1/* SPDX-License-Identifier: GPL-2.0-only */
2/*
3 * Kernel-based Virtual Machine driver for Linux
4 *
5 * This module enables machines with Intel VT-x extensions to run virtual
6 * machines without emulation or binary translation.
7 *
8 * MMU support
9 *
10 * Copyright (C) 2006 Qumranet, Inc.
11 * Copyright 2010 Red Hat, Inc. and/or its affiliates.
12 *
13 * Authors:
14 *   Yaniv Kamay  <yaniv@qumranet.com>
15 *   Avi Kivity   <avi@qumranet.com>
16 */
17
18/*
19 * The MMU needs to be able to access/walk 32-bit and 64-bit guest page tables,
20 * as well as guest EPT tables, so the code in this file is compiled thrice,
21 * once per guest PTE type.  The per-type defines are #undef'd at the end.
22 */
23
24#if PTTYPE == 64
25	#define pt_element_t u64
26	#define guest_walker guest_walker64
27	#define FNAME(name) paging##64_##name
28	#define PT_LEVEL_BITS 9
29	#define PT_GUEST_DIRTY_SHIFT PT_DIRTY_SHIFT
30	#define PT_GUEST_ACCESSED_SHIFT PT_ACCESSED_SHIFT
31	#define PT_HAVE_ACCESSED_DIRTY(mmu) true
32	#ifdef CONFIG_X86_64
33	#define PT_MAX_FULL_LEVELS PT64_ROOT_MAX_LEVEL
34	#else
35	#define PT_MAX_FULL_LEVELS 2
36	#endif
37#elif PTTYPE == 32
38	#define pt_element_t u32
39	#define guest_walker guest_walker32
40	#define FNAME(name) paging##32_##name
41	#define PT_LEVEL_BITS 10
42	#define PT_MAX_FULL_LEVELS 2
43	#define PT_GUEST_DIRTY_SHIFT PT_DIRTY_SHIFT
44	#define PT_GUEST_ACCESSED_SHIFT PT_ACCESSED_SHIFT
45	#define PT_HAVE_ACCESSED_DIRTY(mmu) true
46
47	#define PT32_DIR_PSE36_SIZE 4
48	#define PT32_DIR_PSE36_SHIFT 13
49	#define PT32_DIR_PSE36_MASK \
50		(((1ULL << PT32_DIR_PSE36_SIZE) - 1) << PT32_DIR_PSE36_SHIFT)
51#elif PTTYPE == PTTYPE_EPT
52	#define pt_element_t u64
53	#define guest_walker guest_walkerEPT
54	#define FNAME(name) ept_##name
55	#define PT_LEVEL_BITS 9
56	#define PT_GUEST_DIRTY_SHIFT 9
57	#define PT_GUEST_ACCESSED_SHIFT 8
58	#define PT_HAVE_ACCESSED_DIRTY(mmu) (!(mmu)->cpu_role.base.ad_disabled)
59	#define PT_MAX_FULL_LEVELS PT64_ROOT_MAX_LEVEL
60#else
61	#error Invalid PTTYPE value
62#endif
63
64/* Common logic, but per-type values.  These also need to be undefined. */
65#define PT_BASE_ADDR_MASK	((pt_element_t)__PT_BASE_ADDR_MASK)
66#define PT_LVL_ADDR_MASK(lvl)	__PT_LVL_ADDR_MASK(PT_BASE_ADDR_MASK, lvl, PT_LEVEL_BITS)
67#define PT_LVL_OFFSET_MASK(lvl)	__PT_LVL_OFFSET_MASK(PT_BASE_ADDR_MASK, lvl, PT_LEVEL_BITS)
68#define PT_INDEX(addr, lvl)	__PT_INDEX(addr, lvl, PT_LEVEL_BITS)
69
70#define PT_GUEST_DIRTY_MASK    (1 << PT_GUEST_DIRTY_SHIFT)
71#define PT_GUEST_ACCESSED_MASK (1 << PT_GUEST_ACCESSED_SHIFT)
72
73#define gpte_to_gfn_lvl FNAME(gpte_to_gfn_lvl)
74#define gpte_to_gfn(pte) gpte_to_gfn_lvl((pte), PG_LEVEL_4K)
75
76/*
77 * The guest_walker structure emulates the behavior of the hardware page
78 * table walker.
79 */
80struct guest_walker {
81	int level;
82	unsigned max_level;
83	gfn_t table_gfn[PT_MAX_FULL_LEVELS];
84	pt_element_t ptes[PT_MAX_FULL_LEVELS];
85	pt_element_t prefetch_ptes[PTE_PREFETCH_NUM];
86	gpa_t pte_gpa[PT_MAX_FULL_LEVELS];
87	pt_element_t __user *ptep_user[PT_MAX_FULL_LEVELS];
88	bool pte_writable[PT_MAX_FULL_LEVELS];
89	unsigned int pt_access[PT_MAX_FULL_LEVELS];
90	unsigned int pte_access;
91	gfn_t gfn;
92	struct x86_exception fault;
93};
94
95#if PTTYPE == 32
96static inline gfn_t pse36_gfn_delta(u32 gpte)
97{
98	int shift = 32 - PT32_DIR_PSE36_SHIFT - PAGE_SHIFT;
99
100	return (gpte & PT32_DIR_PSE36_MASK) << shift;
101}
102#endif
103
104static gfn_t gpte_to_gfn_lvl(pt_element_t gpte, int lvl)
105{
106	return (gpte & PT_LVL_ADDR_MASK(lvl)) >> PAGE_SHIFT;
107}
108
109static inline void FNAME(protect_clean_gpte)(struct kvm_mmu *mmu, unsigned *access,
110					     unsigned gpte)
111{
112	unsigned mask;
113
114	/* dirty bit is not supported, so no need to track it */
115	if (!PT_HAVE_ACCESSED_DIRTY(mmu))
116		return;
117
118	BUILD_BUG_ON(PT_WRITABLE_MASK != ACC_WRITE_MASK);
119
120	mask = (unsigned)~ACC_WRITE_MASK;
121	/* Allow write access to dirty gptes */
122	mask |= (gpte >> (PT_GUEST_DIRTY_SHIFT - PT_WRITABLE_SHIFT)) &
123		PT_WRITABLE_MASK;
124	*access &= mask;
125}
126
127static inline int FNAME(is_present_gpte)(unsigned long pte)
128{
129#if PTTYPE != PTTYPE_EPT
130	return pte & PT_PRESENT_MASK;
131#else
132	return pte & 7;
133#endif
134}
135
136static bool FNAME(is_bad_mt_xwr)(struct rsvd_bits_validate *rsvd_check, u64 gpte)
137{
138#if PTTYPE != PTTYPE_EPT
139	return false;
140#else
141	return __is_bad_mt_xwr(rsvd_check, gpte);
142#endif
143}
144
145static bool FNAME(is_rsvd_bits_set)(struct kvm_mmu *mmu, u64 gpte, int level)
146{
147	return __is_rsvd_bits_set(&mmu->guest_rsvd_check, gpte, level) ||
148	       FNAME(is_bad_mt_xwr)(&mmu->guest_rsvd_check, gpte);
149}
150
151static bool FNAME(prefetch_invalid_gpte)(struct kvm_vcpu *vcpu,
152				  struct kvm_mmu_page *sp, u64 *spte,
153				  u64 gpte)
154{
155	if (!FNAME(is_present_gpte)(gpte))
156		goto no_present;
157
158	/* Prefetch only accessed entries (unless A/D bits are disabled). */
159	if (PT_HAVE_ACCESSED_DIRTY(vcpu->arch.mmu) &&
160	    !(gpte & PT_GUEST_ACCESSED_MASK))
161		goto no_present;
162
163	if (FNAME(is_rsvd_bits_set)(vcpu->arch.mmu, gpte, PG_LEVEL_4K))
164		goto no_present;
165
166	return false;
167
168no_present:
169	drop_spte(vcpu->kvm, spte);
170	return true;
171}
172
173/*
174 * For PTTYPE_EPT, a page table can be executable but not readable
175 * on supported processors. Therefore, set_spte does not automatically
176 * set bit 0 if execute only is supported. Here, we repurpose ACC_USER_MASK
177 * to signify readability since it isn't used in the EPT case
178 */
179static inline unsigned FNAME(gpte_access)(u64 gpte)
180{
181	unsigned access;
182#if PTTYPE == PTTYPE_EPT
183	access = ((gpte & VMX_EPT_WRITABLE_MASK) ? ACC_WRITE_MASK : 0) |
184		((gpte & VMX_EPT_EXECUTABLE_MASK) ? ACC_EXEC_MASK : 0) |
185		((gpte & VMX_EPT_READABLE_MASK) ? ACC_USER_MASK : 0);
186#else
187	BUILD_BUG_ON(ACC_EXEC_MASK != PT_PRESENT_MASK);
188	BUILD_BUG_ON(ACC_EXEC_MASK != 1);
189	access = gpte & (PT_WRITABLE_MASK | PT_USER_MASK | PT_PRESENT_MASK);
190	/* Combine NX with P (which is set here) to get ACC_EXEC_MASK.  */
191	access ^= (gpte >> PT64_NX_SHIFT);
192#endif
193
194	return access;
195}
196
197static int FNAME(update_accessed_dirty_bits)(struct kvm_vcpu *vcpu,
198					     struct kvm_mmu *mmu,
199					     struct guest_walker *walker,
200					     gpa_t addr, int write_fault)
201{
202	unsigned level, index;
203	pt_element_t pte, orig_pte;
204	pt_element_t __user *ptep_user;
205	gfn_t table_gfn;
206	int ret;
207
208	/* dirty/accessed bits are not supported, so no need to update them */
209	if (!PT_HAVE_ACCESSED_DIRTY(mmu))
210		return 0;
211
212	for (level = walker->max_level; level >= walker->level; --level) {
213		pte = orig_pte = walker->ptes[level - 1];
214		table_gfn = walker->table_gfn[level - 1];
215		ptep_user = walker->ptep_user[level - 1];
216		index = offset_in_page(ptep_user) / sizeof(pt_element_t);
217		if (!(pte & PT_GUEST_ACCESSED_MASK)) {
218			trace_kvm_mmu_set_accessed_bit(table_gfn, index, sizeof(pte));
219			pte |= PT_GUEST_ACCESSED_MASK;
220		}
221		if (level == walker->level && write_fault &&
222				!(pte & PT_GUEST_DIRTY_MASK)) {
223			trace_kvm_mmu_set_dirty_bit(table_gfn, index, sizeof(pte));
224#if PTTYPE == PTTYPE_EPT
225			if (kvm_x86_ops.nested_ops->write_log_dirty(vcpu, addr))
226				return -EINVAL;
227#endif
228			pte |= PT_GUEST_DIRTY_MASK;
229		}
230		if (pte == orig_pte)
231			continue;
232
233		/*
234		 * If the slot is read-only, simply do not process the accessed
235		 * and dirty bits.  This is the correct thing to do if the slot
236		 * is ROM, and page tables in read-as-ROM/write-as-MMIO slots
237		 * are only supported if the accessed and dirty bits are already
238		 * set in the ROM (so that MMIO writes are never needed).
239		 *
240		 * Note that NPT does not allow this at all and faults, since
241		 * it always wants nested page table entries for the guest
242		 * page tables to be writable.  And EPT works but will simply
243		 * overwrite the read-only memory to set the accessed and dirty
244		 * bits.
245		 */
246		if (unlikely(!walker->pte_writable[level - 1]))
247			continue;
248
249		ret = __try_cmpxchg_user(ptep_user, &orig_pte, pte, fault);
250		if (ret)
251			return ret;
252
253		kvm_vcpu_mark_page_dirty(vcpu, table_gfn);
254		walker->ptes[level - 1] = pte;
255	}
256	return 0;
257}
258
259static inline unsigned FNAME(gpte_pkeys)(struct kvm_vcpu *vcpu, u64 gpte)
260{
261	unsigned pkeys = 0;
262#if PTTYPE == 64
263	pte_t pte = {.pte = gpte};
264
265	pkeys = pte_flags_pkey(pte_flags(pte));
266#endif
267	return pkeys;
268}
269
270static inline bool FNAME(is_last_gpte)(struct kvm_mmu *mmu,
271				       unsigned int level, unsigned int gpte)
272{
273	/*
274	 * For EPT and PAE paging (both variants), bit 7 is either reserved at
275	 * all level or indicates a huge page (ignoring CR3/EPTP).  In either
276	 * case, bit 7 being set terminates the walk.
277	 */
278#if PTTYPE == 32
279	/*
280	 * 32-bit paging requires special handling because bit 7 is ignored if
281	 * CR4.PSE=0, not reserved.  Clear bit 7 in the gpte if the level is
282	 * greater than the last level for which bit 7 is the PAGE_SIZE bit.
283	 *
284	 * The RHS has bit 7 set iff level < (2 + PSE).  If it is clear, bit 7
285	 * is not reserved and does not indicate a large page at this level,
286	 * so clear PT_PAGE_SIZE_MASK in gpte if that is the case.
287	 */
288	gpte &= level - (PT32_ROOT_LEVEL + mmu->cpu_role.ext.cr4_pse);
289#endif
290	/*
291	 * PG_LEVEL_4K always terminates.  The RHS has bit 7 set
292	 * iff level <= PG_LEVEL_4K, which for our purpose means
293	 * level == PG_LEVEL_4K; set PT_PAGE_SIZE_MASK in gpte then.
294	 */
295	gpte |= level - PG_LEVEL_4K - 1;
296
297	return gpte & PT_PAGE_SIZE_MASK;
298}
299/*
300 * Fetch a guest pte for a guest virtual address, or for an L2's GPA.
301 */
302static int FNAME(walk_addr_generic)(struct guest_walker *walker,
303				    struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
304				    gpa_t addr, u64 access)
305{
306	int ret;
307	pt_element_t pte;
308	pt_element_t __user *ptep_user;
309	gfn_t table_gfn;
310	u64 pt_access, pte_access;
311	unsigned index, accessed_dirty, pte_pkey;
312	u64 nested_access;
313	gpa_t pte_gpa;
314	bool have_ad;
315	int offset;
316	u64 walk_nx_mask = 0;
317	const int write_fault = access & PFERR_WRITE_MASK;
318	const int user_fault  = access & PFERR_USER_MASK;
319	const int fetch_fault = access & PFERR_FETCH_MASK;
320	u16 errcode = 0;
321	gpa_t real_gpa;
322	gfn_t gfn;
323
324	trace_kvm_mmu_pagetable_walk(addr, access);
325retry_walk:
326	walker->level = mmu->cpu_role.base.level;
327	pte           = kvm_mmu_get_guest_pgd(vcpu, mmu);
328	have_ad       = PT_HAVE_ACCESSED_DIRTY(mmu);
329
330#if PTTYPE == 64
331	walk_nx_mask = 1ULL << PT64_NX_SHIFT;
332	if (walker->level == PT32E_ROOT_LEVEL) {
333		pte = mmu->get_pdptr(vcpu, (addr >> 30) & 3);
334		trace_kvm_mmu_paging_element(pte, walker->level);
335		if (!FNAME(is_present_gpte)(pte))
336			goto error;
337		--walker->level;
338	}
339#endif
340	walker->max_level = walker->level;
341
342	/*
343	 * FIXME: on Intel processors, loads of the PDPTE registers for PAE paging
344	 * by the MOV to CR instruction are treated as reads and do not cause the
345	 * processor to set the dirty flag in any EPT paging-structure entry.
346	 */
347	nested_access = (have_ad ? PFERR_WRITE_MASK : 0) | PFERR_USER_MASK;
348
349	pte_access = ~0;
350
351	/*
352	 * Queue a page fault for injection if this assertion fails, as callers
353	 * assume that walker.fault contains sane info on a walk failure.  I.e.
354	 * avoid making the situation worse by inducing even worse badness
355	 * between when the assertion fails and when KVM kicks the vCPU out to
356	 * userspace (because the VM is bugged).
357	 */
358	if (KVM_BUG_ON(is_long_mode(vcpu) && !is_pae(vcpu), vcpu->kvm))
359		goto error;
360
361	++walker->level;
362
363	do {
364		struct kvm_memory_slot *slot;
365		unsigned long host_addr;
366
367		pt_access = pte_access;
368		--walker->level;
369
370		index = PT_INDEX(addr, walker->level);
371		table_gfn = gpte_to_gfn(pte);
372		offset    = index * sizeof(pt_element_t);
373		pte_gpa   = gfn_to_gpa(table_gfn) + offset;
374
375		BUG_ON(walker->level < 1);
376		walker->table_gfn[walker->level - 1] = table_gfn;
377		walker->pte_gpa[walker->level - 1] = pte_gpa;
378
379		real_gpa = kvm_translate_gpa(vcpu, mmu, gfn_to_gpa(table_gfn),
380					     nested_access, &walker->fault);
381
382		/*
383		 * FIXME: This can happen if emulation (for of an INS/OUTS
384		 * instruction) triggers a nested page fault.  The exit
385		 * qualification / exit info field will incorrectly have
386		 * "guest page access" as the nested page fault's cause,
387		 * instead of "guest page structure access".  To fix this,
388		 * the x86_exception struct should be augmented with enough
389		 * information to fix the exit_qualification or exit_info_1
390		 * fields.
391		 */
392		if (unlikely(real_gpa == INVALID_GPA))
393			return 0;
394
395		slot = kvm_vcpu_gfn_to_memslot(vcpu, gpa_to_gfn(real_gpa));
396		if (!kvm_is_visible_memslot(slot))
397			goto error;
398
399		host_addr = gfn_to_hva_memslot_prot(slot, gpa_to_gfn(real_gpa),
400					    &walker->pte_writable[walker->level - 1]);
401		if (unlikely(kvm_is_error_hva(host_addr)))
402			goto error;
403
404		ptep_user = (pt_element_t __user *)((void *)host_addr + offset);
405		if (unlikely(__get_user(pte, ptep_user)))
406			goto error;
407		walker->ptep_user[walker->level - 1] = ptep_user;
408
409		trace_kvm_mmu_paging_element(pte, walker->level);
410
411		/*
412		 * Inverting the NX it lets us AND it like other
413		 * permission bits.
414		 */
415		pte_access = pt_access & (pte ^ walk_nx_mask);
416
417		if (unlikely(!FNAME(is_present_gpte)(pte)))
418			goto error;
419
420		if (unlikely(FNAME(is_rsvd_bits_set)(mmu, pte, walker->level))) {
421			errcode = PFERR_RSVD_MASK | PFERR_PRESENT_MASK;
422			goto error;
423		}
424
425		walker->ptes[walker->level - 1] = pte;
426
427		/* Convert to ACC_*_MASK flags for struct guest_walker.  */
428		walker->pt_access[walker->level - 1] = FNAME(gpte_access)(pt_access ^ walk_nx_mask);
429	} while (!FNAME(is_last_gpte)(mmu, walker->level, pte));
430
431	pte_pkey = FNAME(gpte_pkeys)(vcpu, pte);
432	accessed_dirty = have_ad ? pte_access & PT_GUEST_ACCESSED_MASK : 0;
433
434	/* Convert to ACC_*_MASK flags for struct guest_walker.  */
435	walker->pte_access = FNAME(gpte_access)(pte_access ^ walk_nx_mask);
436	errcode = permission_fault(vcpu, mmu, walker->pte_access, pte_pkey, access);
437	if (unlikely(errcode))
438		goto error;
439
440	gfn = gpte_to_gfn_lvl(pte, walker->level);
441	gfn += (addr & PT_LVL_OFFSET_MASK(walker->level)) >> PAGE_SHIFT;
442
443#if PTTYPE == 32
444	if (walker->level > PG_LEVEL_4K && is_cpuid_PSE36())
445		gfn += pse36_gfn_delta(pte);
446#endif
447
448	real_gpa = kvm_translate_gpa(vcpu, mmu, gfn_to_gpa(gfn), access, &walker->fault);
449	if (real_gpa == INVALID_GPA)
450		return 0;
451
452	walker->gfn = real_gpa >> PAGE_SHIFT;
453
454	if (!write_fault)
455		FNAME(protect_clean_gpte)(mmu, &walker->pte_access, pte);
456	else
457		/*
458		 * On a write fault, fold the dirty bit into accessed_dirty.
459		 * For modes without A/D bits support accessed_dirty will be
460		 * always clear.
461		 */
462		accessed_dirty &= pte >>
463			(PT_GUEST_DIRTY_SHIFT - PT_GUEST_ACCESSED_SHIFT);
464
465	if (unlikely(!accessed_dirty)) {
466		ret = FNAME(update_accessed_dirty_bits)(vcpu, mmu, walker,
467							addr, write_fault);
468		if (unlikely(ret < 0))
469			goto error;
470		else if (ret)
471			goto retry_walk;
472	}
473
474	return 1;
475
476error:
477	errcode |= write_fault | user_fault;
478	if (fetch_fault && (is_efer_nx(mmu) || is_cr4_smep(mmu)))
479		errcode |= PFERR_FETCH_MASK;
480
481	walker->fault.vector = PF_VECTOR;
482	walker->fault.error_code_valid = true;
483	walker->fault.error_code = errcode;
484
485#if PTTYPE == PTTYPE_EPT
486	/*
487	 * Use PFERR_RSVD_MASK in error_code to tell if EPT
488	 * misconfiguration requires to be injected. The detection is
489	 * done by is_rsvd_bits_set() above.
490	 *
491	 * We set up the value of exit_qualification to inject:
492	 * [2:0] - Derive from the access bits. The exit_qualification might be
493	 *         out of date if it is serving an EPT misconfiguration.
494	 * [5:3] - Calculated by the page walk of the guest EPT page tables
495	 * [7:8] - Derived from [7:8] of real exit_qualification
496	 *
497	 * The other bits are set to 0.
498	 */
499	if (!(errcode & PFERR_RSVD_MASK)) {
500		vcpu->arch.exit_qualification &= (EPT_VIOLATION_GVA_IS_VALID |
501						  EPT_VIOLATION_GVA_TRANSLATED);
502		if (write_fault)
503			vcpu->arch.exit_qualification |= EPT_VIOLATION_ACC_WRITE;
504		if (user_fault)
505			vcpu->arch.exit_qualification |= EPT_VIOLATION_ACC_READ;
506		if (fetch_fault)
507			vcpu->arch.exit_qualification |= EPT_VIOLATION_ACC_INSTR;
508
509		/*
510		 * Note, pte_access holds the raw RWX bits from the EPTE, not
511		 * ACC_*_MASK flags!
512		 */
513		vcpu->arch.exit_qualification |= (pte_access & VMX_EPT_RWX_MASK) <<
514						 EPT_VIOLATION_RWX_SHIFT;
515	}
516#endif
517	walker->fault.address = addr;
518	walker->fault.nested_page_fault = mmu != vcpu->arch.walk_mmu;
519	walker->fault.async_page_fault = false;
520
521	trace_kvm_mmu_walker_error(walker->fault.error_code);
522	return 0;
523}
524
525static int FNAME(walk_addr)(struct guest_walker *walker,
526			    struct kvm_vcpu *vcpu, gpa_t addr, u64 access)
527{
528	return FNAME(walk_addr_generic)(walker, vcpu, vcpu->arch.mmu, addr,
529					access);
530}
531
532static bool
533FNAME(prefetch_gpte)(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
534		     u64 *spte, pt_element_t gpte)
535{
536	struct kvm_memory_slot *slot;
537	unsigned pte_access;
538	gfn_t gfn;
539	kvm_pfn_t pfn;
540
541	if (FNAME(prefetch_invalid_gpte)(vcpu, sp, spte, gpte))
542		return false;
543
544	gfn = gpte_to_gfn(gpte);
545	pte_access = sp->role.access & FNAME(gpte_access)(gpte);
546	FNAME(protect_clean_gpte)(vcpu->arch.mmu, &pte_access, gpte);
547
548	slot = gfn_to_memslot_dirty_bitmap(vcpu, gfn, pte_access & ACC_WRITE_MASK);
549	if (!slot)
550		return false;
551
552	pfn = gfn_to_pfn_memslot_atomic(slot, gfn);
553	if (is_error_pfn(pfn))
554		return false;
555
556	mmu_set_spte(vcpu, slot, spte, pte_access, gfn, pfn, NULL);
557	kvm_release_pfn_clean(pfn);
558	return true;
559}
560
561static bool FNAME(gpte_changed)(struct kvm_vcpu *vcpu,
562				struct guest_walker *gw, int level)
563{
564	pt_element_t curr_pte;
565	gpa_t base_gpa, pte_gpa = gw->pte_gpa[level - 1];
566	u64 mask;
567	int r, index;
568
569	if (level == PG_LEVEL_4K) {
570		mask = PTE_PREFETCH_NUM * sizeof(pt_element_t) - 1;
571		base_gpa = pte_gpa & ~mask;
572		index = (pte_gpa - base_gpa) / sizeof(pt_element_t);
573
574		r = kvm_vcpu_read_guest_atomic(vcpu, base_gpa,
575				gw->prefetch_ptes, sizeof(gw->prefetch_ptes));
576		curr_pte = gw->prefetch_ptes[index];
577	} else
578		r = kvm_vcpu_read_guest_atomic(vcpu, pte_gpa,
579				  &curr_pte, sizeof(curr_pte));
580
581	return r || curr_pte != gw->ptes[level - 1];
582}
583
584static void FNAME(pte_prefetch)(struct kvm_vcpu *vcpu, struct guest_walker *gw,
585				u64 *sptep)
586{
587	struct kvm_mmu_page *sp;
588	pt_element_t *gptep = gw->prefetch_ptes;
589	u64 *spte;
590	int i;
591
592	sp = sptep_to_sp(sptep);
593
594	if (sp->role.level > PG_LEVEL_4K)
595		return;
596
597	/*
598	 * If addresses are being invalidated, skip prefetching to avoid
599	 * accidentally prefetching those addresses.
600	 */
601	if (unlikely(vcpu->kvm->mmu_invalidate_in_progress))
602		return;
603
604	if (sp->role.direct)
605		return __direct_pte_prefetch(vcpu, sp, sptep);
606
607	i = spte_index(sptep) & ~(PTE_PREFETCH_NUM - 1);
608	spte = sp->spt + i;
609
610	for (i = 0; i < PTE_PREFETCH_NUM; i++, spte++) {
611		if (spte == sptep)
612			continue;
613
614		if (is_shadow_present_pte(*spte))
615			continue;
616
617		if (!FNAME(prefetch_gpte)(vcpu, sp, spte, gptep[i]))
618			break;
619	}
620}
621
622/*
623 * Fetch a shadow pte for a specific level in the paging hierarchy.
624 * If the guest tries to write a write-protected page, we need to
625 * emulate this operation, return 1 to indicate this case.
626 */
627static int FNAME(fetch)(struct kvm_vcpu *vcpu, struct kvm_page_fault *fault,
628			 struct guest_walker *gw)
629{
630	struct kvm_mmu_page *sp = NULL;
631	struct kvm_shadow_walk_iterator it;
632	unsigned int direct_access, access;
633	int top_level, ret;
634	gfn_t base_gfn = fault->gfn;
635
636	WARN_ON_ONCE(gw->gfn != base_gfn);
637	direct_access = gw->pte_access;
638
639	top_level = vcpu->arch.mmu->cpu_role.base.level;
640	if (top_level == PT32E_ROOT_LEVEL)
641		top_level = PT32_ROOT_LEVEL;
642	/*
643	 * Verify that the top-level gpte is still there.  Since the page
644	 * is a root page, it is either write protected (and cannot be
645	 * changed from now on) or it is invalid (in which case, we don't
646	 * really care if it changes underneath us after this point).
647	 */
648	if (FNAME(gpte_changed)(vcpu, gw, top_level))
649		goto out_gpte_changed;
650
651	if (WARN_ON_ONCE(!VALID_PAGE(vcpu->arch.mmu->root.hpa)))
652		goto out_gpte_changed;
653
654	/*
655	 * Load a new root and retry the faulting instruction in the extremely
656	 * unlikely scenario that the guest root gfn became visible between
657	 * loading a dummy root and handling the resulting page fault, e.g. if
658	 * userspace create a memslot in the interim.
659	 */
660	if (unlikely(kvm_mmu_is_dummy_root(vcpu->arch.mmu->root.hpa))) {
661		kvm_make_request(KVM_REQ_MMU_FREE_OBSOLETE_ROOTS, vcpu);
662		goto out_gpte_changed;
663	}
664
665	for_each_shadow_entry(vcpu, fault->addr, it) {
666		gfn_t table_gfn;
667
668		clear_sp_write_flooding_count(it.sptep);
669		if (it.level == gw->level)
670			break;
671
672		table_gfn = gw->table_gfn[it.level - 2];
673		access = gw->pt_access[it.level - 2];
674		sp = kvm_mmu_get_child_sp(vcpu, it.sptep, table_gfn,
675					  false, access);
676
677		if (sp != ERR_PTR(-EEXIST)) {
678			/*
679			 * We must synchronize the pagetable before linking it
680			 * because the guest doesn't need to flush tlb when
681			 * the gpte is changed from non-present to present.
682			 * Otherwise, the guest may use the wrong mapping.
683			 *
684			 * For PG_LEVEL_4K, kvm_mmu_get_page() has already
685			 * synchronized it transiently via kvm_sync_page().
686			 *
687			 * For higher level pagetable, we synchronize it via
688			 * the slower mmu_sync_children().  If it needs to
689			 * break, some progress has been made; return
690			 * RET_PF_RETRY and retry on the next #PF.
691			 * KVM_REQ_MMU_SYNC is not necessary but it
692			 * expedites the process.
693			 */
694			if (sp->unsync_children &&
695			    mmu_sync_children(vcpu, sp, false))
696				return RET_PF_RETRY;
697		}
698
699		/*
700		 * Verify that the gpte in the page we've just write
701		 * protected is still there.
702		 */
703		if (FNAME(gpte_changed)(vcpu, gw, it.level - 1))
704			goto out_gpte_changed;
705
706		if (sp != ERR_PTR(-EEXIST))
707			link_shadow_page(vcpu, it.sptep, sp);
708
709		if (fault->write && table_gfn == fault->gfn)
710			fault->write_fault_to_shadow_pgtable = true;
711	}
712
713	/*
714	 * Adjust the hugepage size _after_ resolving indirect shadow pages.
715	 * KVM doesn't support mapping hugepages into the guest for gfns that
716	 * are being shadowed by KVM, i.e. allocating a new shadow page may
717	 * affect the allowed hugepage size.
718	 */
719	kvm_mmu_hugepage_adjust(vcpu, fault);
720
721	trace_kvm_mmu_spte_requested(fault);
722
723	for (; shadow_walk_okay(&it); shadow_walk_next(&it)) {
724		/*
725		 * We cannot overwrite existing page tables with an NX
726		 * large page, as the leaf could be executable.
727		 */
728		if (fault->nx_huge_page_workaround_enabled)
729			disallowed_hugepage_adjust(fault, *it.sptep, it.level);
730
731		base_gfn = gfn_round_for_level(fault->gfn, it.level);
732		if (it.level == fault->goal_level)
733			break;
734
735		validate_direct_spte(vcpu, it.sptep, direct_access);
736
737		sp = kvm_mmu_get_child_sp(vcpu, it.sptep, base_gfn,
738					  true, direct_access);
739		if (sp == ERR_PTR(-EEXIST))
740			continue;
741
742		link_shadow_page(vcpu, it.sptep, sp);
743		if (fault->huge_page_disallowed)
744			account_nx_huge_page(vcpu->kvm, sp,
745					     fault->req_level >= it.level);
746	}
747
748	if (WARN_ON_ONCE(it.level != fault->goal_level))
749		return -EFAULT;
750
751	ret = mmu_set_spte(vcpu, fault->slot, it.sptep, gw->pte_access,
752			   base_gfn, fault->pfn, fault);
753	if (ret == RET_PF_SPURIOUS)
754		return ret;
755
756	FNAME(pte_prefetch)(vcpu, gw, it.sptep);
757	return ret;
758
759out_gpte_changed:
760	return RET_PF_RETRY;
761}
762
763/*
764 * Page fault handler.  There are several causes for a page fault:
765 *   - there is no shadow pte for the guest pte
766 *   - write access through a shadow pte marked read only so that we can set
767 *     the dirty bit
768 *   - write access to a shadow pte marked read only so we can update the page
769 *     dirty bitmap, when userspace requests it
770 *   - mmio access; in this case we will never install a present shadow pte
771 *   - normal guest page fault due to the guest pte marked not present, not
772 *     writable, or not executable
773 *
774 *  Returns: 1 if we need to emulate the instruction, 0 otherwise, or
775 *           a negative value on error.
776 */
777static int FNAME(page_fault)(struct kvm_vcpu *vcpu, struct kvm_page_fault *fault)
778{
779	struct guest_walker walker;
780	int r;
781
782	WARN_ON_ONCE(fault->is_tdp);
783
784	/*
785	 * Look up the guest pte for the faulting address.
786	 * If PFEC.RSVD is set, this is a shadow page fault.
787	 * The bit needs to be cleared before walking guest page tables.
788	 */
789	r = FNAME(walk_addr)(&walker, vcpu, fault->addr,
790			     fault->error_code & ~PFERR_RSVD_MASK);
791
792	/*
793	 * The page is not mapped by the guest.  Let the guest handle it.
794	 */
795	if (!r) {
796		if (!fault->prefetch)
797			kvm_inject_emulated_page_fault(vcpu, &walker.fault);
798
799		return RET_PF_RETRY;
800	}
801
802	fault->gfn = walker.gfn;
803	fault->max_level = walker.level;
804	fault->slot = kvm_vcpu_gfn_to_memslot(vcpu, fault->gfn);
805
806	if (page_fault_handle_page_track(vcpu, fault)) {
807		shadow_page_table_clear_flood(vcpu, fault->addr);
808		return RET_PF_EMULATE;
809	}
810
811	r = mmu_topup_memory_caches(vcpu, true);
812	if (r)
813		return r;
814
815	r = kvm_faultin_pfn(vcpu, fault, walker.pte_access);
816	if (r != RET_PF_CONTINUE)
817		return r;
818
819	/*
820	 * Do not change pte_access if the pfn is a mmio page, otherwise
821	 * we will cache the incorrect access into mmio spte.
822	 */
823	if (fault->write && !(walker.pte_access & ACC_WRITE_MASK) &&
824	    !is_cr0_wp(vcpu->arch.mmu) && !fault->user && fault->slot) {
825		walker.pte_access |= ACC_WRITE_MASK;
826		walker.pte_access &= ~ACC_USER_MASK;
827
828		/*
829		 * If we converted a user page to a kernel page,
830		 * so that the kernel can write to it when cr0.wp=0,
831		 * then we should prevent the kernel from executing it
832		 * if SMEP is enabled.
833		 */
834		if (is_cr4_smep(vcpu->arch.mmu))
835			walker.pte_access &= ~ACC_EXEC_MASK;
836	}
837
838	r = RET_PF_RETRY;
839	write_lock(&vcpu->kvm->mmu_lock);
840
841	if (is_page_fault_stale(vcpu, fault))
842		goto out_unlock;
843
844	r = make_mmu_pages_available(vcpu);
845	if (r)
846		goto out_unlock;
847	r = FNAME(fetch)(vcpu, fault, &walker);
848
849out_unlock:
850	write_unlock(&vcpu->kvm->mmu_lock);
851	kvm_release_pfn_clean(fault->pfn);
852	return r;
853}
854
855static gpa_t FNAME(get_level1_sp_gpa)(struct kvm_mmu_page *sp)
856{
857	int offset = 0;
858
859	WARN_ON_ONCE(sp->role.level != PG_LEVEL_4K);
860
861	if (PTTYPE == 32)
862		offset = sp->role.quadrant << SPTE_LEVEL_BITS;
863
864	return gfn_to_gpa(sp->gfn) + offset * sizeof(pt_element_t);
865}
866
867/* Note, @addr is a GPA when gva_to_gpa() translates an L2 GPA to an L1 GPA. */
868static gpa_t FNAME(gva_to_gpa)(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
869			       gpa_t addr, u64 access,
870			       struct x86_exception *exception)
871{
872	struct guest_walker walker;
873	gpa_t gpa = INVALID_GPA;
874	int r;
875
876#ifndef CONFIG_X86_64
877	/* A 64-bit GVA should be impossible on 32-bit KVM. */
878	WARN_ON_ONCE((addr >> 32) && mmu == vcpu->arch.walk_mmu);
879#endif
880
881	r = FNAME(walk_addr_generic)(&walker, vcpu, mmu, addr, access);
882
883	if (r) {
884		gpa = gfn_to_gpa(walker.gfn);
885		gpa |= addr & ~PAGE_MASK;
886	} else if (exception)
887		*exception = walker.fault;
888
889	return gpa;
890}
891
892/*
893 * Using the information in sp->shadowed_translation (kvm_mmu_page_get_gfn()) is
894 * safe because:
895 * - The spte has a reference to the struct page, so the pfn for a given gfn
896 *   can't change unless all sptes pointing to it are nuked first.
897 *
898 * Returns
899 * < 0: failed to sync spte
900 *   0: the spte is synced and no tlb flushing is required
901 * > 0: the spte is synced and tlb flushing is required
902 */
903static int FNAME(sync_spte)(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp, int i)
904{
905	bool host_writable;
906	gpa_t first_pte_gpa;
907	u64 *sptep, spte;
908	struct kvm_memory_slot *slot;
909	unsigned pte_access;
910	pt_element_t gpte;
911	gpa_t pte_gpa;
912	gfn_t gfn;
913
914	if (WARN_ON_ONCE(!sp->spt[i]))
915		return 0;
916
917	first_pte_gpa = FNAME(get_level1_sp_gpa)(sp);
918	pte_gpa = first_pte_gpa + i * sizeof(pt_element_t);
919
920	if (kvm_vcpu_read_guest_atomic(vcpu, pte_gpa, &gpte,
921				       sizeof(pt_element_t)))
922		return -1;
923
924	if (FNAME(prefetch_invalid_gpte)(vcpu, sp, &sp->spt[i], gpte))
925		return 1;
926
927	gfn = gpte_to_gfn(gpte);
928	pte_access = sp->role.access;
929	pte_access &= FNAME(gpte_access)(gpte);
930	FNAME(protect_clean_gpte)(vcpu->arch.mmu, &pte_access, gpte);
931
932	if (sync_mmio_spte(vcpu, &sp->spt[i], gfn, pte_access))
933		return 0;
934
935	/*
936	 * Drop the SPTE if the new protections would result in a RWX=0
937	 * SPTE or if the gfn is changing.  The RWX=0 case only affects
938	 * EPT with execute-only support, i.e. EPT without an effective
939	 * "present" bit, as all other paging modes will create a
940	 * read-only SPTE if pte_access is zero.
941	 */
942	if ((!pte_access && !shadow_present_mask) ||
943	    gfn != kvm_mmu_page_get_gfn(sp, i)) {
944		drop_spte(vcpu->kvm, &sp->spt[i]);
945		return 1;
946	}
947	/*
948	 * Do nothing if the permissions are unchanged.  The existing SPTE is
949	 * still, and prefetch_invalid_gpte() has verified that the A/D bits
950	 * are set in the "new" gPTE, i.e. there is no danger of missing an A/D
951	 * update due to A/D bits being set in the SPTE but not the gPTE.
952	 */
953	if (kvm_mmu_page_get_access(sp, i) == pte_access)
954		return 0;
955
956	/* Update the shadowed access bits in case they changed. */
957	kvm_mmu_page_set_access(sp, i, pte_access);
958
959	sptep = &sp->spt[i];
960	spte = *sptep;
961	host_writable = spte & shadow_host_writable_mask;
962	slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
963	make_spte(vcpu, sp, slot, pte_access, gfn,
964		  spte_to_pfn(spte), spte, true, false,
965		  host_writable, &spte);
966
967	return mmu_spte_update(sptep, spte);
968}
969
970#undef pt_element_t
971#undef guest_walker
972#undef FNAME
973#undef PT_BASE_ADDR_MASK
974#undef PT_INDEX
975#undef PT_LVL_ADDR_MASK
976#undef PT_LVL_OFFSET_MASK
977#undef PT_LEVEL_BITS
978#undef PT_MAX_FULL_LEVELS
979#undef gpte_to_gfn
980#undef gpte_to_gfn_lvl
981#undef PT_GUEST_ACCESSED_MASK
982#undef PT_GUEST_DIRTY_MASK
983#undef PT_GUEST_DIRTY_SHIFT
984#undef PT_GUEST_ACCESSED_SHIFT
985#undef PT_HAVE_ACCESSED_DIRTY
986