1// SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 *	x86 SMP booting functions
4 *
5 *	(c) 1995 Alan Cox, Building #3 <alan@lxorguk.ukuu.org.uk>
6 *	(c) 1998, 1999, 2000, 2009 Ingo Molnar <mingo@redhat.com>
7 *	Copyright 2001 Andi Kleen, SuSE Labs.
8 *
9 *	Much of the core SMP work is based on previous work by Thomas Radke, to
10 *	whom a great many thanks are extended.
11 *
12 *	Thanks to Intel for making available several different Pentium,
13 *	Pentium Pro and Pentium-II/Xeon MP machines.
14 *	Original development of Linux SMP code supported by Caldera.
15 *
16 *	Fixes
17 *		Felix Koop	:	NR_CPUS used properly
18 *		Jose Renau	:	Handle single CPU case.
19 *		Alan Cox	:	By repeated request 8) - Total BogoMIPS report.
20 *		Greg Wright	:	Fix for kernel stacks panic.
21 *		Erich Boleyn	:	MP v1.4 and additional changes.
22 *	Matthias Sattler	:	Changes for 2.1 kernel map.
23 *	Michel Lespinasse	:	Changes for 2.1 kernel map.
24 *	Michael Chastain	:	Change trampoline.S to gnu as.
25 *		Alan Cox	:	Dumb bug: 'B' step PPro's are fine
26 *		Ingo Molnar	:	Added APIC timers, based on code
27 *					from Jose Renau
28 *		Ingo Molnar	:	various cleanups and rewrites
29 *		Tigran Aivazian	:	fixed "0.00 in /proc/uptime on SMP" bug.
30 *	Maciej W. Rozycki	:	Bits for genuine 82489DX APICs
31 *	Andi Kleen		:	Changed for SMP boot into long mode.
32 *		Martin J. Bligh	: 	Added support for multi-quad systems
33 *		Dave Jones	:	Report invalid combinations of Athlon CPUs.
34 *		Rusty Russell	:	Hacked into shape for new "hotplug" boot process.
35 *      Andi Kleen              :       Converted to new state machine.
36 *	Ashok Raj		: 	CPU hotplug support
37 *	Glauber Costa		:	i386 and x86_64 integration
38 */
39
40#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
41
42#include <linux/init.h>
43#include <linux/smp.h>
44#include <linux/export.h>
45#include <linux/sched.h>
46#include <linux/sched/topology.h>
47#include <linux/sched/hotplug.h>
48#include <linux/sched/task_stack.h>
49#include <linux/percpu.h>
50#include <linux/memblock.h>
51#include <linux/err.h>
52#include <linux/nmi.h>
53#include <linux/tboot.h>
54#include <linux/gfp.h>
55#include <linux/cpuidle.h>
56#include <linux/kexec.h>
57#include <linux/numa.h>
58#include <linux/pgtable.h>
59#include <linux/overflow.h>
60#include <linux/stackprotector.h>
61#include <linux/cpuhotplug.h>
62#include <linux/mc146818rtc.h>
63
64#include <asm/acpi.h>
65#include <asm/cacheinfo.h>
66#include <asm/desc.h>
67#include <asm/nmi.h>
68#include <asm/irq.h>
69#include <asm/realmode.h>
70#include <asm/cpu.h>
71#include <asm/numa.h>
72#include <asm/tlbflush.h>
73#include <asm/mtrr.h>
74#include <asm/mwait.h>
75#include <asm/apic.h>
76#include <asm/io_apic.h>
77#include <asm/fpu/api.h>
78#include <asm/setup.h>
79#include <asm/uv/uv.h>
80#include <asm/microcode.h>
81#include <asm/i8259.h>
82#include <asm/misc.h>
83#include <asm/qspinlock.h>
84#include <asm/intel-family.h>
85#include <asm/cpu_device_id.h>
86#include <asm/spec-ctrl.h>
87#include <asm/hw_irq.h>
88#include <asm/stackprotector.h>
89#include <asm/sev.h>
90#include <asm/spec-ctrl.h>
91
92/* representing HT siblings of each logical CPU */
93DEFINE_PER_CPU_READ_MOSTLY(cpumask_var_t, cpu_sibling_map);
94EXPORT_PER_CPU_SYMBOL(cpu_sibling_map);
95
96/* representing HT and core siblings of each logical CPU */
97DEFINE_PER_CPU_READ_MOSTLY(cpumask_var_t, cpu_core_map);
98EXPORT_PER_CPU_SYMBOL(cpu_core_map);
99
100/* representing HT, core, and die siblings of each logical CPU */
101DEFINE_PER_CPU_READ_MOSTLY(cpumask_var_t, cpu_die_map);
102EXPORT_PER_CPU_SYMBOL(cpu_die_map);
103
104/* CPUs which are the primary SMT threads */
105struct cpumask __cpu_primary_thread_mask __read_mostly;
106
107/* Representing CPUs for which sibling maps can be computed */
108static cpumask_var_t cpu_sibling_setup_mask;
109
110struct mwait_cpu_dead {
111	unsigned int	control;
112	unsigned int	status;
113};
114
115#define CPUDEAD_MWAIT_WAIT	0xDEADBEEF
116#define CPUDEAD_MWAIT_KEXEC_HLT	0x4A17DEAD
117
118/*
119 * Cache line aligned data for mwait_play_dead(). Separate on purpose so
120 * that it's unlikely to be touched by other CPUs.
121 */
122static DEFINE_PER_CPU_ALIGNED(struct mwait_cpu_dead, mwait_cpu_dead);
123
124/* Maximum number of SMT threads on any online core */
125int __read_mostly __max_smt_threads = 1;
126
127/* Flag to indicate if a complete sched domain rebuild is required */
128bool x86_topology_update;
129
130int arch_update_cpu_topology(void)
131{
132	int retval = x86_topology_update;
133
134	x86_topology_update = false;
135	return retval;
136}
137
138static unsigned int smpboot_warm_reset_vector_count;
139
140static inline void smpboot_setup_warm_reset_vector(unsigned long start_eip)
141{
142	unsigned long flags;
143
144	spin_lock_irqsave(&rtc_lock, flags);
145	if (!smpboot_warm_reset_vector_count++) {
146		CMOS_WRITE(0xa, 0xf);
147		*((volatile unsigned short *)phys_to_virt(TRAMPOLINE_PHYS_HIGH)) = start_eip >> 4;
148		*((volatile unsigned short *)phys_to_virt(TRAMPOLINE_PHYS_LOW)) = start_eip & 0xf;
149	}
150	spin_unlock_irqrestore(&rtc_lock, flags);
151}
152
153static inline void smpboot_restore_warm_reset_vector(void)
154{
155	unsigned long flags;
156
157	/*
158	 * Paranoid:  Set warm reset code and vector here back
159	 * to default values.
160	 */
161	spin_lock_irqsave(&rtc_lock, flags);
162	if (!--smpboot_warm_reset_vector_count) {
163		CMOS_WRITE(0, 0xf);
164		*((volatile u32 *)phys_to_virt(TRAMPOLINE_PHYS_LOW)) = 0;
165	}
166	spin_unlock_irqrestore(&rtc_lock, flags);
167
168}
169
170/* Run the next set of setup steps for the upcoming CPU */
171static void ap_starting(void)
172{
173	int cpuid = smp_processor_id();
174
175	/* Mop up eventual mwait_play_dead() wreckage */
176	this_cpu_write(mwait_cpu_dead.status, 0);
177	this_cpu_write(mwait_cpu_dead.control, 0);
178
179	/*
180	 * If woken up by an INIT in an 82489DX configuration the alive
181	 * synchronization guarantees that the CPU does not reach this
182	 * point before an INIT_deassert IPI reaches the local APIC, so it
183	 * is now safe to touch the local APIC.
184	 *
185	 * Set up this CPU, first the APIC, which is probably redundant on
186	 * most boards.
187	 */
188	apic_ap_setup();
189
190	/* Save the processor parameters. */
191	smp_store_cpu_info(cpuid);
192
193	/*
194	 * The topology information must be up to date before
195	 * notify_cpu_starting().
196	 */
197	set_cpu_sibling_map(cpuid);
198
199	ap_init_aperfmperf();
200
201	pr_debug("Stack at about %p\n", &cpuid);
202
203	wmb();
204
205	/*
206	 * This runs the AP through all the cpuhp states to its target
207	 * state CPUHP_ONLINE.
208	 */
209	notify_cpu_starting(cpuid);
210}
211
212static void ap_calibrate_delay(void)
213{
214	/*
215	 * Calibrate the delay loop and update loops_per_jiffy in cpu_data.
216	 * smp_store_cpu_info() stored a value that is close but not as
217	 * accurate as the value just calculated.
218	 *
219	 * As this is invoked after the TSC synchronization check,
220	 * calibrate_delay_is_known() will skip the calibration routine
221	 * when TSC is synchronized across sockets.
222	 */
223	calibrate_delay();
224	cpu_data(smp_processor_id()).loops_per_jiffy = loops_per_jiffy;
225}
226
227/*
228 * Activate a secondary processor.
229 */
230static void notrace start_secondary(void *unused)
231{
232	/*
233	 * Don't put *anything* except direct CPU state initialization
234	 * before cpu_init(), SMP booting is too fragile that we want to
235	 * limit the things done here to the most necessary things.
236	 */
237	cr4_init();
238
239	/*
240	 * 32-bit specific. 64-bit reaches this code with the correct page
241	 * table established. Yet another historical divergence.
242	 */
243	if (IS_ENABLED(CONFIG_X86_32)) {
244		/* switch away from the initial page table */
245		load_cr3(swapper_pg_dir);
246		__flush_tlb_all();
247	}
248
249	cpu_init_exception_handling();
250
251	/*
252	 * Load the microcode before reaching the AP alive synchronization
253	 * point below so it is not part of the full per CPU serialized
254	 * bringup part when "parallel" bringup is enabled.
255	 *
256	 * That's even safe when hyperthreading is enabled in the CPU as
257	 * the core code starts the primary threads first and leaves the
258	 * secondary threads waiting for SIPI. Loading microcode on
259	 * physical cores concurrently is a safe operation.
260	 *
261	 * This covers both the Intel specific issue that concurrent
262	 * microcode loading on SMT siblings must be prohibited and the
263	 * vendor independent issue`that microcode loading which changes
264	 * CPUID, MSRs etc. must be strictly serialized to maintain
265	 * software state correctness.
266	 */
267	load_ucode_ap();
268
269	/*
270	 * Synchronization point with the hotplug core. Sets this CPUs
271	 * synchronization state to ALIVE and spin-waits for the control CPU to
272	 * release this CPU for further bringup.
273	 */
274	cpuhp_ap_sync_alive();
275
276	cpu_init();
277	fpu__init_cpu();
278	rcutree_report_cpu_starting(raw_smp_processor_id());
279	x86_cpuinit.early_percpu_clock_init();
280
281	ap_starting();
282
283	/* Check TSC synchronization with the control CPU. */
284	check_tsc_sync_target();
285
286	/*
287	 * Calibrate the delay loop after the TSC synchronization check.
288	 * This allows to skip the calibration when TSC is synchronized
289	 * across sockets.
290	 */
291	ap_calibrate_delay();
292
293	speculative_store_bypass_ht_init();
294
295	/*
296	 * Lock vector_lock, set CPU online and bring the vector
297	 * allocator online. Online must be set with vector_lock held
298	 * to prevent a concurrent irq setup/teardown from seeing a
299	 * half valid vector space.
300	 */
301	lock_vector_lock();
302	set_cpu_online(smp_processor_id(), true);
303	lapic_online();
304	unlock_vector_lock();
305	x86_platform.nmi_init();
306
307	/* enable local interrupts */
308	local_irq_enable();
309
310	x86_cpuinit.setup_percpu_clockev();
311
312	wmb();
313	cpu_startup_entry(CPUHP_AP_ONLINE_IDLE);
314}
315
316/*
317 * The bootstrap kernel entry code has set these up. Save them for
318 * a given CPU
319 */
320void smp_store_cpu_info(int id)
321{
322	struct cpuinfo_x86 *c = &cpu_data(id);
323
324	/* Copy boot_cpu_data only on the first bringup */
325	if (!c->initialized)
326		*c = boot_cpu_data;
327	c->cpu_index = id;
328	/*
329	 * During boot time, CPU0 has this setup already. Save the info when
330	 * bringing up an AP.
331	 */
332	identify_secondary_cpu(c);
333	c->initialized = true;
334}
335
336static bool
337topology_same_node(struct cpuinfo_x86 *c, struct cpuinfo_x86 *o)
338{
339	int cpu1 = c->cpu_index, cpu2 = o->cpu_index;
340
341	return (cpu_to_node(cpu1) == cpu_to_node(cpu2));
342}
343
344static bool
345topology_sane(struct cpuinfo_x86 *c, struct cpuinfo_x86 *o, const char *name)
346{
347	int cpu1 = c->cpu_index, cpu2 = o->cpu_index;
348
349	return !WARN_ONCE(!topology_same_node(c, o),
350		"sched: CPU #%d's %s-sibling CPU #%d is not on the same node! "
351		"[node: %d != %d]. Ignoring dependency.\n",
352		cpu1, name, cpu2, cpu_to_node(cpu1), cpu_to_node(cpu2));
353}
354
355#define link_mask(mfunc, c1, c2)					\
356do {									\
357	cpumask_set_cpu((c1), mfunc(c2));				\
358	cpumask_set_cpu((c2), mfunc(c1));				\
359} while (0)
360
361static bool match_smt(struct cpuinfo_x86 *c, struct cpuinfo_x86 *o)
362{
363	if (boot_cpu_has(X86_FEATURE_TOPOEXT)) {
364		int cpu1 = c->cpu_index, cpu2 = o->cpu_index;
365
366		if (c->topo.pkg_id == o->topo.pkg_id &&
367		    c->topo.die_id == o->topo.die_id &&
368		    c->topo.amd_node_id == o->topo.amd_node_id &&
369		    per_cpu_llc_id(cpu1) == per_cpu_llc_id(cpu2)) {
370			if (c->topo.core_id == o->topo.core_id)
371				return topology_sane(c, o, "smt");
372
373			if ((c->topo.cu_id != 0xff) &&
374			    (o->topo.cu_id != 0xff) &&
375			    (c->topo.cu_id == o->topo.cu_id))
376				return topology_sane(c, o, "smt");
377		}
378
379	} else if (c->topo.pkg_id == o->topo.pkg_id &&
380		   c->topo.die_id == o->topo.die_id &&
381		   c->topo.core_id == o->topo.core_id) {
382		return topology_sane(c, o, "smt");
383	}
384
385	return false;
386}
387
388static bool match_die(struct cpuinfo_x86 *c, struct cpuinfo_x86 *o)
389{
390	if (c->topo.pkg_id != o->topo.pkg_id || c->topo.die_id != o->topo.die_id)
391		return false;
392
393	if (cpu_feature_enabled(X86_FEATURE_TOPOEXT) && topology_amd_nodes_per_pkg() > 1)
394		return c->topo.amd_node_id == o->topo.amd_node_id;
395
396	return true;
397}
398
399static bool match_l2c(struct cpuinfo_x86 *c, struct cpuinfo_x86 *o)
400{
401	int cpu1 = c->cpu_index, cpu2 = o->cpu_index;
402
403	/* If the arch didn't set up l2c_id, fall back to SMT */
404	if (per_cpu_l2c_id(cpu1) == BAD_APICID)
405		return match_smt(c, o);
406
407	/* Do not match if L2 cache id does not match: */
408	if (per_cpu_l2c_id(cpu1) != per_cpu_l2c_id(cpu2))
409		return false;
410
411	return topology_sane(c, o, "l2c");
412}
413
414/*
415 * Unlike the other levels, we do not enforce keeping a
416 * multicore group inside a NUMA node.  If this happens, we will
417 * discard the MC level of the topology later.
418 */
419static bool match_pkg(struct cpuinfo_x86 *c, struct cpuinfo_x86 *o)
420{
421	if (c->topo.pkg_id == o->topo.pkg_id)
422		return true;
423	return false;
424}
425
426/*
427 * Define intel_cod_cpu[] for Intel COD (Cluster-on-Die) CPUs.
428 *
429 * Any Intel CPU that has multiple nodes per package and does not
430 * match intel_cod_cpu[] has the SNC (Sub-NUMA Cluster) topology.
431 *
432 * When in SNC mode, these CPUs enumerate an LLC that is shared
433 * by multiple NUMA nodes. The LLC is shared for off-package data
434 * access but private to the NUMA node (half of the package) for
435 * on-package access. CPUID (the source of the information about
436 * the LLC) can only enumerate the cache as shared or unshared,
437 * but not this particular configuration.
438 */
439
440static const struct x86_cpu_id intel_cod_cpu[] = {
441	X86_MATCH_INTEL_FAM6_MODEL(HASWELL_X, 0),	/* COD */
442	X86_MATCH_INTEL_FAM6_MODEL(BROADWELL_X, 0),	/* COD */
443	X86_MATCH_INTEL_FAM6_MODEL(ANY, 1),		/* SNC */
444	{}
445};
446
447static bool match_llc(struct cpuinfo_x86 *c, struct cpuinfo_x86 *o)
448{
449	const struct x86_cpu_id *id = x86_match_cpu(intel_cod_cpu);
450	int cpu1 = c->cpu_index, cpu2 = o->cpu_index;
451	bool intel_snc = id && id->driver_data;
452
453	/* Do not match if we do not have a valid APICID for cpu: */
454	if (per_cpu_llc_id(cpu1) == BAD_APICID)
455		return false;
456
457	/* Do not match if LLC id does not match: */
458	if (per_cpu_llc_id(cpu1) != per_cpu_llc_id(cpu2))
459		return false;
460
461	/*
462	 * Allow the SNC topology without warning. Return of false
463	 * means 'c' does not share the LLC of 'o'. This will be
464	 * reflected to userspace.
465	 */
466	if (match_pkg(c, o) && !topology_same_node(c, o) && intel_snc)
467		return false;
468
469	return topology_sane(c, o, "llc");
470}
471
472
473static inline int x86_sched_itmt_flags(void)
474{
475	return sysctl_sched_itmt_enabled ? SD_ASYM_PACKING : 0;
476}
477
478#ifdef CONFIG_SCHED_MC
479static int x86_core_flags(void)
480{
481	return cpu_core_flags() | x86_sched_itmt_flags();
482}
483#endif
484#ifdef CONFIG_SCHED_SMT
485static int x86_smt_flags(void)
486{
487	return cpu_smt_flags();
488}
489#endif
490#ifdef CONFIG_SCHED_CLUSTER
491static int x86_cluster_flags(void)
492{
493	return cpu_cluster_flags() | x86_sched_itmt_flags();
494}
495#endif
496
497static int x86_die_flags(void)
498{
499	if (cpu_feature_enabled(X86_FEATURE_HYBRID_CPU))
500	       return x86_sched_itmt_flags();
501
502	return 0;
503}
504
505/*
506 * Set if a package/die has multiple NUMA nodes inside.
507 * AMD Magny-Cours, Intel Cluster-on-Die, and Intel
508 * Sub-NUMA Clustering have this.
509 */
510static bool x86_has_numa_in_package;
511
512static struct sched_domain_topology_level x86_topology[6];
513
514static void __init build_sched_topology(void)
515{
516	int i = 0;
517
518#ifdef CONFIG_SCHED_SMT
519	x86_topology[i++] = (struct sched_domain_topology_level){
520		cpu_smt_mask, x86_smt_flags, SD_INIT_NAME(SMT)
521	};
522#endif
523#ifdef CONFIG_SCHED_CLUSTER
524	x86_topology[i++] = (struct sched_domain_topology_level){
525		cpu_clustergroup_mask, x86_cluster_flags, SD_INIT_NAME(CLS)
526	};
527#endif
528#ifdef CONFIG_SCHED_MC
529	x86_topology[i++] = (struct sched_domain_topology_level){
530		cpu_coregroup_mask, x86_core_flags, SD_INIT_NAME(MC)
531	};
532#endif
533	/*
534	 * When there is NUMA topology inside the package skip the PKG domain
535	 * since the NUMA domains will auto-magically create the right spanning
536	 * domains based on the SLIT.
537	 */
538	if (!x86_has_numa_in_package) {
539		x86_topology[i++] = (struct sched_domain_topology_level){
540			cpu_cpu_mask, x86_die_flags, SD_INIT_NAME(PKG)
541		};
542	}
543
544	/*
545	 * There must be one trailing NULL entry left.
546	 */
547	BUG_ON(i >= ARRAY_SIZE(x86_topology)-1);
548
549	set_sched_topology(x86_topology);
550}
551
552void set_cpu_sibling_map(int cpu)
553{
554	bool has_smt = __max_threads_per_core > 1;
555	bool has_mp = has_smt || topology_num_cores_per_package() > 1;
556	struct cpuinfo_x86 *c = &cpu_data(cpu);
557	struct cpuinfo_x86 *o;
558	int i, threads;
559
560	cpumask_set_cpu(cpu, cpu_sibling_setup_mask);
561
562	if (!has_mp) {
563		cpumask_set_cpu(cpu, topology_sibling_cpumask(cpu));
564		cpumask_set_cpu(cpu, cpu_llc_shared_mask(cpu));
565		cpumask_set_cpu(cpu, cpu_l2c_shared_mask(cpu));
566		cpumask_set_cpu(cpu, topology_core_cpumask(cpu));
567		cpumask_set_cpu(cpu, topology_die_cpumask(cpu));
568		c->booted_cores = 1;
569		return;
570	}
571
572	for_each_cpu(i, cpu_sibling_setup_mask) {
573		o = &cpu_data(i);
574
575		if (match_pkg(c, o) && !topology_same_node(c, o))
576			x86_has_numa_in_package = true;
577
578		if ((i == cpu) || (has_smt && match_smt(c, o)))
579			link_mask(topology_sibling_cpumask, cpu, i);
580
581		if ((i == cpu) || (has_mp && match_llc(c, o)))
582			link_mask(cpu_llc_shared_mask, cpu, i);
583
584		if ((i == cpu) || (has_mp && match_l2c(c, o)))
585			link_mask(cpu_l2c_shared_mask, cpu, i);
586
587		if ((i == cpu) || (has_mp && match_die(c, o)))
588			link_mask(topology_die_cpumask, cpu, i);
589	}
590
591	threads = cpumask_weight(topology_sibling_cpumask(cpu));
592	if (threads > __max_smt_threads)
593		__max_smt_threads = threads;
594
595	for_each_cpu(i, topology_sibling_cpumask(cpu))
596		cpu_data(i).smt_active = threads > 1;
597
598	/*
599	 * This needs a separate iteration over the cpus because we rely on all
600	 * topology_sibling_cpumask links to be set-up.
601	 */
602	for_each_cpu(i, cpu_sibling_setup_mask) {
603		o = &cpu_data(i);
604
605		if ((i == cpu) || (has_mp && match_pkg(c, o))) {
606			link_mask(topology_core_cpumask, cpu, i);
607
608			/*
609			 *  Does this new cpu bringup a new core?
610			 */
611			if (threads == 1) {
612				/*
613				 * for each core in package, increment
614				 * the booted_cores for this new cpu
615				 */
616				if (cpumask_first(
617				    topology_sibling_cpumask(i)) == i)
618					c->booted_cores++;
619				/*
620				 * increment the core count for all
621				 * the other cpus in this package
622				 */
623				if (i != cpu)
624					cpu_data(i).booted_cores++;
625			} else if (i != cpu && !c->booted_cores)
626				c->booted_cores = cpu_data(i).booted_cores;
627		}
628	}
629}
630
631/* maps the cpu to the sched domain representing multi-core */
632const struct cpumask *cpu_coregroup_mask(int cpu)
633{
634	return cpu_llc_shared_mask(cpu);
635}
636
637const struct cpumask *cpu_clustergroup_mask(int cpu)
638{
639	return cpu_l2c_shared_mask(cpu);
640}
641EXPORT_SYMBOL_GPL(cpu_clustergroup_mask);
642
643static void impress_friends(void)
644{
645	int cpu;
646	unsigned long bogosum = 0;
647	/*
648	 * Allow the user to impress friends.
649	 */
650	pr_debug("Before bogomips\n");
651	for_each_online_cpu(cpu)
652		bogosum += cpu_data(cpu).loops_per_jiffy;
653
654	pr_info("Total of %d processors activated (%lu.%02lu BogoMIPS)\n",
655		num_online_cpus(),
656		bogosum/(500000/HZ),
657		(bogosum/(5000/HZ))%100);
658
659	pr_debug("Before bogocount - setting activated=1\n");
660}
661
662/*
663 * The Multiprocessor Specification 1.4 (1997) example code suggests
664 * that there should be a 10ms delay between the BSP asserting INIT
665 * and de-asserting INIT, when starting a remote processor.
666 * But that slows boot and resume on modern processors, which include
667 * many cores and don't require that delay.
668 *
669 * Cmdline "init_cpu_udelay=" is available to over-ride this delay.
670 * Modern processor families are quirked to remove the delay entirely.
671 */
672#define UDELAY_10MS_DEFAULT 10000
673
674static unsigned int init_udelay = UINT_MAX;
675
676static int __init cpu_init_udelay(char *str)
677{
678	get_option(&str, &init_udelay);
679
680	return 0;
681}
682early_param("cpu_init_udelay", cpu_init_udelay);
683
684static void __init smp_quirk_init_udelay(void)
685{
686	/* if cmdline changed it from default, leave it alone */
687	if (init_udelay != UINT_MAX)
688		return;
689
690	/* if modern processor, use no delay */
691	if (((boot_cpu_data.x86_vendor == X86_VENDOR_INTEL) && (boot_cpu_data.x86 == 6)) ||
692	    ((boot_cpu_data.x86_vendor == X86_VENDOR_HYGON) && (boot_cpu_data.x86 >= 0x18)) ||
693	    ((boot_cpu_data.x86_vendor == X86_VENDOR_AMD) && (boot_cpu_data.x86 >= 0xF))) {
694		init_udelay = 0;
695		return;
696	}
697	/* else, use legacy delay */
698	init_udelay = UDELAY_10MS_DEFAULT;
699}
700
701/*
702 * Wake up AP by INIT, INIT, STARTUP sequence.
703 */
704static void send_init_sequence(u32 phys_apicid)
705{
706	int maxlvt = lapic_get_maxlvt();
707
708	/* Be paranoid about clearing APIC errors. */
709	if (APIC_INTEGRATED(boot_cpu_apic_version)) {
710		/* Due to the Pentium erratum 3AP.  */
711		if (maxlvt > 3)
712			apic_write(APIC_ESR, 0);
713		apic_read(APIC_ESR);
714	}
715
716	/* Assert INIT on the target CPU */
717	apic_icr_write(APIC_INT_LEVELTRIG | APIC_INT_ASSERT | APIC_DM_INIT, phys_apicid);
718	safe_apic_wait_icr_idle();
719
720	udelay(init_udelay);
721
722	/* Deassert INIT on the target CPU */
723	apic_icr_write(APIC_INT_LEVELTRIG | APIC_DM_INIT, phys_apicid);
724	safe_apic_wait_icr_idle();
725}
726
727/*
728 * Wake up AP by INIT, INIT, STARTUP sequence.
729 */
730static int wakeup_secondary_cpu_via_init(u32 phys_apicid, unsigned long start_eip)
731{
732	unsigned long send_status = 0, accept_status = 0;
733	int num_starts, j, maxlvt;
734
735	preempt_disable();
736	maxlvt = lapic_get_maxlvt();
737	send_init_sequence(phys_apicid);
738
739	mb();
740
741	/*
742	 * Should we send STARTUP IPIs ?
743	 *
744	 * Determine this based on the APIC version.
745	 * If we don't have an integrated APIC, don't send the STARTUP IPIs.
746	 */
747	if (APIC_INTEGRATED(boot_cpu_apic_version))
748		num_starts = 2;
749	else
750		num_starts = 0;
751
752	/*
753	 * Run STARTUP IPI loop.
754	 */
755	pr_debug("#startup loops: %d\n", num_starts);
756
757	for (j = 1; j <= num_starts; j++) {
758		pr_debug("Sending STARTUP #%d\n", j);
759		if (maxlvt > 3)		/* Due to the Pentium erratum 3AP.  */
760			apic_write(APIC_ESR, 0);
761		apic_read(APIC_ESR);
762		pr_debug("After apic_write\n");
763
764		/*
765		 * STARTUP IPI
766		 */
767
768		/* Target chip */
769		/* Boot on the stack */
770		/* Kick the second */
771		apic_icr_write(APIC_DM_STARTUP | (start_eip >> 12),
772			       phys_apicid);
773
774		/*
775		 * Give the other CPU some time to accept the IPI.
776		 */
777		if (init_udelay == 0)
778			udelay(10);
779		else
780			udelay(300);
781
782		pr_debug("Startup point 1\n");
783
784		pr_debug("Waiting for send to finish...\n");
785		send_status = safe_apic_wait_icr_idle();
786
787		/*
788		 * Give the other CPU some time to accept the IPI.
789		 */
790		if (init_udelay == 0)
791			udelay(10);
792		else
793			udelay(200);
794
795		if (maxlvt > 3)		/* Due to the Pentium erratum 3AP.  */
796			apic_write(APIC_ESR, 0);
797		accept_status = (apic_read(APIC_ESR) & 0xEF);
798		if (send_status || accept_status)
799			break;
800	}
801	pr_debug("After Startup\n");
802
803	if (send_status)
804		pr_err("APIC never delivered???\n");
805	if (accept_status)
806		pr_err("APIC delivery error (%lx)\n", accept_status);
807
808	preempt_enable();
809	return (send_status | accept_status);
810}
811
812/* reduce the number of lines printed when booting a large cpu count system */
813static void announce_cpu(int cpu, int apicid)
814{
815	static int width, node_width, first = 1;
816	static int current_node = NUMA_NO_NODE;
817	int node = early_cpu_to_node(cpu);
818
819	if (!width)
820		width = num_digits(num_possible_cpus()) + 1; /* + '#' sign */
821
822	if (!node_width)
823		node_width = num_digits(num_possible_nodes()) + 1; /* + '#' */
824
825	if (system_state < SYSTEM_RUNNING) {
826		if (first)
827			pr_info("x86: Booting SMP configuration:\n");
828
829		if (node != current_node) {
830			if (current_node > (-1))
831				pr_cont("\n");
832			current_node = node;
833
834			printk(KERN_INFO ".... node %*s#%d, CPUs:  ",
835			       node_width - num_digits(node), " ", node);
836		}
837
838		/* Add padding for the BSP */
839		if (first)
840			pr_cont("%*s", width + 1, " ");
841		first = 0;
842
843		pr_cont("%*s#%d", width - num_digits(cpu), " ", cpu);
844	} else
845		pr_info("Booting Node %d Processor %d APIC 0x%x\n",
846			node, cpu, apicid);
847}
848
849int common_cpu_up(unsigned int cpu, struct task_struct *idle)
850{
851	int ret;
852
853	/* Just in case we booted with a single CPU. */
854	alternatives_enable_smp();
855
856	per_cpu(pcpu_hot.current_task, cpu) = idle;
857	cpu_init_stack_canary(cpu, idle);
858
859	/* Initialize the interrupt stack(s) */
860	ret = irq_init_percpu_irqstack(cpu);
861	if (ret)
862		return ret;
863
864#ifdef CONFIG_X86_32
865	/* Stack for startup_32 can be just as for start_secondary onwards */
866	per_cpu(pcpu_hot.top_of_stack, cpu) = task_top_of_stack(idle);
867#endif
868	return 0;
869}
870
871/*
872 * NOTE - on most systems this is a PHYSICAL apic ID, but on multiquad
873 * (ie clustered apic addressing mode), this is a LOGICAL apic ID.
874 * Returns zero if startup was successfully sent, else error code from
875 * ->wakeup_secondary_cpu.
876 */
877static int do_boot_cpu(u32 apicid, int cpu, struct task_struct *idle)
878{
879	unsigned long start_ip = real_mode_header->trampoline_start;
880	int ret;
881
882#ifdef CONFIG_X86_64
883	/* If 64-bit wakeup method exists, use the 64-bit mode trampoline IP */
884	if (apic->wakeup_secondary_cpu_64)
885		start_ip = real_mode_header->trampoline_start64;
886#endif
887	idle->thread.sp = (unsigned long)task_pt_regs(idle);
888	initial_code = (unsigned long)start_secondary;
889
890	if (IS_ENABLED(CONFIG_X86_32)) {
891		early_gdt_descr.address = (unsigned long)get_cpu_gdt_rw(cpu);
892		initial_stack  = idle->thread.sp;
893	} else if (!(smpboot_control & STARTUP_PARALLEL_MASK)) {
894		smpboot_control = cpu;
895	}
896
897	/* Enable the espfix hack for this CPU */
898	init_espfix_ap(cpu);
899
900	/* So we see what's up */
901	announce_cpu(cpu, apicid);
902
903	/*
904	 * This grunge runs the startup process for
905	 * the targeted processor.
906	 */
907	if (x86_platform.legacy.warm_reset) {
908
909		pr_debug("Setting warm reset code and vector.\n");
910
911		smpboot_setup_warm_reset_vector(start_ip);
912		/*
913		 * Be paranoid about clearing APIC errors.
914		*/
915		if (APIC_INTEGRATED(boot_cpu_apic_version)) {
916			apic_write(APIC_ESR, 0);
917			apic_read(APIC_ESR);
918		}
919	}
920
921	smp_mb();
922
923	/*
924	 * Wake up a CPU in difference cases:
925	 * - Use a method from the APIC driver if one defined, with wakeup
926	 *   straight to 64-bit mode preferred over wakeup to RM.
927	 * Otherwise,
928	 * - Use an INIT boot APIC message
929	 */
930	if (apic->wakeup_secondary_cpu_64)
931		ret = apic->wakeup_secondary_cpu_64(apicid, start_ip);
932	else if (apic->wakeup_secondary_cpu)
933		ret = apic->wakeup_secondary_cpu(apicid, start_ip);
934	else
935		ret = wakeup_secondary_cpu_via_init(apicid, start_ip);
936
937	/* If the wakeup mechanism failed, cleanup the warm reset vector */
938	if (ret)
939		arch_cpuhp_cleanup_kick_cpu(cpu);
940	return ret;
941}
942
943int native_kick_ap(unsigned int cpu, struct task_struct *tidle)
944{
945	u32 apicid = apic->cpu_present_to_apicid(cpu);
946	int err;
947
948	lockdep_assert_irqs_enabled();
949
950	pr_debug("++++++++++++++++++++=_---CPU UP  %u\n", cpu);
951
952	if (apicid == BAD_APICID || !apic_id_valid(apicid)) {
953		pr_err("CPU %u has invalid APIC ID %x. Aborting bringup\n", cpu, apicid);
954		return -EINVAL;
955	}
956
957	if (!test_bit(apicid, phys_cpu_present_map)) {
958		pr_err("CPU %u APIC ID %x is not present. Aborting bringup\n", cpu, apicid);
959		return -EINVAL;
960	}
961
962	/*
963	 * Save current MTRR state in case it was changed since early boot
964	 * (e.g. by the ACPI SMI) to initialize new CPUs with MTRRs in sync:
965	 */
966	mtrr_save_state();
967
968	/* the FPU context is blank, nobody can own it */
969	per_cpu(fpu_fpregs_owner_ctx, cpu) = NULL;
970
971	err = common_cpu_up(cpu, tidle);
972	if (err)
973		return err;
974
975	err = do_boot_cpu(apicid, cpu, tidle);
976	if (err)
977		pr_err("do_boot_cpu failed(%d) to wakeup CPU#%u\n", err, cpu);
978
979	return err;
980}
981
982int arch_cpuhp_kick_ap_alive(unsigned int cpu, struct task_struct *tidle)
983{
984	return smp_ops.kick_ap_alive(cpu, tidle);
985}
986
987void arch_cpuhp_cleanup_kick_cpu(unsigned int cpu)
988{
989	/* Cleanup possible dangling ends... */
990	if (smp_ops.kick_ap_alive == native_kick_ap && x86_platform.legacy.warm_reset)
991		smpboot_restore_warm_reset_vector();
992}
993
994void arch_cpuhp_cleanup_dead_cpu(unsigned int cpu)
995{
996	if (smp_ops.cleanup_dead_cpu)
997		smp_ops.cleanup_dead_cpu(cpu);
998
999	if (system_state == SYSTEM_RUNNING)
1000		pr_info("CPU %u is now offline\n", cpu);
1001}
1002
1003void arch_cpuhp_sync_state_poll(void)
1004{
1005	if (smp_ops.poll_sync_state)
1006		smp_ops.poll_sync_state();
1007}
1008
1009/**
1010 * arch_disable_smp_support() - Disables SMP support for x86 at boottime
1011 */
1012void __init arch_disable_smp_support(void)
1013{
1014	disable_ioapic_support();
1015}
1016
1017/*
1018 * Fall back to non SMP mode after errors.
1019 *
1020 * RED-PEN audit/test this more. I bet there is more state messed up here.
1021 */
1022static __init void disable_smp(void)
1023{
1024	pr_info("SMP disabled\n");
1025
1026	disable_ioapic_support();
1027	topology_reset_possible_cpus_up();
1028
1029	cpumask_set_cpu(0, topology_sibling_cpumask(0));
1030	cpumask_set_cpu(0, topology_core_cpumask(0));
1031	cpumask_set_cpu(0, topology_die_cpumask(0));
1032}
1033
1034void __init smp_prepare_cpus_common(void)
1035{
1036	unsigned int i;
1037
1038	/* Mark all except the boot CPU as hotpluggable */
1039	for_each_possible_cpu(i) {
1040		if (i)
1041			per_cpu(cpu_info.cpu_index, i) = nr_cpu_ids;
1042	}
1043
1044	for_each_possible_cpu(i) {
1045		zalloc_cpumask_var(&per_cpu(cpu_sibling_map, i), GFP_KERNEL);
1046		zalloc_cpumask_var(&per_cpu(cpu_core_map, i), GFP_KERNEL);
1047		zalloc_cpumask_var(&per_cpu(cpu_die_map, i), GFP_KERNEL);
1048		zalloc_cpumask_var(&per_cpu(cpu_llc_shared_map, i), GFP_KERNEL);
1049		zalloc_cpumask_var(&per_cpu(cpu_l2c_shared_map, i), GFP_KERNEL);
1050	}
1051
1052	set_cpu_sibling_map(0);
1053}
1054
1055void __init smp_prepare_boot_cpu(void)
1056{
1057	smp_ops.smp_prepare_boot_cpu();
1058}
1059
1060#ifdef CONFIG_X86_64
1061/* Establish whether parallel bringup can be supported. */
1062bool __init arch_cpuhp_init_parallel_bringup(void)
1063{
1064	if (!x86_cpuinit.parallel_bringup) {
1065		pr_info("Parallel CPU startup disabled by the platform\n");
1066		return false;
1067	}
1068
1069	smpboot_control = STARTUP_READ_APICID;
1070	pr_debug("Parallel CPU startup enabled: 0x%08x\n", smpboot_control);
1071	return true;
1072}
1073#endif
1074
1075/*
1076 * Prepare for SMP bootup.
1077 * @max_cpus: configured maximum number of CPUs, It is a legacy parameter
1078 *            for common interface support.
1079 */
1080void __init native_smp_prepare_cpus(unsigned int max_cpus)
1081{
1082	smp_prepare_cpus_common();
1083
1084	switch (apic_intr_mode) {
1085	case APIC_PIC:
1086	case APIC_VIRTUAL_WIRE_NO_CONFIG:
1087		disable_smp();
1088		return;
1089	case APIC_SYMMETRIC_IO_NO_ROUTING:
1090		disable_smp();
1091		/* Setup local timer */
1092		x86_init.timers.setup_percpu_clockev();
1093		return;
1094	case APIC_VIRTUAL_WIRE:
1095	case APIC_SYMMETRIC_IO:
1096		break;
1097	}
1098
1099	/* Setup local timer */
1100	x86_init.timers.setup_percpu_clockev();
1101
1102	pr_info("CPU0: ");
1103	print_cpu_info(&cpu_data(0));
1104
1105	uv_system_init();
1106
1107	smp_quirk_init_udelay();
1108
1109	speculative_store_bypass_ht_init();
1110
1111	snp_set_wakeup_secondary_cpu();
1112}
1113
1114void arch_thaw_secondary_cpus_begin(void)
1115{
1116	set_cache_aps_delayed_init(true);
1117}
1118
1119void arch_thaw_secondary_cpus_end(void)
1120{
1121	cache_aps_init();
1122}
1123
1124/*
1125 * Early setup to make printk work.
1126 */
1127void __init native_smp_prepare_boot_cpu(void)
1128{
1129	int me = smp_processor_id();
1130
1131	/* SMP handles this from setup_per_cpu_areas() */
1132	if (!IS_ENABLED(CONFIG_SMP))
1133		switch_gdt_and_percpu_base(me);
1134
1135	native_pv_lock_init();
1136}
1137
1138void __init native_smp_cpus_done(unsigned int max_cpus)
1139{
1140	pr_debug("Boot done\n");
1141
1142	build_sched_topology();
1143	nmi_selftest();
1144	impress_friends();
1145	cache_aps_init();
1146}
1147
1148/* correctly size the local cpu masks */
1149void __init setup_cpu_local_masks(void)
1150{
1151	alloc_bootmem_cpumask_var(&cpu_sibling_setup_mask);
1152}
1153
1154#ifdef CONFIG_HOTPLUG_CPU
1155
1156/* Recompute SMT state for all CPUs on offline */
1157static void recompute_smt_state(void)
1158{
1159	int max_threads, cpu;
1160
1161	max_threads = 0;
1162	for_each_online_cpu (cpu) {
1163		int threads = cpumask_weight(topology_sibling_cpumask(cpu));
1164
1165		if (threads > max_threads)
1166			max_threads = threads;
1167	}
1168	__max_smt_threads = max_threads;
1169}
1170
1171static void remove_siblinginfo(int cpu)
1172{
1173	int sibling;
1174	struct cpuinfo_x86 *c = &cpu_data(cpu);
1175
1176	for_each_cpu(sibling, topology_core_cpumask(cpu)) {
1177		cpumask_clear_cpu(cpu, topology_core_cpumask(sibling));
1178		/*/
1179		 * last thread sibling in this cpu core going down
1180		 */
1181		if (cpumask_weight(topology_sibling_cpumask(cpu)) == 1)
1182			cpu_data(sibling).booted_cores--;
1183	}
1184
1185	for_each_cpu(sibling, topology_die_cpumask(cpu))
1186		cpumask_clear_cpu(cpu, topology_die_cpumask(sibling));
1187
1188	for_each_cpu(sibling, topology_sibling_cpumask(cpu)) {
1189		cpumask_clear_cpu(cpu, topology_sibling_cpumask(sibling));
1190		if (cpumask_weight(topology_sibling_cpumask(sibling)) == 1)
1191			cpu_data(sibling).smt_active = false;
1192	}
1193
1194	for_each_cpu(sibling, cpu_llc_shared_mask(cpu))
1195		cpumask_clear_cpu(cpu, cpu_llc_shared_mask(sibling));
1196	for_each_cpu(sibling, cpu_l2c_shared_mask(cpu))
1197		cpumask_clear_cpu(cpu, cpu_l2c_shared_mask(sibling));
1198	cpumask_clear(cpu_llc_shared_mask(cpu));
1199	cpumask_clear(cpu_l2c_shared_mask(cpu));
1200	cpumask_clear(topology_sibling_cpumask(cpu));
1201	cpumask_clear(topology_core_cpumask(cpu));
1202	cpumask_clear(topology_die_cpumask(cpu));
1203	c->topo.core_id = 0;
1204	c->booted_cores = 0;
1205	cpumask_clear_cpu(cpu, cpu_sibling_setup_mask);
1206	recompute_smt_state();
1207}
1208
1209static void remove_cpu_from_maps(int cpu)
1210{
1211	set_cpu_online(cpu, false);
1212	numa_remove_cpu(cpu);
1213}
1214
1215void cpu_disable_common(void)
1216{
1217	int cpu = smp_processor_id();
1218
1219	remove_siblinginfo(cpu);
1220
1221	/* It's now safe to remove this processor from the online map */
1222	lock_vector_lock();
1223	remove_cpu_from_maps(cpu);
1224	unlock_vector_lock();
1225	fixup_irqs();
1226	lapic_offline();
1227}
1228
1229int native_cpu_disable(void)
1230{
1231	int ret;
1232
1233	ret = lapic_can_unplug_cpu();
1234	if (ret)
1235		return ret;
1236
1237	cpu_disable_common();
1238
1239        /*
1240         * Disable the local APIC. Otherwise IPI broadcasts will reach
1241         * it. It still responds normally to INIT, NMI, SMI, and SIPI
1242         * messages.
1243         *
1244         * Disabling the APIC must happen after cpu_disable_common()
1245         * which invokes fixup_irqs().
1246         *
1247         * Disabling the APIC preserves already set bits in IRR, but
1248         * an interrupt arriving after disabling the local APIC does not
1249         * set the corresponding IRR bit.
1250         *
1251         * fixup_irqs() scans IRR for set bits so it can raise a not
1252         * yet handled interrupt on the new destination CPU via an IPI
1253         * but obviously it can't do so for IRR bits which are not set.
1254         * IOW, interrupts arriving after disabling the local APIC will
1255         * be lost.
1256         */
1257	apic_soft_disable();
1258
1259	return 0;
1260}
1261
1262void play_dead_common(void)
1263{
1264	idle_task_exit();
1265
1266	cpuhp_ap_report_dead();
1267
1268	local_irq_disable();
1269}
1270
1271/*
1272 * We need to flush the caches before going to sleep, lest we have
1273 * dirty data in our caches when we come back up.
1274 */
1275static inline void mwait_play_dead(void)
1276{
1277	struct mwait_cpu_dead *md = this_cpu_ptr(&mwait_cpu_dead);
1278	unsigned int eax, ebx, ecx, edx;
1279	unsigned int highest_cstate = 0;
1280	unsigned int highest_subcstate = 0;
1281	int i;
1282
1283	if (boot_cpu_data.x86_vendor == X86_VENDOR_AMD ||
1284	    boot_cpu_data.x86_vendor == X86_VENDOR_HYGON)
1285		return;
1286	if (!this_cpu_has(X86_FEATURE_MWAIT))
1287		return;
1288	if (!this_cpu_has(X86_FEATURE_CLFLUSH))
1289		return;
1290	if (__this_cpu_read(cpu_info.cpuid_level) < CPUID_MWAIT_LEAF)
1291		return;
1292
1293	eax = CPUID_MWAIT_LEAF;
1294	ecx = 0;
1295	native_cpuid(&eax, &ebx, &ecx, &edx);
1296
1297	/*
1298	 * eax will be 0 if EDX enumeration is not valid.
1299	 * Initialized below to cstate, sub_cstate value when EDX is valid.
1300	 */
1301	if (!(ecx & CPUID5_ECX_EXTENSIONS_SUPPORTED)) {
1302		eax = 0;
1303	} else {
1304		edx >>= MWAIT_SUBSTATE_SIZE;
1305		for (i = 0; i < 7 && edx; i++, edx >>= MWAIT_SUBSTATE_SIZE) {
1306			if (edx & MWAIT_SUBSTATE_MASK) {
1307				highest_cstate = i;
1308				highest_subcstate = edx & MWAIT_SUBSTATE_MASK;
1309			}
1310		}
1311		eax = (highest_cstate << MWAIT_SUBSTATE_SIZE) |
1312			(highest_subcstate - 1);
1313	}
1314
1315	/* Set up state for the kexec() hack below */
1316	md->status = CPUDEAD_MWAIT_WAIT;
1317	md->control = CPUDEAD_MWAIT_WAIT;
1318
1319	wbinvd();
1320
1321	while (1) {
1322		/*
1323		 * The CLFLUSH is a workaround for erratum AAI65 for
1324		 * the Xeon 7400 series.  It's not clear it is actually
1325		 * needed, but it should be harmless in either case.
1326		 * The WBINVD is insufficient due to the spurious-wakeup
1327		 * case where we return around the loop.
1328		 */
1329		mb();
1330		clflush(md);
1331		mb();
1332		__monitor(md, 0, 0);
1333		mb();
1334		__mwait(eax, 0);
1335
1336		if (READ_ONCE(md->control) == CPUDEAD_MWAIT_KEXEC_HLT) {
1337			/*
1338			 * Kexec is about to happen. Don't go back into mwait() as
1339			 * the kexec kernel might overwrite text and data including
1340			 * page tables and stack. So mwait() would resume when the
1341			 * monitor cache line is written to and then the CPU goes
1342			 * south due to overwritten text, page tables and stack.
1343			 *
1344			 * Note: This does _NOT_ protect against a stray MCE, NMI,
1345			 * SMI. They will resume execution at the instruction
1346			 * following the HLT instruction and run into the problem
1347			 * which this is trying to prevent.
1348			 */
1349			WRITE_ONCE(md->status, CPUDEAD_MWAIT_KEXEC_HLT);
1350			while(1)
1351				native_halt();
1352		}
1353	}
1354}
1355
1356/*
1357 * Kick all "offline" CPUs out of mwait on kexec(). See comment in
1358 * mwait_play_dead().
1359 */
1360void smp_kick_mwait_play_dead(void)
1361{
1362	u32 newstate = CPUDEAD_MWAIT_KEXEC_HLT;
1363	struct mwait_cpu_dead *md;
1364	unsigned int cpu, i;
1365
1366	for_each_cpu_andnot(cpu, cpu_present_mask, cpu_online_mask) {
1367		md = per_cpu_ptr(&mwait_cpu_dead, cpu);
1368
1369		/* Does it sit in mwait_play_dead() ? */
1370		if (READ_ONCE(md->status) != CPUDEAD_MWAIT_WAIT)
1371			continue;
1372
1373		/* Wait up to 5ms */
1374		for (i = 0; READ_ONCE(md->status) != newstate && i < 1000; i++) {
1375			/* Bring it out of mwait */
1376			WRITE_ONCE(md->control, newstate);
1377			udelay(5);
1378		}
1379
1380		if (READ_ONCE(md->status) != newstate)
1381			pr_err_once("CPU%u is stuck in mwait_play_dead()\n", cpu);
1382	}
1383}
1384
1385void __noreturn hlt_play_dead(void)
1386{
1387	if (__this_cpu_read(cpu_info.x86) >= 4)
1388		wbinvd();
1389
1390	while (1)
1391		native_halt();
1392}
1393
1394/*
1395 * native_play_dead() is essentially a __noreturn function, but it can't
1396 * be marked as such as the compiler may complain about it.
1397 */
1398void native_play_dead(void)
1399{
1400	if (cpu_feature_enabled(X86_FEATURE_KERNEL_IBRS))
1401		__update_spec_ctrl(0);
1402
1403	play_dead_common();
1404	tboot_shutdown(TB_SHUTDOWN_WFS);
1405
1406	mwait_play_dead();
1407	if (cpuidle_play_dead())
1408		hlt_play_dead();
1409}
1410
1411#else /* ... !CONFIG_HOTPLUG_CPU */
1412int native_cpu_disable(void)
1413{
1414	return -ENOSYS;
1415}
1416
1417void native_play_dead(void)
1418{
1419	BUG();
1420}
1421
1422#endif
1423