_guest(svm->vcpu.kvm))
3107		sev_es_init_vmcb(svm);
3108}
3109
3110void sev_es_vcpu_reset(struct vcpu_svm *svm)
3111{
3112	/*
3113	 * Set the GHCB MSR value as per the GHCB specification when emulating
3114	 * vCPU RESET for an SEV-ES guest.
3115	 */
3116	set_ghcb_msr(svm, GHCB_MSR_SEV_INFO(GHCB_VERSION_MAX,
3117					    GHCB_VERSION_MIN,
3118					    sev_enc_bit));
3119}
3120
3121void sev_es_prepare_switch_to_guest(struct sev_es_save_area *hostsa)
3122{
3123	/*
3124	 * All host state for SEV-ES guests is categorized into three swap types
3125	 * based on how it is handled by hardware during a world switch:
3126	 *
3127	 * A: VMRUN:   Host state saved in host save area
3128	 *    VMEXIT:  Host state loaded from host save area
3129	 *
3130	 * B: VMRUN:   Host state _NOT_ saved in host save area
3131	 *    VMEXIT:  Host state loaded from host save area
3132	 *
3133	 * C: VMRUN:   Host state _NOT_ saved in host save area
3134	 *    VMEXIT:  Host state initialized to default(reset) values
3135	 *
3136	 * Manually save type-B state, i.e. state that is loaded by VMEXIT but
3137	 * isn't saved by VMRUN, that isn't already saved by VMSAVE (performed
3138	 * by common SVM code).
3139	 */
3140	hostsa->xcr0 = xgetbv(XCR_XFEATURE_ENABLED_MASK);
3141	hostsa->pkru = read_pkru();
3142	hostsa->xss = host_xss;
3143
3144	/*
3145	 * If DebugSwap is enabled, debug registers are loaded but NOT saved by
3146	 * the CPU (Type-B). If DebugSwap is disabled/unsupported, the CPU both
3147	 * saves and loads debug registers (Type-A).
3148	 */
3149	if (sev_es_debug_swap_enabled) {
3150		hostsa->dr0 = native_get_debugreg(0);
3151		hostsa->dr1 = native_get_debugreg(1);
3152		hostsa->dr2 = native_get_debugreg(2);
3153		hostsa->dr3 = native_get_debugreg(3);
3154		hostsa->dr0_addr_mask = amd_get_dr_addr_mask(0);
3155		hostsa->dr1_addr_mask = amd_get_dr_addr_mask(1);
3156		hostsa->dr2_addr_mask = amd_get_dr_addr_mask(2);
3157		hostsa->dr3_addr_mask = amd_get_dr_addr_mask(3);
3158	}
3159}
3160
3161void sev_vcpu_deliver_sipi_vector(struct kvm_vcpu *vcpu, u8 vector)
3162{
3163	struct vcpu_svm *svm = to_svm(vcpu);
3164
3165	/* First SIPI: Use the values as initially set by the VMM */
3166	if (!svm->sev_es.received_first_sipi) {
3167		svm->sev_es.received_first_sipi = true;
3168		return;
3169	}
3170
3171	/*
3172	 * Subsequent SIPI: Return from an AP Reset Hold VMGEXIT, where
3173	 * the guest will set the CS and RIP. Set SW_EXIT_INFO_2 to a
3174	 * non-zero value.
3175	 */
3176	if (!svm->sev_es.ghcb)
3177		return;
3178
3179	ghcb_set_sw_exit_info_2(svm->sev_es.ghcb, 1);
3180}
3181
3182struct page *snp_safe_alloc_page(struct kvm_vcpu *vcpu)
3183{
3184	unsigned long pfn;
3185	struct page *p;
3186
3187	if (!cc_platform_has(CC_ATTR_HOST_SEV_SNP))
3188		return alloc_page(GFP_KERNEL_ACCOUNT | __GFP_ZERO);
3189
3190	/*
3191	 * Allocate an SNP-safe page to workaround the SNP erratum where
3192	 * the CPU will incorrectly signal an RMP violation #PF if a
3193	 * hugepage (2MB or 1GB) collides with the RMP entry of a
3194	 * 2MB-aligned VMCB, VMSA, or AVIC backing page.
3195	 *
3196	 * Allocate one extra page, choose a page which is not
3197	 * 2MB-aligned, and free the other.
3198	 */
3199	p = alloc_pages(GFP_KERNEL_ACCOUNT | __GFP_ZERO, 1);
3200	if (!p)
3201		return NULL;
3202
3203	split_page(p, 1);
3204
3205	pfn = page_to_pfn(p);
3206	if (IS_ALIGNED(pfn, PTRS_PER_PMD))
3207		__free_page(p++);
3208	else
3209		__free_page(p + 1);
3210
3211	return p;
3212}
3213