1// SPDX-License-Identifier: GPL-2.0-only
2#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
3
4#include <linux/kernel.h>
5#include <linux/sched.h>
6#include <linux/sched/clock.h>
7#include <linux/init.h>
8#include <linux/export.h>
9#include <linux/timer.h>
10#include <linux/acpi_pmtmr.h>
11#include <linux/cpufreq.h>
12#include <linux/delay.h>
13#include <linux/clocksource.h>
14#include <linux/percpu.h>
15#include <linux/timex.h>
16#include <linux/static_key.h>
17#include <linux/static_call.h>
18
19#include <asm/hpet.h>
20#include <asm/timer.h>
21#include <asm/vgtod.h>
22#include <asm/time.h>
23#include <asm/delay.h>
24#include <asm/hypervisor.h>
25#include <asm/nmi.h>
26#include <asm/x86_init.h>
27#include <asm/geode.h>
28#include <asm/apic.h>
29#include <asm/intel-family.h>
30#include <asm/i8259.h>
31#include <asm/uv/uv.h>
32
33unsigned int __read_mostly cpu_khz;	/* TSC clocks / usec, not used here */
34EXPORT_SYMBOL(cpu_khz);
35
36unsigned int __read_mostly tsc_khz;
37EXPORT_SYMBOL(tsc_khz);
38
39#define KHZ	1000
40
41/*
42 * TSC can be unstable due to cpufreq or due to unsynced TSCs
43 */
44static int __read_mostly tsc_unstable;
45static unsigned int __initdata tsc_early_khz;
46
47static DEFINE_STATIC_KEY_FALSE(__use_tsc);
48
49int tsc_clocksource_reliable;
50
51static int __read_mostly tsc_force_recalibrate;
52
53static u32 art_to_tsc_numerator;
54static u32 art_to_tsc_denominator;
55static u64 art_to_tsc_offset;
56static bool have_art;
57
58struct cyc2ns {
59	struct cyc2ns_data data[2];	/*  0 + 2*16 = 32 */
60	seqcount_latch_t   seq;		/* 32 + 4    = 36 */
61
62}; /* fits one cacheline */
63
64static DEFINE_PER_CPU_ALIGNED(struct cyc2ns, cyc2ns);
65
66static int __init tsc_early_khz_setup(char *buf)
67{
68	return kstrtouint(buf, 0, &tsc_early_khz);
69}
70early_param("tsc_early_khz", tsc_early_khz_setup);
71
72__always_inline void __cyc2ns_read(struct cyc2ns_data *data)
73{
74	int seq, idx;
75
76	do {
77		seq = this_cpu_read(cyc2ns.seq.seqcount.sequence);
78		idx = seq & 1;
79
80		data->cyc2ns_offset = this_cpu_read(cyc2ns.data[idx].cyc2ns_offset);
81		data->cyc2ns_mul    = this_cpu_read(cyc2ns.data[idx].cyc2ns_mul);
82		data->cyc2ns_shift  = this_cpu_read(cyc2ns.data[idx].cyc2ns_shift);
83
84	} while (unlikely(seq != this_cpu_read(cyc2ns.seq.seqcount.sequence)));
85}
86
87__always_inline void cyc2ns_read_begin(struct cyc2ns_data *data)
88{
89	preempt_disable_notrace();
90	__cyc2ns_read(data);
91}
92
93__always_inline void cyc2ns_read_end(void)
94{
95	preempt_enable_notrace();
96}
97
98/*
99 * Accelerators for sched_clock()
100 * convert from cycles(64bits) => nanoseconds (64bits)
101 *  basic equation:
102 *              ns = cycles / (freq / ns_per_sec)
103 *              ns = cycles * (ns_per_sec / freq)
104 *              ns = cycles * (10^9 / (cpu_khz * 10^3))
105 *              ns = cycles * (10^6 / cpu_khz)
106 *
107 *      Then we use scaling math (suggested by george@mvista.com) to get:
108 *              ns = cycles * (10^6 * SC / cpu_khz) / SC
109 *              ns = cycles * cyc2ns_scale / SC
110 *
111 *      And since SC is a constant power of two, we can convert the div
112 *  into a shift. The larger SC is, the more accurate the conversion, but
113 *  cyc2ns_scale needs to be a 32-bit value so that 32-bit multiplication
114 *  (64-bit result) can be used.
115 *
116 *  We can use khz divisor instead of mhz to keep a better precision.
117 *  (mathieu.desnoyers@polymtl.ca)
118 *
119 *                      -johnstul@us.ibm.com "math is hard, lets go shopping!"
120 */
121
122static __always_inline unsigned long long __cycles_2_ns(unsigned long long cyc)
123{
124	struct cyc2ns_data data;
125	unsigned long long ns;
126
127	__cyc2ns_read(&data);
128
129	ns = data.cyc2ns_offset;
130	ns += mul_u64_u32_shr(cyc, data.cyc2ns_mul, data.cyc2ns_shift);
131
132	return ns;
133}
134
135static __always_inline unsigned long long cycles_2_ns(unsigned long long cyc)
136{
137	unsigned long long ns;
138	preempt_disable_notrace();
139	ns = __cycles_2_ns(cyc);
140	preempt_enable_notrace();
141	return ns;
142}
143
144static void __set_cyc2ns_scale(unsigned long khz, int cpu, unsigned long long tsc_now)
145{
146	unsigned long long ns_now;
147	struct cyc2ns_data data;
148	struct cyc2ns *c2n;
149
150	ns_now = cycles_2_ns(tsc_now);
151
152	/*
153	 * Compute a new multiplier as per the above comment and ensure our
154	 * time function is continuous; see the comment near struct
155	 * cyc2ns_data.
156	 */
157	clocks_calc_mult_shift(&data.cyc2ns_mul, &data.cyc2ns_shift, khz,
158			       NSEC_PER_MSEC, 0);
159
160	/*
161	 * cyc2ns_shift is exported via arch_perf_update_userpage() where it is
162	 * not expected to be greater than 31 due to the original published
163	 * conversion algorithm shifting a 32-bit value (now specifies a 64-bit
164	 * value) - refer perf_event_mmap_page documentation in perf_event.h.
165	 */
166	if (data.cyc2ns_shift == 32) {
167		data.cyc2ns_shift = 31;
168		data.cyc2ns_mul >>= 1;
169	}
170
171	data.cyc2ns_offset = ns_now -
172		mul_u64_u32_shr(tsc_now, data.cyc2ns_mul, data.cyc2ns_shift);
173
174	c2n = per_cpu_ptr(&cyc2ns, cpu);
175
176	raw_write_seqcount_latch(&c2n->seq);
177	c2n->data[0] = data;
178	raw_write_seqcount_latch(&c2n->seq);
179	c2n->data[1] = data;
180}
181
182static void set_cyc2ns_scale(unsigned long khz, int cpu, unsigned long long tsc_now)
183{
184	unsigned long flags;
185
186	local_irq_save(flags);
187	sched_clock_idle_sleep_event();
188
189	if (khz)
190		__set_cyc2ns_scale(khz, cpu, tsc_now);
191
192	sched_clock_idle_wakeup_event();
193	local_irq_restore(flags);
194}
195
196/*
197 * Initialize cyc2ns for boot cpu
198 */
199static void __init cyc2ns_init_boot_cpu(void)
200{
201	struct cyc2ns *c2n = this_cpu_ptr(&cyc2ns);
202
203	seqcount_latch_init(&c2n->seq);
204	__set_cyc2ns_scale(tsc_khz, smp_processor_id(), rdtsc());
205}
206
207/*
208 * Secondary CPUs do not run through tsc_init(), so set up
209 * all the scale factors for all CPUs, assuming the same
210 * speed as the bootup CPU.
211 */
212static void __init cyc2ns_init_secondary_cpus(void)
213{
214	unsigned int cpu, this_cpu = smp_processor_id();
215	struct cyc2ns *c2n = this_cpu_ptr(&cyc2ns);
216	struct cyc2ns_data *data = c2n->data;
217
218	for_each_possible_cpu(cpu) {
219		if (cpu != this_cpu) {
220			seqcount_latch_init(&c2n->seq);
221			c2n = per_cpu_ptr(&cyc2ns, cpu);
222			c2n->data[0] = data[0];
223			c2n->data[1] = data[1];
224		}
225	}
226}
227
228/*
229 * Scheduler clock - returns current time in nanosec units.
230 */
231noinstr u64 native_sched_clock(void)
232{
233	if (static_branch_likely(&__use_tsc)) {
234		u64 tsc_now = rdtsc();
235
236		/* return the value in ns */
237		return __cycles_2_ns(tsc_now);
238	}
239
240	/*
241	 * Fall back to jiffies if there's no TSC available:
242	 * ( But note that we still use it if the TSC is marked
243	 *   unstable. We do this because unlike Time Of Day,
244	 *   the scheduler clock tolerates small errors and it's
245	 *   very important for it to be as fast as the platform
246	 *   can achieve it. )
247	 */
248
249	/* No locking but a rare wrong value is not a big deal: */
250	return (jiffies_64 - INITIAL_JIFFIES) * (1000000000 / HZ);
251}
252
253/*
254 * Generate a sched_clock if you already have a TSC value.
255 */
256u64 native_sched_clock_from_tsc(u64 tsc)
257{
258	return cycles_2_ns(tsc);
259}
260
261/* We need to define a real function for sched_clock, to override the
262   weak default version */
263#ifdef CONFIG_PARAVIRT
264noinstr u64 sched_clock_noinstr(void)
265{
266	return paravirt_sched_clock();
267}
268
269bool using_native_sched_clock(void)
270{
271	return static_call_query(pv_sched_clock) == native_sched_clock;
272}
273#else
274u64 sched_clock_noinstr(void) __attribute__((alias("native_sched_clock")));
275
276bool using_native_sched_clock(void) { return true; }
277#endif
278
279notrace u64 sched_clock(void)
280{
281	u64 now;
282	preempt_disable_notrace();
283	now = sched_clock_noinstr();
284	preempt_enable_notrace();
285	return now;
286}
287
288int check_tsc_unstable(void)
289{
290	return tsc_unstable;
291}
292EXPORT_SYMBOL_GPL(check_tsc_unstable);
293
294#ifdef CONFIG_X86_TSC
295int __init notsc_setup(char *str)
296{
297	mark_tsc_unstable("boot parameter notsc");
298	return 1;
299}
300#else
301/*
302 * disable flag for tsc. Takes effect by clearing the TSC cpu flag
303 * in cpu/common.c
304 */
305int __init notsc_setup(char *str)
306{
307	setup_clear_cpu_cap(X86_FEATURE_TSC);
308	return 1;
309}
310#endif
311
312__setup("notsc", notsc_setup);
313
314static int no_sched_irq_time;
315static int no_tsc_watchdog;
316static int tsc_as_watchdog;
317
318static int __init tsc_setup(char *str)
319{
320	if (!strcmp(str, "reliable"))
321		tsc_clocksource_reliable = 1;
322	if (!strncmp(str, "noirqtime", 9))
323		no_sched_irq_time = 1;
324	if (!strcmp(str, "unstable"))
325		mark_tsc_unstable("boot parameter");
326	if (!strcmp(str, "nowatchdog")) {
327		no_tsc_watchdog = 1;
328		if (tsc_as_watchdog)
329			pr_alert("%s: Overriding earlier tsc=watchdog with tsc=nowatchdog\n",
330				 __func__);
331		tsc_as_watchdog = 0;
332	}
333	if (!strcmp(str, "recalibrate"))
334		tsc_force_recalibrate = 1;
335	if (!strcmp(str, "watchdog")) {
336		if (no_tsc_watchdog)
337			pr_alert("%s: tsc=watchdog overridden by earlier tsc=nowatchdog\n",
338				 __func__);
339		else
340			tsc_as_watchdog = 1;
341	}
342	return 1;
343}
344
345__setup("tsc=", tsc_setup);
346
347#define MAX_RETRIES		5
348#define TSC_DEFAULT_THRESHOLD	0x20000
349
350/*
351 * Read TSC and the reference counters. Take care of any disturbances
352 */
353static u64 tsc_read_refs(u64 *p, int hpet)
354{
355	u64 t1, t2;
356	u64 thresh = tsc_khz ? tsc_khz >> 5 : TSC_DEFAULT_THRESHOLD;
357	int i;
358
359	for (i = 0; i < MAX_RETRIES; i++) {
360		t1 = get_cycles();
361		if (hpet)
362			*p = hpet_readl(HPET_COUNTER) & 0xFFFFFFFF;
363		else
364			*p = acpi_pm_read_early();
365		t2 = get_cycles();
366		if ((t2 - t1) < thresh)
367			return t2;
368	}
369	return ULLONG_MAX;
370}
371
372/*
373 * Calculate the TSC frequency from HPET reference
374 */
375static unsigned long calc_hpet_ref(u64 deltatsc, u64 hpet1, u64 hpet2)
376{
377	u64 tmp;
378
379	if (hpet2 < hpet1)
380		hpet2 += 0x100000000ULL;
381	hpet2 -= hpet1;
382	tmp = ((u64)hpet2 * hpet_readl(HPET_PERIOD));
383	do_div(tmp, 1000000);
384	deltatsc = div64_u64(deltatsc, tmp);
385
386	return (unsigned long) deltatsc;
387}
388
389/*
390 * Calculate the TSC frequency from PMTimer reference
391 */
392static unsigned long calc_pmtimer_ref(u64 deltatsc, u64 pm1, u64 pm2)
393{
394	u64 tmp;
395
396	if (!pm1 && !pm2)
397		return ULONG_MAX;
398
399	if (pm2 < pm1)
400		pm2 += (u64)ACPI_PM_OVRRUN;
401	pm2 -= pm1;
402	tmp = pm2 * 1000000000LL;
403	do_div(tmp, PMTMR_TICKS_PER_SEC);
404	do_div(deltatsc, tmp);
405
406	return (unsigned long) deltatsc;
407}
408
409#define CAL_MS		10
410#define CAL_LATCH	(PIT_TICK_RATE / (1000 / CAL_MS))
411#define CAL_PIT_LOOPS	1000
412
413#define CAL2_MS		50
414#define CAL2_LATCH	(PIT_TICK_RATE / (1000 / CAL2_MS))
415#define CAL2_PIT_LOOPS	5000
416
417
418/*
419 * Try to calibrate the TSC against the Programmable
420 * Interrupt Timer and return the frequency of the TSC
421 * in kHz.
422 *
423 * Return ULONG_MAX on failure to calibrate.
424 */
425static unsigned long pit_calibrate_tsc(u32 latch, unsigned long ms, int loopmin)
426{
427	u64 tsc, t1, t2, delta;
428	unsigned long tscmin, tscmax;
429	int pitcnt;
430
431	if (!has_legacy_pic()) {
432		/*
433		 * Relies on tsc_early_delay_calibrate() to have given us semi
434		 * usable udelay(), wait for the same 50ms we would have with
435		 * the PIT loop below.
436		 */
437		udelay(10 * USEC_PER_MSEC);
438		udelay(10 * USEC_PER_MSEC);
439		udelay(10 * USEC_PER_MSEC);
440		udelay(10 * USEC_PER_MSEC);
441		udelay(10 * USEC_PER_MSEC);
442		return ULONG_MAX;
443	}
444
445	/* Set the Gate high, disable speaker */
446	outb((inb(0x61) & ~0x02) | 0x01, 0x61);
447
448	/*
449	 * Setup CTC channel 2* for mode 0, (interrupt on terminal
450	 * count mode), binary count. Set the latch register to 50ms
451	 * (LSB then MSB) to begin countdown.
452	 */
453	outb(0xb0, 0x43);
454	outb(latch & 0xff, 0x42);
455	outb(latch >> 8, 0x42);
456
457	tsc = t1 = t2 = get_cycles();
458
459	pitcnt = 0;
460	tscmax = 0;
461	tscmin = ULONG_MAX;
462	while ((inb(0x61) & 0x20) == 0) {
463		t2 = get_cycles();
464		delta = t2 - tsc;
465		tsc = t2;
466		if ((unsigned long) delta < tscmin)
467			tscmin = (unsigned int) delta;
468		if ((unsigned long) delta > tscmax)
469			tscmax = (unsigned int) delta;
470		pitcnt++;
471	}
472
473	/*
474	 * Sanity checks:
475	 *
476	 * If we were not able to read the PIT more than loopmin
477	 * times, then we have been hit by a massive SMI
478	 *
479	 * If the maximum is 10 times larger than the minimum,
480	 * then we got hit by an SMI as well.
481	 */
482	if (pitcnt < loopmin || tscmax > 10 * tscmin)
483		return ULONG_MAX;
484
485	/* Calculate the PIT value */
486	delta = t2 - t1;
487	do_div(delta, ms);
488	return delta;
489}
490
491/*
492 * This reads the current MSB of the PIT counter, and
493 * checks if we are running on sufficiently fast and
494 * non-virtualized hardware.
495 *
496 * Our expectations are:
497 *
498 *  - the PIT is running at roughly 1.19MHz
499 *
500 *  - each IO is going to take about 1us on real hardware,
501 *    but we allow it to be much faster (by a factor of 10) or
502 *    _slightly_ slower (ie we allow up to a 2us read+counter
503 *    update - anything else implies a unacceptably slow CPU
504 *    or PIT for the fast calibration to work.
505 *
506 *  - with 256 PIT ticks to read the value, we have 214us to
507 *    see the same MSB (and overhead like doing a single TSC
508 *    read per MSB value etc).
509 *
510 *  - We're doing 2 reads per loop (LSB, MSB), and we expect
511 *    them each to take about a microsecond on real hardware.
512 *    So we expect a count value of around 100. But we'll be
513 *    generous, and accept anything over 50.
514 *
515 *  - if the PIT is stuck, and we see *many* more reads, we
516 *    return early (and the next caller of pit_expect_msb()
517 *    then consider it a failure when they don't see the
518 *    next expected value).
519 *
520 * These expectations mean that we know that we have seen the
521 * transition from one expected value to another with a fairly
522 * high accuracy, and we didn't miss any events. We can thus
523 * use the TSC value at the transitions to calculate a pretty
524 * good value for the TSC frequency.
525 */
526static inline int pit_verify_msb(unsigned char val)
527{
528	/* Ignore LSB */
529	inb(0x42);
530	return inb(0x42) == val;
531}
532
533static inline int pit_expect_msb(unsigned char val, u64 *tscp, unsigned long *deltap)
534{
535	int count;
536	u64 tsc = 0, prev_tsc = 0;
537
538	for (count = 0; count < 50000; count++) {
539		if (!pit_verify_msb(val))
540			break;
541		prev_tsc = tsc;
542		tsc = get_cycles();
543	}
544	*deltap = get_cycles() - prev_tsc;
545	*tscp = tsc;
546
547	/*
548	 * We require _some_ success, but the quality control
549	 * will be based on the error terms on the TSC values.
550	 */
551	return count > 5;
552}
553
554/*
555 * How many MSB values do we want to see? We aim for
556 * a maximum error rate of 500ppm (in practice the
557 * real error is much smaller), but refuse to spend
558 * more than 50ms on it.
559 */
560#define MAX_QUICK_PIT_MS 50
561#define MAX_QUICK_PIT_ITERATIONS (MAX_QUICK_PIT_MS * PIT_TICK_RATE / 1000 / 256)
562
563static unsigned long quick_pit_calibrate(void)
564{
565	int i;
566	u64 tsc, delta;
567	unsigned long d1, d2;
568
569	if (!has_legacy_pic())
570		return 0;
571
572	/* Set the Gate high, disable speaker */
573	outb((inb(0x61) & ~0x02) | 0x01, 0x61);
574
575	/*
576	 * Counter 2, mode 0 (one-shot), binary count
577	 *
578	 * NOTE! Mode 2 decrements by two (and then the
579	 * output is flipped each time, giving the same
580	 * final output frequency as a decrement-by-one),
581	 * so mode 0 is much better when looking at the
582	 * individual counts.
583	 */
584	outb(0xb0, 0x43);
585
586	/* Start at 0xffff */
587	outb(0xff, 0x42);
588	outb(0xff, 0x42);
589
590	/*
591	 * The PIT starts counting at the next edge, so we
592	 * need to delay for a microsecond. The easiest way
593	 * to do that is to just read back the 16-bit counter
594	 * once from the PIT.
595	 */
596	pit_verify_msb(0);
597
598	if (pit_expect_msb(0xff, &tsc, &d1)) {
599		for (i = 1; i <= MAX_QUICK_PIT_ITERATIONS; i++) {
600			if (!pit_expect_msb(0xff-i, &delta, &d2))
601				break;
602
603			delta -= tsc;
604
605			/*
606			 * Extrapolate the error and fail fast if the error will
607			 * never be below 500 ppm.
608			 */
609			if (i == 1 &&
610			    d1 + d2 >= (delta * MAX_QUICK_PIT_ITERATIONS) >> 11)
611				return 0;
612
613			/*
614			 * Iterate until the error is less than 500 ppm
615			 */
616			if (d1+d2 >= delta >> 11)
617				continue;
618
619			/*
620			 * Check the PIT one more time to verify that
621			 * all TSC reads were stable wrt the PIT.
622			 *
623			 * This also guarantees serialization of the
624			 * last cycle read ('d2') in pit_expect_msb.
625			 */
626			if (!pit_verify_msb(0xfe - i))
627				break;
628			goto success;
629		}
630	}
631	pr_info("Fast TSC calibration failed\n");
632	return 0;
633
634success:
635	/*
636	 * Ok, if we get here, then we've seen the
637	 * MSB of the PIT decrement 'i' times, and the
638	 * error has shrunk to less than 500 ppm.
639	 *
640	 * As a result, we can depend on there not being
641	 * any odd delays anywhere, and the TSC reads are
642	 * reliable (within the error).
643	 *
644	 * kHz = ticks / time-in-seconds / 1000;
645	 * kHz = (t2 - t1) / (I * 256 / PIT_TICK_RATE) / 1000
646	 * kHz = ((t2 - t1) * PIT_TICK_RATE) / (I * 256 * 1000)
647	 */
648	delta *= PIT_TICK_RATE;
649	do_div(delta, i*256*1000);
650	pr_info("Fast TSC calibration using PIT\n");
651	return delta;
652}
653
654/**
655 * native_calibrate_tsc - determine TSC frequency
656 * Determine TSC frequency via CPUID, else return 0.
657 */
658unsigned long native_calibrate_tsc(void)
659{
660	unsigned int eax_denominator, ebx_numerator, ecx_hz, edx;
661	unsigned int crystal_khz;
662
663	if (boot_cpu_data.x86_vendor != X86_VENDOR_INTEL)
664		return 0;
665
666	if (boot_cpu_data.cpuid_level < 0x15)
667		return 0;
668
669	eax_denominator = ebx_numerator = ecx_hz = edx = 0;
670
671	/* CPUID 15H TSC/Crystal ratio, plus optionally Crystal Hz */
672	cpuid(0x15, &eax_denominator, &ebx_numerator, &ecx_hz, &edx);
673
674	if (ebx_numerator == 0 || eax_denominator == 0)
675		return 0;
676
677	crystal_khz = ecx_hz / 1000;
678
679	/*
680	 * Denverton SoCs don't report crystal clock, and also don't support
681	 * CPUID.0x16 for the calculation below, so hardcode the 25MHz crystal
682	 * clock.
683	 */
684	if (crystal_khz == 0 &&
685			boot_cpu_data.x86_model == INTEL_FAM6_ATOM_GOLDMONT_D)
686		crystal_khz = 25000;
687
688	/*
689	 * TSC frequency reported directly by CPUID is a "hardware reported"
690	 * frequency and is the most accurate one so far we have. This
691	 * is considered a known frequency.
692	 */
693	if (crystal_khz != 0)
694		setup_force_cpu_cap(X86_FEATURE_TSC_KNOWN_FREQ);
695
696	/*
697	 * Some Intel SoCs like Skylake and Kabylake don't report the crystal
698	 * clock, but we can easily calculate it to a high degree of accuracy
699	 * by considering the crystal ratio and the CPU speed.
700	 */
701	if (crystal_khz == 0 && boot_cpu_data.cpuid_level >= 0x16) {
702		unsigned int eax_base_mhz, ebx, ecx, edx;
703
704		cpuid(0x16, &eax_base_mhz, &ebx, &ecx, &edx);
705		crystal_khz = eax_base_mhz * 1000 *
706			eax_denominator / ebx_numerator;
707	}
708
709	if (crystal_khz == 0)
710		return 0;
711
712	/*
713	 * For Atom SoCs TSC is the only reliable clocksource.
714	 * Mark TSC reliable so no watchdog on it.
715	 */
716	if (boot_cpu_data.x86_model == INTEL_FAM6_ATOM_GOLDMONT)
717		setup_force_cpu_cap(X86_FEATURE_TSC_RELIABLE);
718
719#ifdef CONFIG_X86_LOCAL_APIC
720	/*
721	 * The local APIC appears to be fed by the core crystal clock
722	 * (which sounds entirely sensible). We can set the global
723	 * lapic_timer_period here to avoid having to calibrate the APIC
724	 * timer later.
725	 */
726	lapic_timer_period = crystal_khz * 1000 / HZ;
727#endif
728
729	return crystal_khz * ebx_numerator / eax_denominator;
730}
731
732static unsigned long cpu_khz_from_cpuid(void)
733{
734	unsigned int eax_base_mhz, ebx_max_mhz, ecx_bus_mhz, edx;
735
736	if (boot_cpu_data.x86_vendor != X86_VENDOR_INTEL)
737		return 0;
738
739	if (boot_cpu_data.cpuid_level < 0x16)
740		return 0;
741
742	eax_base_mhz = ebx_max_mhz = ecx_bus_mhz = edx = 0;
743
744	cpuid(0x16, &eax_base_mhz, &ebx_max_mhz, &ecx_bus_mhz, &edx);
745
746	return eax_base_mhz * 1000;
747}
748
749/*
750 * calibrate cpu using pit, hpet, and ptimer methods. They are available
751 * later in boot after acpi is initialized.
752 */
753static unsigned long pit_hpet_ptimer_calibrate_cpu(void)
754{
755	u64 tsc1, tsc2, delta, ref1, ref2;
756	unsigned long tsc_pit_min = ULONG_MAX, tsc_ref_min = ULONG_MAX;
757	unsigned long flags, latch, ms;
758	int hpet = is_hpet_enabled(), i, loopmin;
759
760	/*
761	 * Run 5 calibration loops to get the lowest frequency value
762	 * (the best estimate). We use two different calibration modes
763	 * here:
764	 *
765	 * 1) PIT loop. We set the PIT Channel 2 to oneshot mode and
766	 * load a timeout of 50ms. We read the time right after we
767	 * started the timer and wait until the PIT count down reaches
768	 * zero. In each wait loop iteration we read the TSC and check
769	 * the delta to the previous read. We keep track of the min
770	 * and max values of that delta. The delta is mostly defined
771	 * by the IO time of the PIT access, so we can detect when
772	 * any disturbance happened between the two reads. If the
773	 * maximum time is significantly larger than the minimum time,
774	 * then we discard the result and have another try.
775	 *
776	 * 2) Reference counter. If available we use the HPET or the
777	 * PMTIMER as a reference to check the sanity of that value.
778	 * We use separate TSC readouts and check inside of the
779	 * reference read for any possible disturbance. We discard
780	 * disturbed values here as well. We do that around the PIT
781	 * calibration delay loop as we have to wait for a certain
782	 * amount of time anyway.
783	 */
784
785	/* Preset PIT loop values */
786	latch = CAL_LATCH;
787	ms = CAL_MS;
788	loopmin = CAL_PIT_LOOPS;
789
790	for (i = 0; i < 3; i++) {
791		unsigned long tsc_pit_khz;
792
793		/*
794		 * Read the start value and the reference count of
795		 * hpet/pmtimer when available. Then do the PIT
796		 * calibration, which will take at least 50ms, and
797		 * read the end value.
798		 */
799		local_irq_save(flags);
800		tsc1 = tsc_read_refs(&ref1, hpet);
801		tsc_pit_khz = pit_calibrate_tsc(latch, ms, loopmin);
802		tsc2 = tsc_read_refs(&ref2, hpet);
803		local_irq_restore(flags);
804
805		/* Pick the lowest PIT TSC calibration so far */
806		tsc_pit_min = min(tsc_pit_min, tsc_pit_khz);
807
808		/* hpet or pmtimer available ? */
809		if (ref1 == ref2)
810			continue;
811
812		/* Check, whether the sampling was disturbed */
813		if (tsc1 == ULLONG_MAX || tsc2 == ULLONG_MAX)
814			continue;
815
816		tsc2 = (tsc2 - tsc1) * 1000000LL;
817		if (hpet)
818			tsc2 = calc_hpet_ref(tsc2, ref1, ref2);
819		else
820			tsc2 = calc_pmtimer_ref(tsc2, ref1, ref2);
821
822		tsc_ref_min = min(tsc_ref_min, (unsigned long) tsc2);
823
824		/* Check the reference deviation */
825		delta = ((u64) tsc_pit_min) * 100;
826		do_div(delta, tsc_ref_min);
827
828		/*
829		 * If both calibration results are inside a 10% window
830		 * then we can be sure, that the calibration
831		 * succeeded. We break out of the loop right away. We
832		 * use the reference value, as it is more precise.
833		 */
834		if (delta >= 90 && delta <= 110) {
835			pr_info("PIT calibration matches %s. %d loops\n",
836				hpet ? "HPET" : "PMTIMER", i + 1);
837			return tsc_ref_min;
838		}
839
840		/*
841		 * Check whether PIT failed more than once. This
842		 * happens in virtualized environments. We need to
843		 * give the virtual PC a slightly longer timeframe for
844		 * the HPET/PMTIMER to make the result precise.
845		 */
846		if (i == 1 && tsc_pit_min == ULONG_MAX) {
847			latch = CAL2_LATCH;
848			ms = CAL2_MS;
849			loopmin = CAL2_PIT_LOOPS;
850		}
851	}
852
853	/*
854	 * Now check the results.
855	 */
856	if (tsc_pit_min == ULONG_MAX) {
857		/* PIT gave no useful value */
858		pr_warn("Unable to calibrate against PIT\n");
859
860		/* We don't have an alternative source, disable TSC */
861		if (!hpet && !ref1 && !ref2) {
862			pr_notice("No reference (HPET/PMTIMER) available\n");
863			return 0;
864		}
865
866		/* The alternative source failed as well, disable TSC */
867		if (tsc_ref_min == ULONG_MAX) {
868			pr_warn("HPET/PMTIMER calibration failed\n");
869			return 0;
870		}
871
872		/* Use the alternative source */
873		pr_info("using %s reference calibration\n",
874			hpet ? "HPET" : "PMTIMER");
875
876		return tsc_ref_min;
877	}
878
879	/* We don't have an alternative source, use the PIT calibration value */
880	if (!hpet && !ref1 && !ref2) {
881		pr_info("Using PIT calibration value\n");
882		return tsc_pit_min;
883	}
884
885	/* The alternative source failed, use the PIT calibration value */
886	if (tsc_ref_min == ULONG_MAX) {
887		pr_warn("HPET/PMTIMER calibration failed. Using PIT calibration.\n");
888		return tsc_pit_min;
889	}
890
891	/*
892	 * The calibration values differ too much. In doubt, we use
893	 * the PIT value as we know that there are PMTIMERs around
894	 * running at double speed. At least we let the user know:
895	 */
896	pr_warn("PIT calibration deviates from %s: %lu %lu\n",
897		hpet ? "HPET" : "PMTIMER", tsc_pit_min, tsc_ref_min);
898	pr_info("Using PIT calibration value\n");
899	return tsc_pit_min;
900}
901
902/**
903 * native_calibrate_cpu_early - can calibrate the cpu early in boot
904 */
905unsigned long native_calibrate_cpu_early(void)
906{
907	unsigned long flags, fast_calibrate = cpu_khz_from_cpuid();
908
909	if (!fast_calibrate)
910		fast_calibrate = cpu_khz_from_msr();
911	if (!fast_calibrate) {
912		local_irq_save(flags);
913		fast_calibrate = quick_pit_calibrate();
914		local_irq_restore(flags);
915	}
916	return fast_calibrate;
917}
918
919
920/**
921 * native_calibrate_cpu - calibrate the cpu
922 */
923static unsigned long native_calibrate_cpu(void)
924{
925	unsigned long tsc_freq = native_calibrate_cpu_early();
926
927	if (!tsc_freq)
928		tsc_freq = pit_hpet_ptimer_calibrate_cpu();
929
930	return tsc_freq;
931}
932
933void recalibrate_cpu_khz(void)
934{
935#ifndef CONFIG_SMP
936	unsigned long cpu_khz_old = cpu_khz;
937
938	if (!boot_cpu_has(X86_FEATURE_TSC))
939		return;
940
941	cpu_khz = x86_platform.calibrate_cpu();
942	tsc_khz = x86_platform.calibrate_tsc();
943	if (tsc_khz == 0)
944		tsc_khz = cpu_khz;
945	else if (abs(cpu_khz - tsc_khz) * 10 > tsc_khz)
946		cpu_khz = tsc_khz;
947	cpu_data(0).loops_per_jiffy = cpufreq_scale(cpu_data(0).loops_per_jiffy,
948						    cpu_khz_old, cpu_khz);
949#endif
950}
951EXPORT_SYMBOL_GPL(recalibrate_cpu_khz);
952
953
954static unsigned long long cyc2ns_suspend;
955
956void tsc_save_sched_clock_state(void)
957{
958	if (!sched_clock_stable())
959		return;
960
961	cyc2ns_suspend = sched_clock();
962}
963
964/*
965 * Even on processors with invariant TSC, TSC gets reset in some the
966 * ACPI system sleep states. And in some systems BIOS seem to reinit TSC to
967 * arbitrary value (still sync'd across cpu's) during resume from such sleep
968 * states. To cope up with this, recompute the cyc2ns_offset for each cpu so
969 * that sched_clock() continues from the point where it was left off during
970 * suspend.
971 */
972void tsc_restore_sched_clock_state(void)
973{
974	unsigned long long offset;
975	unsigned long flags;
976	int cpu;
977
978	if (!sched_clock_stable())
979		return;
980
981	local_irq_save(flags);
982
983	/*
984	 * We're coming out of suspend, there's no concurrency yet; don't
985	 * bother being nice about the RCU stuff, just write to both
986	 * data fields.
987	 */
988
989	this_cpu_write(cyc2ns.data[0].cyc2ns_offset, 0);
990	this_cpu_write(cyc2ns.data[1].cyc2ns_offset, 0);
991
992	offset = cyc2ns_suspend - sched_clock();
993
994	for_each_possible_cpu(cpu) {
995		per_cpu(cyc2ns.data[0].cyc2ns_offset, cpu) = offset;
996		per_cpu(cyc2ns.data[1].cyc2ns_offset, cpu) = offset;
997	}
998
999	local_irq_restore(flags);
1000}
1001
1002#ifdef CONFIG_CPU_FREQ
1003/*
1004 * Frequency scaling support. Adjust the TSC based timer when the CPU frequency
1005 * changes.
1006 *
1007 * NOTE: On SMP the situation is not fixable in general, so simply mark the TSC
1008 * as unstable and give up in those cases.
1009 *
1010 * Should fix up last_tsc too. Currently gettimeofday in the
1011 * first tick after the change will be slightly wrong.
1012 */
1013
1014static unsigned int  ref_freq;
1015static unsigned long loops_per_jiffy_ref;
1016static unsigned long tsc_khz_ref;
1017
1018static int time_cpufreq_notifier(struct notifier_block *nb, unsigned long val,
1019				void *data)
1020{
1021	struct cpufreq_freqs *freq = data;
1022
1023	if (num_online_cpus() > 1) {
1024		mark_tsc_unstable("cpufreq changes on SMP");
1025		return 0;
1026	}
1027
1028	if (!ref_freq) {
1029		ref_freq = freq->old;
1030		loops_per_jiffy_ref = boot_cpu_data.loops_per_jiffy;
1031		tsc_khz_ref = tsc_khz;
1032	}
1033
1034	if ((val == CPUFREQ_PRECHANGE  && freq->old < freq->new) ||
1035	    (val == CPUFREQ_POSTCHANGE && freq->old > freq->new)) {
1036		boot_cpu_data.loops_per_jiffy =
1037			cpufreq_scale(loops_per_jiffy_ref, ref_freq, freq->new);
1038
1039		tsc_khz = cpufreq_scale(tsc_khz_ref, ref_freq, freq->new);
1040		if (!(freq->flags & CPUFREQ_CONST_LOOPS))
1041			mark_tsc_unstable("cpufreq changes");
1042
1043		set_cyc2ns_scale(tsc_khz, freq->policy->cpu, rdtsc());
1044	}
1045
1046	return 0;
1047}
1048
1049static struct notifier_block time_cpufreq_notifier_block = {
1050	.notifier_call  = time_cpufreq_notifier
1051};
1052
1053static int __init cpufreq_register_tsc_scaling(void)
1054{
1055	if (!boot_cpu_has(X86_FEATURE_TSC))
1056		return 0;
1057	if (boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
1058		return 0;
1059	cpufreq_register_notifier(&time_cpufreq_notifier_block,
1060				CPUFREQ_TRANSITION_NOTIFIER);
1061	return 0;
1062}
1063
1064core_initcall(cpufreq_register_tsc_scaling);
1065
1066#endif /* CONFIG_CPU_FREQ */
1067
1068#define ART_CPUID_LEAF (0x15)
1069#define ART_MIN_DENOMINATOR (1)
1070
1071
1072/*
1073 * If ART is present detect the numerator:denominator to convert to TSC
1074 */
1075static void __init detect_art(void)
1076{
1077	unsigned int unused[2];
1078
1079	if (boot_cpu_data.cpuid_level < ART_CPUID_LEAF)
1080		return;
1081
1082	/*
1083	 * Don't enable ART in a VM, non-stop TSC and TSC_ADJUST required,
1084	 * and the TSC counter resets must not occur asynchronously.
1085	 */
1086	if (boot_cpu_has(X86_FEATURE_HYPERVISOR) ||
1087	    !boot_cpu_has(X86_FEATURE_NONSTOP_TSC) ||
1088	    !boot_cpu_has(X86_FEATURE_TSC_ADJUST) ||
1089	    tsc_async_resets)
1090		return;
1091
1092	cpuid(ART_CPUID_LEAF, &art_to_tsc_denominator,
1093	      &art_to_tsc_numerator, unused, unused+1);
1094
1095	if (art_to_tsc_denominator < ART_MIN_DENOMINATOR)
1096		return;
1097
1098	rdmsrl(MSR_IA32_TSC_ADJUST, art_to_tsc_offset);
1099
1100	/* Make this sticky over multiple CPU init calls */
1101	setup_force_cpu_cap(X86_FEATURE_ART);
1102}
1103
1104
1105/* clocksource code */
1106
1107static void tsc_resume(struct clocksource *cs)
1108{
1109	tsc_verify_tsc_adjust(true);
1110}
1111
1112/*
1113 * We used to compare the TSC to the cycle_last value in the clocksource
1114 * structure to avoid a nasty time-warp. This can be observed in a
1115 * very small window right after one CPU updated cycle_last under
1116 * xtime/vsyscall_gtod lock and the other CPU reads a TSC value which
1117 * is smaller than the cycle_last reference value due to a TSC which
1118 * is slightly behind. This delta is nowhere else observable, but in
1119 * that case it results in a forward time jump in the range of hours
1120 * due to the unsigned delta calculation of the time keeping core
1121 * code, which is necessary to support wrapping clocksources like pm
1122 * timer.
1123 *
1124 * This sanity check is now done in the core timekeeping code.
1125 * checking the result of read_tsc() - cycle_last for being negative.
1126 * That works because CLOCKSOURCE_MASK(64) does not mask out any bit.
1127 */
1128static u64 read_tsc(struct clocksource *cs)
1129{
1130	return (u64)rdtsc_ordered();
1131}
1132
1133static void tsc_cs_mark_unstable(struct clocksource *cs)
1134{
1135	if (tsc_unstable)
1136		return;
1137
1138	tsc_unstable = 1;
1139	if (using_native_sched_clock())
1140		clear_sched_clock_stable();
1141	disable_sched_clock_irqtime();
1142	pr_info("Marking TSC unstable due to clocksource watchdog\n");
1143}
1144
1145static void tsc_cs_tick_stable(struct clocksource *cs)
1146{
1147	if (tsc_unstable)
1148		return;
1149
1150	if (using_native_sched_clock())
1151		sched_clock_tick_stable();
1152}
1153
1154static int tsc_cs_enable(struct clocksource *cs)
1155{
1156	vclocks_set_used(VDSO_CLOCKMODE_TSC);
1157	return 0;
1158}
1159
1160/*
1161 * .mask MUST be CLOCKSOURCE_MASK(64). See comment above read_tsc()
1162 */
1163static struct clocksource clocksource_tsc_early = {
1164	.name			= "tsc-early",
1165	.rating			= 299,
1166	.uncertainty_margin	= 32 * NSEC_PER_MSEC,
1167	.read			= read_tsc,
1168	.mask			= CLOCKSOURCE_MASK(64),
1169	.flags			= CLOCK_SOURCE_IS_CONTINUOUS |
1170				  CLOCK_SOURCE_MUST_VERIFY,
1171	.id			= CSID_X86_TSC_EARLY,
1172	.vdso_clock_mode	= VDSO_CLOCKMODE_TSC,
1173	.enable			= tsc_cs_enable,
1174	.resume			= tsc_resume,
1175	.mark_unstable		= tsc_cs_mark_unstable,
1176	.tick_stable		= tsc_cs_tick_stable,
1177	.list			= LIST_HEAD_INIT(clocksource_tsc_early.list),
1178};
1179
1180/*
1181 * Must mark VALID_FOR_HRES early such that when we unregister tsc_early
1182 * this one will immediately take over. We will only register if TSC has
1183 * been found good.
1184 */
1185static struct clocksource clocksource_tsc = {
1186	.name			= "tsc",
1187	.rating			= 300,
1188	.read			= read_tsc,
1189	.mask			= CLOCKSOURCE_MASK(64),
1190	.flags			= CLOCK_SOURCE_IS_CONTINUOUS |
1191				  CLOCK_SOURCE_VALID_FOR_HRES |
1192				  CLOCK_SOURCE_MUST_VERIFY |
1193				  CLOCK_SOURCE_VERIFY_PERCPU,
1194	.id			= CSID_X86_TSC,
1195	.vdso_clock_mode	= VDSO_CLOCKMODE_TSC,
1196	.enable			= tsc_cs_enable,
1197	.resume			= tsc_resume,
1198	.mark_unstable		= tsc_cs_mark_unstable,
1199	.tick_stable		= tsc_cs_tick_stable,
1200	.list			= LIST_HEAD_INIT(clocksource_tsc.list),
1201};
1202
1203void mark_tsc_unstable(char *reason)
1204{
1205	if (tsc_unstable)
1206		return;
1207
1208	tsc_unstable = 1;
1209	if (using_native_sched_clock())
1210		clear_sched_clock_stable();
1211	disable_sched_clock_irqtime();
1212	pr_info("Marking TSC unstable due to %s\n", reason);
1213
1214	clocksource_mark_unstable(&clocksource_tsc_early);
1215	clocksource_mark_unstable(&clocksource_tsc);
1216}
1217
1218EXPORT_SYMBOL_GPL(mark_tsc_unstable);
1219
1220static void __init tsc_disable_clocksource_watchdog(void)
1221{
1222	clocksource_tsc_early.flags &= ~CLOCK_SOURCE_MUST_VERIFY;
1223	clocksource_tsc.flags &= ~CLOCK_SOURCE_MUST_VERIFY;
1224}
1225
1226bool tsc_clocksource_watchdog_disabled(void)
1227{
1228	return !(clocksource_tsc.flags & CLOCK_SOURCE_MUST_VERIFY) &&
1229	       tsc_as_watchdog && !no_tsc_watchdog;
1230}
1231
1232static void __init check_system_tsc_reliable(void)
1233{
1234#if defined(CONFIG_MGEODEGX1) || defined(CONFIG_MGEODE_LX) || defined(CONFIG_X86_GENERIC)
1235	if (is_geode_lx()) {
1236		/* RTSC counts during suspend */
1237#define RTSC_SUSP 0x100
1238		unsigned long res_low, res_high;
1239
1240		rdmsr_safe(MSR_GEODE_BUSCONT_CONF0, &res_low, &res_high);
1241		/* Geode_LX - the OLPC CPU has a very reliable TSC */
1242		if (res_low & RTSC_SUSP)
1243			tsc_clocksource_reliable = 1;
1244	}
1245#endif
1246	if (boot_cpu_has(X86_FEATURE_TSC_RELIABLE))
1247		tsc_clocksource_reliable = 1;
1248
1249	/*
1250	 * Disable the clocksource watchdog when the system has:
1251	 *  - TSC running at constant frequency
1252	 *  - TSC which does not stop in C-States
1253	 *  - the TSC_ADJUST register which allows to detect even minimal
1254	 *    modifications
1255	 *  - not more than two sockets. As the number of sockets cannot be
1256	 *    evaluated at the early boot stage where this has to be
1257	 *    invoked, check the number of online memory nodes as a
1258	 *    fallback solution which is an reasonable estimate.
1259	 */
1260	if (boot_cpu_has(X86_FEATURE_CONSTANT_TSC) &&
1261	    boot_cpu_has(X86_FEATURE_NONSTOP_TSC) &&
1262	    boot_cpu_has(X86_FEATURE_TSC_ADJUST) &&
1263	    nr_online_nodes <= 4)
1264		tsc_disable_clocksource_watchdog();
1265}
1266
1267/*
1268 * Make an educated guess if the TSC is trustworthy and synchronized
1269 * over all CPUs.
1270 */
1271int unsynchronized_tsc(void)
1272{
1273	if (!boot_cpu_has(X86_FEATURE_TSC) || tsc_unstable)
1274		return 1;
1275
1276#ifdef CONFIG_SMP
1277	if (apic_is_clustered_box())
1278		return 1;
1279#endif
1280
1281	if (boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
1282		return 0;
1283
1284	if (tsc_clocksource_reliable)
1285		return 0;
1286	/*
1287	 * Intel systems are normally all synchronized.
1288	 * Exceptions must mark TSC as unstable:
1289	 */
1290	if (boot_cpu_data.x86_vendor != X86_VENDOR_INTEL) {
1291		/* assume multi socket systems are not synchronized: */
1292		if (num_possible_cpus() > 1)
1293			return 1;
1294	}
1295
1296	return 0;
1297}
1298
1299/*
1300 * Convert ART to TSC given numerator/denominator found in detect_art()
1301 */
1302struct system_counterval_t convert_art_to_tsc(u64 art)
1303{
1304	u64 tmp, res, rem;
1305
1306	rem = do_div(art, art_to_tsc_denominator);
1307
1308	res = art * art_to_tsc_numerator;
1309	tmp = rem * art_to_tsc_numerator;
1310
1311	do_div(tmp, art_to_tsc_denominator);
1312	res += tmp + art_to_tsc_offset;
1313
1314	return (struct system_counterval_t) {
1315		.cs_id	= have_art ? CSID_X86_TSC : CSID_GENERIC,
1316		.cycles	= res,
1317	};
1318}
1319EXPORT_SYMBOL(convert_art_to_tsc);
1320
1321/**
1322 * convert_art_ns_to_tsc() - Convert ART in nanoseconds to TSC.
1323 * @art_ns: ART (Always Running Timer) in unit of nanoseconds
1324 *
1325 * PTM requires all timestamps to be in units of nanoseconds. When user
1326 * software requests a cross-timestamp, this function converts system timestamp
1327 * to TSC.
1328 *
1329 * This is valid when CPU feature flag X86_FEATURE_TSC_KNOWN_FREQ is set
1330 * indicating the tsc_khz is derived from CPUID[15H]. Drivers should check
1331 * that this flag is set before conversion to TSC is attempted.
1332 *
1333 * Return:
1334 * struct system_counterval_t - system counter value with the ID of the
1335 *	corresponding clocksource:
1336 *	cycles:		System counter value
1337 *	cs_id:		The clocksource ID for validating comparability
1338 */
1339
1340struct system_counterval_t convert_art_ns_to_tsc(u64 art_ns)
1341{
1342	u64 tmp, res, rem;
1343
1344	rem = do_div(art_ns, USEC_PER_SEC);
1345
1346	res = art_ns * tsc_khz;
1347	tmp = rem * tsc_khz;
1348
1349	do_div(tmp, USEC_PER_SEC);
1350	res += tmp;
1351
1352	return (struct system_counterval_t) {
1353		.cs_id	= have_art ? CSID_X86_TSC : CSID_GENERIC,
1354		.cycles	= res,
1355	};
1356}
1357EXPORT_SYMBOL(convert_art_ns_to_tsc);
1358
1359
1360static void tsc_refine_calibration_work(struct work_struct *work);
1361static DECLARE_DELAYED_WORK(tsc_irqwork, tsc_refine_calibration_work);
1362/**
1363 * tsc_refine_calibration_work - Further refine tsc freq calibration
1364 * @work: ignored.
1365 *
1366 * This functions uses delayed work over a period of a
1367 * second to further refine the TSC freq value. Since this is
1368 * timer based, instead of loop based, we don't block the boot
1369 * process while this longer calibration is done.
1370 *
1371 * If there are any calibration anomalies (too many SMIs, etc),
1372 * or the refined calibration is off by 1% of the fast early
1373 * calibration, we throw out the new calibration and use the
1374 * early calibration.
1375 */
1376static void tsc_refine_calibration_work(struct work_struct *work)
1377{
1378	static u64 tsc_start = ULLONG_MAX, ref_start;
1379	static int hpet;
1380	u64 tsc_stop, ref_stop, delta;
1381	unsigned long freq;
1382	int cpu;
1383
1384	/* Don't bother refining TSC on unstable systems */
1385	if (tsc_unstable)
1386		goto unreg;
1387
1388	/*
1389	 * Since the work is started early in boot, we may be
1390	 * delayed the first time we expire. So set the workqueue
1391	 * again once we know timers are working.
1392	 */
1393	if (tsc_start == ULLONG_MAX) {
1394restart:
1395		/*
1396		 * Only set hpet once, to avoid mixing hardware
1397		 * if the hpet becomes enabled later.
1398		 */
1399		hpet = is_hpet_enabled();
1400		tsc_start = tsc_read_refs(&ref_start, hpet);
1401		schedule_delayed_work(&tsc_irqwork, HZ);
1402		return;
1403	}
1404
1405	tsc_stop = tsc_read_refs(&ref_stop, hpet);
1406
1407	/* hpet or pmtimer available ? */
1408	if (ref_start == ref_stop)
1409		goto out;
1410
1411	/* Check, whether the sampling was disturbed */
1412	if (tsc_stop == ULLONG_MAX)
1413		goto restart;
1414
1415	delta = tsc_stop - tsc_start;
1416	delta *= 1000000LL;
1417	if (hpet)
1418		freq = calc_hpet_ref(delta, ref_start, ref_stop);
1419	else
1420		freq = calc_pmtimer_ref(delta, ref_start, ref_stop);
1421
1422	/* Will hit this only if tsc_force_recalibrate has been set */
1423	if (boot_cpu_has(X86_FEATURE_TSC_KNOWN_FREQ)) {
1424
1425		/* Warn if the deviation exceeds 500 ppm */
1426		if (abs(tsc_khz - freq) > (tsc_khz >> 11)) {
1427			pr_warn("Warning: TSC freq calibrated by CPUID/MSR differs from what is calibrated by HW timer, please check with vendor!!\n");
1428			pr_info("Previous calibrated TSC freq:\t %lu.%03lu MHz\n",
1429				(unsigned long)tsc_khz / 1000,
1430				(unsigned long)tsc_khz % 1000);
1431		}
1432
1433		pr_info("TSC freq recalibrated by [%s]:\t %lu.%03lu MHz\n",
1434			hpet ? "HPET" : "PM_TIMER",
1435			(unsigned long)freq / 1000,
1436			(unsigned long)freq % 1000);
1437
1438		return;
1439	}
1440
1441	/* Make sure we're within 1% */
1442	if (abs(tsc_khz - freq) > tsc_khz/100)
1443		goto out;
1444
1445	tsc_khz = freq;
1446	pr_info("Refined TSC clocksource calibration: %lu.%03lu MHz\n",
1447		(unsigned long)tsc_khz / 1000,
1448		(unsigned long)tsc_khz % 1000);
1449
1450	/* Inform the TSC deadline clockevent devices about the recalibration */
1451	lapic_update_tsc_freq();
1452
1453	/* Update the sched_clock() rate to match the clocksource one */
1454	for_each_possible_cpu(cpu)
1455		set_cyc2ns_scale(tsc_khz, cpu, tsc_stop);
1456
1457out:
1458	if (tsc_unstable)
1459		goto unreg;
1460
1461	if (boot_cpu_has(X86_FEATURE_ART))
1462		have_art = true;
1463	clocksource_register_khz(&clocksource_tsc, tsc_khz);
1464unreg:
1465	clocksource_unregister(&clocksource_tsc_early);
1466}
1467
1468
1469static int __init init_tsc_clocksource(void)
1470{
1471	if (!boot_cpu_has(X86_FEATURE_TSC) || !tsc_khz)
1472		return 0;
1473
1474	if (tsc_unstable) {
1475		clocksource_unregister(&clocksource_tsc_early);
1476		return 0;
1477	}
1478
1479	if (boot_cpu_has(X86_FEATURE_NONSTOP_TSC_S3))
1480		clocksource_tsc.flags |= CLOCK_SOURCE_SUSPEND_NONSTOP;
1481
1482	/*
1483	 * When TSC frequency is known (retrieved via MSR or CPUID), we skip
1484	 * the refined calibration and directly register it as a clocksource.
1485	 */
1486	if (boot_cpu_has(X86_FEATURE_TSC_KNOWN_FREQ)) {
1487		if (boot_cpu_has(X86_FEATURE_ART))
1488			have_art = true;
1489		clocksource_register_khz(&clocksource_tsc, tsc_khz);
1490		clocksource_unregister(&clocksource_tsc_early);
1491
1492		if (!tsc_force_recalibrate)
1493			return 0;
1494	}
1495
1496	schedule_delayed_work(&tsc_irqwork, 0);
1497	return 0;
1498}
1499/*
1500 * We use device_initcall here, to ensure we run after the hpet
1501 * is fully initialized, which may occur at fs_initcall time.
1502 */
1503device_initcall(init_tsc_clocksource);
1504
1505static bool __init determine_cpu_tsc_frequencies(bool early)
1506{
1507	/* Make sure that cpu and tsc are not already calibrated */
1508	WARN_ON(cpu_khz || tsc_khz);
1509
1510	if (early) {
1511		cpu_khz = x86_platform.calibrate_cpu();
1512		if (tsc_early_khz)
1513			tsc_khz = tsc_early_khz;
1514		else
1515			tsc_khz = x86_platform.calibrate_tsc();
1516	} else {
1517		/* We should not be here with non-native cpu calibration */
1518		WARN_ON(x86_platform.calibrate_cpu != native_calibrate_cpu);
1519		cpu_khz = pit_hpet_ptimer_calibrate_cpu();
1520	}
1521
1522	/*
1523	 * Trust non-zero tsc_khz as authoritative,
1524	 * and use it to sanity check cpu_khz,
1525	 * which will be off if system timer is off.
1526	 */
1527	if (tsc_khz == 0)
1528		tsc_khz = cpu_khz;
1529	else if (abs(cpu_khz - tsc_khz) * 10 > tsc_khz)
1530		cpu_khz = tsc_khz;
1531
1532	if (tsc_khz == 0)
1533		return false;
1534
1535	pr_info("Detected %lu.%03lu MHz processor\n",
1536		(unsigned long)cpu_khz / KHZ,
1537		(unsigned long)cpu_khz % KHZ);
1538
1539	if (cpu_khz != tsc_khz) {
1540		pr_info("Detected %lu.%03lu MHz TSC",
1541			(unsigned long)tsc_khz / KHZ,
1542			(unsigned long)tsc_khz % KHZ);
1543	}
1544	return true;
1545}
1546
1547static unsigned long __init get_loops_per_jiffy(void)
1548{
1549	u64 lpj = (u64)tsc_khz * KHZ;
1550
1551	do_div(lpj, HZ);
1552	return lpj;
1553}
1554
1555static void __init tsc_enable_sched_clock(void)
1556{
1557	loops_per_jiffy = get_loops_per_jiffy();
1558	use_tsc_delay();
1559
1560	/* Sanitize TSC ADJUST before cyc2ns gets initialized */
1561	tsc_store_and_check_tsc_adjust(true);
1562	cyc2ns_init_boot_cpu();
1563	static_branch_enable(&__use_tsc);
1564}
1565
1566void __init tsc_early_init(void)
1567{
1568	if (!boot_cpu_has(X86_FEATURE_TSC))
1569		return;
1570	/* Don't change UV TSC multi-chassis synchronization */
1571	if (is_early_uv_system())
1572		return;
1573	if (!determine_cpu_tsc_frequencies(true))
1574		return;
1575	tsc_enable_sched_clock();
1576}
1577
1578void __init tsc_init(void)
1579{
1580	if (!cpu_feature_enabled(X86_FEATURE_TSC)) {
1581		setup_clear_cpu_cap(X86_FEATURE_TSC_DEADLINE_TIMER);
1582		return;
1583	}
1584
1585	/*
1586	 * native_calibrate_cpu_early can only calibrate using methods that are
1587	 * available early in boot.
1588	 */
1589	if (x86_platform.calibrate_cpu == native_calibrate_cpu_early)
1590		x86_platform.calibrate_cpu = native_calibrate_cpu;
1591
1592	if (!tsc_khz) {
1593		/* We failed to determine frequencies earlier, try again */
1594		if (!determine_cpu_tsc_frequencies(false)) {
1595			mark_tsc_unstable("could not calculate TSC khz");
1596			setup_clear_cpu_cap(X86_FEATURE_TSC_DEADLINE_TIMER);
1597			return;
1598		}
1599		tsc_enable_sched_clock();
1600	}
1601
1602	cyc2ns_init_secondary_cpus();
1603
1604	if (!no_sched_irq_time)
1605		enable_sched_clock_irqtime();
1606
1607	lpj_fine = get_loops_per_jiffy();
1608
1609	check_system_tsc_reliable();
1610
1611	if (unsynchronized_tsc()) {
1612		mark_tsc_unstable("TSCs unsynchronized");
1613		return;
1614	}
1615
1616	if (tsc_clocksource_reliable || no_tsc_watchdog)
1617		tsc_disable_clocksource_watchdog();
1618
1619	clocksource_register_khz(&clocksource_tsc_early, tsc_khz);
1620	detect_art();
1621}
1622
1623#ifdef CONFIG_SMP
1624/*
1625 * Check whether existing calibration data can be reused.
1626 */
1627unsigned long calibrate_delay_is_known(void)
1628{
1629	int sibling, cpu = smp_processor_id();
1630	int constant_tsc = cpu_has(&cpu_data(cpu), X86_FEATURE_CONSTANT_TSC);
1631	const struct cpumask *mask = topology_core_cpumask(cpu);
1632
1633	/*
1634	 * If TSC has constant frequency and TSC is synchronized across
1635	 * sockets then reuse CPU0 calibration.
1636	 */
1637	if (constant_tsc && !tsc_unstable)
1638		return cpu_data(0).loops_per_jiffy;
1639
1640	/*
1641	 * If TSC has constant frequency and TSC is not synchronized across
1642	 * sockets and this is not the first CPU in the socket, then reuse
1643	 * the calibration value of an already online CPU on that socket.
1644	 *
1645	 * This assumes that CONSTANT_TSC is consistent for all CPUs in a
1646	 * socket.
1647	 */
1648	if (!constant_tsc || !mask)
1649		return 0;
1650
1651	sibling = cpumask_any_but(mask, cpu);
1652	if (sibling < nr_cpu_ids)
1653		return cpu_data(sibling).loops_per_jiffy;
1654	return 0;
1655}
1656#endif
1657