1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * Kernel-based Virtual Machine driver for Linux
4 * cpuid support routines
5 *
6 * derived from arch/x86/kvm/x86.c
7 *
8 * Copyright 2011 Red Hat, Inc. and/or its affiliates.
9 * Copyright IBM Corporation, 2008
10 */
11#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
12
13#include <linux/kvm_host.h>
14#include "linux/lockdep.h"
15#include <linux/export.h>
16#include <linux/vmalloc.h>
17#include <linux/uaccess.h>
18#include <linux/sched/stat.h>
19
20#include <asm/processor.h>
21#include <asm/user.h>
22#include <asm/fpu/xstate.h>
23#include <asm/sgx.h>
24#include <asm/cpuid.h>
25#include "cpuid.h"
26#include "lapic.h"
27#include "mmu.h"
28#include "trace.h"
29#include "pmu.h"
30#include "xen.h"
31
32/*
33 * Unlike "struct cpuinfo_x86.x86_capability", kvm_cpu_caps doesn't need to be
34 * aligned to sizeof(unsigned long) because it's not accessed via bitops.
35 */
36u32 kvm_cpu_caps[NR_KVM_CPU_CAPS] __read_mostly;
37EXPORT_SYMBOL_GPL(kvm_cpu_caps);
38
39u32 xstate_required_size(u64 xstate_bv, bool compacted)
40{
41	int feature_bit = 0;
42	u32 ret = XSAVE_HDR_SIZE + XSAVE_HDR_OFFSET;
43
44	xstate_bv &= XFEATURE_MASK_EXTEND;
45	while (xstate_bv) {
46		if (xstate_bv & 0x1) {
47		        u32 eax, ebx, ecx, edx, offset;
48		        cpuid_count(0xD, feature_bit, &eax, &ebx, &ecx, &edx);
49			/* ECX[1]: 64B alignment in compacted form */
50			if (compacted)
51				offset = (ecx & 0x2) ? ALIGN(ret, 64) : ret;
52			else
53				offset = ebx;
54			ret = max(ret, offset + eax);
55		}
56
57		xstate_bv >>= 1;
58		feature_bit++;
59	}
60
61	return ret;
62}
63
64#define F feature_bit
65
66/* Scattered Flag - For features that are scattered by cpufeatures.h. */
67#define SF(name)						\
68({								\
69	BUILD_BUG_ON(X86_FEATURE_##name >= MAX_CPU_FEATURES);	\
70	(boot_cpu_has(X86_FEATURE_##name) ? F(name) : 0);	\
71})
72
73/*
74 * Magic value used by KVM when querying userspace-provided CPUID entries and
75 * doesn't care about the CPIUD index because the index of the function in
76 * question is not significant.  Note, this magic value must have at least one
77 * bit set in bits[63:32] and must be consumed as a u64 by cpuid_entry2_find()
78 * to avoid false positives when processing guest CPUID input.
79 */
80#define KVM_CPUID_INDEX_NOT_SIGNIFICANT -1ull
81
82static inline struct kvm_cpuid_entry2 *cpuid_entry2_find(
83	struct kvm_cpuid_entry2 *entries, int nent, u32 function, u64 index)
84{
85	struct kvm_cpuid_entry2 *e;
86	int i;
87
88	/*
89	 * KVM has a semi-arbitrary rule that querying the guest's CPUID model
90	 * with IRQs disabled is disallowed.  The CPUID model can legitimately
91	 * have over one hundred entries, i.e. the lookup is slow, and IRQs are
92	 * typically disabled in KVM only when KVM is in a performance critical
93	 * path, e.g. the core VM-Enter/VM-Exit run loop.  Nothing will break
94	 * if this rule is violated, this assertion is purely to flag potential
95	 * performance issues.  If this fires, consider moving the lookup out
96	 * of the hotpath, e.g. by caching information during CPUID updates.
97	 */
98	lockdep_assert_irqs_enabled();
99
100	for (i = 0; i < nent; i++) {
101		e = &entries[i];
102
103		if (e->function != function)
104			continue;
105
106		/*
107		 * If the index isn't significant, use the first entry with a
108		 * matching function.  It's userspace's responsibility to not
109		 * provide "duplicate" entries in all cases.
110		 */
111		if (!(e->flags & KVM_CPUID_FLAG_SIGNIFCANT_INDEX) || e->index == index)
112			return e;
113
114
115		/*
116		 * Similarly, use the first matching entry if KVM is doing a
117		 * lookup (as opposed to emulating CPUID) for a function that's
118		 * architecturally defined as not having a significant index.
119		 */
120		if (index == KVM_CPUID_INDEX_NOT_SIGNIFICANT) {
121			/*
122			 * Direct lookups from KVM should not diverge from what
123			 * KVM defines internally (the architectural behavior).
124			 */
125			WARN_ON_ONCE(cpuid_function_is_indexed(function));
126			return e;
127		}
128	}
129
130	return NULL;
131}
132
133static int kvm_check_cpuid(struct kvm_vcpu *vcpu,
134			   struct kvm_cpuid_entry2 *entries,
135			   int nent)
136{
137	struct kvm_cpuid_entry2 *best;
138	u64 xfeatures;
139
140	/*
141	 * The existing code assumes virtual address is 48-bit or 57-bit in the
142	 * canonical address checks; exit if it is ever changed.
143	 */
144	best = cpuid_entry2_find(entries, nent, 0x80000008,
145				 KVM_CPUID_INDEX_NOT_SIGNIFICANT);
146	if (best) {
147		int vaddr_bits = (best->eax & 0xff00) >> 8;
148
149		if (vaddr_bits != 48 && vaddr_bits != 57 && vaddr_bits != 0)
150			return -EINVAL;
151	}
152
153	/*
154	 * Exposing dynamic xfeatures to the guest requires additional
155	 * enabling in the FPU, e.g. to expand the guest XSAVE state size.
156	 */
157	best = cpuid_entry2_find(entries, nent, 0xd, 0);
158	if (!best)
159		return 0;
160
161	xfeatures = best->eax | ((u64)best->edx << 32);
162	xfeatures &= XFEATURE_MASK_USER_DYNAMIC;
163	if (!xfeatures)
164		return 0;
165
166	return fpu_enable_guest_xfd_features(&vcpu->arch.guest_fpu, xfeatures);
167}
168
169/* Check whether the supplied CPUID data is equal to what is already set for the vCPU. */
170static int kvm_cpuid_check_equal(struct kvm_vcpu *vcpu, struct kvm_cpuid_entry2 *e2,
171				 int nent)
172{
173	struct kvm_cpuid_entry2 *orig;
174	int i;
175
176	if (nent != vcpu->arch.cpuid_nent)
177		return -EINVAL;
178
179	for (i = 0; i < nent; i++) {
180		orig = &vcpu->arch.cpuid_entries[i];
181		if (e2[i].function != orig->function ||
182		    e2[i].index != orig->index ||
183		    e2[i].flags != orig->flags ||
184		    e2[i].eax != orig->eax || e2[i].ebx != orig->ebx ||
185		    e2[i].ecx != orig->ecx || e2[i].edx != orig->edx)
186			return -EINVAL;
187	}
188
189	return 0;
190}
191
192static struct kvm_hypervisor_cpuid __kvm_get_hypervisor_cpuid(struct kvm_cpuid_entry2 *entries,
193							      int nent, const char *sig)
194{
195	struct kvm_hypervisor_cpuid cpuid = {};
196	struct kvm_cpuid_entry2 *entry;
197	u32 base;
198
199	for_each_possible_hypervisor_cpuid_base(base) {
200		entry = cpuid_entry2_find(entries, nent, base, KVM_CPUID_INDEX_NOT_SIGNIFICANT);
201
202		if (entry) {
203			u32 signature[3];
204
205			signature[0] = entry->ebx;
206			signature[1] = entry->ecx;
207			signature[2] = entry->edx;
208
209			if (!memcmp(signature, sig, sizeof(signature))) {
210				cpuid.base = base;
211				cpuid.limit = entry->eax;
212				break;
213			}
214		}
215	}
216
217	return cpuid;
218}
219
220static struct kvm_hypervisor_cpuid kvm_get_hypervisor_cpuid(struct kvm_vcpu *vcpu,
221							    const char *sig)
222{
223	return __kvm_get_hypervisor_cpuid(vcpu->arch.cpuid_entries,
224					  vcpu->arch.cpuid_nent, sig);
225}
226
227static struct kvm_cpuid_entry2 *__kvm_find_kvm_cpuid_features(struct kvm_cpuid_entry2 *entries,
228							      int nent, u32 kvm_cpuid_base)
229{
230	return cpuid_entry2_find(entries, nent, kvm_cpuid_base | KVM_CPUID_FEATURES,
231				 KVM_CPUID_INDEX_NOT_SIGNIFICANT);
232}
233
234static struct kvm_cpuid_entry2 *kvm_find_kvm_cpuid_features(struct kvm_vcpu *vcpu)
235{
236	u32 base = vcpu->arch.kvm_cpuid.base;
237
238	if (!base)
239		return NULL;
240
241	return __kvm_find_kvm_cpuid_features(vcpu->arch.cpuid_entries,
242					     vcpu->arch.cpuid_nent, base);
243}
244
245void kvm_update_pv_runtime(struct kvm_vcpu *vcpu)
246{
247	struct kvm_cpuid_entry2 *best = kvm_find_kvm_cpuid_features(vcpu);
248
249	/*
250	 * save the feature bitmap to avoid cpuid lookup for every PV
251	 * operation
252	 */
253	if (best)
254		vcpu->arch.pv_cpuid.features = best->eax;
255}
256
257/*
258 * Calculate guest's supported XCR0 taking into account guest CPUID data and
259 * KVM's supported XCR0 (comprised of host's XCR0 and KVM_SUPPORTED_XCR0).
260 */
261static u64 cpuid_get_supported_xcr0(struct kvm_cpuid_entry2 *entries, int nent)
262{
263	struct kvm_cpuid_entry2 *best;
264
265	best = cpuid_entry2_find(entries, nent, 0xd, 0);
266	if (!best)
267		return 0;
268
269	return (best->eax | ((u64)best->edx << 32)) & kvm_caps.supported_xcr0;
270}
271
272static void __kvm_update_cpuid_runtime(struct kvm_vcpu *vcpu, struct kvm_cpuid_entry2 *entries,
273				       int nent)
274{
275	struct kvm_cpuid_entry2 *best;
276	struct kvm_hypervisor_cpuid kvm_cpuid;
277
278	best = cpuid_entry2_find(entries, nent, 1, KVM_CPUID_INDEX_NOT_SIGNIFICANT);
279	if (best) {
280		/* Update OSXSAVE bit */
281		if (boot_cpu_has(X86_FEATURE_XSAVE))
282			cpuid_entry_change(best, X86_FEATURE_OSXSAVE,
283					   kvm_is_cr4_bit_set(vcpu, X86_CR4_OSXSAVE));
284
285		cpuid_entry_change(best, X86_FEATURE_APIC,
286			   vcpu->arch.apic_base & MSR_IA32_APICBASE_ENABLE);
287	}
288
289	best = cpuid_entry2_find(entries, nent, 7, 0);
290	if (best && boot_cpu_has(X86_FEATURE_PKU) && best->function == 0x7)
291		cpuid_entry_change(best, X86_FEATURE_OSPKE,
292				   kvm_is_cr4_bit_set(vcpu, X86_CR4_PKE));
293
294	best = cpuid_entry2_find(entries, nent, 0xD, 0);
295	if (best)
296		best->ebx = xstate_required_size(vcpu->arch.xcr0, false);
297
298	best = cpuid_entry2_find(entries, nent, 0xD, 1);
299	if (best && (cpuid_entry_has(best, X86_FEATURE_XSAVES) ||
300		     cpuid_entry_has(best, X86_FEATURE_XSAVEC)))
301		best->ebx = xstate_required_size(vcpu->arch.xcr0, true);
302
303	kvm_cpuid = __kvm_get_hypervisor_cpuid(entries, nent, KVM_SIGNATURE);
304	if (kvm_cpuid.base) {
305		best = __kvm_find_kvm_cpuid_features(entries, nent, kvm_cpuid.base);
306		if (kvm_hlt_in_guest(vcpu->kvm) && best)
307			best->eax &= ~(1 << KVM_FEATURE_PV_UNHALT);
308	}
309
310	if (!kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_MISC_ENABLE_NO_MWAIT)) {
311		best = cpuid_entry2_find(entries, nent, 0x1, KVM_CPUID_INDEX_NOT_SIGNIFICANT);
312		if (best)
313			cpuid_entry_change(best, X86_FEATURE_MWAIT,
314					   vcpu->arch.ia32_misc_enable_msr &
315					   MSR_IA32_MISC_ENABLE_MWAIT);
316	}
317}
318
319void kvm_update_cpuid_runtime(struct kvm_vcpu *vcpu)
320{
321	__kvm_update_cpuid_runtime(vcpu, vcpu->arch.cpuid_entries, vcpu->arch.cpuid_nent);
322}
323EXPORT_SYMBOL_GPL(kvm_update_cpuid_runtime);
324
325static bool kvm_cpuid_has_hyperv(struct kvm_cpuid_entry2 *entries, int nent)
326{
327#ifdef CONFIG_KVM_HYPERV
328	struct kvm_cpuid_entry2 *entry;
329
330	entry = cpuid_entry2_find(entries, nent, HYPERV_CPUID_INTERFACE,
331				  KVM_CPUID_INDEX_NOT_SIGNIFICANT);
332	return entry && entry->eax == HYPERV_CPUID_SIGNATURE_EAX;
333#else
334	return false;
335#endif
336}
337
338static void kvm_vcpu_after_set_cpuid(struct kvm_vcpu *vcpu)
339{
340	struct kvm_lapic *apic = vcpu->arch.apic;
341	struct kvm_cpuid_entry2 *best;
342	bool allow_gbpages;
343
344	BUILD_BUG_ON(KVM_NR_GOVERNED_FEATURES > KVM_MAX_NR_GOVERNED_FEATURES);
345	bitmap_zero(vcpu->arch.governed_features.enabled,
346		    KVM_MAX_NR_GOVERNED_FEATURES);
347
348	/*
349	 * If TDP is enabled, let the guest use GBPAGES if they're supported in
350	 * hardware.  The hardware page walker doesn't let KVM disable GBPAGES,
351	 * i.e. won't treat them as reserved, and KVM doesn't redo the GVA->GPA
352	 * walk for performance and complexity reasons.  Not to mention KVM
353	 * _can't_ solve the problem because GVA->GPA walks aren't visible to
354	 * KVM once a TDP translation is installed.  Mimic hardware behavior so
355	 * that KVM's is at least consistent, i.e. doesn't randomly inject #PF.
356	 * If TDP is disabled, honor *only* guest CPUID as KVM has full control
357	 * and can install smaller shadow pages if the host lacks 1GiB support.
358	 */
359	allow_gbpages = tdp_enabled ? boot_cpu_has(X86_FEATURE_GBPAGES) :
360				      guest_cpuid_has(vcpu, X86_FEATURE_GBPAGES);
361	if (allow_gbpages)
362		kvm_governed_feature_set(vcpu, X86_FEATURE_GBPAGES);
363
364	best = kvm_find_cpuid_entry(vcpu, 1);
365	if (best && apic) {
366		if (cpuid_entry_has(best, X86_FEATURE_TSC_DEADLINE_TIMER))
367			apic->lapic_timer.timer_mode_mask = 3 << 17;
368		else
369			apic->lapic_timer.timer_mode_mask = 1 << 17;
370
371		kvm_apic_set_version(vcpu);
372	}
373
374	vcpu->arch.guest_supported_xcr0 =
375		cpuid_get_supported_xcr0(vcpu->arch.cpuid_entries, vcpu->arch.cpuid_nent);
376
377	kvm_update_pv_runtime(vcpu);
378
379	vcpu->arch.is_amd_compatible = guest_cpuid_is_amd_or_hygon(vcpu);
380	vcpu->arch.maxphyaddr = cpuid_query_maxphyaddr(vcpu);
381	vcpu->arch.reserved_gpa_bits = kvm_vcpu_reserved_gpa_bits_raw(vcpu);
382
383	kvm_pmu_refresh(vcpu);
384	vcpu->arch.cr4_guest_rsvd_bits =
385	    __cr4_reserved_bits(guest_cpuid_has, vcpu);
386
387	kvm_hv_set_cpuid(vcpu, kvm_cpuid_has_hyperv(vcpu->arch.cpuid_entries,
388						    vcpu->arch.cpuid_nent));
389
390	/* Invoke the vendor callback only after the above state is updated. */
391	static_call(kvm_x86_vcpu_after_set_cpuid)(vcpu);
392
393	/*
394	 * Except for the MMU, which needs to do its thing any vendor specific
395	 * adjustments to the reserved GPA bits.
396	 */
397	kvm_mmu_after_set_cpuid(vcpu);
398}
399
400int cpuid_query_maxphyaddr(struct kvm_vcpu *vcpu)
401{
402	struct kvm_cpuid_entry2 *best;
403
404	best = kvm_find_cpuid_entry(vcpu, 0x80000000);
405	if (!best || best->eax < 0x80000008)
406		goto not_found;
407	best = kvm_find_cpuid_entry(vcpu, 0x80000008);
408	if (best)
409		return best->eax & 0xff;
410not_found:
411	return 36;
412}
413
414/*
415 * This "raw" version returns the reserved GPA bits without any adjustments for
416 * encryption technologies that usurp bits.  The raw mask should be used if and
417 * only if hardware does _not_ strip the usurped bits, e.g. in virtual MTRRs.
418 */
419u64 kvm_vcpu_reserved_gpa_bits_raw(struct kvm_vcpu *vcpu)
420{
421	return rsvd_bits(cpuid_maxphyaddr(vcpu), 63);
422}
423
424static int kvm_set_cpuid(struct kvm_vcpu *vcpu, struct kvm_cpuid_entry2 *e2,
425                        int nent)
426{
427	int r;
428
429	__kvm_update_cpuid_runtime(vcpu, e2, nent);
430
431	/*
432	 * KVM does not correctly handle changing guest CPUID after KVM_RUN, as
433	 * MAXPHYADDR, GBPAGES support, AMD reserved bit behavior, etc.. aren't
434	 * tracked in kvm_mmu_page_role.  As a result, KVM may miss guest page
435	 * faults due to reusing SPs/SPTEs. In practice no sane VMM mucks with
436	 * the core vCPU model on the fly. It would've been better to forbid any
437	 * KVM_SET_CPUID{,2} calls after KVM_RUN altogether but unfortunately
438	 * some VMMs (e.g. QEMU) reuse vCPU fds for CPU hotplug/unplug and do
439	 * KVM_SET_CPUID{,2} again. To support this legacy behavior, check
440	 * whether the supplied CPUID data is equal to what's already set.
441	 */
442	if (kvm_vcpu_has_run(vcpu)) {
443		r = kvm_cpuid_check_equal(vcpu, e2, nent);
444		if (r)
445			return r;
446
447		kvfree(e2);
448		return 0;
449	}
450
451#ifdef CONFIG_KVM_HYPERV
452	if (kvm_cpuid_has_hyperv(e2, nent)) {
453		r = kvm_hv_vcpu_init(vcpu);
454		if (r)
455			return r;
456	}
457#endif
458
459	r = kvm_check_cpuid(vcpu, e2, nent);
460	if (r)
461		return r;
462
463	kvfree(vcpu->arch.cpuid_entries);
464	vcpu->arch.cpuid_entries = e2;
465	vcpu->arch.cpuid_nent = nent;
466
467	vcpu->arch.kvm_cpuid = kvm_get_hypervisor_cpuid(vcpu, KVM_SIGNATURE);
468#ifdef CONFIG_KVM_XEN
469	vcpu->arch.xen.cpuid = kvm_get_hypervisor_cpuid(vcpu, XEN_SIGNATURE);
470#endif
471	kvm_vcpu_after_set_cpuid(vcpu);
472
473	return 0;
474}
475
476/* when an old userspace process fills a new kernel module */
477int kvm_vcpu_ioctl_set_cpuid(struct kvm_vcpu *vcpu,
478			     struct kvm_cpuid *cpuid,
479			     struct kvm_cpuid_entry __user *entries)
480{
481	int r, i;
482	struct kvm_cpuid_entry *e = NULL;
483	struct kvm_cpuid_entry2 *e2 = NULL;
484
485	if (cpuid->nent > KVM_MAX_CPUID_ENTRIES)
486		return -E2BIG;
487
488	if (cpuid->nent) {
489		e = vmemdup_array_user(entries, cpuid->nent, sizeof(*e));
490		if (IS_ERR(e))
491			return PTR_ERR(e);
492
493		e2 = kvmalloc_array(cpuid->nent, sizeof(*e2), GFP_KERNEL_ACCOUNT);
494		if (!e2) {
495			r = -ENOMEM;
496			goto out_free_cpuid;
497		}
498	}
499	for (i = 0; i < cpuid->nent; i++) {
500		e2[i].function = e[i].function;
501		e2[i].eax = e[i].eax;
502		e2[i].ebx = e[i].ebx;
503		e2[i].ecx = e[i].ecx;
504		e2[i].edx = e[i].edx;
505		e2[i].index = 0;
506		e2[i].flags = 0;
507		e2[i].padding[0] = 0;
508		e2[i].padding[1] = 0;
509		e2[i].padding[2] = 0;
510	}
511
512	r = kvm_set_cpuid(vcpu, e2, cpuid->nent);
513	if (r)
514		kvfree(e2);
515
516out_free_cpuid:
517	kvfree(e);
518
519	return r;
520}
521
522int kvm_vcpu_ioctl_set_cpuid2(struct kvm_vcpu *vcpu,
523			      struct kvm_cpuid2 *cpuid,
524			      struct kvm_cpuid_entry2 __user *entries)
525{
526	struct kvm_cpuid_entry2 *e2 = NULL;
527	int r;
528
529	if (cpuid->nent > KVM_MAX_CPUID_ENTRIES)
530		return -E2BIG;
531
532	if (cpuid->nent) {
533		e2 = vmemdup_array_user(entries, cpuid->nent, sizeof(*e2));
534		if (IS_ERR(e2))
535			return PTR_ERR(e2);
536	}
537
538	r = kvm_set_cpuid(vcpu, e2, cpuid->nent);
539	if (r)
540		kvfree(e2);
541
542	return r;
543}
544
545int kvm_vcpu_ioctl_get_cpuid2(struct kvm_vcpu *vcpu,
546			      struct kvm_cpuid2 *cpuid,
547			      struct kvm_cpuid_entry2 __user *entries)
548{
549	if (cpuid->nent < vcpu->arch.cpuid_nent)
550		return -E2BIG;
551
552	if (copy_to_user(entries, vcpu->arch.cpuid_entries,
553			 vcpu->arch.cpuid_nent * sizeof(struct kvm_cpuid_entry2)))
554		return -EFAULT;
555
556	cpuid->nent = vcpu->arch.cpuid_nent;
557	return 0;
558}
559
560/* Mask kvm_cpu_caps for @leaf with the raw CPUID capabilities of this CPU. */
561static __always_inline void __kvm_cpu_cap_mask(unsigned int leaf)
562{
563	const struct cpuid_reg cpuid = x86_feature_cpuid(leaf * 32);
564	struct kvm_cpuid_entry2 entry;
565
566	reverse_cpuid_check(leaf);
567
568	cpuid_count(cpuid.function, cpuid.index,
569		    &entry.eax, &entry.ebx, &entry.ecx, &entry.edx);
570
571	kvm_cpu_caps[leaf] &= *__cpuid_entry_get_reg(&entry, cpuid.reg);
572}
573
574static __always_inline
575void kvm_cpu_cap_init_kvm_defined(enum kvm_only_cpuid_leafs leaf, u32 mask)
576{
577	/* Use kvm_cpu_cap_mask for leafs that aren't KVM-only. */
578	BUILD_BUG_ON(leaf < NCAPINTS);
579
580	kvm_cpu_caps[leaf] = mask;
581
582	__kvm_cpu_cap_mask(leaf);
583}
584
585static __always_inline void kvm_cpu_cap_mask(enum cpuid_leafs leaf, u32 mask)
586{
587	/* Use kvm_cpu_cap_init_kvm_defined for KVM-only leafs. */
588	BUILD_BUG_ON(leaf >= NCAPINTS);
589
590	kvm_cpu_caps[leaf] &= mask;
591
592	__kvm_cpu_cap_mask(leaf);
593}
594
595void kvm_set_cpu_caps(void)
596{
597#ifdef CONFIG_X86_64
598	unsigned int f_gbpages = F(GBPAGES);
599	unsigned int f_lm = F(LM);
600	unsigned int f_xfd = F(XFD);
601#else
602	unsigned int f_gbpages = 0;
603	unsigned int f_lm = 0;
604	unsigned int f_xfd = 0;
605#endif
606	memset(kvm_cpu_caps, 0, sizeof(kvm_cpu_caps));
607
608	BUILD_BUG_ON(sizeof(kvm_cpu_caps) - (NKVMCAPINTS * sizeof(*kvm_cpu_caps)) >
609		     sizeof(boot_cpu_data.x86_capability));
610
611	memcpy(&kvm_cpu_caps, &boot_cpu_data.x86_capability,
612	       sizeof(kvm_cpu_caps) - (NKVMCAPINTS * sizeof(*kvm_cpu_caps)));
613
614	kvm_cpu_cap_mask(CPUID_1_ECX,
615		/*
616		 * NOTE: MONITOR (and MWAIT) are emulated as NOP, but *not*
617		 * advertised to guests via CPUID!
618		 */
619		F(XMM3) | F(PCLMULQDQ) | 0 /* DTES64, MONITOR */ |
620		0 /* DS-CPL, VMX, SMX, EST */ |
621		0 /* TM2 */ | F(SSSE3) | 0 /* CNXT-ID */ | 0 /* Reserved */ |
622		F(FMA) | F(CX16) | 0 /* xTPR Update */ | F(PDCM) |
623		F(PCID) | 0 /* Reserved, DCA */ | F(XMM4_1) |
624		F(XMM4_2) | F(X2APIC) | F(MOVBE) | F(POPCNT) |
625		0 /* Reserved*/ | F(AES) | F(XSAVE) | 0 /* OSXSAVE */ | F(AVX) |
626		F(F16C) | F(RDRAND)
627	);
628	/* KVM emulates x2apic in software irrespective of host support. */
629	kvm_cpu_cap_set(X86_FEATURE_X2APIC);
630
631	kvm_cpu_cap_mask(CPUID_1_EDX,
632		F(FPU) | F(VME) | F(DE) | F(PSE) |
633		F(TSC) | F(MSR) | F(PAE) | F(MCE) |
634		F(CX8) | F(APIC) | 0 /* Reserved */ | F(SEP) |
635		F(MTRR) | F(PGE) | F(MCA) | F(CMOV) |
636		F(PAT) | F(PSE36) | 0 /* PSN */ | F(CLFLUSH) |
637		0 /* Reserved, DS, ACPI */ | F(MMX) |
638		F(FXSR) | F(XMM) | F(XMM2) | F(SELFSNOOP) |
639		0 /* HTT, TM, Reserved, PBE */
640	);
641
642	kvm_cpu_cap_mask(CPUID_7_0_EBX,
643		F(FSGSBASE) | F(SGX) | F(BMI1) | F(HLE) | F(AVX2) |
644		F(FDP_EXCPTN_ONLY) | F(SMEP) | F(BMI2) | F(ERMS) | F(INVPCID) |
645		F(RTM) | F(ZERO_FCS_FDS) | 0 /*MPX*/ | F(AVX512F) |
646		F(AVX512DQ) | F(RDSEED) | F(ADX) | F(SMAP) | F(AVX512IFMA) |
647		F(CLFLUSHOPT) | F(CLWB) | 0 /*INTEL_PT*/ | F(AVX512PF) |
648		F(AVX512ER) | F(AVX512CD) | F(SHA_NI) | F(AVX512BW) |
649		F(AVX512VL));
650
651	kvm_cpu_cap_mask(CPUID_7_ECX,
652		F(AVX512VBMI) | F(LA57) | F(PKU) | 0 /*OSPKE*/ | F(RDPID) |
653		F(AVX512_VPOPCNTDQ) | F(UMIP) | F(AVX512_VBMI2) | F(GFNI) |
654		F(VAES) | F(VPCLMULQDQ) | F(AVX512_VNNI) | F(AVX512_BITALG) |
655		F(CLDEMOTE) | F(MOVDIRI) | F(MOVDIR64B) | 0 /*WAITPKG*/ |
656		F(SGX_LC) | F(BUS_LOCK_DETECT)
657	);
658	/* Set LA57 based on hardware capability. */
659	if (cpuid_ecx(7) & F(LA57))
660		kvm_cpu_cap_set(X86_FEATURE_LA57);
661
662	/*
663	 * PKU not yet implemented for shadow paging and requires OSPKE
664	 * to be set on the host. Clear it if that is not the case
665	 */
666	if (!tdp_enabled || !boot_cpu_has(X86_FEATURE_OSPKE))
667		kvm_cpu_cap_clear(X86_FEATURE_PKU);
668
669	kvm_cpu_cap_mask(CPUID_7_EDX,
670		F(AVX512_4VNNIW) | F(AVX512_4FMAPS) | F(SPEC_CTRL) |
671		F(SPEC_CTRL_SSBD) | F(ARCH_CAPABILITIES) | F(INTEL_STIBP) |
672		F(MD_CLEAR) | F(AVX512_VP2INTERSECT) | F(FSRM) |
673		F(SERIALIZE) | F(TSXLDTRK) | F(AVX512_FP16) |
674		F(AMX_TILE) | F(AMX_INT8) | F(AMX_BF16) | F(FLUSH_L1D)
675	);
676
677	/* TSC_ADJUST and ARCH_CAPABILITIES are emulated in software. */
678	kvm_cpu_cap_set(X86_FEATURE_TSC_ADJUST);
679	kvm_cpu_cap_set(X86_FEATURE_ARCH_CAPABILITIES);
680
681	if (boot_cpu_has(X86_FEATURE_IBPB) && boot_cpu_has(X86_FEATURE_IBRS))
682		kvm_cpu_cap_set(X86_FEATURE_SPEC_CTRL);
683	if (boot_cpu_has(X86_FEATURE_STIBP))
684		kvm_cpu_cap_set(X86_FEATURE_INTEL_STIBP);
685	if (boot_cpu_has(X86_FEATURE_AMD_SSBD))
686		kvm_cpu_cap_set(X86_FEATURE_SPEC_CTRL_SSBD);
687
688	kvm_cpu_cap_mask(CPUID_7_1_EAX,
689		F(AVX_VNNI) | F(AVX512_BF16) | F(CMPCCXADD) |
690		F(FZRM) | F(FSRS) | F(FSRC) |
691		F(AMX_FP16) | F(AVX_IFMA) | F(LAM)
692	);
693
694	kvm_cpu_cap_init_kvm_defined(CPUID_7_1_EDX,
695		F(AVX_VNNI_INT8) | F(AVX_NE_CONVERT) | F(PREFETCHITI) |
696		F(AMX_COMPLEX)
697	);
698
699	kvm_cpu_cap_init_kvm_defined(CPUID_7_2_EDX,
700		F(INTEL_PSFD) | F(IPRED_CTRL) | F(RRSBA_CTRL) | F(DDPD_U) |
701		F(BHI_CTRL) | F(MCDT_NO)
702	);
703
704	kvm_cpu_cap_mask(CPUID_D_1_EAX,
705		F(XSAVEOPT) | F(XSAVEC) | F(XGETBV1) | F(XSAVES) | f_xfd
706	);
707
708	kvm_cpu_cap_init_kvm_defined(CPUID_12_EAX,
709		SF(SGX1) | SF(SGX2) | SF(SGX_EDECCSSA)
710	);
711
712	kvm_cpu_cap_mask(CPUID_8000_0001_ECX,
713		F(LAHF_LM) | F(CMP_LEGACY) | 0 /*SVM*/ | 0 /* ExtApicSpace */ |
714		F(CR8_LEGACY) | F(ABM) | F(SSE4A) | F(MISALIGNSSE) |
715		F(3DNOWPREFETCH) | F(OSVW) | 0 /* IBS */ | F(XOP) |
716		0 /* SKINIT, WDT, LWP */ | F(FMA4) | F(TBM) |
717		F(TOPOEXT) | 0 /* PERFCTR_CORE */
718	);
719
720	kvm_cpu_cap_mask(CPUID_8000_0001_EDX,
721		F(FPU) | F(VME) | F(DE) | F(PSE) |
722		F(TSC) | F(MSR) | F(PAE) | F(MCE) |
723		F(CX8) | F(APIC) | 0 /* Reserved */ | F(SYSCALL) |
724		F(MTRR) | F(PGE) | F(MCA) | F(CMOV) |
725		F(PAT) | F(PSE36) | 0 /* Reserved */ |
726		F(NX) | 0 /* Reserved */ | F(MMXEXT) | F(MMX) |
727		F(FXSR) | F(FXSR_OPT) | f_gbpages | F(RDTSCP) |
728		0 /* Reserved */ | f_lm | F(3DNOWEXT) | F(3DNOW)
729	);
730
731	if (!tdp_enabled && IS_ENABLED(CONFIG_X86_64))
732		kvm_cpu_cap_set(X86_FEATURE_GBPAGES);
733
734	kvm_cpu_cap_init_kvm_defined(CPUID_8000_0007_EDX,
735		SF(CONSTANT_TSC)
736	);
737
738	kvm_cpu_cap_mask(CPUID_8000_0008_EBX,
739		F(CLZERO) | F(XSAVEERPTR) |
740		F(WBNOINVD) | F(AMD_IBPB) | F(AMD_IBRS) | F(AMD_SSBD) | F(VIRT_SSBD) |
741		F(AMD_SSB_NO) | F(AMD_STIBP) | F(AMD_STIBP_ALWAYS_ON) |
742		F(AMD_PSFD)
743	);
744
745	/*
746	 * AMD has separate bits for each SPEC_CTRL bit.
747	 * arch/x86/kernel/cpu/bugs.c is kind enough to
748	 * record that in cpufeatures so use them.
749	 */
750	if (boot_cpu_has(X86_FEATURE_IBPB))
751		kvm_cpu_cap_set(X86_FEATURE_AMD_IBPB);
752	if (boot_cpu_has(X86_FEATURE_IBRS))
753		kvm_cpu_cap_set(X86_FEATURE_AMD_IBRS);
754	if (boot_cpu_has(X86_FEATURE_STIBP))
755		kvm_cpu_cap_set(X86_FEATURE_AMD_STIBP);
756	if (boot_cpu_has(X86_FEATURE_SPEC_CTRL_SSBD))
757		kvm_cpu_cap_set(X86_FEATURE_AMD_SSBD);
758	if (!boot_cpu_has_bug(X86_BUG_SPEC_STORE_BYPASS))
759		kvm_cpu_cap_set(X86_FEATURE_AMD_SSB_NO);
760	/*
761	 * The preference is to use SPEC CTRL MSR instead of the
762	 * VIRT_SPEC MSR.
763	 */
764	if (boot_cpu_has(X86_FEATURE_LS_CFG_SSBD) &&
765	    !boot_cpu_has(X86_FEATURE_AMD_SSBD))
766		kvm_cpu_cap_set(X86_FEATURE_VIRT_SSBD);
767
768	/*
769	 * Hide all SVM features by default, SVM will set the cap bits for
770	 * features it emulates and/or exposes for L1.
771	 */
772	kvm_cpu_cap_mask(CPUID_8000_000A_EDX, 0);
773
774	kvm_cpu_cap_mask(CPUID_8000_001F_EAX,
775		0 /* SME */ | F(SEV) | 0 /* VM_PAGE_FLUSH */ | F(SEV_ES) |
776		F(SME_COHERENT));
777
778	kvm_cpu_cap_mask(CPUID_8000_0021_EAX,
779		F(NO_NESTED_DATA_BP) | F(LFENCE_RDTSC) | 0 /* SmmPgCfgLock */ |
780		F(NULL_SEL_CLR_BASE) | F(AUTOIBRS) | 0 /* PrefetchCtlMsr */ |
781		F(WRMSR_XX_BASE_NS)
782	);
783
784	kvm_cpu_cap_check_and_set(X86_FEATURE_SBPB);
785	kvm_cpu_cap_check_and_set(X86_FEATURE_IBPB_BRTYPE);
786	kvm_cpu_cap_check_and_set(X86_FEATURE_SRSO_NO);
787
788	kvm_cpu_cap_init_kvm_defined(CPUID_8000_0022_EAX,
789		F(PERFMON_V2)
790	);
791
792	/*
793	 * Synthesize "LFENCE is serializing" into the AMD-defined entry in
794	 * KVM's supported CPUID if the feature is reported as supported by the
795	 * kernel.  LFENCE_RDTSC was a Linux-defined synthetic feature long
796	 * before AMD joined the bandwagon, e.g. LFENCE is serializing on most
797	 * CPUs that support SSE2.  On CPUs that don't support AMD's leaf,
798	 * kvm_cpu_cap_mask() will unfortunately drop the flag due to ANDing
799	 * the mask with the raw host CPUID, and reporting support in AMD's
800	 * leaf can make it easier for userspace to detect the feature.
801	 */
802	if (cpu_feature_enabled(X86_FEATURE_LFENCE_RDTSC))
803		kvm_cpu_cap_set(X86_FEATURE_LFENCE_RDTSC);
804	if (!static_cpu_has_bug(X86_BUG_NULL_SEG))
805		kvm_cpu_cap_set(X86_FEATURE_NULL_SEL_CLR_BASE);
806	kvm_cpu_cap_set(X86_FEATURE_NO_SMM_CTL_MSR);
807
808	kvm_cpu_cap_mask(CPUID_C000_0001_EDX,
809		F(XSTORE) | F(XSTORE_EN) | F(XCRYPT) | F(XCRYPT_EN) |
810		F(ACE2) | F(ACE2_EN) | F(PHE) | F(PHE_EN) |
811		F(PMM) | F(PMM_EN)
812	);
813
814	/*
815	 * Hide RDTSCP and RDPID if either feature is reported as supported but
816	 * probing MSR_TSC_AUX failed.  This is purely a sanity check and
817	 * should never happen, but the guest will likely crash if RDTSCP or
818	 * RDPID is misreported, and KVM has botched MSR_TSC_AUX emulation in
819	 * the past.  For example, the sanity check may fire if this instance of
820	 * KVM is running as L1 on top of an older, broken KVM.
821	 */
822	if (WARN_ON((kvm_cpu_cap_has(X86_FEATURE_RDTSCP) ||
823		     kvm_cpu_cap_has(X86_FEATURE_RDPID)) &&
824		     !kvm_is_supported_user_return_msr(MSR_TSC_AUX))) {
825		kvm_cpu_cap_clear(X86_FEATURE_RDTSCP);
826		kvm_cpu_cap_clear(X86_FEATURE_RDPID);
827	}
828}
829EXPORT_SYMBOL_GPL(kvm_set_cpu_caps);
830
831struct kvm_cpuid_array {
832	struct kvm_cpuid_entry2 *entries;
833	int maxnent;
834	int nent;
835};
836
837static struct kvm_cpuid_entry2 *get_next_cpuid(struct kvm_cpuid_array *array)
838{
839	if (array->nent >= array->maxnent)
840		return NULL;
841
842	return &array->entries[array->nent++];
843}
844
845static struct kvm_cpuid_entry2 *do_host_cpuid(struct kvm_cpuid_array *array,
846					      u32 function, u32 index)
847{
848	struct kvm_cpuid_entry2 *entry = get_next_cpuid(array);
849
850	if (!entry)
851		return NULL;
852
853	memset(entry, 0, sizeof(*entry));
854	entry->function = function;
855	entry->index = index;
856	switch (function & 0xC0000000) {
857	case 0x40000000:
858		/* Hypervisor leaves are always synthesized by __do_cpuid_func.  */
859		return entry;
860
861	case 0x80000000:
862		/*
863		 * 0x80000021 is sometimes synthesized by __do_cpuid_func, which
864		 * would result in out-of-bounds calls to do_host_cpuid.
865		 */
866		{
867			static int max_cpuid_80000000;
868			if (!READ_ONCE(max_cpuid_80000000))
869				WRITE_ONCE(max_cpuid_80000000, cpuid_eax(0x80000000));
870			if (function > READ_ONCE(max_cpuid_80000000))
871				return entry;
872		}
873		break;
874
875	default:
876		break;
877	}
878
879	cpuid_count(entry->function, entry->index,
880		    &entry->eax, &entry->ebx, &entry->ecx, &entry->edx);
881
882	if (cpuid_function_is_indexed(function))
883		entry->flags |= KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
884
885	return entry;
886}
887
888static int __do_cpuid_func_emulated(struct kvm_cpuid_array *array, u32 func)
889{
890	struct kvm_cpuid_entry2 *entry;
891
892	if (array->nent >= array->maxnent)
893		return -E2BIG;
894
895	entry = &array->entries[array->nent];
896	entry->function = func;
897	entry->index = 0;
898	entry->flags = 0;
899
900	switch (func) {
901	case 0:
902		entry->eax = 7;
903		++array->nent;
904		break;
905	case 1:
906		entry->ecx = F(MOVBE);
907		++array->nent;
908		break;
909	case 7:
910		entry->flags |= KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
911		entry->eax = 0;
912		if (kvm_cpu_cap_has(X86_FEATURE_RDTSCP))
913			entry->ecx = F(RDPID);
914		++array->nent;
915		break;
916	default:
917		break;
918	}
919
920	return 0;
921}
922
923static inline int __do_cpuid_func(struct kvm_cpuid_array *array, u32 function)
924{
925	struct kvm_cpuid_entry2 *entry;
926	int r, i, max_idx;
927
928	/* all calls to cpuid_count() should be made on the same cpu */
929	get_cpu();
930
931	r = -E2BIG;
932
933	entry = do_host_cpuid(array, function, 0);
934	if (!entry)
935		goto out;
936
937	switch (function) {
938	case 0:
939		/* Limited to the highest leaf implemented in KVM. */
940		entry->eax = min(entry->eax, 0x1fU);
941		break;
942	case 1:
943		cpuid_entry_override(entry, CPUID_1_EDX);
944		cpuid_entry_override(entry, CPUID_1_ECX);
945		break;
946	case 2:
947		/*
948		 * On ancient CPUs, function 2 entries are STATEFUL.  That is,
949		 * CPUID(function=2, index=0) may return different results each
950		 * time, with the least-significant byte in EAX enumerating the
951		 * number of times software should do CPUID(2, 0).
952		 *
953		 * Modern CPUs, i.e. every CPU KVM has *ever* run on are less
954		 * idiotic.  Intel's SDM states that EAX & 0xff "will always
955		 * return 01H. Software should ignore this value and not
956		 * interpret it as an informational descriptor", while AMD's
957		 * APM states that CPUID(2) is reserved.
958		 *
959		 * WARN if a frankenstein CPU that supports virtualization and
960		 * a stateful CPUID.0x2 is encountered.
961		 */
962		WARN_ON_ONCE((entry->eax & 0xff) > 1);
963		break;
964	/* functions 4 and 0x8000001d have additional index. */
965	case 4:
966	case 0x8000001d:
967		/*
968		 * Read entries until the cache type in the previous entry is
969		 * zero, i.e. indicates an invalid entry.
970		 */
971		for (i = 1; entry->eax & 0x1f; ++i) {
972			entry = do_host_cpuid(array, function, i);
973			if (!entry)
974				goto out;
975		}
976		break;
977	case 6: /* Thermal management */
978		entry->eax = 0x4; /* allow ARAT */
979		entry->ebx = 0;
980		entry->ecx = 0;
981		entry->edx = 0;
982		break;
983	/* function 7 has additional index. */
984	case 7:
985		max_idx = entry->eax = min(entry->eax, 2u);
986		cpuid_entry_override(entry, CPUID_7_0_EBX);
987		cpuid_entry_override(entry, CPUID_7_ECX);
988		cpuid_entry_override(entry, CPUID_7_EDX);
989
990		/* KVM only supports up to 0x7.2, capped above via min(). */
991		if (max_idx >= 1) {
992			entry = do_host_cpuid(array, function, 1);
993			if (!entry)
994				goto out;
995
996			cpuid_entry_override(entry, CPUID_7_1_EAX);
997			cpuid_entry_override(entry, CPUID_7_1_EDX);
998			entry->ebx = 0;
999			entry->ecx = 0;
1000		}
1001		if (max_idx >= 2) {
1002			entry = do_host_cpuid(array, function, 2);
1003			if (!entry)
1004				goto out;
1005
1006			cpuid_entry_override(entry, CPUID_7_2_EDX);
1007			entry->ecx = 0;
1008			entry->ebx = 0;
1009			entry->eax = 0;
1010		}
1011		break;
1012	case 0xa: { /* Architectural Performance Monitoring */
1013		union cpuid10_eax eax;
1014		union cpuid10_edx edx;
1015
1016		if (!enable_pmu || !static_cpu_has(X86_FEATURE_ARCH_PERFMON)) {
1017			entry->eax = entry->ebx = entry->ecx = entry->edx = 0;
1018			break;
1019		}
1020
1021		eax.split.version_id = kvm_pmu_cap.version;
1022		eax.split.num_counters = kvm_pmu_cap.num_counters_gp;
1023		eax.split.bit_width = kvm_pmu_cap.bit_width_gp;
1024		eax.split.mask_length = kvm_pmu_cap.events_mask_len;
1025		edx.split.num_counters_fixed = kvm_pmu_cap.num_counters_fixed;
1026		edx.split.bit_width_fixed = kvm_pmu_cap.bit_width_fixed;
1027
1028		if (kvm_pmu_cap.version)
1029			edx.split.anythread_deprecated = 1;
1030		edx.split.reserved1 = 0;
1031		edx.split.reserved2 = 0;
1032
1033		entry->eax = eax.full;
1034		entry->ebx = kvm_pmu_cap.events_mask;
1035		entry->ecx = 0;
1036		entry->edx = edx.full;
1037		break;
1038	}
1039	case 0x1f:
1040	case 0xb:
1041		/*
1042		 * No topology; a valid topology is indicated by the presence
1043		 * of subleaf 1.
1044		 */
1045		entry->eax = entry->ebx = entry->ecx = 0;
1046		break;
1047	case 0xd: {
1048		u64 permitted_xcr0 = kvm_get_filtered_xcr0();
1049		u64 permitted_xss = kvm_caps.supported_xss;
1050
1051		entry->eax &= permitted_xcr0;
1052		entry->ebx = xstate_required_size(permitted_xcr0, false);
1053		entry->ecx = entry->ebx;
1054		entry->edx &= permitted_xcr0 >> 32;
1055		if (!permitted_xcr0)
1056			break;
1057
1058		entry = do_host_cpuid(array, function, 1);
1059		if (!entry)
1060			goto out;
1061
1062		cpuid_entry_override(entry, CPUID_D_1_EAX);
1063		if (entry->eax & (F(XSAVES)|F(XSAVEC)))
1064			entry->ebx = xstate_required_size(permitted_xcr0 | permitted_xss,
1065							  true);
1066		else {
1067			WARN_ON_ONCE(permitted_xss != 0);
1068			entry->ebx = 0;
1069		}
1070		entry->ecx &= permitted_xss;
1071		entry->edx &= permitted_xss >> 32;
1072
1073		for (i = 2; i < 64; ++i) {
1074			bool s_state;
1075			if (permitted_xcr0 & BIT_ULL(i))
1076				s_state = false;
1077			else if (permitted_xss & BIT_ULL(i))
1078				s_state = true;
1079			else
1080				continue;
1081
1082			entry = do_host_cpuid(array, function, i);
1083			if (!entry)
1084				goto out;
1085
1086			/*
1087			 * The supported check above should have filtered out
1088			 * invalid sub-leafs.  Only valid sub-leafs should
1089			 * reach this point, and they should have a non-zero
1090			 * save state size.  Furthermore, check whether the
1091			 * processor agrees with permitted_xcr0/permitted_xss
1092			 * on whether this is an XCR0- or IA32_XSS-managed area.
1093			 */
1094			if (WARN_ON_ONCE(!entry->eax || (entry->ecx & 0x1) != s_state)) {
1095				--array->nent;
1096				continue;
1097			}
1098
1099			if (!kvm_cpu_cap_has(X86_FEATURE_XFD))
1100				entry->ecx &= ~BIT_ULL(2);
1101			entry->edx = 0;
1102		}
1103		break;
1104	}
1105	case 0x12:
1106		/* Intel SGX */
1107		if (!kvm_cpu_cap_has(X86_FEATURE_SGX)) {
1108			entry->eax = entry->ebx = entry->ecx = entry->edx = 0;
1109			break;
1110		}
1111
1112		/*
1113		 * Index 0: Sub-features, MISCSELECT (a.k.a extended features)
1114		 * and max enclave sizes.   The SGX sub-features and MISCSELECT
1115		 * are restricted by kernel and KVM capabilities (like most
1116		 * feature flags), while enclave size is unrestricted.
1117		 */
1118		cpuid_entry_override(entry, CPUID_12_EAX);
1119		entry->ebx &= SGX_MISC_EXINFO;
1120
1121		entry = do_host_cpuid(array, function, 1);
1122		if (!entry)
1123			goto out;
1124
1125		/*
1126		 * Index 1: SECS.ATTRIBUTES.  ATTRIBUTES are restricted a la
1127		 * feature flags.  Advertise all supported flags, including
1128		 * privileged attributes that require explicit opt-in from
1129		 * userspace.  ATTRIBUTES.XFRM is not adjusted as userspace is
1130		 * expected to derive it from supported XCR0.
1131		 */
1132		entry->eax &= SGX_ATTR_PRIV_MASK | SGX_ATTR_UNPRIV_MASK;
1133		entry->ebx &= 0;
1134		break;
1135	/* Intel PT */
1136	case 0x14:
1137		if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT)) {
1138			entry->eax = entry->ebx = entry->ecx = entry->edx = 0;
1139			break;
1140		}
1141
1142		for (i = 1, max_idx = entry->eax; i <= max_idx; ++i) {
1143			if (!do_host_cpuid(array, function, i))
1144				goto out;
1145		}
1146		break;
1147	/* Intel AMX TILE */
1148	case 0x1d:
1149		if (!kvm_cpu_cap_has(X86_FEATURE_AMX_TILE)) {
1150			entry->eax = entry->ebx = entry->ecx = entry->edx = 0;
1151			break;
1152		}
1153
1154		for (i = 1, max_idx = entry->eax; i <= max_idx; ++i) {
1155			if (!do_host_cpuid(array, function, i))
1156				goto out;
1157		}
1158		break;
1159	case 0x1e: /* TMUL information */
1160		if (!kvm_cpu_cap_has(X86_FEATURE_AMX_TILE)) {
1161			entry->eax = entry->ebx = entry->ecx = entry->edx = 0;
1162			break;
1163		}
1164		break;
1165	case KVM_CPUID_SIGNATURE: {
1166		const u32 *sigptr = (const u32 *)KVM_SIGNATURE;
1167		entry->eax = KVM_CPUID_FEATURES;
1168		entry->ebx = sigptr[0];
1169		entry->ecx = sigptr[1];
1170		entry->edx = sigptr[2];
1171		break;
1172	}
1173	case KVM_CPUID_FEATURES:
1174		entry->eax = (1 << KVM_FEATURE_CLOCKSOURCE) |
1175			     (1 << KVM_FEATURE_NOP_IO_DELAY) |
1176			     (1 << KVM_FEATURE_CLOCKSOURCE2) |
1177			     (1 << KVM_FEATURE_ASYNC_PF) |
1178			     (1 << KVM_FEATURE_PV_EOI) |
1179			     (1 << KVM_FEATURE_CLOCKSOURCE_STABLE_BIT) |
1180			     (1 << KVM_FEATURE_PV_UNHALT) |
1181			     (1 << KVM_FEATURE_PV_TLB_FLUSH) |
1182			     (1 << KVM_FEATURE_ASYNC_PF_VMEXIT) |
1183			     (1 << KVM_FEATURE_PV_SEND_IPI) |
1184			     (1 << KVM_FEATURE_POLL_CONTROL) |
1185			     (1 << KVM_FEATURE_PV_SCHED_YIELD) |
1186			     (1 << KVM_FEATURE_ASYNC_PF_INT);
1187
1188		if (sched_info_on())
1189			entry->eax |= (1 << KVM_FEATURE_STEAL_TIME);
1190
1191		entry->ebx = 0;
1192		entry->ecx = 0;
1193		entry->edx = 0;
1194		break;
1195	case 0x80000000:
1196		entry->eax = min(entry->eax, 0x80000022);
1197		/*
1198		 * Serializing LFENCE is reported in a multitude of ways, and
1199		 * NullSegClearsBase is not reported in CPUID on Zen2; help
1200		 * userspace by providing the CPUID leaf ourselves.
1201		 *
1202		 * However, only do it if the host has CPUID leaf 0x8000001d.
1203		 * QEMU thinks that it can query the host blindly for that
1204		 * CPUID leaf if KVM reports that it supports 0x8000001d or
1205		 * above.  The processor merrily returns values from the
1206		 * highest Intel leaf which QEMU tries to use as the guest's
1207		 * 0x8000001d.  Even worse, this can result in an infinite
1208		 * loop if said highest leaf has no subleaves indexed by ECX.
1209		 */
1210		if (entry->eax >= 0x8000001d &&
1211		    (static_cpu_has(X86_FEATURE_LFENCE_RDTSC)
1212		     || !static_cpu_has_bug(X86_BUG_NULL_SEG)))
1213			entry->eax = max(entry->eax, 0x80000021);
1214		break;
1215	case 0x80000001:
1216		entry->ebx &= ~GENMASK(27, 16);
1217		cpuid_entry_override(entry, CPUID_8000_0001_EDX);
1218		cpuid_entry_override(entry, CPUID_8000_0001_ECX);
1219		break;
1220	case 0x80000005:
1221		/*  Pass host L1 cache and TLB info. */
1222		break;
1223	case 0x80000006:
1224		/* Drop reserved bits, pass host L2 cache and TLB info. */
1225		entry->edx &= ~GENMASK(17, 16);
1226		break;
1227	case 0x80000007: /* Advanced power management */
1228		cpuid_entry_override(entry, CPUID_8000_0007_EDX);
1229
1230		/* mask against host */
1231		entry->edx &= boot_cpu_data.x86_power;
1232		entry->eax = entry->ebx = entry->ecx = 0;
1233		break;
1234	case 0x80000008: {
1235		unsigned g_phys_as = (entry->eax >> 16) & 0xff;
1236		unsigned virt_as = max((entry->eax >> 8) & 0xff, 48U);
1237		unsigned phys_as = entry->eax & 0xff;
1238
1239		/*
1240		 * If TDP (NPT) is disabled use the adjusted host MAXPHYADDR as
1241		 * the guest operates in the same PA space as the host, i.e.
1242		 * reductions in MAXPHYADDR for memory encryption affect shadow
1243		 * paging, too.
1244		 *
1245		 * If TDP is enabled but an explicit guest MAXPHYADDR is not
1246		 * provided, use the raw bare metal MAXPHYADDR as reductions to
1247		 * the HPAs do not affect GPAs.
1248		 */
1249		if (!tdp_enabled)
1250			g_phys_as = boot_cpu_data.x86_phys_bits;
1251		else if (!g_phys_as)
1252			g_phys_as = phys_as;
1253
1254		entry->eax = g_phys_as | (virt_as << 8);
1255		entry->ecx &= ~(GENMASK(31, 16) | GENMASK(11, 8));
1256		entry->edx = 0;
1257		cpuid_entry_override(entry, CPUID_8000_0008_EBX);
1258		break;
1259	}
1260	case 0x8000000A:
1261		if (!kvm_cpu_cap_has(X86_FEATURE_SVM)) {
1262			entry->eax = entry->ebx = entry->ecx = entry->edx = 0;
1263			break;
1264		}
1265		entry->eax = 1; /* SVM revision 1 */
1266		entry->ebx = 8; /* Lets support 8 ASIDs in case we add proper
1267				   ASID emulation to nested SVM */
1268		entry->ecx = 0; /* Reserved */
1269		cpuid_entry_override(entry, CPUID_8000_000A_EDX);
1270		break;
1271	case 0x80000019:
1272		entry->ecx = entry->edx = 0;
1273		break;
1274	case 0x8000001a:
1275		entry->eax &= GENMASK(2, 0);
1276		entry->ebx = entry->ecx = entry->edx = 0;
1277		break;
1278	case 0x8000001e:
1279		/* Do not return host topology information.  */
1280		entry->eax = entry->ebx = entry->ecx = 0;
1281		entry->edx = 0; /* reserved */
1282		break;
1283	case 0x8000001F:
1284		if (!kvm_cpu_cap_has(X86_FEATURE_SEV)) {
1285			entry->eax = entry->ebx = entry->ecx = entry->edx = 0;
1286		} else {
1287			cpuid_entry_override(entry, CPUID_8000_001F_EAX);
1288			/* Clear NumVMPL since KVM does not support VMPL.  */
1289			entry->ebx &= ~GENMASK(31, 12);
1290			/*
1291			 * Enumerate '0' for "PA bits reduction", the adjusted
1292			 * MAXPHYADDR is enumerated directly (see 0x80000008).
1293			 */
1294			entry->ebx &= ~GENMASK(11, 6);
1295		}
1296		break;
1297	case 0x80000020:
1298		entry->eax = entry->ebx = entry->ecx = entry->edx = 0;
1299		break;
1300	case 0x80000021:
1301		entry->ebx = entry->ecx = entry->edx = 0;
1302		cpuid_entry_override(entry, CPUID_8000_0021_EAX);
1303		break;
1304	/* AMD Extended Performance Monitoring and Debug */
1305	case 0x80000022: {
1306		union cpuid_0x80000022_ebx ebx;
1307
1308		entry->ecx = entry->edx = 0;
1309		if (!enable_pmu || !kvm_cpu_cap_has(X86_FEATURE_PERFMON_V2)) {
1310			entry->eax = entry->ebx;
1311			break;
1312		}
1313
1314		cpuid_entry_override(entry, CPUID_8000_0022_EAX);
1315
1316		if (kvm_cpu_cap_has(X86_FEATURE_PERFMON_V2))
1317			ebx.split.num_core_pmc = kvm_pmu_cap.num_counters_gp;
1318		else if (kvm_cpu_cap_has(X86_FEATURE_PERFCTR_CORE))
1319			ebx.split.num_core_pmc = AMD64_NUM_COUNTERS_CORE;
1320		else
1321			ebx.split.num_core_pmc = AMD64_NUM_COUNTERS;
1322
1323		entry->ebx = ebx.full;
1324		break;
1325	}
1326	/*Add support for Centaur's CPUID instruction*/
1327	case 0xC0000000:
1328		/*Just support up to 0xC0000004 now*/
1329		entry->eax = min(entry->eax, 0xC0000004);
1330		break;
1331	case 0xC0000001:
1332		cpuid_entry_override(entry, CPUID_C000_0001_EDX);
1333		break;
1334	case 3: /* Processor serial number */
1335	case 5: /* MONITOR/MWAIT */
1336	case 0xC0000002:
1337	case 0xC0000003:
1338	case 0xC0000004:
1339	default:
1340		entry->eax = entry->ebx = entry->ecx = entry->edx = 0;
1341		break;
1342	}
1343
1344	r = 0;
1345
1346out:
1347	put_cpu();
1348
1349	return r;
1350}
1351
1352static int do_cpuid_func(struct kvm_cpuid_array *array, u32 func,
1353			 unsigned int type)
1354{
1355	if (type == KVM_GET_EMULATED_CPUID)
1356		return __do_cpuid_func_emulated(array, func);
1357
1358	return __do_cpuid_func(array, func);
1359}
1360
1361#define CENTAUR_CPUID_SIGNATURE 0xC0000000
1362
1363static int get_cpuid_func(struct kvm_cpuid_array *array, u32 func,
1364			  unsigned int type)
1365{
1366	u32 limit;
1367	int r;
1368
1369	if (func == CENTAUR_CPUID_SIGNATURE &&
1370	    boot_cpu_data.x86_vendor != X86_VENDOR_CENTAUR)
1371		return 0;
1372
1373	r = do_cpuid_func(array, func, type);
1374	if (r)
1375		return r;
1376
1377	limit = array->entries[array->nent - 1].eax;
1378	for (func = func + 1; func <= limit; ++func) {
1379		r = do_cpuid_func(array, func, type);
1380		if (r)
1381			break;
1382	}
1383
1384	return r;
1385}
1386
1387static bool sanity_check_entries(struct kvm_cpuid_entry2 __user *entries,
1388				 __u32 num_entries, unsigned int ioctl_type)
1389{
1390	int i;
1391	__u32 pad[3];
1392
1393	if (ioctl_type != KVM_GET_EMULATED_CPUID)
1394		return false;
1395
1396	/*
1397	 * We want to make sure that ->padding is being passed clean from
1398	 * userspace in case we want to use it for something in the future.
1399	 *
1400	 * Sadly, this wasn't enforced for KVM_GET_SUPPORTED_CPUID and so we
1401	 * have to give ourselves satisfied only with the emulated side. /me
1402	 * sheds a tear.
1403	 */
1404	for (i = 0; i < num_entries; i++) {
1405		if (copy_from_user(pad, entries[i].padding, sizeof(pad)))
1406			return true;
1407
1408		if (pad[0] || pad[1] || pad[2])
1409			return true;
1410	}
1411	return false;
1412}
1413
1414int kvm_dev_ioctl_get_cpuid(struct kvm_cpuid2 *cpuid,
1415			    struct kvm_cpuid_entry2 __user *entries,
1416			    unsigned int type)
1417{
1418	static const u32 funcs[] = {
1419		0, 0x80000000, CENTAUR_CPUID_SIGNATURE, KVM_CPUID_SIGNATURE,
1420	};
1421
1422	struct kvm_cpuid_array array = {
1423		.nent = 0,
1424	};
1425	int r, i;
1426
1427	if (cpuid->nent < 1)
1428		return -E2BIG;
1429	if (cpuid->nent > KVM_MAX_CPUID_ENTRIES)
1430		cpuid->nent = KVM_MAX_CPUID_ENTRIES;
1431
1432	if (sanity_check_entries(entries, cpuid->nent, type))
1433		return -EINVAL;
1434
1435	array.entries = kvcalloc(cpuid->nent, sizeof(struct kvm_cpuid_entry2), GFP_KERNEL);
1436	if (!array.entries)
1437		return -ENOMEM;
1438
1439	array.maxnent = cpuid->nent;
1440
1441	for (i = 0; i < ARRAY_SIZE(funcs); i++) {
1442		r = get_cpuid_func(&array, funcs[i], type);
1443		if (r)
1444			goto out_free;
1445	}
1446	cpuid->nent = array.nent;
1447
1448	if (copy_to_user(entries, array.entries,
1449			 array.nent * sizeof(struct kvm_cpuid_entry2)))
1450		r = -EFAULT;
1451
1452out_free:
1453	kvfree(array.entries);
1454	return r;
1455}
1456
1457struct kvm_cpuid_entry2 *kvm_find_cpuid_entry_index(struct kvm_vcpu *vcpu,
1458						    u32 function, u32 index)
1459{
1460	return cpuid_entry2_find(vcpu->arch.cpuid_entries, vcpu->arch.cpuid_nent,
1461				 function, index);
1462}
1463EXPORT_SYMBOL_GPL(kvm_find_cpuid_entry_index);
1464
1465struct kvm_cpuid_entry2 *kvm_find_cpuid_entry(struct kvm_vcpu *vcpu,
1466					      u32 function)
1467{
1468	return cpuid_entry2_find(vcpu->arch.cpuid_entries, vcpu->arch.cpuid_nent,
1469				 function, KVM_CPUID_INDEX_NOT_SIGNIFICANT);
1470}
1471EXPORT_SYMBOL_GPL(kvm_find_cpuid_entry);
1472
1473/*
1474 * Intel CPUID semantics treats any query for an out-of-range leaf as if the
1475 * highest basic leaf (i.e. CPUID.0H:EAX) were requested.  AMD CPUID semantics
1476 * returns all zeroes for any undefined leaf, whether or not the leaf is in
1477 * range.  Centaur/VIA follows Intel semantics.
1478 *
1479 * A leaf is considered out-of-range if its function is higher than the maximum
1480 * supported leaf of its associated class or if its associated class does not
1481 * exist.
1482 *
1483 * There are three primary classes to be considered, with their respective
1484 * ranges described as "<base> - <top>[,<base2> - <top2>] inclusive.  A primary
1485 * class exists if a guest CPUID entry for its <base> leaf exists.  For a given
1486 * class, CPUID.<base>.EAX contains the max supported leaf for the class.
1487 *
1488 *  - Basic:      0x00000000 - 0x3fffffff, 0x50000000 - 0x7fffffff
1489 *  - Hypervisor: 0x40000000 - 0x4fffffff
1490 *  - Extended:   0x80000000 - 0xbfffffff
1491 *  - Centaur:    0xc0000000 - 0xcfffffff
1492 *
1493 * The Hypervisor class is further subdivided into sub-classes that each act as
1494 * their own independent class associated with a 0x100 byte range.  E.g. if Qemu
1495 * is advertising support for both HyperV and KVM, the resulting Hypervisor
1496 * CPUID sub-classes are:
1497 *
1498 *  - HyperV:     0x40000000 - 0x400000ff
1499 *  - KVM:        0x40000100 - 0x400001ff
1500 */
1501static struct kvm_cpuid_entry2 *
1502get_out_of_range_cpuid_entry(struct kvm_vcpu *vcpu, u32 *fn_ptr, u32 index)
1503{
1504	struct kvm_cpuid_entry2 *basic, *class;
1505	u32 function = *fn_ptr;
1506
1507	basic = kvm_find_cpuid_entry(vcpu, 0);
1508	if (!basic)
1509		return NULL;
1510
1511	if (is_guest_vendor_amd(basic->ebx, basic->ecx, basic->edx) ||
1512	    is_guest_vendor_hygon(basic->ebx, basic->ecx, basic->edx))
1513		return NULL;
1514
1515	if (function >= 0x40000000 && function <= 0x4fffffff)
1516		class = kvm_find_cpuid_entry(vcpu, function & 0xffffff00);
1517	else if (function >= 0xc0000000)
1518		class = kvm_find_cpuid_entry(vcpu, 0xc0000000);
1519	else
1520		class = kvm_find_cpuid_entry(vcpu, function & 0x80000000);
1521
1522	if (class && function <= class->eax)
1523		return NULL;
1524
1525	/*
1526	 * Leaf specific adjustments are also applied when redirecting to the
1527	 * max basic entry, e.g. if the max basic leaf is 0xb but there is no
1528	 * entry for CPUID.0xb.index (see below), then the output value for EDX
1529	 * needs to be pulled from CPUID.0xb.1.
1530	 */
1531	*fn_ptr = basic->eax;
1532
1533	/*
1534	 * The class does not exist or the requested function is out of range;
1535	 * the effective CPUID entry is the max basic leaf.  Note, the index of
1536	 * the original requested leaf is observed!
1537	 */
1538	return kvm_find_cpuid_entry_index(vcpu, basic->eax, index);
1539}
1540
1541bool kvm_cpuid(struct kvm_vcpu *vcpu, u32 *eax, u32 *ebx,
1542	       u32 *ecx, u32 *edx, bool exact_only)
1543{
1544	u32 orig_function = *eax, function = *eax, index = *ecx;
1545	struct kvm_cpuid_entry2 *entry;
1546	bool exact, used_max_basic = false;
1547
1548	entry = kvm_find_cpuid_entry_index(vcpu, function, index);
1549	exact = !!entry;
1550
1551	if (!entry && !exact_only) {
1552		entry = get_out_of_range_cpuid_entry(vcpu, &function, index);
1553		used_max_basic = !!entry;
1554	}
1555
1556	if (entry) {
1557		*eax = entry->eax;
1558		*ebx = entry->ebx;
1559		*ecx = entry->ecx;
1560		*edx = entry->edx;
1561		if (function == 7 && index == 0) {
1562			u64 data;
1563		        if (!__kvm_get_msr(vcpu, MSR_IA32_TSX_CTRL, &data, true) &&
1564			    (data & TSX_CTRL_CPUID_CLEAR))
1565				*ebx &= ~(F(RTM) | F(HLE));
1566		} else if (function == 0x80000007) {
1567			if (kvm_hv_invtsc_suppressed(vcpu))
1568				*edx &= ~SF(CONSTANT_TSC);
1569		}
1570	} else {
1571		*eax = *ebx = *ecx = *edx = 0;
1572		/*
1573		 * When leaf 0BH or 1FH is defined, CL is pass-through
1574		 * and EDX is always the x2APIC ID, even for undefined
1575		 * subleaves. Index 1 will exist iff the leaf is
1576		 * implemented, so we pass through CL iff leaf 1
1577		 * exists. EDX can be copied from any existing index.
1578		 */
1579		if (function == 0xb || function == 0x1f) {
1580			entry = kvm_find_cpuid_entry_index(vcpu, function, 1);
1581			if (entry) {
1582				*ecx = index & 0xff;
1583				*edx = entry->edx;
1584			}
1585		}
1586	}
1587	trace_kvm_cpuid(orig_function, index, *eax, *ebx, *ecx, *edx, exact,
1588			used_max_basic);
1589	return exact;
1590}
1591EXPORT_SYMBOL_GPL(kvm_cpuid);
1592
1593int kvm_emulate_cpuid(struct kvm_vcpu *vcpu)
1594{
1595	u32 eax, ebx, ecx, edx;
1596
1597	if (cpuid_fault_enabled(vcpu) && !kvm_require_cpl(vcpu, 0))
1598		return 1;
1599
1600	eax = kvm_rax_read(vcpu);
1601	ecx = kvm_rcx_read(vcpu);
1602	kvm_cpuid(vcpu, &eax, &ebx, &ecx, &edx, false);
1603	kvm_rax_write(vcpu, eax);
1604	kvm_rbx_write(vcpu, ebx);
1605	kvm_rcx_write(vcpu, ecx);
1606	kvm_rdx_write(vcpu, edx);
1607	return kvm_skip_emulated_instruction(vcpu);
1608}
1609EXPORT_SYMBOL_GPL(kvm_emulate_cpuid);
1610