1// SPDX-License-Identifier: GPL-2.0-or-later
2/*
3 * User-space Probes (UProbes) for x86
4 *
5 * Copyright (C) IBM Corporation, 2008-2011
6 * Authors:
7 *	Srikar Dronamraju
8 *	Jim Keniston
9 */
10#include <linux/kernel.h>
11#include <linux/sched.h>
12#include <linux/ptrace.h>
13#include <linux/uprobes.h>
14#include <linux/uaccess.h>
15
16#include <linux/kdebug.h>
17#include <asm/processor.h>
18#include <asm/insn.h>
19#include <asm/mmu_context.h>
20
21/* Post-execution fixups. */
22
23/* Adjust IP back to vicinity of actual insn */
24#define UPROBE_FIX_IP		0x01
25
26/* Adjust the return address of a call insn */
27#define UPROBE_FIX_CALL		0x02
28
29/* Instruction will modify TF, don't change it */
30#define UPROBE_FIX_SETF		0x04
31
32#define UPROBE_FIX_RIP_SI	0x08
33#define UPROBE_FIX_RIP_DI	0x10
34#define UPROBE_FIX_RIP_BX	0x20
35#define UPROBE_FIX_RIP_MASK	\
36	(UPROBE_FIX_RIP_SI | UPROBE_FIX_RIP_DI | UPROBE_FIX_RIP_BX)
37
38#define	UPROBE_TRAP_NR		UINT_MAX
39
40/* Adaptations for mhiramat x86 decoder v14. */
41#define OPCODE1(insn)		((insn)->opcode.bytes[0])
42#define OPCODE2(insn)		((insn)->opcode.bytes[1])
43#define OPCODE3(insn)		((insn)->opcode.bytes[2])
44#define MODRM_REG(insn)		X86_MODRM_REG((insn)->modrm.value)
45
46#define W(row, b0, b1, b2, b3, b4, b5, b6, b7, b8, b9, ba, bb, bc, bd, be, bf)\
47	(((b0##UL << 0x0)|(b1##UL << 0x1)|(b2##UL << 0x2)|(b3##UL << 0x3) |   \
48	  (b4##UL << 0x4)|(b5##UL << 0x5)|(b6##UL << 0x6)|(b7##UL << 0x7) |   \
49	  (b8##UL << 0x8)|(b9##UL << 0x9)|(ba##UL << 0xa)|(bb##UL << 0xb) |   \
50	  (bc##UL << 0xc)|(bd##UL << 0xd)|(be##UL << 0xe)|(bf##UL << 0xf))    \
51	 << (row % 32))
52
53/*
54 * Good-instruction tables for 32-bit apps.  This is non-const and volatile
55 * to keep gcc from statically optimizing it out, as variable_test_bit makes
56 * some versions of gcc to think only *(unsigned long*) is used.
57 *
58 * Opcodes we'll probably never support:
59 * 6c-6f - ins,outs. SEGVs if used in userspace
60 * e4-e7 - in,out imm. SEGVs if used in userspace
61 * ec-ef - in,out acc. SEGVs if used in userspace
62 * cc - int3. SIGTRAP if used in userspace
63 * ce - into. Not used in userspace - no kernel support to make it useful. SEGVs
64 *	(why we support bound (62) then? it's similar, and similarly unused...)
65 * f1 - int1. SIGTRAP if used in userspace
66 * f4 - hlt. SEGVs if used in userspace
67 * fa - cli. SEGVs if used in userspace
68 * fb - sti. SEGVs if used in userspace
69 *
70 * Opcodes which need some work to be supported:
71 * 07,17,1f - pop es/ss/ds
72 *	Normally not used in userspace, but would execute if used.
73 *	Can cause GP or stack exception if tries to load wrong segment descriptor.
74 *	We hesitate to run them under single step since kernel's handling
75 *	of userspace single-stepping (TF flag) is fragile.
76 *	We can easily refuse to support push es/cs/ss/ds (06/0e/16/1e)
77 *	on the same grounds that they are never used.
78 * cd - int N.
79 *	Used by userspace for "int 80" syscall entry. (Other "int N"
80 *	cause GP -> SEGV since their IDT gates don't allow calls from CPL 3).
81 *	Not supported since kernel's handling of userspace single-stepping
82 *	(TF flag) is fragile.
83 * cf - iret. Normally not used in userspace. Doesn't SEGV unless arguments are bad
84 */
85#if defined(CONFIG_X86_32) || defined(CONFIG_IA32_EMULATION)
86static volatile u32 good_insns_32[256 / 32] = {
87	/*      0  1  2  3  4  5  6  7  8  9  a  b  c  d  e  f         */
88	/*      ----------------------------------------------         */
89	W(0x00, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1) | /* 00 */
90	W(0x10, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 0) , /* 10 */
91	W(0x20, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* 20 */
92	W(0x30, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* 30 */
93	W(0x40, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* 40 */
94	W(0x50, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* 50 */
95	W(0x60, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0) | /* 60 */
96	W(0x70, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* 70 */
97	W(0x80, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* 80 */
98	W(0x90, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* 90 */
99	W(0xa0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* a0 */
100	W(0xb0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* b0 */
101	W(0xc0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0) | /* c0 */
102	W(0xd0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* d0 */
103	W(0xe0, 1, 1, 1, 1, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0) | /* e0 */
104	W(0xf0, 1, 0, 1, 1, 0, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1)   /* f0 */
105	/*      ----------------------------------------------         */
106	/*      0  1  2  3  4  5  6  7  8  9  a  b  c  d  e  f         */
107};
108#else
109#define good_insns_32	NULL
110#endif
111
112/* Good-instruction tables for 64-bit apps.
113 *
114 * Genuinely invalid opcodes:
115 * 06,07 - formerly push/pop es
116 * 0e - formerly push cs
117 * 16,17 - formerly push/pop ss
118 * 1e,1f - formerly push/pop ds
119 * 27,2f,37,3f - formerly daa/das/aaa/aas
120 * 60,61 - formerly pusha/popa
121 * 62 - formerly bound. EVEX prefix for AVX512 (not yet supported)
122 * 82 - formerly redundant encoding of Group1
123 * 9a - formerly call seg:ofs
124 * ce - formerly into
125 * d4,d5 - formerly aam/aad
126 * d6 - formerly undocumented salc
127 * ea - formerly jmp seg:ofs
128 *
129 * Opcodes we'll probably never support:
130 * 6c-6f - ins,outs. SEGVs if used in userspace
131 * e4-e7 - in,out imm. SEGVs if used in userspace
132 * ec-ef - in,out acc. SEGVs if used in userspace
133 * cc - int3. SIGTRAP if used in userspace
134 * f1 - int1. SIGTRAP if used in userspace
135 * f4 - hlt. SEGVs if used in userspace
136 * fa - cli. SEGVs if used in userspace
137 * fb - sti. SEGVs if used in userspace
138 *
139 * Opcodes which need some work to be supported:
140 * cd - int N.
141 *	Used by userspace for "int 80" syscall entry. (Other "int N"
142 *	cause GP -> SEGV since their IDT gates don't allow calls from CPL 3).
143 *	Not supported since kernel's handling of userspace single-stepping
144 *	(TF flag) is fragile.
145 * cf - iret. Normally not used in userspace. Doesn't SEGV unless arguments are bad
146 */
147#if defined(CONFIG_X86_64)
148static volatile u32 good_insns_64[256 / 32] = {
149	/*      0  1  2  3  4  5  6  7  8  9  a  b  c  d  e  f         */
150	/*      ----------------------------------------------         */
151	W(0x00, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1, 0, 1) | /* 00 */
152	W(0x10, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1, 0, 0) , /* 10 */
153	W(0x20, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 0) | /* 20 */
154	W(0x30, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 0) , /* 30 */
155	W(0x40, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* 40 */
156	W(0x50, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* 50 */
157	W(0x60, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0) | /* 60 */
158	W(0x70, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* 70 */
159	W(0x80, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* 80 */
160	W(0x90, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1) , /* 90 */
161	W(0xa0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* a0 */
162	W(0xb0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* b0 */
163	W(0xc0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0) | /* c0 */
164	W(0xd0, 1, 1, 1, 1, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* d0 */
165	W(0xe0, 1, 1, 1, 1, 0, 0, 0, 0, 1, 1, 0, 1, 0, 0, 0, 0) | /* e0 */
166	W(0xf0, 1, 0, 1, 1, 0, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1)   /* f0 */
167	/*      ----------------------------------------------         */
168	/*      0  1  2  3  4  5  6  7  8  9  a  b  c  d  e  f         */
169};
170#else
171#define good_insns_64	NULL
172#endif
173
174/* Using this for both 64-bit and 32-bit apps.
175 * Opcodes we don't support:
176 * 0f 00 - SLDT/STR/LLDT/LTR/VERR/VERW/-/- group. System insns
177 * 0f 01 - SGDT/SIDT/LGDT/LIDT/SMSW/-/LMSW/INVLPG group.
178 *	Also encodes tons of other system insns if mod=11.
179 *	Some are in fact non-system: xend, xtest, rdtscp, maybe more
180 * 0f 05 - syscall
181 * 0f 06 - clts (CPL0 insn)
182 * 0f 07 - sysret
183 * 0f 08 - invd (CPL0 insn)
184 * 0f 09 - wbinvd (CPL0 insn)
185 * 0f 0b - ud2
186 * 0f 30 - wrmsr (CPL0 insn) (then why rdmsr is allowed, it's also CPL0 insn?)
187 * 0f 34 - sysenter
188 * 0f 35 - sysexit
189 * 0f 37 - getsec
190 * 0f 78 - vmread (Intel VMX. CPL0 insn)
191 * 0f 79 - vmwrite (Intel VMX. CPL0 insn)
192 *	Note: with prefixes, these two opcodes are
193 *	extrq/insertq/AVX512 convert vector ops.
194 * 0f ae - group15: [f]xsave,[f]xrstor,[v]{ld,st}mxcsr,clflush[opt],
195 *	{rd,wr}{fs,gs}base,{s,l,m}fence.
196 *	Why? They are all user-executable.
197 */
198static volatile u32 good_2byte_insns[256 / 32] = {
199	/*      0  1  2  3  4  5  6  7  8  9  a  b  c  d  e  f         */
200	/*      ----------------------------------------------         */
201	W(0x00, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 1, 0, 1, 1, 1, 1) | /* 00 */
202	W(0x10, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* 10 */
203	W(0x20, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* 20 */
204	W(0x30, 0, 1, 1, 1, 0, 0, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1) , /* 30 */
205	W(0x40, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* 40 */
206	W(0x50, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* 50 */
207	W(0x60, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* 60 */
208	W(0x70, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1) , /* 70 */
209	W(0x80, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* 80 */
210	W(0x90, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* 90 */
211	W(0xa0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1) | /* a0 */
212	W(0xb0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* b0 */
213	W(0xc0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* c0 */
214	W(0xd0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* d0 */
215	W(0xe0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* e0 */
216	W(0xf0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1)   /* f0 */
217	/*      ----------------------------------------------         */
218	/*      0  1  2  3  4  5  6  7  8  9  a  b  c  d  e  f         */
219};
220#undef W
221
222/*
223 * opcodes we may need to refine support for:
224 *
225 *  0f - 2-byte instructions: For many of these instructions, the validity
226 *  depends on the prefix and/or the reg field.  On such instructions, we
227 *  just consider the opcode combination valid if it corresponds to any
228 *  valid instruction.
229 *
230 *  8f - Group 1 - only reg = 0 is OK
231 *  c6-c7 - Group 11 - only reg = 0 is OK
232 *  d9-df - fpu insns with some illegal encodings
233 *  f2, f3 - repnz, repz prefixes.  These are also the first byte for
234 *  certain floating-point instructions, such as addsd.
235 *
236 *  fe - Group 4 - only reg = 0 or 1 is OK
237 *  ff - Group 5 - only reg = 0-6 is OK
238 *
239 * others -- Do we need to support these?
240 *
241 *  0f - (floating-point?) prefetch instructions
242 *  07, 17, 1f - pop es, pop ss, pop ds
243 *  26, 2e, 36, 3e - es:, cs:, ss:, ds: segment prefixes --
244 *	but 64 and 65 (fs: and gs:) seem to be used, so we support them
245 *  67 - addr16 prefix
246 *  ce - into
247 *  f0 - lock prefix
248 */
249
250/*
251 * TODO:
252 * - Where necessary, examine the modrm byte and allow only valid instructions
253 * in the different Groups and fpu instructions.
254 */
255
256static bool is_prefix_bad(struct insn *insn)
257{
258	insn_byte_t p;
259	int i;
260
261	for_each_insn_prefix(insn, i, p) {
262		insn_attr_t attr;
263
264		attr = inat_get_opcode_attribute(p);
265		switch (attr) {
266		case INAT_MAKE_PREFIX(INAT_PFX_ES):
267		case INAT_MAKE_PREFIX(INAT_PFX_CS):
268		case INAT_MAKE_PREFIX(INAT_PFX_DS):
269		case INAT_MAKE_PREFIX(INAT_PFX_SS):
270		case INAT_MAKE_PREFIX(INAT_PFX_LOCK):
271			return true;
272		}
273	}
274	return false;
275}
276
277static int uprobe_init_insn(struct arch_uprobe *auprobe, struct insn *insn, bool x86_64)
278{
279	enum insn_mode m = x86_64 ? INSN_MODE_64 : INSN_MODE_32;
280	u32 volatile *good_insns;
281	int ret;
282
283	ret = insn_decode(insn, auprobe->insn, sizeof(auprobe->insn), m);
284	if (ret < 0)
285		return -ENOEXEC;
286
287	if (is_prefix_bad(insn))
288		return -ENOTSUPP;
289
290	/* We should not singlestep on the exception masking instructions */
291	if (insn_masking_exception(insn))
292		return -ENOTSUPP;
293
294	if (x86_64)
295		good_insns = good_insns_64;
296	else
297		good_insns = good_insns_32;
298
299	if (test_bit(OPCODE1(insn), (unsigned long *)good_insns))
300		return 0;
301
302	if (insn->opcode.nbytes == 2) {
303		if (test_bit(OPCODE2(insn), (unsigned long *)good_2byte_insns))
304			return 0;
305	}
306
307	return -ENOTSUPP;
308}
309
310#ifdef CONFIG_X86_64
311/*
312 * If arch_uprobe->insn doesn't use rip-relative addressing, return
313 * immediately.  Otherwise, rewrite the instruction so that it accesses
314 * its memory operand indirectly through a scratch register.  Set
315 * defparam->fixups accordingly. (The contents of the scratch register
316 * will be saved before we single-step the modified instruction,
317 * and restored afterward).
318 *
319 * We do this because a rip-relative instruction can access only a
320 * relatively small area (+/- 2 GB from the instruction), and the XOL
321 * area typically lies beyond that area.  At least for instructions
322 * that store to memory, we can't execute the original instruction
323 * and "fix things up" later, because the misdirected store could be
324 * disastrous.
325 *
326 * Some useful facts about rip-relative instructions:
327 *
328 *  - There's always a modrm byte with bit layout "00 reg 101".
329 *  - There's never a SIB byte.
330 *  - The displacement is always 4 bytes.
331 *  - REX.B=1 bit in REX prefix, which normally extends r/m field,
332 *    has no effect on rip-relative mode. It doesn't make modrm byte
333 *    with r/m=101 refer to register 1101 = R13.
334 */
335static void riprel_analyze(struct arch_uprobe *auprobe, struct insn *insn)
336{
337	u8 *cursor;
338	u8 reg;
339	u8 reg2;
340
341	if (!insn_rip_relative(insn))
342		return;
343
344	/*
345	 * insn_rip_relative() would have decoded rex_prefix, vex_prefix, modrm.
346	 * Clear REX.b bit (extension of MODRM.rm field):
347	 * we want to encode low numbered reg, not r8+.
348	 */
349	if (insn->rex_prefix.nbytes) {
350		cursor = auprobe->insn + insn_offset_rex_prefix(insn);
351		/* REX byte has 0100wrxb layout, clearing REX.b bit */
352		*cursor &= 0xfe;
353	}
354	/*
355	 * Similar treatment for VEX3/EVEX prefix.
356	 * TODO: add XOP treatment when insn decoder supports them
357	 */
358	if (insn->vex_prefix.nbytes >= 3) {
359		/*
360		 * vex2:     c5    rvvvvLpp   (has no b bit)
361		 * vex3/xop: c4/8f rxbmmmmm wvvvvLpp
362		 * evex:     62    rxbR00mm wvvvv1pp zllBVaaa
363		 * Setting VEX3.b (setting because it has inverted meaning).
364		 * Setting EVEX.x since (in non-SIB encoding) EVEX.x
365		 * is the 4th bit of MODRM.rm, and needs the same treatment.
366		 * For VEX3-encoded insns, VEX3.x value has no effect in
367		 * non-SIB encoding, the change is superfluous but harmless.
368		 */
369		cursor = auprobe->insn + insn_offset_vex_prefix(insn) + 1;
370		*cursor |= 0x60;
371	}
372
373	/*
374	 * Convert from rip-relative addressing to register-relative addressing
375	 * via a scratch register.
376	 *
377	 * This is tricky since there are insns with modrm byte
378	 * which also use registers not encoded in modrm byte:
379	 * [i]div/[i]mul: implicitly use dx:ax
380	 * shift ops: implicitly use cx
381	 * cmpxchg: implicitly uses ax
382	 * cmpxchg8/16b: implicitly uses dx:ax and bx:cx
383	 *   Encoding: 0f c7/1 modrm
384	 *   The code below thinks that reg=1 (cx), chooses si as scratch.
385	 * mulx: implicitly uses dx: mulx r/m,r1,r2 does r1:r2 = dx * r/m.
386	 *   First appeared in Haswell (BMI2 insn). It is vex-encoded.
387	 *   Example where none of bx,cx,dx can be used as scratch reg:
388	 *   c4 e2 63 f6 0d disp32   mulx disp32(%rip),%ebx,%ecx
389	 * [v]pcmpistri: implicitly uses cx, xmm0
390	 * [v]pcmpistrm: implicitly uses xmm0
391	 * [v]pcmpestri: implicitly uses ax, dx, cx, xmm0
392	 * [v]pcmpestrm: implicitly uses ax, dx, xmm0
393	 *   Evil SSE4.2 string comparison ops from hell.
394	 * maskmovq/[v]maskmovdqu: implicitly uses (ds:rdi) as destination.
395	 *   Encoding: 0f f7 modrm, 66 0f f7 modrm, vex-encoded: c5 f9 f7 modrm.
396	 *   Store op1, byte-masked by op2 msb's in each byte, to (ds:rdi).
397	 *   AMD says it has no 3-operand form (vex.vvvv must be 1111)
398	 *   and that it can have only register operands, not mem
399	 *   (its modrm byte must have mode=11).
400	 *   If these restrictions will ever be lifted,
401	 *   we'll need code to prevent selection of di as scratch reg!
402	 *
403	 * Summary: I don't know any insns with modrm byte which
404	 * use SI register implicitly. DI register is used only
405	 * by one insn (maskmovq) and BX register is used
406	 * only by one too (cmpxchg8b).
407	 * BP is stack-segment based (may be a problem?).
408	 * AX, DX, CX are off-limits (many implicit users).
409	 * SP is unusable (it's stack pointer - think about "pop mem";
410	 * also, rsp+disp32 needs sib encoding -> insn length change).
411	 */
412
413	reg = MODRM_REG(insn);	/* Fetch modrm.reg */
414	reg2 = 0xff;		/* Fetch vex.vvvv */
415	if (insn->vex_prefix.nbytes)
416		reg2 = insn->vex_prefix.bytes[2];
417	/*
418	 * TODO: add XOP vvvv reading.
419	 *
420	 * vex.vvvv field is in bits 6-3, bits are inverted.
421	 * But in 32-bit mode, high-order bit may be ignored.
422	 * Therefore, let's consider only 3 low-order bits.
423	 */
424	reg2 = ((reg2 >> 3) & 0x7) ^ 0x7;
425	/*
426	 * Register numbering is ax,cx,dx,bx, sp,bp,si,di, r8..r15.
427	 *
428	 * Choose scratch reg. Order is important: must not select bx
429	 * if we can use si (cmpxchg8b case!)
430	 */
431	if (reg != 6 && reg2 != 6) {
432		reg2 = 6;
433		auprobe->defparam.fixups |= UPROBE_FIX_RIP_SI;
434	} else if (reg != 7 && reg2 != 7) {
435		reg2 = 7;
436		auprobe->defparam.fixups |= UPROBE_FIX_RIP_DI;
437		/* TODO (paranoia): force maskmovq to not use di */
438	} else {
439		reg2 = 3;
440		auprobe->defparam.fixups |= UPROBE_FIX_RIP_BX;
441	}
442	/*
443	 * Point cursor at the modrm byte.  The next 4 bytes are the
444	 * displacement.  Beyond the displacement, for some instructions,
445	 * is the immediate operand.
446	 */
447	cursor = auprobe->insn + insn_offset_modrm(insn);
448	/*
449	 * Change modrm from "00 reg 101" to "10 reg reg2". Example:
450	 * 89 05 disp32  mov %eax,disp32(%rip) becomes
451	 * 89 86 disp32  mov %eax,disp32(%rsi)
452	 */
453	*cursor = 0x80 | (reg << 3) | reg2;
454}
455
456static inline unsigned long *
457scratch_reg(struct arch_uprobe *auprobe, struct pt_regs *regs)
458{
459	if (auprobe->defparam.fixups & UPROBE_FIX_RIP_SI)
460		return &regs->si;
461	if (auprobe->defparam.fixups & UPROBE_FIX_RIP_DI)
462		return &regs->di;
463	return &regs->bx;
464}
465
466/*
467 * If we're emulating a rip-relative instruction, save the contents
468 * of the scratch register and store the target address in that register.
469 */
470static void riprel_pre_xol(struct arch_uprobe *auprobe, struct pt_regs *regs)
471{
472	if (auprobe->defparam.fixups & UPROBE_FIX_RIP_MASK) {
473		struct uprobe_task *utask = current->utask;
474		unsigned long *sr = scratch_reg(auprobe, regs);
475
476		utask->autask.saved_scratch_register = *sr;
477		*sr = utask->vaddr + auprobe->defparam.ilen;
478	}
479}
480
481static void riprel_post_xol(struct arch_uprobe *auprobe, struct pt_regs *regs)
482{
483	if (auprobe->defparam.fixups & UPROBE_FIX_RIP_MASK) {
484		struct uprobe_task *utask = current->utask;
485		unsigned long *sr = scratch_reg(auprobe, regs);
486
487		*sr = utask->autask.saved_scratch_register;
488	}
489}
490#else /* 32-bit: */
491/*
492 * No RIP-relative addressing on 32-bit
493 */
494static void riprel_analyze(struct arch_uprobe *auprobe, struct insn *insn)
495{
496}
497static void riprel_pre_xol(struct arch_uprobe *auprobe, struct pt_regs *regs)
498{
499}
500static void riprel_post_xol(struct arch_uprobe *auprobe, struct pt_regs *regs)
501{
502}
503#endif /* CONFIG_X86_64 */
504
505struct uprobe_xol_ops {
506	bool	(*emulate)(struct arch_uprobe *, struct pt_regs *);
507	int	(*pre_xol)(struct arch_uprobe *, struct pt_regs *);
508	int	(*post_xol)(struct arch_uprobe *, struct pt_regs *);
509	void	(*abort)(struct arch_uprobe *, struct pt_regs *);
510};
511
512static inline int sizeof_long(struct pt_regs *regs)
513{
514	/*
515	 * Check registers for mode as in_xxx_syscall() does not apply here.
516	 */
517	return user_64bit_mode(regs) ? 8 : 4;
518}
519
520static int default_pre_xol_op(struct arch_uprobe *auprobe, struct pt_regs *regs)
521{
522	riprel_pre_xol(auprobe, regs);
523	return 0;
524}
525
526static int emulate_push_stack(struct pt_regs *regs, unsigned long val)
527{
528	unsigned long new_sp = regs->sp - sizeof_long(regs);
529
530	if (copy_to_user((void __user *)new_sp, &val, sizeof_long(regs)))
531		return -EFAULT;
532
533	regs->sp = new_sp;
534	return 0;
535}
536
537/*
538 * We have to fix things up as follows:
539 *
540 * Typically, the new ip is relative to the copied instruction.  We need
541 * to make it relative to the original instruction (FIX_IP).  Exceptions
542 * are return instructions and absolute or indirect jump or call instructions.
543 *
544 * If the single-stepped instruction was a call, the return address that
545 * is atop the stack is the address following the copied instruction.  We
546 * need to make it the address following the original instruction (FIX_CALL).
547 *
548 * If the original instruction was a rip-relative instruction such as
549 * "movl %edx,0xnnnn(%rip)", we have instead executed an equivalent
550 * instruction using a scratch register -- e.g., "movl %edx,0xnnnn(%rsi)".
551 * We need to restore the contents of the scratch register
552 * (FIX_RIP_reg).
553 */
554static int default_post_xol_op(struct arch_uprobe *auprobe, struct pt_regs *regs)
555{
556	struct uprobe_task *utask = current->utask;
557
558	riprel_post_xol(auprobe, regs);
559	if (auprobe->defparam.fixups & UPROBE_FIX_IP) {
560		long correction = utask->vaddr - utask->xol_vaddr;
561		regs->ip += correction;
562	} else if (auprobe->defparam.fixups & UPROBE_FIX_CALL) {
563		regs->sp += sizeof_long(regs); /* Pop incorrect return address */
564		if (emulate_push_stack(regs, utask->vaddr + auprobe->defparam.ilen))
565			return -ERESTART;
566	}
567	/* popf; tell the caller to not touch TF */
568	if (auprobe->defparam.fixups & UPROBE_FIX_SETF)
569		utask->autask.saved_tf = true;
570
571	return 0;
572}
573
574static void default_abort_op(struct arch_uprobe *auprobe, struct pt_regs *regs)
575{
576	riprel_post_xol(auprobe, regs);
577}
578
579static const struct uprobe_xol_ops default_xol_ops = {
580	.pre_xol  = default_pre_xol_op,
581	.post_xol = default_post_xol_op,
582	.abort	  = default_abort_op,
583};
584
585static bool branch_is_call(struct arch_uprobe *auprobe)
586{
587	return auprobe->branch.opc1 == 0xe8;
588}
589
590#define CASE_COND					\
591	COND(70, 71, XF(OF))				\
592	COND(72, 73, XF(CF))				\
593	COND(74, 75, XF(ZF))				\
594	COND(78, 79, XF(SF))				\
595	COND(7a, 7b, XF(PF))				\
596	COND(76, 77, XF(CF) || XF(ZF))			\
597	COND(7c, 7d, XF(SF) != XF(OF))			\
598	COND(7e, 7f, XF(ZF) || XF(SF) != XF(OF))
599
600#define COND(op_y, op_n, expr)				\
601	case 0x ## op_y: DO((expr) != 0)		\
602	case 0x ## op_n: DO((expr) == 0)
603
604#define XF(xf)	(!!(flags & X86_EFLAGS_ ## xf))
605
606static bool is_cond_jmp_opcode(u8 opcode)
607{
608	switch (opcode) {
609	#define DO(expr)	\
610		return true;
611	CASE_COND
612	#undef	DO
613
614	default:
615		return false;
616	}
617}
618
619static bool check_jmp_cond(struct arch_uprobe *auprobe, struct pt_regs *regs)
620{
621	unsigned long flags = regs->flags;
622
623	switch (auprobe->branch.opc1) {
624	#define DO(expr)	\
625		return expr;
626	CASE_COND
627	#undef	DO
628
629	default:	/* not a conditional jmp */
630		return true;
631	}
632}
633
634#undef	XF
635#undef	COND
636#undef	CASE_COND
637
638static bool branch_emulate_op(struct arch_uprobe *auprobe, struct pt_regs *regs)
639{
640	unsigned long new_ip = regs->ip += auprobe->branch.ilen;
641	unsigned long offs = (long)auprobe->branch.offs;
642
643	if (branch_is_call(auprobe)) {
644		/*
645		 * If it fails we execute this (mangled, see the comment in
646		 * branch_clear_offset) insn out-of-line. In the likely case
647		 * this should trigger the trap, and the probed application
648		 * should die or restart the same insn after it handles the
649		 * signal, arch_uprobe_post_xol() won't be even called.
650		 *
651		 * But there is corner case, see the comment in ->post_xol().
652		 */
653		if (emulate_push_stack(regs, new_ip))
654			return false;
655	} else if (!check_jmp_cond(auprobe, regs)) {
656		offs = 0;
657	}
658
659	regs->ip = new_ip + offs;
660	return true;
661}
662
663static bool push_emulate_op(struct arch_uprobe *auprobe, struct pt_regs *regs)
664{
665	unsigned long *src_ptr = (void *)regs + auprobe->push.reg_offset;
666
667	if (emulate_push_stack(regs, *src_ptr))
668		return false;
669	regs->ip += auprobe->push.ilen;
670	return true;
671}
672
673static int branch_post_xol_op(struct arch_uprobe *auprobe, struct pt_regs *regs)
674{
675	BUG_ON(!branch_is_call(auprobe));
676	/*
677	 * We can only get here if branch_emulate_op() failed to push the ret
678	 * address _and_ another thread expanded our stack before the (mangled)
679	 * "call" insn was executed out-of-line. Just restore ->sp and restart.
680	 * We could also restore ->ip and try to call branch_emulate_op() again.
681	 */
682	regs->sp += sizeof_long(regs);
683	return -ERESTART;
684}
685
686static void branch_clear_offset(struct arch_uprobe *auprobe, struct insn *insn)
687{
688	/*
689	 * Turn this insn into "call 1f; 1:", this is what we will execute
690	 * out-of-line if ->emulate() fails. We only need this to generate
691	 * a trap, so that the probed task receives the correct signal with
692	 * the properly filled siginfo.
693	 *
694	 * But see the comment in ->post_xol(), in the unlikely case it can
695	 * succeed. So we need to ensure that the new ->ip can not fall into
696	 * the non-canonical area and trigger #GP.
697	 *
698	 * We could turn it into (say) "pushf", but then we would need to
699	 * divorce ->insn[] and ->ixol[]. We need to preserve the 1st byte
700	 * of ->insn[] for set_orig_insn().
701	 */
702	memset(auprobe->insn + insn_offset_immediate(insn),
703		0, insn->immediate.nbytes);
704}
705
706static const struct uprobe_xol_ops branch_xol_ops = {
707	.emulate  = branch_emulate_op,
708	.post_xol = branch_post_xol_op,
709};
710
711static const struct uprobe_xol_ops push_xol_ops = {
712	.emulate  = push_emulate_op,
713};
714
715/* Returns -ENOSYS if branch_xol_ops doesn't handle this insn */
716static int branch_setup_xol_ops(struct arch_uprobe *auprobe, struct insn *insn)
717{
718	u8 opc1 = OPCODE1(insn);
719	insn_byte_t p;
720	int i;
721
722	switch (opc1) {
723	case 0xeb:	/* jmp 8 */
724	case 0xe9:	/* jmp 32 */
725		break;
726	case 0x90:	/* prefix* + nop; same as jmp with .offs = 0 */
727		goto setup;
728
729	case 0xe8:	/* call relative */
730		branch_clear_offset(auprobe, insn);
731		break;
732
733	case 0x0f:
734		if (insn->opcode.nbytes != 2)
735			return -ENOSYS;
736		/*
737		 * If it is a "near" conditional jmp, OPCODE2() - 0x10 matches
738		 * OPCODE1() of the "short" jmp which checks the same condition.
739		 */
740		opc1 = OPCODE2(insn) - 0x10;
741		fallthrough;
742	default:
743		if (!is_cond_jmp_opcode(opc1))
744			return -ENOSYS;
745	}
746
747	/*
748	 * 16-bit overrides such as CALLW (66 e8 nn nn) are not supported.
749	 * Intel and AMD behavior differ in 64-bit mode: Intel ignores 66 prefix.
750	 * No one uses these insns, reject any branch insns with such prefix.
751	 */
752	for_each_insn_prefix(insn, i, p) {
753		if (p == 0x66)
754			return -ENOTSUPP;
755	}
756
757setup:
758	auprobe->branch.opc1 = opc1;
759	auprobe->branch.ilen = insn->length;
760	auprobe->branch.offs = insn->immediate.value;
761
762	auprobe->ops = &branch_xol_ops;
763	return 0;
764}
765
766/* Returns -ENOSYS if push_xol_ops doesn't handle this insn */
767static int push_setup_xol_ops(struct arch_uprobe *auprobe, struct insn *insn)
768{
769	u8 opc1 = OPCODE1(insn), reg_offset = 0;
770
771	if (opc1 < 0x50 || opc1 > 0x57)
772		return -ENOSYS;
773
774	if (insn->length > 2)
775		return -ENOSYS;
776	if (insn->length == 2) {
777		/* only support rex_prefix 0x41 (x64 only) */
778#ifdef CONFIG_X86_64
779		if (insn->rex_prefix.nbytes != 1 ||
780		    insn->rex_prefix.bytes[0] != 0x41)
781			return -ENOSYS;
782
783		switch (opc1) {
784		case 0x50:
785			reg_offset = offsetof(struct pt_regs, r8);
786			break;
787		case 0x51:
788			reg_offset = offsetof(struct pt_regs, r9);
789			break;
790		case 0x52:
791			reg_offset = offsetof(struct pt_regs, r10);
792			break;
793		case 0x53:
794			reg_offset = offsetof(struct pt_regs, r11);
795			break;
796		case 0x54:
797			reg_offset = offsetof(struct pt_regs, r12);
798			break;
799		case 0x55:
800			reg_offset = offsetof(struct pt_regs, r13);
801			break;
802		case 0x56:
803			reg_offset = offsetof(struct pt_regs, r14);
804			break;
805		case 0x57:
806			reg_offset = offsetof(struct pt_regs, r15);
807			break;
808		}
809#else
810		return -ENOSYS;
811#endif
812	} else {
813		switch (opc1) {
814		case 0x50:
815			reg_offset = offsetof(struct pt_regs, ax);
816			break;
817		case 0x51:
818			reg_offset = offsetof(struct pt_regs, cx);
819			break;
820		case 0x52:
821			reg_offset = offsetof(struct pt_regs, dx);
822			break;
823		case 0x53:
824			reg_offset = offsetof(struct pt_regs, bx);
825			break;
826		case 0x54:
827			reg_offset = offsetof(struct pt_regs, sp);
828			break;
829		case 0x55:
830			reg_offset = offsetof(struct pt_regs, bp);
831			break;
832		case 0x56:
833			reg_offset = offsetof(struct pt_regs, si);
834			break;
835		case 0x57:
836			reg_offset = offsetof(struct pt_regs, di);
837			break;
838		}
839	}
840
841	auprobe->push.reg_offset = reg_offset;
842	auprobe->push.ilen = insn->length;
843	auprobe->ops = &push_xol_ops;
844	return 0;
845}
846
847/**
848 * arch_uprobe_analyze_insn - instruction analysis including validity and fixups.
849 * @auprobe: the probepoint information.
850 * @mm: the probed address space.
851 * @addr: virtual address at which to install the probepoint
852 * Return 0 on success or a -ve number on error.
853 */
854int arch_uprobe_analyze_insn(struct arch_uprobe *auprobe, struct mm_struct *mm, unsigned long addr)
855{
856	struct insn insn;
857	u8 fix_ip_or_call = UPROBE_FIX_IP;
858	int ret;
859
860	ret = uprobe_init_insn(auprobe, &insn, is_64bit_mm(mm));
861	if (ret)
862		return ret;
863
864	ret = branch_setup_xol_ops(auprobe, &insn);
865	if (ret != -ENOSYS)
866		return ret;
867
868	ret = push_setup_xol_ops(auprobe, &insn);
869	if (ret != -ENOSYS)
870		return ret;
871
872	/*
873	 * Figure out which fixups default_post_xol_op() will need to perform,
874	 * and annotate defparam->fixups accordingly.
875	 */
876	switch (OPCODE1(&insn)) {
877	case 0x9d:		/* popf */
878		auprobe->defparam.fixups |= UPROBE_FIX_SETF;
879		break;
880	case 0xc3:		/* ret or lret -- ip is correct */
881	case 0xcb:
882	case 0xc2:
883	case 0xca:
884	case 0xea:		/* jmp absolute -- ip is correct */
885		fix_ip_or_call = 0;
886		break;
887	case 0x9a:		/* call absolute - Fix return addr, not ip */
888		fix_ip_or_call = UPROBE_FIX_CALL;
889		break;
890	case 0xff:
891		switch (MODRM_REG(&insn)) {
892		case 2: case 3:			/* call or lcall, indirect */
893			fix_ip_or_call = UPROBE_FIX_CALL;
894			break;
895		case 4: case 5:			/* jmp or ljmp, indirect */
896			fix_ip_or_call = 0;
897			break;
898		}
899		fallthrough;
900	default:
901		riprel_analyze(auprobe, &insn);
902	}
903
904	auprobe->defparam.ilen = insn.length;
905	auprobe->defparam.fixups |= fix_ip_or_call;
906
907	auprobe->ops = &default_xol_ops;
908	return 0;
909}
910
911/*
912 * arch_uprobe_pre_xol - prepare to execute out of line.
913 * @auprobe: the probepoint information.
914 * @regs: reflects the saved user state of current task.
915 */
916int arch_uprobe_pre_xol(struct arch_uprobe *auprobe, struct pt_regs *regs)
917{
918	struct uprobe_task *utask = current->utask;
919
920	if (auprobe->ops->pre_xol) {
921		int err = auprobe->ops->pre_xol(auprobe, regs);
922		if (err)
923			return err;
924	}
925
926	regs->ip = utask->xol_vaddr;
927	utask->autask.saved_trap_nr = current->thread.trap_nr;
928	current->thread.trap_nr = UPROBE_TRAP_NR;
929
930	utask->autask.saved_tf = !!(regs->flags & X86_EFLAGS_TF);
931	regs->flags |= X86_EFLAGS_TF;
932	if (test_tsk_thread_flag(current, TIF_BLOCKSTEP))
933		set_task_blockstep(current, false);
934
935	return 0;
936}
937
938/*
939 * If xol insn itself traps and generates a signal(Say,
940 * SIGILL/SIGSEGV/etc), then detect the case where a singlestepped
941 * instruction jumps back to its own address. It is assumed that anything
942 * like do_page_fault/do_trap/etc sets thread.trap_nr != -1.
943 *
944 * arch_uprobe_pre_xol/arch_uprobe_post_xol save/restore thread.trap_nr,
945 * arch_uprobe_xol_was_trapped() simply checks that ->trap_nr is not equal to
946 * UPROBE_TRAP_NR == -1 set by arch_uprobe_pre_xol().
947 */
948bool arch_uprobe_xol_was_trapped(struct task_struct *t)
949{
950	if (t->thread.trap_nr != UPROBE_TRAP_NR)
951		return true;
952
953	return false;
954}
955
956/*
957 * Called after single-stepping. To avoid the SMP problems that can
958 * occur when we temporarily put back the original opcode to
959 * single-step, we single-stepped a copy of the instruction.
960 *
961 * This function prepares to resume execution after the single-step.
962 */
963int arch_uprobe_post_xol(struct arch_uprobe *auprobe, struct pt_regs *regs)
964{
965	struct uprobe_task *utask = current->utask;
966	bool send_sigtrap = utask->autask.saved_tf;
967	int err = 0;
968
969	WARN_ON_ONCE(current->thread.trap_nr != UPROBE_TRAP_NR);
970	current->thread.trap_nr = utask->autask.saved_trap_nr;
971
972	if (auprobe->ops->post_xol) {
973		err = auprobe->ops->post_xol(auprobe, regs);
974		if (err) {
975			/*
976			 * Restore ->ip for restart or post mortem analysis.
977			 * ->post_xol() must not return -ERESTART unless this
978			 * is really possible.
979			 */
980			regs->ip = utask->vaddr;
981			if (err == -ERESTART)
982				err = 0;
983			send_sigtrap = false;
984		}
985	}
986	/*
987	 * arch_uprobe_pre_xol() doesn't save the state of TIF_BLOCKSTEP
988	 * so we can get an extra SIGTRAP if we do not clear TF. We need
989	 * to examine the opcode to make it right.
990	 */
991	if (send_sigtrap)
992		send_sig(SIGTRAP, current, 0);
993
994	if (!utask->autask.saved_tf)
995		regs->flags &= ~X86_EFLAGS_TF;
996
997	return err;
998}
999
1000/* callback routine for handling exceptions. */
1001int arch_uprobe_exception_notify(struct notifier_block *self, unsigned long val, void *data)
1002{
1003	struct die_args *args = data;
1004	struct pt_regs *regs = args->regs;
1005	int ret = NOTIFY_DONE;
1006
1007	/* We are only interested in userspace traps */
1008	if (regs && !user_mode(regs))
1009		return NOTIFY_DONE;
1010
1011	switch (val) {
1012	case DIE_INT3:
1013		if (uprobe_pre_sstep_notifier(regs))
1014			ret = NOTIFY_STOP;
1015
1016		break;
1017
1018	case DIE_DEBUG:
1019		if (uprobe_post_sstep_notifier(regs))
1020			ret = NOTIFY_STOP;
1021
1022		break;
1023
1024	default:
1025		break;
1026	}
1027
1028	return ret;
1029}
1030
1031/*
1032 * This function gets called when XOL instruction either gets trapped or
1033 * the thread has a fatal signal. Reset the instruction pointer to its
1034 * probed address for the potential restart or for post mortem analysis.
1035 */
1036void arch_uprobe_abort_xol(struct arch_uprobe *auprobe, struct pt_regs *regs)
1037{
1038	struct uprobe_task *utask = current->utask;
1039
1040	if (auprobe->ops->abort)
1041		auprobe->ops->abort(auprobe, regs);
1042
1043	current->thread.trap_nr = utask->autask.saved_trap_nr;
1044	regs->ip = utask->vaddr;
1045	/* clear TF if it was set by us in arch_uprobe_pre_xol() */
1046	if (!utask->autask.saved_tf)
1047		regs->flags &= ~X86_EFLAGS_TF;
1048}
1049
1050static bool __skip_sstep(struct arch_uprobe *auprobe, struct pt_regs *regs)
1051{
1052	if (auprobe->ops->emulate)
1053		return auprobe->ops->emulate(auprobe, regs);
1054	return false;
1055}
1056
1057bool arch_uprobe_skip_sstep(struct arch_uprobe *auprobe, struct pt_regs *regs)
1058{
1059	bool ret = __skip_sstep(auprobe, regs);
1060	if (ret && (regs->flags & X86_EFLAGS_TF))
1061		send_sig(SIGTRAP, current, 0);
1062	return ret;
1063}
1064
1065unsigned long
1066arch_uretprobe_hijack_return_addr(unsigned long trampoline_vaddr, struct pt_regs *regs)
1067{
1068	int rasize = sizeof_long(regs), nleft;
1069	unsigned long orig_ret_vaddr = 0; /* clear high bits for 32-bit apps */
1070
1071	if (copy_from_user(&orig_ret_vaddr, (void __user *)regs->sp, rasize))
1072		return -1;
1073
1074	/* check whether address has been already hijacked */
1075	if (orig_ret_vaddr == trampoline_vaddr)
1076		return orig_ret_vaddr;
1077
1078	nleft = copy_to_user((void __user *)regs->sp, &trampoline_vaddr, rasize);
1079	if (likely(!nleft))
1080		return orig_ret_vaddr;
1081
1082	if (nleft != rasize) {
1083		pr_err("return address clobbered: pid=%d, %%sp=%#lx, %%ip=%#lx\n",
1084		       current->pid, regs->sp, regs->ip);
1085
1086		force_sig(SIGSEGV);
1087	}
1088
1089	return -1;
1090}
1091
1092bool arch_uretprobe_is_alive(struct return_instance *ret, enum rp_check ctx,
1093				struct pt_regs *regs)
1094{
1095	if (ctx == RP_CHECK_CALL) /* sp was just decremented by "call" insn */
1096		return regs->sp < ret->stack;
1097	else
1098		return regs->sp <= ret->stack;
1099}
1100