1/*
2 *  Copyright (C) 1991, 1992  Linus Torvalds
3 *  Copyright (C) 2000, 2001, 2002 Andi Kleen, SuSE Labs
4 *
5 *  Pentium III FXSR, SSE support
6 *	Gareth Hughes <gareth@valinux.com>, May 2000
7 */
8
9/*
10 * Handle hardware traps and faults.
11 */
12
13#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
14
15#include <linux/context_tracking.h>
16#include <linux/interrupt.h>
17#include <linux/kallsyms.h>
18#include <linux/kmsan.h>
19#include <linux/spinlock.h>
20#include <linux/kprobes.h>
21#include <linux/uaccess.h>
22#include <linux/kdebug.h>
23#include <linux/kgdb.h>
24#include <linux/kernel.h>
25#include <linux/export.h>
26#include <linux/ptrace.h>
27#include <linux/uprobes.h>
28#include <linux/string.h>
29#include <linux/delay.h>
30#include <linux/errno.h>
31#include <linux/kexec.h>
32#include <linux/sched.h>
33#include <linux/sched/task_stack.h>
34#include <linux/timer.h>
35#include <linux/init.h>
36#include <linux/bug.h>
37#include <linux/nmi.h>
38#include <linux/mm.h>
39#include <linux/smp.h>
40#include <linux/cpu.h>
41#include <linux/io.h>
42#include <linux/hardirq.h>
43#include <linux/atomic.h>
44#include <linux/iommu.h>
45
46#include <asm/stacktrace.h>
47#include <asm/processor.h>
48#include <asm/debugreg.h>
49#include <asm/realmode.h>
50#include <asm/text-patching.h>
51#include <asm/ftrace.h>
52#include <asm/traps.h>
53#include <asm/desc.h>
54#include <asm/fred.h>
55#include <asm/fpu/api.h>
56#include <asm/cpu.h>
57#include <asm/cpu_entry_area.h>
58#include <asm/mce.h>
59#include <asm/fixmap.h>
60#include <asm/mach_traps.h>
61#include <asm/alternative.h>
62#include <asm/fpu/xstate.h>
63#include <asm/vm86.h>
64#include <asm/umip.h>
65#include <asm/insn.h>
66#include <asm/insn-eval.h>
67#include <asm/vdso.h>
68#include <asm/tdx.h>
69#include <asm/cfi.h>
70
71#ifdef CONFIG_X86_64
72#include <asm/x86_init.h>
73#else
74#include <asm/processor-flags.h>
75#include <asm/setup.h>
76#endif
77
78#include <asm/proto.h>
79
80DECLARE_BITMAP(system_vectors, NR_VECTORS);
81
82__always_inline int is_valid_bugaddr(unsigned long addr)
83{
84	if (addr < TASK_SIZE_MAX)
85		return 0;
86
87	/*
88	 * We got #UD, if the text isn't readable we'd have gotten
89	 * a different exception.
90	 */
91	return *(unsigned short *)addr == INSN_UD2;
92}
93
94static nokprobe_inline int
95do_trap_no_signal(struct task_struct *tsk, int trapnr, const char *str,
96		  struct pt_regs *regs,	long error_code)
97{
98	if (v8086_mode(regs)) {
99		/*
100		 * Traps 0, 1, 3, 4, and 5 should be forwarded to vm86.
101		 * On nmi (interrupt 2), do_trap should not be called.
102		 */
103		if (trapnr < X86_TRAP_UD) {
104			if (!handle_vm86_trap((struct kernel_vm86_regs *) regs,
105						error_code, trapnr))
106				return 0;
107		}
108	} else if (!user_mode(regs)) {
109		if (fixup_exception(regs, trapnr, error_code, 0))
110			return 0;
111
112		tsk->thread.error_code = error_code;
113		tsk->thread.trap_nr = trapnr;
114		die(str, regs, error_code);
115	} else {
116		if (fixup_vdso_exception(regs, trapnr, error_code, 0))
117			return 0;
118	}
119
120	/*
121	 * We want error_code and trap_nr set for userspace faults and
122	 * kernelspace faults which result in die(), but not
123	 * kernelspace faults which are fixed up.  die() gives the
124	 * process no chance to handle the signal and notice the
125	 * kernel fault information, so that won't result in polluting
126	 * the information about previously queued, but not yet
127	 * delivered, faults.  See also exc_general_protection below.
128	 */
129	tsk->thread.error_code = error_code;
130	tsk->thread.trap_nr = trapnr;
131
132	return -1;
133}
134
135static void show_signal(struct task_struct *tsk, int signr,
136			const char *type, const char *desc,
137			struct pt_regs *regs, long error_code)
138{
139	if (show_unhandled_signals && unhandled_signal(tsk, signr) &&
140	    printk_ratelimit()) {
141		pr_info("%s[%d] %s%s ip:%lx sp:%lx error:%lx",
142			tsk->comm, task_pid_nr(tsk), type, desc,
143			regs->ip, regs->sp, error_code);
144		print_vma_addr(KERN_CONT " in ", regs->ip);
145		pr_cont("\n");
146	}
147}
148
149static void
150do_trap(int trapnr, int signr, char *str, struct pt_regs *regs,
151	long error_code, int sicode, void __user *addr)
152{
153	struct task_struct *tsk = current;
154
155	if (!do_trap_no_signal(tsk, trapnr, str, regs, error_code))
156		return;
157
158	show_signal(tsk, signr, "trap ", str, regs, error_code);
159
160	if (!sicode)
161		force_sig(signr);
162	else
163		force_sig_fault(signr, sicode, addr);
164}
165NOKPROBE_SYMBOL(do_trap);
166
167static void do_error_trap(struct pt_regs *regs, long error_code, char *str,
168	unsigned long trapnr, int signr, int sicode, void __user *addr)
169{
170	RCU_LOCKDEP_WARN(!rcu_is_watching(), "entry code didn't wake RCU");
171
172	if (notify_die(DIE_TRAP, str, regs, error_code, trapnr, signr) !=
173			NOTIFY_STOP) {
174		cond_local_irq_enable(regs);
175		do_trap(trapnr, signr, str, regs, error_code, sicode, addr);
176		cond_local_irq_disable(regs);
177	}
178}
179
180/*
181 * Posix requires to provide the address of the faulting instruction for
182 * SIGILL (#UD) and SIGFPE (#DE) in the si_addr member of siginfo_t.
183 *
184 * This address is usually regs->ip, but when an uprobe moved the code out
185 * of line then regs->ip points to the XOL code which would confuse
186 * anything which analyzes the fault address vs. the unmodified binary. If
187 * a trap happened in XOL code then uprobe maps regs->ip back to the
188 * original instruction address.
189 */
190static __always_inline void __user *error_get_trap_addr(struct pt_regs *regs)
191{
192	return (void __user *)uprobe_get_trap_addr(regs);
193}
194
195DEFINE_IDTENTRY(exc_divide_error)
196{
197	do_error_trap(regs, 0, "divide error", X86_TRAP_DE, SIGFPE,
198		      FPE_INTDIV, error_get_trap_addr(regs));
199}
200
201DEFINE_IDTENTRY(exc_overflow)
202{
203	do_error_trap(regs, 0, "overflow", X86_TRAP_OF, SIGSEGV, 0, NULL);
204}
205
206#ifdef CONFIG_X86_F00F_BUG
207void handle_invalid_op(struct pt_regs *regs)
208#else
209static inline void handle_invalid_op(struct pt_regs *regs)
210#endif
211{
212	do_error_trap(regs, 0, "invalid opcode", X86_TRAP_UD, SIGILL,
213		      ILL_ILLOPN, error_get_trap_addr(regs));
214}
215
216static noinstr bool handle_bug(struct pt_regs *regs)
217{
218	bool handled = false;
219
220	/*
221	 * Normally @regs are unpoisoned by irqentry_enter(), but handle_bug()
222	 * is a rare case that uses @regs without passing them to
223	 * irqentry_enter().
224	 */
225	kmsan_unpoison_entry_regs(regs);
226	if (!is_valid_bugaddr(regs->ip))
227		return handled;
228
229	/*
230	 * All lies, just get the WARN/BUG out.
231	 */
232	instrumentation_begin();
233	/*
234	 * Since we're emulating a CALL with exceptions, restore the interrupt
235	 * state to what it was at the exception site.
236	 */
237	if (regs->flags & X86_EFLAGS_IF)
238		raw_local_irq_enable();
239	if (report_bug(regs->ip, regs) == BUG_TRAP_TYPE_WARN ||
240	    handle_cfi_failure(regs) == BUG_TRAP_TYPE_WARN) {
241		regs->ip += LEN_UD2;
242		handled = true;
243	}
244	if (regs->flags & X86_EFLAGS_IF)
245		raw_local_irq_disable();
246	instrumentation_end();
247
248	return handled;
249}
250
251DEFINE_IDTENTRY_RAW(exc_invalid_op)
252{
253	irqentry_state_t state;
254
255	/*
256	 * We use UD2 as a short encoding for 'CALL __WARN', as such
257	 * handle it before exception entry to avoid recursive WARN
258	 * in case exception entry is the one triggering WARNs.
259	 */
260	if (!user_mode(regs) && handle_bug(regs))
261		return;
262
263	state = irqentry_enter(regs);
264	instrumentation_begin();
265	handle_invalid_op(regs);
266	instrumentation_end();
267	irqentry_exit(regs, state);
268}
269
270DEFINE_IDTENTRY(exc_coproc_segment_overrun)
271{
272	do_error_trap(regs, 0, "coprocessor segment overrun",
273		      X86_TRAP_OLD_MF, SIGFPE, 0, NULL);
274}
275
276DEFINE_IDTENTRY_ERRORCODE(exc_invalid_tss)
277{
278	do_error_trap(regs, error_code, "invalid TSS", X86_TRAP_TS, SIGSEGV,
279		      0, NULL);
280}
281
282DEFINE_IDTENTRY_ERRORCODE(exc_segment_not_present)
283{
284	do_error_trap(regs, error_code, "segment not present", X86_TRAP_NP,
285		      SIGBUS, 0, NULL);
286}
287
288DEFINE_IDTENTRY_ERRORCODE(exc_stack_segment)
289{
290	do_error_trap(regs, error_code, "stack segment", X86_TRAP_SS, SIGBUS,
291		      0, NULL);
292}
293
294DEFINE_IDTENTRY_ERRORCODE(exc_alignment_check)
295{
296	char *str = "alignment check";
297
298	if (notify_die(DIE_TRAP, str, regs, error_code, X86_TRAP_AC, SIGBUS) == NOTIFY_STOP)
299		return;
300
301	if (!user_mode(regs))
302		die("Split lock detected\n", regs, error_code);
303
304	local_irq_enable();
305
306	if (handle_user_split_lock(regs, error_code))
307		goto out;
308
309	do_trap(X86_TRAP_AC, SIGBUS, "alignment check", regs,
310		error_code, BUS_ADRALN, NULL);
311
312out:
313	local_irq_disable();
314}
315
316#ifdef CONFIG_VMAP_STACK
317__visible void __noreturn handle_stack_overflow(struct pt_regs *regs,
318						unsigned long fault_address,
319						struct stack_info *info)
320{
321	const char *name = stack_type_name(info->type);
322
323	printk(KERN_EMERG "BUG: %s stack guard page was hit at %p (stack is %p..%p)\n",
324	       name, (void *)fault_address, info->begin, info->end);
325
326	die("stack guard page", regs, 0);
327
328	/* Be absolutely certain we don't return. */
329	panic("%s stack guard hit", name);
330}
331#endif
332
333/*
334 * Runs on an IST stack for x86_64 and on a special task stack for x86_32.
335 *
336 * On x86_64, this is more or less a normal kernel entry.  Notwithstanding the
337 * SDM's warnings about double faults being unrecoverable, returning works as
338 * expected.  Presumably what the SDM actually means is that the CPU may get
339 * the register state wrong on entry, so returning could be a bad idea.
340 *
341 * Various CPU engineers have promised that double faults due to an IRET fault
342 * while the stack is read-only are, in fact, recoverable.
343 *
344 * On x86_32, this is entered through a task gate, and regs are synthesized
345 * from the TSS.  Returning is, in principle, okay, but changes to regs will
346 * be lost.  If, for some reason, we need to return to a context with modified
347 * regs, the shim code could be adjusted to synchronize the registers.
348 *
349 * The 32bit #DF shim provides CR2 already as an argument. On 64bit it needs
350 * to be read before doing anything else.
351 */
352DEFINE_IDTENTRY_DF(exc_double_fault)
353{
354	static const char str[] = "double fault";
355	struct task_struct *tsk = current;
356
357#ifdef CONFIG_VMAP_STACK
358	unsigned long address = read_cr2();
359	struct stack_info info;
360#endif
361
362#ifdef CONFIG_X86_ESPFIX64
363	extern unsigned char native_irq_return_iret[];
364
365	/*
366	 * If IRET takes a non-IST fault on the espfix64 stack, then we
367	 * end up promoting it to a doublefault.  In that case, take
368	 * advantage of the fact that we're not using the normal (TSS.sp0)
369	 * stack right now.  We can write a fake #GP(0) frame at TSS.sp0
370	 * and then modify our own IRET frame so that, when we return,
371	 * we land directly at the #GP(0) vector with the stack already
372	 * set up according to its expectations.
373	 *
374	 * The net result is that our #GP handler will think that we
375	 * entered from usermode with the bad user context.
376	 *
377	 * No need for nmi_enter() here because we don't use RCU.
378	 */
379	if (((long)regs->sp >> P4D_SHIFT) == ESPFIX_PGD_ENTRY &&
380		regs->cs == __KERNEL_CS &&
381		regs->ip == (unsigned long)native_irq_return_iret)
382	{
383		struct pt_regs *gpregs = (struct pt_regs *)this_cpu_read(cpu_tss_rw.x86_tss.sp0) - 1;
384		unsigned long *p = (unsigned long *)regs->sp;
385
386		/*
387		 * regs->sp points to the failing IRET frame on the
388		 * ESPFIX64 stack.  Copy it to the entry stack.  This fills
389		 * in gpregs->ss through gpregs->ip.
390		 *
391		 */
392		gpregs->ip	= p[0];
393		gpregs->cs	= p[1];
394		gpregs->flags	= p[2];
395		gpregs->sp	= p[3];
396		gpregs->ss	= p[4];
397		gpregs->orig_ax = 0;  /* Missing (lost) #GP error code */
398
399		/*
400		 * Adjust our frame so that we return straight to the #GP
401		 * vector with the expected RSP value.  This is safe because
402		 * we won't enable interrupts or schedule before we invoke
403		 * general_protection, so nothing will clobber the stack
404		 * frame we just set up.
405		 *
406		 * We will enter general_protection with kernel GSBASE,
407		 * which is what the stub expects, given that the faulting
408		 * RIP will be the IRET instruction.
409		 */
410		regs->ip = (unsigned long)asm_exc_general_protection;
411		regs->sp = (unsigned long)&gpregs->orig_ax;
412
413		return;
414	}
415#endif
416
417	irqentry_nmi_enter(regs);
418	instrumentation_begin();
419	notify_die(DIE_TRAP, str, regs, error_code, X86_TRAP_DF, SIGSEGV);
420
421	tsk->thread.error_code = error_code;
422	tsk->thread.trap_nr = X86_TRAP_DF;
423
424#ifdef CONFIG_VMAP_STACK
425	/*
426	 * If we overflow the stack into a guard page, the CPU will fail
427	 * to deliver #PF and will send #DF instead.  Similarly, if we
428	 * take any non-IST exception while too close to the bottom of
429	 * the stack, the processor will get a page fault while
430	 * delivering the exception and will generate a double fault.
431	 *
432	 * According to the SDM (footnote in 6.15 under "Interrupt 14 -
433	 * Page-Fault Exception (#PF):
434	 *
435	 *   Processors update CR2 whenever a page fault is detected. If a
436	 *   second page fault occurs while an earlier page fault is being
437	 *   delivered, the faulting linear address of the second fault will
438	 *   overwrite the contents of CR2 (replacing the previous
439	 *   address). These updates to CR2 occur even if the page fault
440	 *   results in a double fault or occurs during the delivery of a
441	 *   double fault.
442	 *
443	 * The logic below has a small possibility of incorrectly diagnosing
444	 * some errors as stack overflows.  For example, if the IDT or GDT
445	 * gets corrupted such that #GP delivery fails due to a bad descriptor
446	 * causing #GP and we hit this condition while CR2 coincidentally
447	 * points to the stack guard page, we'll think we overflowed the
448	 * stack.  Given that we're going to panic one way or another
449	 * if this happens, this isn't necessarily worth fixing.
450	 *
451	 * If necessary, we could improve the test by only diagnosing
452	 * a stack overflow if the saved RSP points within 47 bytes of
453	 * the bottom of the stack: if RSP == tsk_stack + 48 and we
454	 * take an exception, the stack is already aligned and there
455	 * will be enough room SS, RSP, RFLAGS, CS, RIP, and a
456	 * possible error code, so a stack overflow would *not* double
457	 * fault.  With any less space left, exception delivery could
458	 * fail, and, as a practical matter, we've overflowed the
459	 * stack even if the actual trigger for the double fault was
460	 * something else.
461	 */
462	if (get_stack_guard_info((void *)address, &info))
463		handle_stack_overflow(regs, address, &info);
464#endif
465
466	pr_emerg("PANIC: double fault, error_code: 0x%lx\n", error_code);
467	die("double fault", regs, error_code);
468	panic("Machine halted.");
469	instrumentation_end();
470}
471
472DEFINE_IDTENTRY(exc_bounds)
473{
474	if (notify_die(DIE_TRAP, "bounds", regs, 0,
475			X86_TRAP_BR, SIGSEGV) == NOTIFY_STOP)
476		return;
477	cond_local_irq_enable(regs);
478
479	if (!user_mode(regs))
480		die("bounds", regs, 0);
481
482	do_trap(X86_TRAP_BR, SIGSEGV, "bounds", regs, 0, 0, NULL);
483
484	cond_local_irq_disable(regs);
485}
486
487enum kernel_gp_hint {
488	GP_NO_HINT,
489	GP_NON_CANONICAL,
490	GP_CANONICAL
491};
492
493/*
494 * When an uncaught #GP occurs, try to determine the memory address accessed by
495 * the instruction and return that address to the caller. Also, try to figure
496 * out whether any part of the access to that address was non-canonical.
497 */
498static enum kernel_gp_hint get_kernel_gp_address(struct pt_regs *regs,
499						 unsigned long *addr)
500{
501	u8 insn_buf[MAX_INSN_SIZE];
502	struct insn insn;
503	int ret;
504
505	if (copy_from_kernel_nofault(insn_buf, (void *)regs->ip,
506			MAX_INSN_SIZE))
507		return GP_NO_HINT;
508
509	ret = insn_decode_kernel(&insn, insn_buf);
510	if (ret < 0)
511		return GP_NO_HINT;
512
513	*addr = (unsigned long)insn_get_addr_ref(&insn, regs);
514	if (*addr == -1UL)
515		return GP_NO_HINT;
516
517#ifdef CONFIG_X86_64
518	/*
519	 * Check that:
520	 *  - the operand is not in the kernel half
521	 *  - the last byte of the operand is not in the user canonical half
522	 */
523	if (*addr < ~__VIRTUAL_MASK &&
524	    *addr + insn.opnd_bytes - 1 > __VIRTUAL_MASK)
525		return GP_NON_CANONICAL;
526#endif
527
528	return GP_CANONICAL;
529}
530
531#define GPFSTR "general protection fault"
532
533static bool fixup_iopl_exception(struct pt_regs *regs)
534{
535	struct thread_struct *t = &current->thread;
536	unsigned char byte;
537	unsigned long ip;
538
539	if (!IS_ENABLED(CONFIG_X86_IOPL_IOPERM) || t->iopl_emul != 3)
540		return false;
541
542	if (insn_get_effective_ip(regs, &ip))
543		return false;
544
545	if (get_user(byte, (const char __user *)ip))
546		return false;
547
548	if (byte != 0xfa && byte != 0xfb)
549		return false;
550
551	if (!t->iopl_warn && printk_ratelimit()) {
552		pr_err("%s[%d] attempts to use CLI/STI, pretending it's a NOP, ip:%lx",
553		       current->comm, task_pid_nr(current), ip);
554		print_vma_addr(KERN_CONT " in ", ip);
555		pr_cont("\n");
556		t->iopl_warn = 1;
557	}
558
559	regs->ip += 1;
560	return true;
561}
562
563/*
564 * The unprivileged ENQCMD instruction generates #GPs if the
565 * IA32_PASID MSR has not been populated.  If possible, populate
566 * the MSR from a PASID previously allocated to the mm.
567 */
568static bool try_fixup_enqcmd_gp(void)
569{
570#ifdef CONFIG_ARCH_HAS_CPU_PASID
571	u32 pasid;
572
573	/*
574	 * MSR_IA32_PASID is managed using XSAVE.  Directly
575	 * writing to the MSR is only possible when fpregs
576	 * are valid and the fpstate is not.  This is
577	 * guaranteed when handling a userspace exception
578	 * in *before* interrupts are re-enabled.
579	 */
580	lockdep_assert_irqs_disabled();
581
582	/*
583	 * Hardware without ENQCMD will not generate
584	 * #GPs that can be fixed up here.
585	 */
586	if (!cpu_feature_enabled(X86_FEATURE_ENQCMD))
587		return false;
588
589	/*
590	 * If the mm has not been allocated a
591	 * PASID, the #GP can not be fixed up.
592	 */
593	if (!mm_valid_pasid(current->mm))
594		return false;
595
596	pasid = mm_get_enqcmd_pasid(current->mm);
597
598	/*
599	 * Did this thread already have its PASID activated?
600	 * If so, the #GP must be from something else.
601	 */
602	if (current->pasid_activated)
603		return false;
604
605	wrmsrl(MSR_IA32_PASID, pasid | MSR_IA32_PASID_VALID);
606	current->pasid_activated = 1;
607
608	return true;
609#else
610	return false;
611#endif
612}
613
614static bool gp_try_fixup_and_notify(struct pt_regs *regs, int trapnr,
615				    unsigned long error_code, const char *str,
616				    unsigned long address)
617{
618	if (fixup_exception(regs, trapnr, error_code, address))
619		return true;
620
621	current->thread.error_code = error_code;
622	current->thread.trap_nr = trapnr;
623
624	/*
625	 * To be potentially processing a kprobe fault and to trust the result
626	 * from kprobe_running(), we have to be non-preemptible.
627	 */
628	if (!preemptible() && kprobe_running() &&
629	    kprobe_fault_handler(regs, trapnr))
630		return true;
631
632	return notify_die(DIE_GPF, str, regs, error_code, trapnr, SIGSEGV) == NOTIFY_STOP;
633}
634
635static void gp_user_force_sig_segv(struct pt_regs *regs, int trapnr,
636				   unsigned long error_code, const char *str)
637{
638	current->thread.error_code = error_code;
639	current->thread.trap_nr = trapnr;
640	show_signal(current, SIGSEGV, "", str, regs, error_code);
641	force_sig(SIGSEGV);
642}
643
644DEFINE_IDTENTRY_ERRORCODE(exc_general_protection)
645{
646	char desc[sizeof(GPFSTR) + 50 + 2*sizeof(unsigned long) + 1] = GPFSTR;
647	enum kernel_gp_hint hint = GP_NO_HINT;
648	unsigned long gp_addr;
649
650	if (user_mode(regs) && try_fixup_enqcmd_gp())
651		return;
652
653	cond_local_irq_enable(regs);
654
655	if (static_cpu_has(X86_FEATURE_UMIP)) {
656		if (user_mode(regs) && fixup_umip_exception(regs))
657			goto exit;
658	}
659
660	if (v8086_mode(regs)) {
661		local_irq_enable();
662		handle_vm86_fault((struct kernel_vm86_regs *) regs, error_code);
663		local_irq_disable();
664		return;
665	}
666
667	if (user_mode(regs)) {
668		if (fixup_iopl_exception(regs))
669			goto exit;
670
671		if (fixup_vdso_exception(regs, X86_TRAP_GP, error_code, 0))
672			goto exit;
673
674		gp_user_force_sig_segv(regs, X86_TRAP_GP, error_code, desc);
675		goto exit;
676	}
677
678	if (gp_try_fixup_and_notify(regs, X86_TRAP_GP, error_code, desc, 0))
679		goto exit;
680
681	if (error_code)
682		snprintf(desc, sizeof(desc), "segment-related " GPFSTR);
683	else
684		hint = get_kernel_gp_address(regs, &gp_addr);
685
686	if (hint != GP_NO_HINT)
687		snprintf(desc, sizeof(desc), GPFSTR ", %s 0x%lx",
688			 (hint == GP_NON_CANONICAL) ? "probably for non-canonical address"
689						    : "maybe for address",
690			 gp_addr);
691
692	/*
693	 * KASAN is interested only in the non-canonical case, clear it
694	 * otherwise.
695	 */
696	if (hint != GP_NON_CANONICAL)
697		gp_addr = 0;
698
699	die_addr(desc, regs, error_code, gp_addr);
700
701exit:
702	cond_local_irq_disable(regs);
703}
704
705static bool do_int3(struct pt_regs *regs)
706{
707	int res;
708
709#ifdef CONFIG_KGDB_LOW_LEVEL_TRAP
710	if (kgdb_ll_trap(DIE_INT3, "int3", regs, 0, X86_TRAP_BP,
711			 SIGTRAP) == NOTIFY_STOP)
712		return true;
713#endif /* CONFIG_KGDB_LOW_LEVEL_TRAP */
714
715#ifdef CONFIG_KPROBES
716	if (kprobe_int3_handler(regs))
717		return true;
718#endif
719	res = notify_die(DIE_INT3, "int3", regs, 0, X86_TRAP_BP, SIGTRAP);
720
721	return res == NOTIFY_STOP;
722}
723NOKPROBE_SYMBOL(do_int3);
724
725static void do_int3_user(struct pt_regs *regs)
726{
727	if (do_int3(regs))
728		return;
729
730	cond_local_irq_enable(regs);
731	do_trap(X86_TRAP_BP, SIGTRAP, "int3", regs, 0, 0, NULL);
732	cond_local_irq_disable(regs);
733}
734
735DEFINE_IDTENTRY_RAW(exc_int3)
736{
737	/*
738	 * poke_int3_handler() is completely self contained code; it does (and
739	 * must) *NOT* call out to anything, lest it hits upon yet another
740	 * INT3.
741	 */
742	if (poke_int3_handler(regs))
743		return;
744
745	/*
746	 * irqentry_enter_from_user_mode() uses static_branch_{,un}likely()
747	 * and therefore can trigger INT3, hence poke_int3_handler() must
748	 * be done before. If the entry came from kernel mode, then use
749	 * nmi_enter() because the INT3 could have been hit in any context
750	 * including NMI.
751	 */
752	if (user_mode(regs)) {
753		irqentry_enter_from_user_mode(regs);
754		instrumentation_begin();
755		do_int3_user(regs);
756		instrumentation_end();
757		irqentry_exit_to_user_mode(regs);
758	} else {
759		irqentry_state_t irq_state = irqentry_nmi_enter(regs);
760
761		instrumentation_begin();
762		if (!do_int3(regs))
763			die("int3", regs, 0);
764		instrumentation_end();
765		irqentry_nmi_exit(regs, irq_state);
766	}
767}
768
769#ifdef CONFIG_X86_64
770/*
771 * Help handler running on a per-cpu (IST or entry trampoline) stack
772 * to switch to the normal thread stack if the interrupted code was in
773 * user mode. The actual stack switch is done in entry_64.S
774 */
775asmlinkage __visible noinstr struct pt_regs *sync_regs(struct pt_regs *eregs)
776{
777	struct pt_regs *regs = (struct pt_regs *)current_top_of_stack() - 1;
778	if (regs != eregs)
779		*regs = *eregs;
780	return regs;
781}
782
783#ifdef CONFIG_AMD_MEM_ENCRYPT
784asmlinkage __visible noinstr struct pt_regs *vc_switch_off_ist(struct pt_regs *regs)
785{
786	unsigned long sp, *stack;
787	struct stack_info info;
788	struct pt_regs *regs_ret;
789
790	/*
791	 * In the SYSCALL entry path the RSP value comes from user-space - don't
792	 * trust it and switch to the current kernel stack
793	 */
794	if (ip_within_syscall_gap(regs)) {
795		sp = current_top_of_stack();
796		goto sync;
797	}
798
799	/*
800	 * From here on the RSP value is trusted. Now check whether entry
801	 * happened from a safe stack. Not safe are the entry or unknown stacks,
802	 * use the fall-back stack instead in this case.
803	 */
804	sp    = regs->sp;
805	stack = (unsigned long *)sp;
806
807	if (!get_stack_info_noinstr(stack, current, &info) || info.type == STACK_TYPE_ENTRY ||
808	    info.type > STACK_TYPE_EXCEPTION_LAST)
809		sp = __this_cpu_ist_top_va(VC2);
810
811sync:
812	/*
813	 * Found a safe stack - switch to it as if the entry didn't happen via
814	 * IST stack. The code below only copies pt_regs, the real switch happens
815	 * in assembly code.
816	 */
817	sp = ALIGN_DOWN(sp, 8) - sizeof(*regs_ret);
818
819	regs_ret = (struct pt_regs *)sp;
820	*regs_ret = *regs;
821
822	return regs_ret;
823}
824#endif
825
826asmlinkage __visible noinstr struct pt_regs *fixup_bad_iret(struct pt_regs *bad_regs)
827{
828	struct pt_regs tmp, *new_stack;
829
830	/*
831	 * This is called from entry_64.S early in handling a fault
832	 * caused by a bad iret to user mode.  To handle the fault
833	 * correctly, we want to move our stack frame to where it would
834	 * be had we entered directly on the entry stack (rather than
835	 * just below the IRET frame) and we want to pretend that the
836	 * exception came from the IRET target.
837	 */
838	new_stack = (struct pt_regs *)__this_cpu_read(cpu_tss_rw.x86_tss.sp0) - 1;
839
840	/* Copy the IRET target to the temporary storage. */
841	__memcpy(&tmp.ip, (void *)bad_regs->sp, 5*8);
842
843	/* Copy the remainder of the stack from the current stack. */
844	__memcpy(&tmp, bad_regs, offsetof(struct pt_regs, ip));
845
846	/* Update the entry stack */
847	__memcpy(new_stack, &tmp, sizeof(tmp));
848
849	BUG_ON(!user_mode(new_stack));
850	return new_stack;
851}
852#endif
853
854static bool is_sysenter_singlestep(struct pt_regs *regs)
855{
856	/*
857	 * We don't try for precision here.  If we're anywhere in the region of
858	 * code that can be single-stepped in the SYSENTER entry path, then
859	 * assume that this is a useless single-step trap due to SYSENTER
860	 * being invoked with TF set.  (We don't know in advance exactly
861	 * which instructions will be hit because BTF could plausibly
862	 * be set.)
863	 */
864#ifdef CONFIG_X86_32
865	return (regs->ip - (unsigned long)__begin_SYSENTER_singlestep_region) <
866		(unsigned long)__end_SYSENTER_singlestep_region -
867		(unsigned long)__begin_SYSENTER_singlestep_region;
868#elif defined(CONFIG_IA32_EMULATION)
869	return (regs->ip - (unsigned long)entry_SYSENTER_compat) <
870		(unsigned long)__end_entry_SYSENTER_compat -
871		(unsigned long)entry_SYSENTER_compat;
872#else
873	return false;
874#endif
875}
876
877static __always_inline unsigned long debug_read_clear_dr6(void)
878{
879	unsigned long dr6;
880
881	/*
882	 * The Intel SDM says:
883	 *
884	 *   Certain debug exceptions may clear bits 0-3. The remaining
885	 *   contents of the DR6 register are never cleared by the
886	 *   processor. To avoid confusion in identifying debug
887	 *   exceptions, debug handlers should clear the register before
888	 *   returning to the interrupted task.
889	 *
890	 * Keep it simple: clear DR6 immediately.
891	 */
892	get_debugreg(dr6, 6);
893	set_debugreg(DR6_RESERVED, 6);
894	dr6 ^= DR6_RESERVED; /* Flip to positive polarity */
895
896	return dr6;
897}
898
899/*
900 * Our handling of the processor debug registers is non-trivial.
901 * We do not clear them on entry and exit from the kernel. Therefore
902 * it is possible to get a watchpoint trap here from inside the kernel.
903 * However, the code in ./ptrace.c has ensured that the user can
904 * only set watchpoints on userspace addresses. Therefore the in-kernel
905 * watchpoint trap can only occur in code which is reading/writing
906 * from user space. Such code must not hold kernel locks (since it
907 * can equally take a page fault), therefore it is safe to call
908 * force_sig_info even though that claims and releases locks.
909 *
910 * Code in ./signal.c ensures that the debug control register
911 * is restored before we deliver any signal, and therefore that
912 * user code runs with the correct debug control register even though
913 * we clear it here.
914 *
915 * Being careful here means that we don't have to be as careful in a
916 * lot of more complicated places (task switching can be a bit lazy
917 * about restoring all the debug state, and ptrace doesn't have to
918 * find every occurrence of the TF bit that could be saved away even
919 * by user code)
920 *
921 * May run on IST stack.
922 */
923
924static bool notify_debug(struct pt_regs *regs, unsigned long *dr6)
925{
926	/*
927	 * Notifiers will clear bits in @dr6 to indicate the event has been
928	 * consumed - hw_breakpoint_handler(), single_stop_cont().
929	 *
930	 * Notifiers will set bits in @virtual_dr6 to indicate the desire
931	 * for signals - ptrace_triggered(), kgdb_hw_overflow_handler().
932	 */
933	if (notify_die(DIE_DEBUG, "debug", regs, (long)dr6, 0, SIGTRAP) == NOTIFY_STOP)
934		return true;
935
936	return false;
937}
938
939static noinstr void exc_debug_kernel(struct pt_regs *regs, unsigned long dr6)
940{
941	/*
942	 * Disable breakpoints during exception handling; recursive exceptions
943	 * are exceedingly 'fun'.
944	 *
945	 * Since this function is NOKPROBE, and that also applies to
946	 * HW_BREAKPOINT_X, we can't hit a breakpoint before this (XXX except a
947	 * HW_BREAKPOINT_W on our stack)
948	 *
949	 * Entry text is excluded for HW_BP_X and cpu_entry_area, which
950	 * includes the entry stack is excluded for everything.
951	 *
952	 * For FRED, nested #DB should just work fine. But when a watchpoint or
953	 * breakpoint is set in the code path which is executed by #DB handler,
954	 * it results in an endless recursion and stack overflow. Thus we stay
955	 * with the IDT approach, i.e., save DR7 and disable #DB.
956	 */
957	unsigned long dr7 = local_db_save();
958	irqentry_state_t irq_state = irqentry_nmi_enter(regs);
959	instrumentation_begin();
960
961	/*
962	 * If something gets miswired and we end up here for a user mode
963	 * #DB, we will malfunction.
964	 */
965	WARN_ON_ONCE(user_mode(regs));
966
967	if (test_thread_flag(TIF_BLOCKSTEP)) {
968		/*
969		 * The SDM says "The processor clears the BTF flag when it
970		 * generates a debug exception." but PTRACE_BLOCKSTEP requested
971		 * it for userspace, but we just took a kernel #DB, so re-set
972		 * BTF.
973		 */
974		unsigned long debugctl;
975
976		rdmsrl(MSR_IA32_DEBUGCTLMSR, debugctl);
977		debugctl |= DEBUGCTLMSR_BTF;
978		wrmsrl(MSR_IA32_DEBUGCTLMSR, debugctl);
979	}
980
981	/*
982	 * Catch SYSENTER with TF set and clear DR_STEP. If this hit a
983	 * watchpoint at the same time then that will still be handled.
984	 */
985	if (!cpu_feature_enabled(X86_FEATURE_FRED) &&
986	    (dr6 & DR_STEP) && is_sysenter_singlestep(regs))
987		dr6 &= ~DR_STEP;
988
989	/*
990	 * The kernel doesn't use INT1
991	 */
992	if (!dr6)
993		goto out;
994
995	if (notify_debug(regs, &dr6))
996		goto out;
997
998	/*
999	 * The kernel doesn't use TF single-step outside of:
1000	 *
1001	 *  - Kprobes, consumed through kprobe_debug_handler()
1002	 *  - KGDB, consumed through notify_debug()
1003	 *
1004	 * So if we get here with DR_STEP set, something is wonky.
1005	 *
1006	 * A known way to trigger this is through QEMU's GDB stub,
1007	 * which leaks #DB into the guest and causes IST recursion.
1008	 */
1009	if (WARN_ON_ONCE(dr6 & DR_STEP))
1010		regs->flags &= ~X86_EFLAGS_TF;
1011out:
1012	instrumentation_end();
1013	irqentry_nmi_exit(regs, irq_state);
1014
1015	local_db_restore(dr7);
1016}
1017
1018static noinstr void exc_debug_user(struct pt_regs *regs, unsigned long dr6)
1019{
1020	bool icebp;
1021
1022	/*
1023	 * If something gets miswired and we end up here for a kernel mode
1024	 * #DB, we will malfunction.
1025	 */
1026	WARN_ON_ONCE(!user_mode(regs));
1027
1028	/*
1029	 * NB: We can't easily clear DR7 here because
1030	 * irqentry_exit_to_usermode() can invoke ptrace, schedule, access
1031	 * user memory, etc.  This means that a recursive #DB is possible.  If
1032	 * this happens, that #DB will hit exc_debug_kernel() and clear DR7.
1033	 * Since we're not on the IST stack right now, everything will be
1034	 * fine.
1035	 */
1036
1037	irqentry_enter_from_user_mode(regs);
1038	instrumentation_begin();
1039
1040	/*
1041	 * Start the virtual/ptrace DR6 value with just the DR_STEP mask
1042	 * of the real DR6. ptrace_triggered() will set the DR_TRAPn bits.
1043	 *
1044	 * Userspace expects DR_STEP to be visible in ptrace_get_debugreg(6)
1045	 * even if it is not the result of PTRACE_SINGLESTEP.
1046	 */
1047	current->thread.virtual_dr6 = (dr6 & DR_STEP);
1048
1049	/*
1050	 * The SDM says "The processor clears the BTF flag when it
1051	 * generates a debug exception."  Clear TIF_BLOCKSTEP to keep
1052	 * TIF_BLOCKSTEP in sync with the hardware BTF flag.
1053	 */
1054	clear_thread_flag(TIF_BLOCKSTEP);
1055
1056	/*
1057	 * If dr6 has no reason to give us about the origin of this trap,
1058	 * then it's very likely the result of an icebp/int01 trap.
1059	 * User wants a sigtrap for that.
1060	 */
1061	icebp = !dr6;
1062
1063	if (notify_debug(regs, &dr6))
1064		goto out;
1065
1066	/* It's safe to allow irq's after DR6 has been saved */
1067	local_irq_enable();
1068
1069	if (v8086_mode(regs)) {
1070		handle_vm86_trap((struct kernel_vm86_regs *)regs, 0, X86_TRAP_DB);
1071		goto out_irq;
1072	}
1073
1074	/* #DB for bus lock can only be triggered from userspace. */
1075	if (dr6 & DR_BUS_LOCK)
1076		handle_bus_lock(regs);
1077
1078	/* Add the virtual_dr6 bits for signals. */
1079	dr6 |= current->thread.virtual_dr6;
1080	if (dr6 & (DR_STEP | DR_TRAP_BITS) || icebp)
1081		send_sigtrap(regs, 0, get_si_code(dr6));
1082
1083out_irq:
1084	local_irq_disable();
1085out:
1086	instrumentation_end();
1087	irqentry_exit_to_user_mode(regs);
1088}
1089
1090#ifdef CONFIG_X86_64
1091/* IST stack entry */
1092DEFINE_IDTENTRY_DEBUG(exc_debug)
1093{
1094	exc_debug_kernel(regs, debug_read_clear_dr6());
1095}
1096
1097/* User entry, runs on regular task stack */
1098DEFINE_IDTENTRY_DEBUG_USER(exc_debug)
1099{
1100	exc_debug_user(regs, debug_read_clear_dr6());
1101}
1102
1103#ifdef CONFIG_X86_FRED
1104/*
1105 * When occurred on different ring level, i.e., from user or kernel
1106 * context, #DB needs to be handled on different stack: User #DB on
1107 * current task stack, while kernel #DB on a dedicated stack.
1108 *
1109 * This is exactly how FRED event delivery invokes an exception
1110 * handler: ring 3 event on level 0 stack, i.e., current task stack;
1111 * ring 0 event on the #DB dedicated stack specified in the
1112 * IA32_FRED_STKLVLS MSR. So unlike IDT, the FRED debug exception
1113 * entry stub doesn't do stack switch.
1114 */
1115DEFINE_FREDENTRY_DEBUG(exc_debug)
1116{
1117	/*
1118	 * FRED #DB stores DR6 on the stack in the format which
1119	 * debug_read_clear_dr6() returns for the IDT entry points.
1120	 */
1121	unsigned long dr6 = fred_event_data(regs);
1122
1123	if (user_mode(regs))
1124		exc_debug_user(regs, dr6);
1125	else
1126		exc_debug_kernel(regs, dr6);
1127}
1128#endif /* CONFIG_X86_FRED */
1129
1130#else
1131/* 32 bit does not have separate entry points. */
1132DEFINE_IDTENTRY_RAW(exc_debug)
1133{
1134	unsigned long dr6 = debug_read_clear_dr6();
1135
1136	if (user_mode(regs))
1137		exc_debug_user(regs, dr6);
1138	else
1139		exc_debug_kernel(regs, dr6);
1140}
1141#endif
1142
1143/*
1144 * Note that we play around with the 'TS' bit in an attempt to get
1145 * the correct behaviour even in the presence of the asynchronous
1146 * IRQ13 behaviour
1147 */
1148static void math_error(struct pt_regs *regs, int trapnr)
1149{
1150	struct task_struct *task = current;
1151	struct fpu *fpu = &task->thread.fpu;
1152	int si_code;
1153	char *str = (trapnr == X86_TRAP_MF) ? "fpu exception" :
1154						"simd exception";
1155
1156	cond_local_irq_enable(regs);
1157
1158	if (!user_mode(regs)) {
1159		if (fixup_exception(regs, trapnr, 0, 0))
1160			goto exit;
1161
1162		task->thread.error_code = 0;
1163		task->thread.trap_nr = trapnr;
1164
1165		if (notify_die(DIE_TRAP, str, regs, 0, trapnr,
1166			       SIGFPE) != NOTIFY_STOP)
1167			die(str, regs, 0);
1168		goto exit;
1169	}
1170
1171	/*
1172	 * Synchronize the FPU register state to the memory register state
1173	 * if necessary. This allows the exception handler to inspect it.
1174	 */
1175	fpu_sync_fpstate(fpu);
1176
1177	task->thread.trap_nr	= trapnr;
1178	task->thread.error_code = 0;
1179
1180	si_code = fpu__exception_code(fpu, trapnr);
1181	/* Retry when we get spurious exceptions: */
1182	if (!si_code)
1183		goto exit;
1184
1185	if (fixup_vdso_exception(regs, trapnr, 0, 0))
1186		goto exit;
1187
1188	force_sig_fault(SIGFPE, si_code,
1189			(void __user *)uprobe_get_trap_addr(regs));
1190exit:
1191	cond_local_irq_disable(regs);
1192}
1193
1194DEFINE_IDTENTRY(exc_coprocessor_error)
1195{
1196	math_error(regs, X86_TRAP_MF);
1197}
1198
1199DEFINE_IDTENTRY(exc_simd_coprocessor_error)
1200{
1201	if (IS_ENABLED(CONFIG_X86_INVD_BUG)) {
1202		/* AMD 486 bug: INVD in CPL 0 raises #XF instead of #GP */
1203		if (!static_cpu_has(X86_FEATURE_XMM)) {
1204			__exc_general_protection(regs, 0);
1205			return;
1206		}
1207	}
1208	math_error(regs, X86_TRAP_XF);
1209}
1210
1211DEFINE_IDTENTRY(exc_spurious_interrupt_bug)
1212{
1213	/*
1214	 * This addresses a Pentium Pro Erratum:
1215	 *
1216	 * PROBLEM: If the APIC subsystem is configured in mixed mode with
1217	 * Virtual Wire mode implemented through the local APIC, an
1218	 * interrupt vector of 0Fh (Intel reserved encoding) may be
1219	 * generated by the local APIC (Int 15).  This vector may be
1220	 * generated upon receipt of a spurious interrupt (an interrupt
1221	 * which is removed before the system receives the INTA sequence)
1222	 * instead of the programmed 8259 spurious interrupt vector.
1223	 *
1224	 * IMPLICATION: The spurious interrupt vector programmed in the
1225	 * 8259 is normally handled by an operating system's spurious
1226	 * interrupt handler. However, a vector of 0Fh is unknown to some
1227	 * operating systems, which would crash if this erratum occurred.
1228	 *
1229	 * In theory this could be limited to 32bit, but the handler is not
1230	 * hurting and who knows which other CPUs suffer from this.
1231	 */
1232}
1233
1234static bool handle_xfd_event(struct pt_regs *regs)
1235{
1236	u64 xfd_err;
1237	int err;
1238
1239	if (!IS_ENABLED(CONFIG_X86_64) || !cpu_feature_enabled(X86_FEATURE_XFD))
1240		return false;
1241
1242	rdmsrl(MSR_IA32_XFD_ERR, xfd_err);
1243	if (!xfd_err)
1244		return false;
1245
1246	wrmsrl(MSR_IA32_XFD_ERR, 0);
1247
1248	/* Die if that happens in kernel space */
1249	if (WARN_ON(!user_mode(regs)))
1250		return false;
1251
1252	local_irq_enable();
1253
1254	err = xfd_enable_feature(xfd_err);
1255
1256	switch (err) {
1257	case -EPERM:
1258		force_sig_fault(SIGILL, ILL_ILLOPC, error_get_trap_addr(regs));
1259		break;
1260	case -EFAULT:
1261		force_sig(SIGSEGV);
1262		break;
1263	}
1264
1265	local_irq_disable();
1266	return true;
1267}
1268
1269DEFINE_IDTENTRY(exc_device_not_available)
1270{
1271	unsigned long cr0 = read_cr0();
1272
1273	if (handle_xfd_event(regs))
1274		return;
1275
1276#ifdef CONFIG_MATH_EMULATION
1277	if (!boot_cpu_has(X86_FEATURE_FPU) && (cr0 & X86_CR0_EM)) {
1278		struct math_emu_info info = { };
1279
1280		cond_local_irq_enable(regs);
1281
1282		info.regs = regs;
1283		math_emulate(&info);
1284
1285		cond_local_irq_disable(regs);
1286		return;
1287	}
1288#endif
1289
1290	/* This should not happen. */
1291	if (WARN(cr0 & X86_CR0_TS, "CR0.TS was set")) {
1292		/* Try to fix it up and carry on. */
1293		write_cr0(cr0 & ~X86_CR0_TS);
1294	} else {
1295		/*
1296		 * Something terrible happened, and we're better off trying
1297		 * to kill the task than getting stuck in a never-ending
1298		 * loop of #NM faults.
1299		 */
1300		die("unexpected #NM exception", regs, 0);
1301	}
1302}
1303
1304#ifdef CONFIG_INTEL_TDX_GUEST
1305
1306#define VE_FAULT_STR "VE fault"
1307
1308static void ve_raise_fault(struct pt_regs *regs, long error_code,
1309			   unsigned long address)
1310{
1311	if (user_mode(regs)) {
1312		gp_user_force_sig_segv(regs, X86_TRAP_VE, error_code, VE_FAULT_STR);
1313		return;
1314	}
1315
1316	if (gp_try_fixup_and_notify(regs, X86_TRAP_VE, error_code,
1317				    VE_FAULT_STR, address)) {
1318		return;
1319	}
1320
1321	die_addr(VE_FAULT_STR, regs, error_code, address);
1322}
1323
1324/*
1325 * Virtualization Exceptions (#VE) are delivered to TDX guests due to
1326 * specific guest actions which may happen in either user space or the
1327 * kernel:
1328 *
1329 *  * Specific instructions (WBINVD, for example)
1330 *  * Specific MSR accesses
1331 *  * Specific CPUID leaf accesses
1332 *  * Access to specific guest physical addresses
1333 *
1334 * In the settings that Linux will run in, virtualization exceptions are
1335 * never generated on accesses to normal, TD-private memory that has been
1336 * accepted (by BIOS or with tdx_enc_status_changed()).
1337 *
1338 * Syscall entry code has a critical window where the kernel stack is not
1339 * yet set up. Any exception in this window leads to hard to debug issues
1340 * and can be exploited for privilege escalation. Exceptions in the NMI
1341 * entry code also cause issues. Returning from the exception handler with
1342 * IRET will re-enable NMIs and nested NMI will corrupt the NMI stack.
1343 *
1344 * For these reasons, the kernel avoids #VEs during the syscall gap and
1345 * the NMI entry code. Entry code paths do not access TD-shared memory,
1346 * MMIO regions, use #VE triggering MSRs, instructions, or CPUID leaves
1347 * that might generate #VE. VMM can remove memory from TD at any point,
1348 * but access to unaccepted (or missing) private memory leads to VM
1349 * termination, not to #VE.
1350 *
1351 * Similarly to page faults and breakpoints, #VEs are allowed in NMI
1352 * handlers once the kernel is ready to deal with nested NMIs.
1353 *
1354 * During #VE delivery, all interrupts, including NMIs, are blocked until
1355 * TDGETVEINFO is called. It prevents #VE nesting until the kernel reads
1356 * the VE info.
1357 *
1358 * If a guest kernel action which would normally cause a #VE occurs in
1359 * the interrupt-disabled region before TDGETVEINFO, a #DF (fault
1360 * exception) is delivered to the guest which will result in an oops.
1361 *
1362 * The entry code has been audited carefully for following these expectations.
1363 * Changes in the entry code have to be audited for correctness vs. this
1364 * aspect. Similarly to #PF, #VE in these places will expose kernel to
1365 * privilege escalation or may lead to random crashes.
1366 */
1367DEFINE_IDTENTRY(exc_virtualization_exception)
1368{
1369	struct ve_info ve;
1370
1371	/*
1372	 * NMIs/Machine-checks/Interrupts will be in a disabled state
1373	 * till TDGETVEINFO TDCALL is executed. This ensures that VE
1374	 * info cannot be overwritten by a nested #VE.
1375	 */
1376	tdx_get_ve_info(&ve);
1377
1378	cond_local_irq_enable(regs);
1379
1380	/*
1381	 * If tdx_handle_virt_exception() could not process
1382	 * it successfully, treat it as #GP(0) and handle it.
1383	 */
1384	if (!tdx_handle_virt_exception(regs, &ve))
1385		ve_raise_fault(regs, 0, ve.gla);
1386
1387	cond_local_irq_disable(regs);
1388}
1389
1390#endif
1391
1392#ifdef CONFIG_X86_32
1393DEFINE_IDTENTRY_SW(iret_error)
1394{
1395	local_irq_enable();
1396	if (notify_die(DIE_TRAP, "iret exception", regs, 0,
1397			X86_TRAP_IRET, SIGILL) != NOTIFY_STOP) {
1398		do_trap(X86_TRAP_IRET, SIGILL, "iret exception", regs, 0,
1399			ILL_BADSTK, (void __user *)NULL);
1400	}
1401	local_irq_disable();
1402}
1403#endif
1404
1405/* Do not enable FRED by default yet. */
1406static bool enable_fred __ro_after_init = false;
1407
1408#ifdef CONFIG_X86_FRED
1409static int __init fred_setup(char *str)
1410{
1411	if (!str)
1412		return -EINVAL;
1413
1414	if (!cpu_feature_enabled(X86_FEATURE_FRED))
1415		return 0;
1416
1417	if (!strcmp(str, "on"))
1418		enable_fred = true;
1419	else if (!strcmp(str, "off"))
1420		enable_fred = false;
1421	else
1422		pr_warn("invalid FRED option: 'fred=%s'\n", str);
1423	return 0;
1424}
1425early_param("fred", fred_setup);
1426#endif
1427
1428void __init trap_init(void)
1429{
1430	if (cpu_feature_enabled(X86_FEATURE_FRED) && !enable_fred)
1431		setup_clear_cpu_cap(X86_FEATURE_FRED);
1432
1433	/* Init cpu_entry_area before IST entries are set up */
1434	setup_cpu_entry_areas();
1435
1436	/* Init GHCB memory pages when running as an SEV-ES guest */
1437	sev_es_init_vc_handling();
1438
1439	/* Initialize TSS before setting up traps so ISTs work */
1440	cpu_init_exception_handling();
1441
1442	/* Setup traps as cpu_init() might #GP */
1443	if (!cpu_feature_enabled(X86_FEATURE_FRED))
1444		idt_setup_traps();
1445
1446	cpu_init();
1447}
1448