1// SPDX-License-Identifier: GPL-2.0
2/*
3 * TSC frequency enumeration via MSR
4 *
5 * Copyright (C) 2013, 2018 Intel Corporation
6 * Author: Bin Gao <bin.gao@intel.com>
7 */
8
9#include <linux/kernel.h>
10#include <linux/thread_info.h>
11
12#include <asm/apic.h>
13#include <asm/cpu_device_id.h>
14#include <asm/intel-family.h>
15#include <asm/msr.h>
16#include <asm/param.h>
17#include <asm/tsc.h>
18
19#define MAX_NUM_FREQS	16 /* 4 bits to select the frequency */
20
21/*
22 * The frequency numbers in the SDM are e.g. 83.3 MHz, which does not contain a
23 * lot of accuracy which leads to clock drift. As far as we know Bay Trail SoCs
24 * use a 25 MHz crystal and Cherry Trail uses a 19.2 MHz crystal, the crystal
25 * is the source clk for a root PLL which outputs 1600 and 100 MHz. It is
26 * unclear if the root PLL outputs are used directly by the CPU clock PLL or
27 * if there is another PLL in between.
28 * This does not matter though, we can model the chain of PLLs as a single PLL
29 * with a quotient equal to the quotients of all PLLs in the chain multiplied.
30 * So we can create a simplified model of the CPU clock setup using a reference
31 * clock of 100 MHz plus a quotient which gets us as close to the frequency
32 * from the SDM as possible.
33 * For the 83.3 MHz example from above this would give us 100 MHz * 5 / 6 =
34 * 83 and 1/3 MHz, which matches exactly what has been measured on actual hw.
35 */
36#define TSC_REFERENCE_KHZ 100000
37
38struct muldiv {
39	u32 multiplier;
40	u32 divider;
41};
42
43/*
44 * If MSR_PERF_STAT[31] is set, the maximum resolved bus ratio can be
45 * read in MSR_PLATFORM_ID[12:8], otherwise in MSR_PERF_STAT[44:40].
46 * Unfortunately some Intel Atom SoCs aren't quite compliant to this,
47 * so we need manually differentiate SoC families. This is what the
48 * field use_msr_plat does.
49 */
50struct freq_desc {
51	bool use_msr_plat;
52	struct muldiv muldiv[MAX_NUM_FREQS];
53	/*
54	 * Some CPU frequencies in the SDM do not map to known PLL freqs, in
55	 * that case the muldiv array is empty and the freqs array is used.
56	 */
57	u32 freqs[MAX_NUM_FREQS];
58	u32 mask;
59};
60
61/*
62 * Penwell and Clovertrail use spread spectrum clock,
63 * so the freq number is not exactly the same as reported
64 * by MSR based on SDM.
65 */
66static const struct freq_desc freq_desc_pnw = {
67	.use_msr_plat = false,
68	.freqs = { 0, 0, 0, 0, 0, 99840, 0, 83200 },
69	.mask = 0x07,
70};
71
72static const struct freq_desc freq_desc_clv = {
73	.use_msr_plat = false,
74	.freqs = { 0, 133200, 0, 0, 0, 99840, 0, 83200 },
75	.mask = 0x07,
76};
77
78/*
79 * Bay Trail SDM MSR_FSB_FREQ frequencies simplified PLL model:
80 *  000:   100 *  5 /  6  =  83.3333 MHz
81 *  001:   100 *  1 /  1  = 100.0000 MHz
82 *  010:   100 *  4 /  3  = 133.3333 MHz
83 *  011:   100 *  7 /  6  = 116.6667 MHz
84 *  100:   100 *  4 /  5  =  80.0000 MHz
85 */
86static const struct freq_desc freq_desc_byt = {
87	.use_msr_plat = true,
88	.muldiv = { { 5, 6 }, { 1, 1 }, { 4, 3 }, { 7, 6 },
89		    { 4, 5 } },
90	.mask = 0x07,
91};
92
93/*
94 * Cherry Trail SDM MSR_FSB_FREQ frequencies simplified PLL model:
95 * 0000:   100 *  5 /  6  =  83.3333 MHz
96 * 0001:   100 *  1 /  1  = 100.0000 MHz
97 * 0010:   100 *  4 /  3  = 133.3333 MHz
98 * 0011:   100 *  7 /  6  = 116.6667 MHz
99 * 0100:   100 *  4 /  5  =  80.0000 MHz
100 * 0101:   100 * 14 / 15  =  93.3333 MHz
101 * 0110:   100 *  9 / 10  =  90.0000 MHz
102 * 0111:   100 *  8 /  9  =  88.8889 MHz
103 * 1000:   100 *  7 /  8  =  87.5000 MHz
104 */
105static const struct freq_desc freq_desc_cht = {
106	.use_msr_plat = true,
107	.muldiv = { { 5, 6 }, {  1,  1 }, { 4,  3 }, { 7, 6 },
108		    { 4, 5 }, { 14, 15 }, { 9, 10 }, { 8, 9 },
109		    { 7, 8 } },
110	.mask = 0x0f,
111};
112
113/*
114 * Merriefield SDM MSR_FSB_FREQ frequencies simplified PLL model:
115 * 0001:   100 *  1 /  1  = 100.0000 MHz
116 * 0010:   100 *  4 /  3  = 133.3333 MHz
117 */
118static const struct freq_desc freq_desc_tng = {
119	.use_msr_plat = true,
120	.muldiv = { { 0, 0 }, { 1, 1 }, { 4, 3 } },
121	.mask = 0x07,
122};
123
124/*
125 * Moorefield SDM MSR_FSB_FREQ frequencies simplified PLL model:
126 * 0000:   100 *  5 /  6  =  83.3333 MHz
127 * 0001:   100 *  1 /  1  = 100.0000 MHz
128 * 0010:   100 *  4 /  3  = 133.3333 MHz
129 * 0011:   100 *  1 /  1  = 100.0000 MHz
130 */
131static const struct freq_desc freq_desc_ann = {
132	.use_msr_plat = true,
133	.muldiv = { { 5, 6 }, { 1, 1 }, { 4, 3 }, { 1, 1 } },
134	.mask = 0x0f,
135};
136
137/*
138 * 24 MHz crystal? : 24 * 13 / 4 = 78 MHz
139 * Frequency step for Lightning Mountain SoC is fixed to 78 MHz,
140 * so all the frequency entries are 78000.
141 */
142static const struct freq_desc freq_desc_lgm = {
143	.use_msr_plat = true,
144	.freqs = { 78000, 78000, 78000, 78000, 78000, 78000, 78000, 78000,
145		   78000, 78000, 78000, 78000, 78000, 78000, 78000, 78000 },
146	.mask = 0x0f,
147};
148
149static const struct x86_cpu_id tsc_msr_cpu_ids[] = {
150	X86_MATCH_VFM(INTEL_ATOM_SALTWELL_MID,	&freq_desc_pnw),
151	X86_MATCH_VFM(INTEL_ATOM_SALTWELL_TABLET, &freq_desc_clv),
152	X86_MATCH_VFM(INTEL_ATOM_SILVERMONT,	&freq_desc_byt),
153	X86_MATCH_VFM(INTEL_ATOM_SILVERMONT_MID,	&freq_desc_tng),
154	X86_MATCH_VFM(INTEL_ATOM_AIRMONT,	&freq_desc_cht),
155	X86_MATCH_VFM(INTEL_ATOM_AIRMONT_MID,	&freq_desc_ann),
156	X86_MATCH_VFM(INTEL_ATOM_AIRMONT_NP,	&freq_desc_lgm),
157	{}
158};
159
160/*
161 * MSR-based CPU/TSC frequency discovery for certain CPUs.
162 *
163 * Set global "lapic_timer_period" to bus_clock_cycles/jiffy
164 * Return processor base frequency in KHz, or 0 on failure.
165 */
166unsigned long cpu_khz_from_msr(void)
167{
168	u32 lo, hi, ratio, freq, tscref;
169	const struct freq_desc *freq_desc;
170	const struct x86_cpu_id *id;
171	const struct muldiv *md;
172	unsigned long res;
173	int index;
174
175	id = x86_match_cpu(tsc_msr_cpu_ids);
176	if (!id)
177		return 0;
178
179	freq_desc = (struct freq_desc *)id->driver_data;
180	if (freq_desc->use_msr_plat) {
181		rdmsr(MSR_PLATFORM_INFO, lo, hi);
182		ratio = (lo >> 8) & 0xff;
183	} else {
184		rdmsr(MSR_IA32_PERF_STATUS, lo, hi);
185		ratio = (hi >> 8) & 0x1f;
186	}
187
188	/* Get FSB FREQ ID */
189	rdmsr(MSR_FSB_FREQ, lo, hi);
190	index = lo & freq_desc->mask;
191	md = &freq_desc->muldiv[index];
192
193	/*
194	 * Note this also catches cases where the index points to an unpopulated
195	 * part of muldiv, in that case the else will set freq and res to 0.
196	 */
197	if (md->divider) {
198		tscref = TSC_REFERENCE_KHZ * md->multiplier;
199		freq = DIV_ROUND_CLOSEST(tscref, md->divider);
200		/*
201		 * Multiplying by ratio before the division has better
202		 * accuracy than just calculating freq * ratio.
203		 */
204		res = DIV_ROUND_CLOSEST(tscref * ratio, md->divider);
205	} else {
206		freq = freq_desc->freqs[index];
207		res = freq * ratio;
208	}
209
210	if (freq == 0)
211		pr_err("Error MSR_FSB_FREQ index %d is unknown\n", index);
212
213#ifdef CONFIG_X86_LOCAL_APIC
214	lapic_timer_period = (freq * 1000) / HZ;
215#endif
216
217	/*
218	 * TSC frequency determined by MSR is always considered "known"
219	 * because it is reported by HW.
220	 * Another fact is that on MSR capable platforms, PIT/HPET is
221	 * generally not available so calibration won't work at all.
222	 */
223	setup_force_cpu_cap(X86_FEATURE_TSC_KNOWN_FREQ);
224
225	/*
226	 * Unfortunately there is no way for hardware to tell whether the
227	 * TSC is reliable.  We were told by silicon design team that TSC
228	 * on Atom SoCs are always "reliable". TSC is also the only
229	 * reliable clocksource on these SoCs (HPET is either not present
230	 * or not functional) so mark TSC reliable which removes the
231	 * requirement for a watchdog clocksource.
232	 */
233	setup_force_cpu_cap(X86_FEATURE_TSC_RELIABLE);
234
235	return res;
236}
237