1// SPDX-License-Identifier: GPL-2.0-only
2#include <linux/clockchips.h>
3#include <linux/interrupt.h>
4#include <linux/export.h>
5#include <linux/delay.h>
6#include <linux/hpet.h>
7#include <linux/cpu.h>
8#include <linux/irq.h>
9
10#include <asm/irq_remapping.h>
11#include <asm/hpet.h>
12#include <asm/time.h>
13#include <asm/mwait.h>
14
15#undef  pr_fmt
16#define pr_fmt(fmt) "hpet: " fmt
17
18enum hpet_mode {
19	HPET_MODE_UNUSED,
20	HPET_MODE_LEGACY,
21	HPET_MODE_CLOCKEVT,
22	HPET_MODE_DEVICE,
23};
24
25struct hpet_channel {
26	struct clock_event_device	evt;
27	unsigned int			num;
28	unsigned int			cpu;
29	unsigned int			irq;
30	unsigned int			in_use;
31	enum hpet_mode			mode;
32	unsigned int			boot_cfg;
33	char				name[10];
34};
35
36struct hpet_base {
37	unsigned int			nr_channels;
38	unsigned int			nr_clockevents;
39	unsigned int			boot_cfg;
40	struct hpet_channel		*channels;
41};
42
43#define HPET_MASK			CLOCKSOURCE_MASK(32)
44
45#define HPET_MIN_CYCLES			128
46#define HPET_MIN_PROG_DELTA		(HPET_MIN_CYCLES + (HPET_MIN_CYCLES >> 1))
47
48/*
49 * HPET address is set in acpi/boot.c, when an ACPI entry exists
50 */
51unsigned long				hpet_address;
52u8					hpet_blockid; /* OS timer block num */
53bool					hpet_msi_disable;
54
55#if defined(CONFIG_X86_LOCAL_APIC) && defined(CONFIG_GENERIC_MSI_IRQ)
56static DEFINE_PER_CPU(struct hpet_channel *, cpu_hpet_channel);
57static struct irq_domain		*hpet_domain;
58#endif
59
60static void __iomem			*hpet_virt_address;
61
62static struct hpet_base			hpet_base;
63
64static bool				hpet_legacy_int_enabled;
65static unsigned long			hpet_freq;
66
67bool					boot_hpet_disable;
68bool					hpet_force_user;
69static bool				hpet_verbose;
70
71static inline
72struct hpet_channel *clockevent_to_channel(struct clock_event_device *evt)
73{
74	return container_of(evt, struct hpet_channel, evt);
75}
76
77inline unsigned int hpet_readl(unsigned int a)
78{
79	return readl(hpet_virt_address + a);
80}
81
82static inline void hpet_writel(unsigned int d, unsigned int a)
83{
84	writel(d, hpet_virt_address + a);
85}
86
87static inline void hpet_set_mapping(void)
88{
89	hpet_virt_address = ioremap(hpet_address, HPET_MMAP_SIZE);
90}
91
92static inline void hpet_clear_mapping(void)
93{
94	iounmap(hpet_virt_address);
95	hpet_virt_address = NULL;
96}
97
98/*
99 * HPET command line enable / disable
100 */
101static int __init hpet_setup(char *str)
102{
103	while (str) {
104		char *next = strchr(str, ',');
105
106		if (next)
107			*next++ = 0;
108		if (!strncmp("disable", str, 7))
109			boot_hpet_disable = true;
110		if (!strncmp("force", str, 5))
111			hpet_force_user = true;
112		if (!strncmp("verbose", str, 7))
113			hpet_verbose = true;
114		str = next;
115	}
116	return 1;
117}
118__setup("hpet=", hpet_setup);
119
120static int __init disable_hpet(char *str)
121{
122	boot_hpet_disable = true;
123	return 1;
124}
125__setup("nohpet", disable_hpet);
126
127static inline int is_hpet_capable(void)
128{
129	return !boot_hpet_disable && hpet_address;
130}
131
132/**
133 * is_hpet_enabled - Check whether the legacy HPET timer interrupt is enabled
134 */
135int is_hpet_enabled(void)
136{
137	return is_hpet_capable() && hpet_legacy_int_enabled;
138}
139EXPORT_SYMBOL_GPL(is_hpet_enabled);
140
141static void _hpet_print_config(const char *function, int line)
142{
143	u32 i, id, period, cfg, status, channels, l, h;
144
145	pr_info("%s(%d):\n", function, line);
146
147	id = hpet_readl(HPET_ID);
148	period = hpet_readl(HPET_PERIOD);
149	pr_info("ID: 0x%x, PERIOD: 0x%x\n", id, period);
150
151	cfg = hpet_readl(HPET_CFG);
152	status = hpet_readl(HPET_STATUS);
153	pr_info("CFG: 0x%x, STATUS: 0x%x\n", cfg, status);
154
155	l = hpet_readl(HPET_COUNTER);
156	h = hpet_readl(HPET_COUNTER+4);
157	pr_info("COUNTER_l: 0x%x, COUNTER_h: 0x%x\n", l, h);
158
159	channels = ((id & HPET_ID_NUMBER) >> HPET_ID_NUMBER_SHIFT) + 1;
160
161	for (i = 0; i < channels; i++) {
162		l = hpet_readl(HPET_Tn_CFG(i));
163		h = hpet_readl(HPET_Tn_CFG(i)+4);
164		pr_info("T%d: CFG_l: 0x%x, CFG_h: 0x%x\n", i, l, h);
165
166		l = hpet_readl(HPET_Tn_CMP(i));
167		h = hpet_readl(HPET_Tn_CMP(i)+4);
168		pr_info("T%d: CMP_l: 0x%x, CMP_h: 0x%x\n", i, l, h);
169
170		l = hpet_readl(HPET_Tn_ROUTE(i));
171		h = hpet_readl(HPET_Tn_ROUTE(i)+4);
172		pr_info("T%d ROUTE_l: 0x%x, ROUTE_h: 0x%x\n", i, l, h);
173	}
174}
175
176#define hpet_print_config()					\
177do {								\
178	if (hpet_verbose)					\
179		_hpet_print_config(__func__, __LINE__);	\
180} while (0)
181
182/*
183 * When the HPET driver (/dev/hpet) is enabled, we need to reserve
184 * timer 0 and timer 1 in case of RTC emulation.
185 */
186#ifdef CONFIG_HPET
187
188static void __init hpet_reserve_platform_timers(void)
189{
190	struct hpet_data hd;
191	unsigned int i;
192
193	memset(&hd, 0, sizeof(hd));
194	hd.hd_phys_address	= hpet_address;
195	hd.hd_address		= hpet_virt_address;
196	hd.hd_nirqs		= hpet_base.nr_channels;
197
198	/*
199	 * NOTE that hd_irq[] reflects IOAPIC input pins (LEGACY_8254
200	 * is wrong for i8259!) not the output IRQ.  Many BIOS writers
201	 * don't bother configuring *any* comparator interrupts.
202	 */
203	hd.hd_irq[0] = HPET_LEGACY_8254;
204	hd.hd_irq[1] = HPET_LEGACY_RTC;
205
206	for (i = 0; i < hpet_base.nr_channels; i++) {
207		struct hpet_channel *hc = hpet_base.channels + i;
208
209		if (i >= 2)
210			hd.hd_irq[i] = hc->irq;
211
212		switch (hc->mode) {
213		case HPET_MODE_UNUSED:
214		case HPET_MODE_DEVICE:
215			hc->mode = HPET_MODE_DEVICE;
216			break;
217		case HPET_MODE_CLOCKEVT:
218		case HPET_MODE_LEGACY:
219			hpet_reserve_timer(&hd, hc->num);
220			break;
221		}
222	}
223
224	hpet_alloc(&hd);
225}
226
227static void __init hpet_select_device_channel(void)
228{
229	int i;
230
231	for (i = 0; i < hpet_base.nr_channels; i++) {
232		struct hpet_channel *hc = hpet_base.channels + i;
233
234		/* Associate the first unused channel to /dev/hpet */
235		if (hc->mode == HPET_MODE_UNUSED) {
236			hc->mode = HPET_MODE_DEVICE;
237			return;
238		}
239	}
240}
241
242#else
243static inline void hpet_reserve_platform_timers(void) { }
244static inline void hpet_select_device_channel(void) {}
245#endif
246
247/* Common HPET functions */
248static void hpet_stop_counter(void)
249{
250	u32 cfg = hpet_readl(HPET_CFG);
251
252	cfg &= ~HPET_CFG_ENABLE;
253	hpet_writel(cfg, HPET_CFG);
254}
255
256static void hpet_reset_counter(void)
257{
258	hpet_writel(0, HPET_COUNTER);
259	hpet_writel(0, HPET_COUNTER + 4);
260}
261
262static void hpet_start_counter(void)
263{
264	unsigned int cfg = hpet_readl(HPET_CFG);
265
266	cfg |= HPET_CFG_ENABLE;
267	hpet_writel(cfg, HPET_CFG);
268}
269
270static void hpet_restart_counter(void)
271{
272	hpet_stop_counter();
273	hpet_reset_counter();
274	hpet_start_counter();
275}
276
277static void hpet_resume_device(void)
278{
279	force_hpet_resume();
280}
281
282static void hpet_resume_counter(struct clocksource *cs)
283{
284	hpet_resume_device();
285	hpet_restart_counter();
286}
287
288static void hpet_enable_legacy_int(void)
289{
290	unsigned int cfg = hpet_readl(HPET_CFG);
291
292	cfg |= HPET_CFG_LEGACY;
293	hpet_writel(cfg, HPET_CFG);
294	hpet_legacy_int_enabled = true;
295}
296
297static int hpet_clkevt_set_state_periodic(struct clock_event_device *evt)
298{
299	unsigned int channel = clockevent_to_channel(evt)->num;
300	unsigned int cfg, cmp, now;
301	uint64_t delta;
302
303	hpet_stop_counter();
304	delta = ((uint64_t)(NSEC_PER_SEC / HZ)) * evt->mult;
305	delta >>= evt->shift;
306	now = hpet_readl(HPET_COUNTER);
307	cmp = now + (unsigned int)delta;
308	cfg = hpet_readl(HPET_Tn_CFG(channel));
309	cfg |= HPET_TN_ENABLE | HPET_TN_PERIODIC | HPET_TN_SETVAL |
310	       HPET_TN_32BIT;
311	hpet_writel(cfg, HPET_Tn_CFG(channel));
312	hpet_writel(cmp, HPET_Tn_CMP(channel));
313	udelay(1);
314	/*
315	 * HPET on AMD 81xx needs a second write (with HPET_TN_SETVAL
316	 * cleared) to T0_CMP to set the period. The HPET_TN_SETVAL
317	 * bit is automatically cleared after the first write.
318	 * (See AMD-8111 HyperTransport I/O Hub Data Sheet,
319	 * Publication # 24674)
320	 */
321	hpet_writel((unsigned int)delta, HPET_Tn_CMP(channel));
322	hpet_start_counter();
323	hpet_print_config();
324
325	return 0;
326}
327
328static int hpet_clkevt_set_state_oneshot(struct clock_event_device *evt)
329{
330	unsigned int channel = clockevent_to_channel(evt)->num;
331	unsigned int cfg;
332
333	cfg = hpet_readl(HPET_Tn_CFG(channel));
334	cfg &= ~HPET_TN_PERIODIC;
335	cfg |= HPET_TN_ENABLE | HPET_TN_32BIT;
336	hpet_writel(cfg, HPET_Tn_CFG(channel));
337
338	return 0;
339}
340
341static int hpet_clkevt_set_state_shutdown(struct clock_event_device *evt)
342{
343	unsigned int channel = clockevent_to_channel(evt)->num;
344	unsigned int cfg;
345
346	cfg = hpet_readl(HPET_Tn_CFG(channel));
347	cfg &= ~HPET_TN_ENABLE;
348	hpet_writel(cfg, HPET_Tn_CFG(channel));
349
350	return 0;
351}
352
353static int hpet_clkevt_legacy_resume(struct clock_event_device *evt)
354{
355	hpet_enable_legacy_int();
356	hpet_print_config();
357	return 0;
358}
359
360static int
361hpet_clkevt_set_next_event(unsigned long delta, struct clock_event_device *evt)
362{
363	unsigned int channel = clockevent_to_channel(evt)->num;
364	u32 cnt;
365	s32 res;
366
367	cnt = hpet_readl(HPET_COUNTER);
368	cnt += (u32) delta;
369	hpet_writel(cnt, HPET_Tn_CMP(channel));
370
371	/*
372	 * HPETs are a complete disaster. The compare register is
373	 * based on a equal comparison and neither provides a less
374	 * than or equal functionality (which would require to take
375	 * the wraparound into account) nor a simple count down event
376	 * mode. Further the write to the comparator register is
377	 * delayed internally up to two HPET clock cycles in certain
378	 * chipsets (ATI, ICH9,10). Some newer AMD chipsets have even
379	 * longer delays. We worked around that by reading back the
380	 * compare register, but that required another workaround for
381	 * ICH9,10 chips where the first readout after write can
382	 * return the old stale value. We already had a minimum
383	 * programming delta of 5us enforced, but a NMI or SMI hitting
384	 * between the counter readout and the comparator write can
385	 * move us behind that point easily. Now instead of reading
386	 * the compare register back several times, we make the ETIME
387	 * decision based on the following: Return ETIME if the
388	 * counter value after the write is less than HPET_MIN_CYCLES
389	 * away from the event or if the counter is already ahead of
390	 * the event. The minimum programming delta for the generic
391	 * clockevents code is set to 1.5 * HPET_MIN_CYCLES.
392	 */
393	res = (s32)(cnt - hpet_readl(HPET_COUNTER));
394
395	return res < HPET_MIN_CYCLES ? -ETIME : 0;
396}
397
398static void hpet_init_clockevent(struct hpet_channel *hc, unsigned int rating)
399{
400	struct clock_event_device *evt = &hc->evt;
401
402	evt->rating		= rating;
403	evt->irq		= hc->irq;
404	evt->name		= hc->name;
405	evt->cpumask		= cpumask_of(hc->cpu);
406	evt->set_state_oneshot	= hpet_clkevt_set_state_oneshot;
407	evt->set_next_event	= hpet_clkevt_set_next_event;
408	evt->set_state_shutdown	= hpet_clkevt_set_state_shutdown;
409
410	evt->features = CLOCK_EVT_FEAT_ONESHOT;
411	if (hc->boot_cfg & HPET_TN_PERIODIC) {
412		evt->features		|= CLOCK_EVT_FEAT_PERIODIC;
413		evt->set_state_periodic	= hpet_clkevt_set_state_periodic;
414	}
415}
416
417static void __init hpet_legacy_clockevent_register(struct hpet_channel *hc)
418{
419	/*
420	 * Start HPET with the boot CPU's cpumask and make it global after
421	 * the IO_APIC has been initialized.
422	 */
423	hc->cpu = boot_cpu_data.cpu_index;
424	strscpy(hc->name, "hpet", sizeof(hc->name));
425	hpet_init_clockevent(hc, 50);
426
427	hc->evt.tick_resume	= hpet_clkevt_legacy_resume;
428
429	/*
430	 * Legacy horrors and sins from the past. HPET used periodic mode
431	 * unconditionally forever on the legacy channel 0. Removing the
432	 * below hack and using the conditional in hpet_init_clockevent()
433	 * makes at least Qemu and one hardware machine fail to boot.
434	 * There are two issues which cause the boot failure:
435	 *
436	 * #1 After the timer delivery test in IOAPIC and the IOAPIC setup
437	 *    the next interrupt is not delivered despite the HPET channel
438	 *    being programmed correctly. Reprogramming the HPET after
439	 *    switching to IOAPIC makes it work again. After fixing this,
440	 *    the next issue surfaces:
441	 *
442	 * #2 Due to the unconditional periodic mode availability the Local
443	 *    APIC timer calibration can hijack the global clockevents
444	 *    event handler without causing damage. Using oneshot at this
445	 *    stage makes if hang because the HPET does not get
446	 *    reprogrammed due to the handler hijacking. Duh, stupid me!
447	 *
448	 * Both issues require major surgery and especially the kick HPET
449	 * again after enabling IOAPIC results in really nasty hackery.
450	 * This 'assume periodic works' magic has survived since HPET
451	 * support got added, so it's questionable whether this should be
452	 * fixed. Both Qemu and the failing hardware machine support
453	 * periodic mode despite the fact that both don't advertise it in
454	 * the configuration register and both need that extra kick after
455	 * switching to IOAPIC. Seems to be a feature...
456	 */
457	hc->evt.features		|= CLOCK_EVT_FEAT_PERIODIC;
458	hc->evt.set_state_periodic	= hpet_clkevt_set_state_periodic;
459
460	/* Start HPET legacy interrupts */
461	hpet_enable_legacy_int();
462
463	clockevents_config_and_register(&hc->evt, hpet_freq,
464					HPET_MIN_PROG_DELTA, 0x7FFFFFFF);
465	global_clock_event = &hc->evt;
466	pr_debug("Clockevent registered\n");
467}
468
469/*
470 * HPET MSI Support
471 */
472#if defined(CONFIG_X86_LOCAL_APIC) && defined(CONFIG_GENERIC_MSI_IRQ)
473static void hpet_msi_unmask(struct irq_data *data)
474{
475	struct hpet_channel *hc = irq_data_get_irq_handler_data(data);
476	unsigned int cfg;
477
478	cfg = hpet_readl(HPET_Tn_CFG(hc->num));
479	cfg |= HPET_TN_ENABLE | HPET_TN_FSB;
480	hpet_writel(cfg, HPET_Tn_CFG(hc->num));
481}
482
483static void hpet_msi_mask(struct irq_data *data)
484{
485	struct hpet_channel *hc = irq_data_get_irq_handler_data(data);
486	unsigned int cfg;
487
488	cfg = hpet_readl(HPET_Tn_CFG(hc->num));
489	cfg &= ~(HPET_TN_ENABLE | HPET_TN_FSB);
490	hpet_writel(cfg, HPET_Tn_CFG(hc->num));
491}
492
493static void hpet_msi_write(struct hpet_channel *hc, struct msi_msg *msg)
494{
495	hpet_writel(msg->data, HPET_Tn_ROUTE(hc->num));
496	hpet_writel(msg->address_lo, HPET_Tn_ROUTE(hc->num) + 4);
497}
498
499static void hpet_msi_write_msg(struct irq_data *data, struct msi_msg *msg)
500{
501	hpet_msi_write(irq_data_get_irq_handler_data(data), msg);
502}
503
504static struct irq_chip hpet_msi_controller __ro_after_init = {
505	.name = "HPET-MSI",
506	.irq_unmask = hpet_msi_unmask,
507	.irq_mask = hpet_msi_mask,
508	.irq_ack = irq_chip_ack_parent,
509	.irq_set_affinity = msi_domain_set_affinity,
510	.irq_retrigger = irq_chip_retrigger_hierarchy,
511	.irq_write_msi_msg = hpet_msi_write_msg,
512	.flags = IRQCHIP_SKIP_SET_WAKE | IRQCHIP_AFFINITY_PRE_STARTUP,
513};
514
515static int hpet_msi_init(struct irq_domain *domain,
516			 struct msi_domain_info *info, unsigned int virq,
517			 irq_hw_number_t hwirq, msi_alloc_info_t *arg)
518{
519	irq_set_status_flags(virq, IRQ_MOVE_PCNTXT);
520	irq_domain_set_info(domain, virq, arg->hwirq, info->chip, NULL,
521			    handle_edge_irq, arg->data, "edge");
522
523	return 0;
524}
525
526static void hpet_msi_free(struct irq_domain *domain,
527			  struct msi_domain_info *info, unsigned int virq)
528{
529	irq_clear_status_flags(virq, IRQ_MOVE_PCNTXT);
530}
531
532static struct msi_domain_ops hpet_msi_domain_ops = {
533	.msi_init	= hpet_msi_init,
534	.msi_free	= hpet_msi_free,
535};
536
537static struct msi_domain_info hpet_msi_domain_info = {
538	.ops		= &hpet_msi_domain_ops,
539	.chip		= &hpet_msi_controller,
540	.flags		= MSI_FLAG_USE_DEF_DOM_OPS,
541};
542
543static struct irq_domain *hpet_create_irq_domain(int hpet_id)
544{
545	struct msi_domain_info *domain_info;
546	struct irq_domain *parent, *d;
547	struct fwnode_handle *fn;
548	struct irq_fwspec fwspec;
549
550	if (x86_vector_domain == NULL)
551		return NULL;
552
553	domain_info = kzalloc(sizeof(*domain_info), GFP_KERNEL);
554	if (!domain_info)
555		return NULL;
556
557	*domain_info = hpet_msi_domain_info;
558	domain_info->data = (void *)(long)hpet_id;
559
560	fn = irq_domain_alloc_named_id_fwnode(hpet_msi_controller.name,
561					      hpet_id);
562	if (!fn) {
563		kfree(domain_info);
564		return NULL;
565	}
566
567	fwspec.fwnode = fn;
568	fwspec.param_count = 1;
569	fwspec.param[0] = hpet_id;
570
571	parent = irq_find_matching_fwspec(&fwspec, DOMAIN_BUS_GENERIC_MSI);
572	if (!parent) {
573		irq_domain_free_fwnode(fn);
574		kfree(domain_info);
575		return NULL;
576	}
577	if (parent != x86_vector_domain)
578		hpet_msi_controller.name = "IR-HPET-MSI";
579
580	d = msi_create_irq_domain(fn, domain_info, parent);
581	if (!d) {
582		irq_domain_free_fwnode(fn);
583		kfree(domain_info);
584	}
585	return d;
586}
587
588static inline int hpet_dev_id(struct irq_domain *domain)
589{
590	struct msi_domain_info *info = msi_get_domain_info(domain);
591
592	return (int)(long)info->data;
593}
594
595static int hpet_assign_irq(struct irq_domain *domain, struct hpet_channel *hc,
596			   int dev_num)
597{
598	struct irq_alloc_info info;
599
600	init_irq_alloc_info(&info, NULL);
601	info.type = X86_IRQ_ALLOC_TYPE_HPET;
602	info.data = hc;
603	info.devid = hpet_dev_id(domain);
604	info.hwirq = dev_num;
605
606	return irq_domain_alloc_irqs(domain, 1, NUMA_NO_NODE, &info);
607}
608
609static int hpet_clkevt_msi_resume(struct clock_event_device *evt)
610{
611	struct hpet_channel *hc = clockevent_to_channel(evt);
612	struct irq_data *data = irq_get_irq_data(hc->irq);
613	struct msi_msg msg;
614
615	/* Restore the MSI msg and unmask the interrupt */
616	irq_chip_compose_msi_msg(data, &msg);
617	hpet_msi_write(hc, &msg);
618	hpet_msi_unmask(data);
619	return 0;
620}
621
622static irqreturn_t hpet_msi_interrupt_handler(int irq, void *data)
623{
624	struct hpet_channel *hc = data;
625	struct clock_event_device *evt = &hc->evt;
626
627	if (!evt->event_handler) {
628		pr_info("Spurious interrupt HPET channel %d\n", hc->num);
629		return IRQ_HANDLED;
630	}
631
632	evt->event_handler(evt);
633	return IRQ_HANDLED;
634}
635
636static int hpet_setup_msi_irq(struct hpet_channel *hc)
637{
638	if (request_irq(hc->irq, hpet_msi_interrupt_handler,
639			IRQF_TIMER | IRQF_NOBALANCING,
640			hc->name, hc))
641		return -1;
642
643	disable_irq(hc->irq);
644	irq_set_affinity(hc->irq, cpumask_of(hc->cpu));
645	enable_irq(hc->irq);
646
647	pr_debug("%s irq %u for MSI\n", hc->name, hc->irq);
648
649	return 0;
650}
651
652/* Invoked from the hotplug callback on @cpu */
653static void init_one_hpet_msi_clockevent(struct hpet_channel *hc, int cpu)
654{
655	struct clock_event_device *evt = &hc->evt;
656
657	hc->cpu = cpu;
658	per_cpu(cpu_hpet_channel, cpu) = hc;
659	hpet_setup_msi_irq(hc);
660
661	hpet_init_clockevent(hc, 110);
662	evt->tick_resume = hpet_clkevt_msi_resume;
663
664	clockevents_config_and_register(evt, hpet_freq, HPET_MIN_PROG_DELTA,
665					0x7FFFFFFF);
666}
667
668static struct hpet_channel *hpet_get_unused_clockevent(void)
669{
670	int i;
671
672	for (i = 0; i < hpet_base.nr_channels; i++) {
673		struct hpet_channel *hc = hpet_base.channels + i;
674
675		if (hc->mode != HPET_MODE_CLOCKEVT || hc->in_use)
676			continue;
677		hc->in_use = 1;
678		return hc;
679	}
680	return NULL;
681}
682
683static int hpet_cpuhp_online(unsigned int cpu)
684{
685	struct hpet_channel *hc = hpet_get_unused_clockevent();
686
687	if (hc)
688		init_one_hpet_msi_clockevent(hc, cpu);
689	return 0;
690}
691
692static int hpet_cpuhp_dead(unsigned int cpu)
693{
694	struct hpet_channel *hc = per_cpu(cpu_hpet_channel, cpu);
695
696	if (!hc)
697		return 0;
698	free_irq(hc->irq, hc);
699	hc->in_use = 0;
700	per_cpu(cpu_hpet_channel, cpu) = NULL;
701	return 0;
702}
703
704static void __init hpet_select_clockevents(void)
705{
706	unsigned int i;
707
708	hpet_base.nr_clockevents = 0;
709
710	/* No point if MSI is disabled or CPU has an Always Running APIC Timer */
711	if (hpet_msi_disable || boot_cpu_has(X86_FEATURE_ARAT))
712		return;
713
714	hpet_print_config();
715
716	hpet_domain = hpet_create_irq_domain(hpet_blockid);
717	if (!hpet_domain)
718		return;
719
720	for (i = 0; i < hpet_base.nr_channels; i++) {
721		struct hpet_channel *hc = hpet_base.channels + i;
722		int irq;
723
724		if (hc->mode != HPET_MODE_UNUSED)
725			continue;
726
727		/* Only consider HPET channel with MSI support */
728		if (!(hc->boot_cfg & HPET_TN_FSB_CAP))
729			continue;
730
731		sprintf(hc->name, "hpet%d", i);
732
733		irq = hpet_assign_irq(hpet_domain, hc, hc->num);
734		if (irq <= 0)
735			continue;
736
737		hc->irq = irq;
738		hc->mode = HPET_MODE_CLOCKEVT;
739
740		if (++hpet_base.nr_clockevents == num_possible_cpus())
741			break;
742	}
743
744	pr_info("%d channels of %d reserved for per-cpu timers\n",
745		hpet_base.nr_channels, hpet_base.nr_clockevents);
746}
747
748#else
749
750static inline void hpet_select_clockevents(void) { }
751
752#define hpet_cpuhp_online	NULL
753#define hpet_cpuhp_dead		NULL
754
755#endif
756
757/*
758 * Clock source related code
759 */
760#if defined(CONFIG_SMP) && defined(CONFIG_64BIT)
761/*
762 * Reading the HPET counter is a very slow operation. If a large number of
763 * CPUs are trying to access the HPET counter simultaneously, it can cause
764 * massive delays and slow down system performance dramatically. This may
765 * happen when HPET is the default clock source instead of TSC. For a
766 * really large system with hundreds of CPUs, the slowdown may be so
767 * severe, that it can actually crash the system because of a NMI watchdog
768 * soft lockup, for example.
769 *
770 * If multiple CPUs are trying to access the HPET counter at the same time,
771 * we don't actually need to read the counter multiple times. Instead, the
772 * other CPUs can use the counter value read by the first CPU in the group.
773 *
774 * This special feature is only enabled on x86-64 systems. It is unlikely
775 * that 32-bit x86 systems will have enough CPUs to require this feature
776 * with its associated locking overhead. We also need 64-bit atomic read.
777 *
778 * The lock and the HPET value are stored together and can be read in a
779 * single atomic 64-bit read. It is explicitly assumed that arch_spinlock_t
780 * is 32 bits in size.
781 */
782union hpet_lock {
783	struct {
784		arch_spinlock_t lock;
785		u32 value;
786	};
787	u64 lockval;
788};
789
790static union hpet_lock hpet __cacheline_aligned = {
791	{ .lock = __ARCH_SPIN_LOCK_UNLOCKED, },
792};
793
794static u64 read_hpet(struct clocksource *cs)
795{
796	unsigned long flags;
797	union hpet_lock old, new;
798
799	BUILD_BUG_ON(sizeof(union hpet_lock) != 8);
800
801	/*
802	 * Read HPET directly if in NMI.
803	 */
804	if (in_nmi())
805		return (u64)hpet_readl(HPET_COUNTER);
806
807	/*
808	 * Read the current state of the lock and HPET value atomically.
809	 */
810	old.lockval = READ_ONCE(hpet.lockval);
811
812	if (arch_spin_is_locked(&old.lock))
813		goto contended;
814
815	local_irq_save(flags);
816	if (arch_spin_trylock(&hpet.lock)) {
817		new.value = hpet_readl(HPET_COUNTER);
818		/*
819		 * Use WRITE_ONCE() to prevent store tearing.
820		 */
821		WRITE_ONCE(hpet.value, new.value);
822		arch_spin_unlock(&hpet.lock);
823		local_irq_restore(flags);
824		return (u64)new.value;
825	}
826	local_irq_restore(flags);
827
828contended:
829	/*
830	 * Contended case
831	 * --------------
832	 * Wait until the HPET value change or the lock is free to indicate
833	 * its value is up-to-date.
834	 *
835	 * It is possible that old.value has already contained the latest
836	 * HPET value while the lock holder was in the process of releasing
837	 * the lock. Checking for lock state change will enable us to return
838	 * the value immediately instead of waiting for the next HPET reader
839	 * to come along.
840	 */
841	do {
842		cpu_relax();
843		new.lockval = READ_ONCE(hpet.lockval);
844	} while ((new.value == old.value) && arch_spin_is_locked(&new.lock));
845
846	return (u64)new.value;
847}
848#else
849/*
850 * For UP or 32-bit.
851 */
852static u64 read_hpet(struct clocksource *cs)
853{
854	return (u64)hpet_readl(HPET_COUNTER);
855}
856#endif
857
858static struct clocksource clocksource_hpet = {
859	.name		= "hpet",
860	.rating		= 250,
861	.read		= read_hpet,
862	.mask		= HPET_MASK,
863	.flags		= CLOCK_SOURCE_IS_CONTINUOUS,
864	.resume		= hpet_resume_counter,
865};
866
867/*
868 * AMD SB700 based systems with spread spectrum enabled use a SMM based
869 * HPET emulation to provide proper frequency setting.
870 *
871 * On such systems the SMM code is initialized with the first HPET register
872 * access and takes some time to complete. During this time the config
873 * register reads 0xffffffff. We check for max 1000 loops whether the
874 * config register reads a non-0xffffffff value to make sure that the
875 * HPET is up and running before we proceed any further.
876 *
877 * A counting loop is safe, as the HPET access takes thousands of CPU cycles.
878 *
879 * On non-SB700 based machines this check is only done once and has no
880 * side effects.
881 */
882static bool __init hpet_cfg_working(void)
883{
884	int i;
885
886	for (i = 0; i < 1000; i++) {
887		if (hpet_readl(HPET_CFG) != 0xFFFFFFFF)
888			return true;
889	}
890
891	pr_warn("Config register invalid. Disabling HPET\n");
892	return false;
893}
894
895static bool __init hpet_counting(void)
896{
897	u64 start, now, t1;
898
899	hpet_restart_counter();
900
901	t1 = hpet_readl(HPET_COUNTER);
902	start = rdtsc();
903
904	/*
905	 * We don't know the TSC frequency yet, but waiting for
906	 * 200000 TSC cycles is safe:
907	 * 4 GHz == 50us
908	 * 1 GHz == 200us
909	 */
910	do {
911		if (t1 != hpet_readl(HPET_COUNTER))
912			return true;
913		now = rdtsc();
914	} while ((now - start) < 200000UL);
915
916	pr_warn("Counter not counting. HPET disabled\n");
917	return false;
918}
919
920static bool __init mwait_pc10_supported(void)
921{
922	unsigned int eax, ebx, ecx, mwait_substates;
923
924	if (boot_cpu_data.x86_vendor != X86_VENDOR_INTEL)
925		return false;
926
927	if (!cpu_feature_enabled(X86_FEATURE_MWAIT))
928		return false;
929
930	if (boot_cpu_data.cpuid_level < CPUID_MWAIT_LEAF)
931		return false;
932
933	cpuid(CPUID_MWAIT_LEAF, &eax, &ebx, &ecx, &mwait_substates);
934
935	return (ecx & CPUID5_ECX_EXTENSIONS_SUPPORTED) &&
936	       (ecx & CPUID5_ECX_INTERRUPT_BREAK) &&
937	       (mwait_substates & (0xF << 28));
938}
939
940/*
941 * Check whether the system supports PC10. If so force disable HPET as that
942 * stops counting in PC10. This check is overbroad as it does not take any
943 * of the following into account:
944 *
945 *	- ACPI tables
946 *	- Enablement of intel_idle
947 *	- Command line arguments which limit intel_idle C-state support
948 *
949 * That's perfectly fine. HPET is a piece of hardware designed by committee
950 * and the only reasons why it is still in use on modern systems is the
951 * fact that it is impossible to reliably query TSC and CPU frequency via
952 * CPUID or firmware.
953 *
954 * If HPET is functional it is useful for calibrating TSC, but this can be
955 * done via PMTIMER as well which seems to be the last remaining timer on
956 * X86/INTEL platforms that has not been completely wreckaged by feature
957 * creep.
958 *
959 * In theory HPET support should be removed altogether, but there are older
960 * systems out there which depend on it because TSC and APIC timer are
961 * dysfunctional in deeper C-states.
962 *
963 * It's only 20 years now that hardware people have been asked to provide
964 * reliable and discoverable facilities which can be used for timekeeping
965 * and per CPU timer interrupts.
966 *
967 * The probability that this problem is going to be solved in the
968 * foreseeable future is close to zero, so the kernel has to be cluttered
969 * with heuristics to keep up with the ever growing amount of hardware and
970 * firmware trainwrecks. Hopefully some day hardware people will understand
971 * that the approach of "This can be fixed in software" is not sustainable.
972 * Hope dies last...
973 */
974static bool __init hpet_is_pc10_damaged(void)
975{
976	unsigned long long pcfg;
977
978	/* Check whether PC10 substates are supported */
979	if (!mwait_pc10_supported())
980		return false;
981
982	/* Check whether PC10 is enabled in PKG C-state limit */
983	rdmsrl(MSR_PKG_CST_CONFIG_CONTROL, pcfg);
984	if ((pcfg & 0xF) < 8)
985		return false;
986
987	if (hpet_force_user) {
988		pr_warn("HPET force enabled via command line, but dysfunctional in PC10.\n");
989		return false;
990	}
991
992	pr_info("HPET dysfunctional in PC10. Force disabled.\n");
993	boot_hpet_disable = true;
994	return true;
995}
996
997/**
998 * hpet_enable - Try to setup the HPET timer. Returns 1 on success.
999 */
1000int __init hpet_enable(void)
1001{
1002	u32 hpet_period, cfg, id, irq;
1003	unsigned int i, channels;
1004	struct hpet_channel *hc;
1005	u64 freq;
1006
1007	if (!is_hpet_capable())
1008		return 0;
1009
1010	if (hpet_is_pc10_damaged())
1011		return 0;
1012
1013	hpet_set_mapping();
1014	if (!hpet_virt_address)
1015		return 0;
1016
1017	/* Validate that the config register is working */
1018	if (!hpet_cfg_working())
1019		goto out_nohpet;
1020
1021	/*
1022	 * Read the period and check for a sane value:
1023	 */
1024	hpet_period = hpet_readl(HPET_PERIOD);
1025	if (hpet_period < HPET_MIN_PERIOD || hpet_period > HPET_MAX_PERIOD)
1026		goto out_nohpet;
1027
1028	/* The period is a femtoseconds value. Convert it to a frequency. */
1029	freq = FSEC_PER_SEC;
1030	do_div(freq, hpet_period);
1031	hpet_freq = freq;
1032
1033	/*
1034	 * Read the HPET ID register to retrieve the IRQ routing
1035	 * information and the number of channels
1036	 */
1037	id = hpet_readl(HPET_ID);
1038	hpet_print_config();
1039
1040	/* This is the HPET channel number which is zero based */
1041	channels = ((id & HPET_ID_NUMBER) >> HPET_ID_NUMBER_SHIFT) + 1;
1042
1043	/*
1044	 * The legacy routing mode needs at least two channels, tick timer
1045	 * and the rtc emulation channel.
1046	 */
1047	if (IS_ENABLED(CONFIG_HPET_EMULATE_RTC) && channels < 2)
1048		goto out_nohpet;
1049
1050	hc = kcalloc(channels, sizeof(*hc), GFP_KERNEL);
1051	if (!hc) {
1052		pr_warn("Disabling HPET.\n");
1053		goto out_nohpet;
1054	}
1055	hpet_base.channels = hc;
1056	hpet_base.nr_channels = channels;
1057
1058	/* Read, store and sanitize the global configuration */
1059	cfg = hpet_readl(HPET_CFG);
1060	hpet_base.boot_cfg = cfg;
1061	cfg &= ~(HPET_CFG_ENABLE | HPET_CFG_LEGACY);
1062	hpet_writel(cfg, HPET_CFG);
1063	if (cfg)
1064		pr_warn("Global config: Unknown bits %#x\n", cfg);
1065
1066	/* Read, store and sanitize the per channel configuration */
1067	for (i = 0; i < channels; i++, hc++) {
1068		hc->num = i;
1069
1070		cfg = hpet_readl(HPET_Tn_CFG(i));
1071		hc->boot_cfg = cfg;
1072		irq = (cfg & Tn_INT_ROUTE_CNF_MASK) >> Tn_INT_ROUTE_CNF_SHIFT;
1073		hc->irq = irq;
1074
1075		cfg &= ~(HPET_TN_ENABLE | HPET_TN_LEVEL | HPET_TN_FSB);
1076		hpet_writel(cfg, HPET_Tn_CFG(i));
1077
1078		cfg &= ~(HPET_TN_PERIODIC | HPET_TN_PERIODIC_CAP
1079			 | HPET_TN_64BIT_CAP | HPET_TN_32BIT | HPET_TN_ROUTE
1080			 | HPET_TN_FSB | HPET_TN_FSB_CAP);
1081		if (cfg)
1082			pr_warn("Channel #%u config: Unknown bits %#x\n", i, cfg);
1083	}
1084	hpet_print_config();
1085
1086	/*
1087	 * Validate that the counter is counting. This needs to be done
1088	 * after sanitizing the config registers to properly deal with
1089	 * force enabled HPETs.
1090	 */
1091	if (!hpet_counting())
1092		goto out_nohpet;
1093
1094	if (tsc_clocksource_watchdog_disabled())
1095		clocksource_hpet.flags |= CLOCK_SOURCE_MUST_VERIFY;
1096	clocksource_register_hz(&clocksource_hpet, (u32)hpet_freq);
1097
1098	if (id & HPET_ID_LEGSUP) {
1099		hpet_legacy_clockevent_register(&hpet_base.channels[0]);
1100		hpet_base.channels[0].mode = HPET_MODE_LEGACY;
1101		if (IS_ENABLED(CONFIG_HPET_EMULATE_RTC))
1102			hpet_base.channels[1].mode = HPET_MODE_LEGACY;
1103		return 1;
1104	}
1105	return 0;
1106
1107out_nohpet:
1108	kfree(hpet_base.channels);
1109	hpet_base.channels = NULL;
1110	hpet_base.nr_channels = 0;
1111	hpet_clear_mapping();
1112	hpet_address = 0;
1113	return 0;
1114}
1115
1116/*
1117 * The late initialization runs after the PCI quirks have been invoked
1118 * which might have detected a system on which the HPET can be enforced.
1119 *
1120 * Also, the MSI machinery is not working yet when the HPET is initialized
1121 * early.
1122 *
1123 * If the HPET is enabled, then:
1124 *
1125 *  1) Reserve one channel for /dev/hpet if CONFIG_HPET=y
1126 *  2) Reserve up to num_possible_cpus() channels as per CPU clockevents
1127 *  3) Setup /dev/hpet if CONFIG_HPET=y
1128 *  4) Register hotplug callbacks when clockevents are available
1129 */
1130static __init int hpet_late_init(void)
1131{
1132	int ret;
1133
1134	if (!hpet_address) {
1135		if (!force_hpet_address)
1136			return -ENODEV;
1137
1138		hpet_address = force_hpet_address;
1139		hpet_enable();
1140	}
1141
1142	if (!hpet_virt_address)
1143		return -ENODEV;
1144
1145	hpet_select_device_channel();
1146	hpet_select_clockevents();
1147	hpet_reserve_platform_timers();
1148	hpet_print_config();
1149
1150	if (!hpet_base.nr_clockevents)
1151		return 0;
1152
1153	ret = cpuhp_setup_state(CPUHP_AP_X86_HPET_ONLINE, "x86/hpet:online",
1154				hpet_cpuhp_online, NULL);
1155	if (ret)
1156		return ret;
1157	ret = cpuhp_setup_state(CPUHP_X86_HPET_DEAD, "x86/hpet:dead", NULL,
1158				hpet_cpuhp_dead);
1159	if (ret)
1160		goto err_cpuhp;
1161	return 0;
1162
1163err_cpuhp:
1164	cpuhp_remove_state(CPUHP_AP_X86_HPET_ONLINE);
1165	return ret;
1166}
1167fs_initcall(hpet_late_init);
1168
1169void hpet_disable(void)
1170{
1171	unsigned int i;
1172	u32 cfg;
1173
1174	if (!is_hpet_capable() || !hpet_virt_address)
1175		return;
1176
1177	/* Restore boot configuration with the enable bit cleared */
1178	cfg = hpet_base.boot_cfg;
1179	cfg &= ~HPET_CFG_ENABLE;
1180	hpet_writel(cfg, HPET_CFG);
1181
1182	/* Restore the channel boot configuration */
1183	for (i = 0; i < hpet_base.nr_channels; i++)
1184		hpet_writel(hpet_base.channels[i].boot_cfg, HPET_Tn_CFG(i));
1185
1186	/* If the HPET was enabled at boot time, reenable it */
1187	if (hpet_base.boot_cfg & HPET_CFG_ENABLE)
1188		hpet_writel(hpet_base.boot_cfg, HPET_CFG);
1189}
1190
1191#ifdef CONFIG_HPET_EMULATE_RTC
1192
1193/*
1194 * HPET in LegacyReplacement mode eats up the RTC interrupt line. When HPET
1195 * is enabled, we support RTC interrupt functionality in software.
1196 *
1197 * RTC has 3 kinds of interrupts:
1198 *
1199 *  1) Update Interrupt - generate an interrupt, every second, when the
1200 *     RTC clock is updated
1201 *  2) Alarm Interrupt - generate an interrupt at a specific time of day
1202 *  3) Periodic Interrupt - generate periodic interrupt, with frequencies
1203 *     2Hz-8192Hz (2Hz-64Hz for non-root user) (all frequencies in powers of 2)
1204 *
1205 * (1) and (2) above are implemented using polling at a frequency of 64 Hz:
1206 * DEFAULT_RTC_INT_FREQ.
1207 *
1208 * The exact frequency is a tradeoff between accuracy and interrupt overhead.
1209 *
1210 * For (3), we use interrupts at 64 Hz, or the user specified periodic frequency,
1211 * if it's higher.
1212 */
1213#include <linux/mc146818rtc.h>
1214#include <linux/rtc.h>
1215
1216#define DEFAULT_RTC_INT_FREQ	64
1217#define DEFAULT_RTC_SHIFT	6
1218#define RTC_NUM_INTS		1
1219
1220static unsigned long hpet_rtc_flags;
1221static int hpet_prev_update_sec;
1222static struct rtc_time hpet_alarm_time;
1223static unsigned long hpet_pie_count;
1224static u32 hpet_t1_cmp;
1225static u32 hpet_default_delta;
1226static u32 hpet_pie_delta;
1227static unsigned long hpet_pie_limit;
1228
1229static rtc_irq_handler irq_handler;
1230
1231/*
1232 * Check that the HPET counter c1 is ahead of c2
1233 */
1234static inline int hpet_cnt_ahead(u32 c1, u32 c2)
1235{
1236	return (s32)(c2 - c1) < 0;
1237}
1238
1239/*
1240 * Registers a IRQ handler.
1241 */
1242int hpet_register_irq_handler(rtc_irq_handler handler)
1243{
1244	if (!is_hpet_enabled())
1245		return -ENODEV;
1246	if (irq_handler)
1247		return -EBUSY;
1248
1249	irq_handler = handler;
1250
1251	return 0;
1252}
1253EXPORT_SYMBOL_GPL(hpet_register_irq_handler);
1254
1255/*
1256 * Deregisters the IRQ handler registered with hpet_register_irq_handler()
1257 * and does cleanup.
1258 */
1259void hpet_unregister_irq_handler(rtc_irq_handler handler)
1260{
1261	if (!is_hpet_enabled())
1262		return;
1263
1264	irq_handler = NULL;
1265	hpet_rtc_flags = 0;
1266}
1267EXPORT_SYMBOL_GPL(hpet_unregister_irq_handler);
1268
1269/*
1270 * Channel 1 for RTC emulation. We use one shot mode, as periodic mode
1271 * is not supported by all HPET implementations for channel 1.
1272 *
1273 * hpet_rtc_timer_init() is called when the rtc is initialized.
1274 */
1275int hpet_rtc_timer_init(void)
1276{
1277	unsigned int cfg, cnt, delta;
1278	unsigned long flags;
1279
1280	if (!is_hpet_enabled())
1281		return 0;
1282
1283	if (!hpet_default_delta) {
1284		struct clock_event_device *evt = &hpet_base.channels[0].evt;
1285		uint64_t clc;
1286
1287		clc = (uint64_t) evt->mult * NSEC_PER_SEC;
1288		clc >>= evt->shift + DEFAULT_RTC_SHIFT;
1289		hpet_default_delta = clc;
1290	}
1291
1292	if (!(hpet_rtc_flags & RTC_PIE) || hpet_pie_limit)
1293		delta = hpet_default_delta;
1294	else
1295		delta = hpet_pie_delta;
1296
1297	local_irq_save(flags);
1298
1299	cnt = delta + hpet_readl(HPET_COUNTER);
1300	hpet_writel(cnt, HPET_T1_CMP);
1301	hpet_t1_cmp = cnt;
1302
1303	cfg = hpet_readl(HPET_T1_CFG);
1304	cfg &= ~HPET_TN_PERIODIC;
1305	cfg |= HPET_TN_ENABLE | HPET_TN_32BIT;
1306	hpet_writel(cfg, HPET_T1_CFG);
1307
1308	local_irq_restore(flags);
1309
1310	return 1;
1311}
1312EXPORT_SYMBOL_GPL(hpet_rtc_timer_init);
1313
1314static void hpet_disable_rtc_channel(void)
1315{
1316	u32 cfg = hpet_readl(HPET_T1_CFG);
1317
1318	cfg &= ~HPET_TN_ENABLE;
1319	hpet_writel(cfg, HPET_T1_CFG);
1320}
1321
1322/*
1323 * The functions below are called from rtc driver.
1324 * Return 0 if HPET is not being used.
1325 * Otherwise do the necessary changes and return 1.
1326 */
1327int hpet_mask_rtc_irq_bit(unsigned long bit_mask)
1328{
1329	if (!is_hpet_enabled())
1330		return 0;
1331
1332	hpet_rtc_flags &= ~bit_mask;
1333	if (unlikely(!hpet_rtc_flags))
1334		hpet_disable_rtc_channel();
1335
1336	return 1;
1337}
1338EXPORT_SYMBOL_GPL(hpet_mask_rtc_irq_bit);
1339
1340int hpet_set_rtc_irq_bit(unsigned long bit_mask)
1341{
1342	unsigned long oldbits = hpet_rtc_flags;
1343
1344	if (!is_hpet_enabled())
1345		return 0;
1346
1347	hpet_rtc_flags |= bit_mask;
1348
1349	if ((bit_mask & RTC_UIE) && !(oldbits & RTC_UIE))
1350		hpet_prev_update_sec = -1;
1351
1352	if (!oldbits)
1353		hpet_rtc_timer_init();
1354
1355	return 1;
1356}
1357EXPORT_SYMBOL_GPL(hpet_set_rtc_irq_bit);
1358
1359int hpet_set_alarm_time(unsigned char hrs, unsigned char min, unsigned char sec)
1360{
1361	if (!is_hpet_enabled())
1362		return 0;
1363
1364	hpet_alarm_time.tm_hour = hrs;
1365	hpet_alarm_time.tm_min = min;
1366	hpet_alarm_time.tm_sec = sec;
1367
1368	return 1;
1369}
1370EXPORT_SYMBOL_GPL(hpet_set_alarm_time);
1371
1372int hpet_set_periodic_freq(unsigned long freq)
1373{
1374	uint64_t clc;
1375
1376	if (!is_hpet_enabled())
1377		return 0;
1378
1379	if (freq <= DEFAULT_RTC_INT_FREQ) {
1380		hpet_pie_limit = DEFAULT_RTC_INT_FREQ / freq;
1381	} else {
1382		struct clock_event_device *evt = &hpet_base.channels[0].evt;
1383
1384		clc = (uint64_t) evt->mult * NSEC_PER_SEC;
1385		do_div(clc, freq);
1386		clc >>= evt->shift;
1387		hpet_pie_delta = clc;
1388		hpet_pie_limit = 0;
1389	}
1390
1391	return 1;
1392}
1393EXPORT_SYMBOL_GPL(hpet_set_periodic_freq);
1394
1395int hpet_rtc_dropped_irq(void)
1396{
1397	return is_hpet_enabled();
1398}
1399EXPORT_SYMBOL_GPL(hpet_rtc_dropped_irq);
1400
1401static void hpet_rtc_timer_reinit(void)
1402{
1403	unsigned int delta;
1404	int lost_ints = -1;
1405
1406	if (unlikely(!hpet_rtc_flags))
1407		hpet_disable_rtc_channel();
1408
1409	if (!(hpet_rtc_flags & RTC_PIE) || hpet_pie_limit)
1410		delta = hpet_default_delta;
1411	else
1412		delta = hpet_pie_delta;
1413
1414	/*
1415	 * Increment the comparator value until we are ahead of the
1416	 * current count.
1417	 */
1418	do {
1419		hpet_t1_cmp += delta;
1420		hpet_writel(hpet_t1_cmp, HPET_T1_CMP);
1421		lost_ints++;
1422	} while (!hpet_cnt_ahead(hpet_t1_cmp, hpet_readl(HPET_COUNTER)));
1423
1424	if (lost_ints) {
1425		if (hpet_rtc_flags & RTC_PIE)
1426			hpet_pie_count += lost_ints;
1427		if (printk_ratelimit())
1428			pr_warn("Lost %d RTC interrupts\n", lost_ints);
1429	}
1430}
1431
1432irqreturn_t hpet_rtc_interrupt(int irq, void *dev_id)
1433{
1434	struct rtc_time curr_time;
1435	unsigned long rtc_int_flag = 0;
1436
1437	hpet_rtc_timer_reinit();
1438	memset(&curr_time, 0, sizeof(struct rtc_time));
1439
1440	if (hpet_rtc_flags & (RTC_UIE | RTC_AIE)) {
1441		if (unlikely(mc146818_get_time(&curr_time, 10) < 0)) {
1442			pr_err_ratelimited("unable to read current time from RTC\n");
1443			return IRQ_HANDLED;
1444		}
1445	}
1446
1447	if (hpet_rtc_flags & RTC_UIE &&
1448	    curr_time.tm_sec != hpet_prev_update_sec) {
1449		if (hpet_prev_update_sec >= 0)
1450			rtc_int_flag = RTC_UF;
1451		hpet_prev_update_sec = curr_time.tm_sec;
1452	}
1453
1454	if (hpet_rtc_flags & RTC_PIE && ++hpet_pie_count >= hpet_pie_limit) {
1455		rtc_int_flag |= RTC_PF;
1456		hpet_pie_count = 0;
1457	}
1458
1459	if (hpet_rtc_flags & RTC_AIE &&
1460	    (curr_time.tm_sec == hpet_alarm_time.tm_sec) &&
1461	    (curr_time.tm_min == hpet_alarm_time.tm_min) &&
1462	    (curr_time.tm_hour == hpet_alarm_time.tm_hour))
1463		rtc_int_flag |= RTC_AF;
1464
1465	if (rtc_int_flag) {
1466		rtc_int_flag |= (RTC_IRQF | (RTC_NUM_INTS << 8));
1467		if (irq_handler)
1468			irq_handler(rtc_int_flag, dev_id);
1469	}
1470	return IRQ_HANDLED;
1471}
1472EXPORT_SYMBOL_GPL(hpet_rtc_interrupt);
1473#endif
1474