1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 *  Copyright (C) 1994 Linus Torvalds
4 *
5 *  Pentium III FXSR, SSE support
6 *  General FPU state handling cleanups
7 *	Gareth Hughes <gareth@valinux.com>, May 2000
8 */
9#include <asm/fpu/api.h>
10#include <asm/fpu/regset.h>
11#include <asm/fpu/sched.h>
12#include <asm/fpu/signal.h>
13#include <asm/fpu/types.h>
14#include <asm/traps.h>
15#include <asm/irq_regs.h>
16
17#include <uapi/asm/kvm.h>
18
19#include <linux/hardirq.h>
20#include <linux/pkeys.h>
21#include <linux/vmalloc.h>
22
23#include "context.h"
24#include "internal.h"
25#include "legacy.h"
26#include "xstate.h"
27
28#define CREATE_TRACE_POINTS
29#include <asm/trace/fpu.h>
30
31#ifdef CONFIG_X86_64
32DEFINE_STATIC_KEY_FALSE(__fpu_state_size_dynamic);
33DEFINE_PER_CPU(u64, xfd_state);
34#endif
35
36/* The FPU state configuration data for kernel and user space */
37struct fpu_state_config	fpu_kernel_cfg __ro_after_init;
38struct fpu_state_config fpu_user_cfg __ro_after_init;
39
40/*
41 * Represents the initial FPU state. It's mostly (but not completely) zeroes,
42 * depending on the FPU hardware format:
43 */
44struct fpstate init_fpstate __ro_after_init;
45
46/* Track in-kernel FPU usage */
47static DEFINE_PER_CPU(bool, in_kernel_fpu);
48
49/*
50 * Track which context is using the FPU on the CPU:
51 */
52DEFINE_PER_CPU(struct fpu *, fpu_fpregs_owner_ctx);
53
54/*
55 * Can we use the FPU in kernel mode with the
56 * whole "kernel_fpu_begin/end()" sequence?
57 */
58bool irq_fpu_usable(void)
59{
60	if (WARN_ON_ONCE(in_nmi()))
61		return false;
62
63	/* In kernel FPU usage already active? */
64	if (this_cpu_read(in_kernel_fpu))
65		return false;
66
67	/*
68	 * When not in NMI or hard interrupt context, FPU can be used in:
69	 *
70	 * - Task context except from within fpregs_lock()'ed critical
71	 *   regions.
72	 *
73	 * - Soft interrupt processing context which cannot happen
74	 *   while in a fpregs_lock()'ed critical region.
75	 */
76	if (!in_hardirq())
77		return true;
78
79	/*
80	 * In hard interrupt context it's safe when soft interrupts
81	 * are enabled, which means the interrupt did not hit in
82	 * a fpregs_lock()'ed critical region.
83	 */
84	return !softirq_count();
85}
86EXPORT_SYMBOL(irq_fpu_usable);
87
88/*
89 * Track AVX512 state use because it is known to slow the max clock
90 * speed of the core.
91 */
92static void update_avx_timestamp(struct fpu *fpu)
93{
94
95#define AVX512_TRACKING_MASK	(XFEATURE_MASK_ZMM_Hi256 | XFEATURE_MASK_Hi16_ZMM)
96
97	if (fpu->fpstate->regs.xsave.header.xfeatures & AVX512_TRACKING_MASK)
98		fpu->avx512_timestamp = jiffies;
99}
100
101/*
102 * Save the FPU register state in fpu->fpstate->regs. The register state is
103 * preserved.
104 *
105 * Must be called with fpregs_lock() held.
106 *
107 * The legacy FNSAVE instruction clears all FPU state unconditionally, so
108 * register state has to be reloaded. That might be a pointless exercise
109 * when the FPU is going to be used by another task right after that. But
110 * this only affects 20+ years old 32bit systems and avoids conditionals all
111 * over the place.
112 *
113 * FXSAVE and all XSAVE variants preserve the FPU register state.
114 */
115void save_fpregs_to_fpstate(struct fpu *fpu)
116{
117	if (likely(use_xsave())) {
118		os_xsave(fpu->fpstate);
119		update_avx_timestamp(fpu);
120		return;
121	}
122
123	if (likely(use_fxsr())) {
124		fxsave(&fpu->fpstate->regs.fxsave);
125		return;
126	}
127
128	/*
129	 * Legacy FPU register saving, FNSAVE always clears FPU registers,
130	 * so we have to reload them from the memory state.
131	 */
132	asm volatile("fnsave %[fp]; fwait" : [fp] "=m" (fpu->fpstate->regs.fsave));
133	frstor(&fpu->fpstate->regs.fsave);
134}
135
136void restore_fpregs_from_fpstate(struct fpstate *fpstate, u64 mask)
137{
138	/*
139	 * AMD K7/K8 and later CPUs up to Zen don't save/restore
140	 * FDP/FIP/FOP unless an exception is pending. Clear the x87 state
141	 * here by setting it to fixed values.  "m" is a random variable
142	 * that should be in L1.
143	 */
144	if (unlikely(static_cpu_has_bug(X86_BUG_FXSAVE_LEAK))) {
145		asm volatile(
146			"fnclex\n\t"
147			"emms\n\t"
148			"fildl %P[addr]"	/* set F?P to defined value */
149			: : [addr] "m" (fpstate));
150	}
151
152	if (use_xsave()) {
153		/*
154		 * Dynamically enabled features are enabled in XCR0, but
155		 * usage requires also that the corresponding bits in XFD
156		 * are cleared.  If the bits are set then using a related
157		 * instruction will raise #NM. This allows to do the
158		 * allocation of the larger FPU buffer lazy from #NM or if
159		 * the task has no permission to kill it which would happen
160		 * via #UD if the feature is disabled in XCR0.
161		 *
162		 * XFD state is following the same life time rules as
163		 * XSTATE and to restore state correctly XFD has to be
164		 * updated before XRSTORS otherwise the component would
165		 * stay in or go into init state even if the bits are set
166		 * in fpstate::regs::xsave::xfeatures.
167		 */
168		xfd_update_state(fpstate);
169
170		/*
171		 * Restoring state always needs to modify all features
172		 * which are in @mask even if the current task cannot use
173		 * extended features.
174		 *
175		 * So fpstate->xfeatures cannot be used here, because then
176		 * a feature for which the task has no permission but was
177		 * used by the previous task would not go into init state.
178		 */
179		mask = fpu_kernel_cfg.max_features & mask;
180
181		os_xrstor(fpstate, mask);
182	} else {
183		if (use_fxsr())
184			fxrstor(&fpstate->regs.fxsave);
185		else
186			frstor(&fpstate->regs.fsave);
187	}
188}
189
190void fpu_reset_from_exception_fixup(void)
191{
192	restore_fpregs_from_fpstate(&init_fpstate, XFEATURE_MASK_FPSTATE);
193}
194
195#if IS_ENABLED(CONFIG_KVM)
196static void __fpstate_reset(struct fpstate *fpstate, u64 xfd);
197
198static void fpu_init_guest_permissions(struct fpu_guest *gfpu)
199{
200	struct fpu_state_perm *fpuperm;
201	u64 perm;
202
203	if (!IS_ENABLED(CONFIG_X86_64))
204		return;
205
206	spin_lock_irq(&current->sighand->siglock);
207	fpuperm = &current->group_leader->thread.fpu.guest_perm;
208	perm = fpuperm->__state_perm;
209
210	/* First fpstate allocation locks down permissions. */
211	WRITE_ONCE(fpuperm->__state_perm, perm | FPU_GUEST_PERM_LOCKED);
212
213	spin_unlock_irq(&current->sighand->siglock);
214
215	gfpu->perm = perm & ~FPU_GUEST_PERM_LOCKED;
216}
217
218bool fpu_alloc_guest_fpstate(struct fpu_guest *gfpu)
219{
220	struct fpstate *fpstate;
221	unsigned int size;
222
223	size = fpu_user_cfg.default_size + ALIGN(offsetof(struct fpstate, regs), 64);
224	fpstate = vzalloc(size);
225	if (!fpstate)
226		return false;
227
228	/* Leave xfd to 0 (the reset value defined by spec) */
229	__fpstate_reset(fpstate, 0);
230	fpstate_init_user(fpstate);
231	fpstate->is_valloc	= true;
232	fpstate->is_guest	= true;
233
234	gfpu->fpstate		= fpstate;
235	gfpu->xfeatures		= fpu_user_cfg.default_features;
236	gfpu->perm		= fpu_user_cfg.default_features;
237
238	/*
239	 * KVM sets the FP+SSE bits in the XSAVE header when copying FPU state
240	 * to userspace, even when XSAVE is unsupported, so that restoring FPU
241	 * state on a different CPU that does support XSAVE can cleanly load
242	 * the incoming state using its natural XSAVE.  In other words, KVM's
243	 * uABI size may be larger than this host's default size.  Conversely,
244	 * the default size should never be larger than KVM's base uABI size;
245	 * all features that can expand the uABI size must be opt-in.
246	 */
247	gfpu->uabi_size		= sizeof(struct kvm_xsave);
248	if (WARN_ON_ONCE(fpu_user_cfg.default_size > gfpu->uabi_size))
249		gfpu->uabi_size = fpu_user_cfg.default_size;
250
251	fpu_init_guest_permissions(gfpu);
252
253	return true;
254}
255EXPORT_SYMBOL_GPL(fpu_alloc_guest_fpstate);
256
257void fpu_free_guest_fpstate(struct fpu_guest *gfpu)
258{
259	struct fpstate *fps = gfpu->fpstate;
260
261	if (!fps)
262		return;
263
264	if (WARN_ON_ONCE(!fps->is_valloc || !fps->is_guest || fps->in_use))
265		return;
266
267	gfpu->fpstate = NULL;
268	vfree(fps);
269}
270EXPORT_SYMBOL_GPL(fpu_free_guest_fpstate);
271
272/*
273  * fpu_enable_guest_xfd_features - Check xfeatures against guest perm and enable
274  * @guest_fpu:         Pointer to the guest FPU container
275  * @xfeatures:         Features requested by guest CPUID
276  *
277  * Enable all dynamic xfeatures according to guest perm and requested CPUID.
278  *
279  * Return: 0 on success, error code otherwise
280  */
281int fpu_enable_guest_xfd_features(struct fpu_guest *guest_fpu, u64 xfeatures)
282{
283	lockdep_assert_preemption_enabled();
284
285	/* Nothing to do if all requested features are already enabled. */
286	xfeatures &= ~guest_fpu->xfeatures;
287	if (!xfeatures)
288		return 0;
289
290	return __xfd_enable_feature(xfeatures, guest_fpu);
291}
292EXPORT_SYMBOL_GPL(fpu_enable_guest_xfd_features);
293
294#ifdef CONFIG_X86_64
295void fpu_update_guest_xfd(struct fpu_guest *guest_fpu, u64 xfd)
296{
297	fpregs_lock();
298	guest_fpu->fpstate->xfd = xfd;
299	if (guest_fpu->fpstate->in_use)
300		xfd_update_state(guest_fpu->fpstate);
301	fpregs_unlock();
302}
303EXPORT_SYMBOL_GPL(fpu_update_guest_xfd);
304
305/**
306 * fpu_sync_guest_vmexit_xfd_state - Synchronize XFD MSR and software state
307 *
308 * Must be invoked from KVM after a VMEXIT before enabling interrupts when
309 * XFD write emulation is disabled. This is required because the guest can
310 * freely modify XFD and the state at VMEXIT is not guaranteed to be the
311 * same as the state on VMENTER. So software state has to be updated before
312 * any operation which depends on it can take place.
313 *
314 * Note: It can be invoked unconditionally even when write emulation is
315 * enabled for the price of a then pointless MSR read.
316 */
317void fpu_sync_guest_vmexit_xfd_state(void)
318{
319	struct fpstate *fps = current->thread.fpu.fpstate;
320
321	lockdep_assert_irqs_disabled();
322	if (fpu_state_size_dynamic()) {
323		rdmsrl(MSR_IA32_XFD, fps->xfd);
324		__this_cpu_write(xfd_state, fps->xfd);
325	}
326}
327EXPORT_SYMBOL_GPL(fpu_sync_guest_vmexit_xfd_state);
328#endif /* CONFIG_X86_64 */
329
330int fpu_swap_kvm_fpstate(struct fpu_guest *guest_fpu, bool enter_guest)
331{
332	struct fpstate *guest_fps = guest_fpu->fpstate;
333	struct fpu *fpu = &current->thread.fpu;
334	struct fpstate *cur_fps = fpu->fpstate;
335
336	fpregs_lock();
337	if (!cur_fps->is_confidential && !test_thread_flag(TIF_NEED_FPU_LOAD))
338		save_fpregs_to_fpstate(fpu);
339
340	/* Swap fpstate */
341	if (enter_guest) {
342		fpu->__task_fpstate = cur_fps;
343		fpu->fpstate = guest_fps;
344		guest_fps->in_use = true;
345	} else {
346		guest_fps->in_use = false;
347		fpu->fpstate = fpu->__task_fpstate;
348		fpu->__task_fpstate = NULL;
349	}
350
351	cur_fps = fpu->fpstate;
352
353	if (!cur_fps->is_confidential) {
354		/* Includes XFD update */
355		restore_fpregs_from_fpstate(cur_fps, XFEATURE_MASK_FPSTATE);
356	} else {
357		/*
358		 * XSTATE is restored by firmware from encrypted
359		 * memory. Make sure XFD state is correct while
360		 * running with guest fpstate
361		 */
362		xfd_update_state(cur_fps);
363	}
364
365	fpregs_mark_activate();
366	fpregs_unlock();
367	return 0;
368}
369EXPORT_SYMBOL_GPL(fpu_swap_kvm_fpstate);
370
371void fpu_copy_guest_fpstate_to_uabi(struct fpu_guest *gfpu, void *buf,
372				    unsigned int size, u64 xfeatures, u32 pkru)
373{
374	struct fpstate *kstate = gfpu->fpstate;
375	union fpregs_state *ustate = buf;
376	struct membuf mb = { .p = buf, .left = size };
377
378	if (cpu_feature_enabled(X86_FEATURE_XSAVE)) {
379		__copy_xstate_to_uabi_buf(mb, kstate, xfeatures, pkru,
380					  XSTATE_COPY_XSAVE);
381	} else {
382		memcpy(&ustate->fxsave, &kstate->regs.fxsave,
383		       sizeof(ustate->fxsave));
384		/* Make it restorable on a XSAVE enabled host */
385		ustate->xsave.header.xfeatures = XFEATURE_MASK_FPSSE;
386	}
387}
388EXPORT_SYMBOL_GPL(fpu_copy_guest_fpstate_to_uabi);
389
390int fpu_copy_uabi_to_guest_fpstate(struct fpu_guest *gfpu, const void *buf,
391				   u64 xcr0, u32 *vpkru)
392{
393	struct fpstate *kstate = gfpu->fpstate;
394	const union fpregs_state *ustate = buf;
395
396	if (!cpu_feature_enabled(X86_FEATURE_XSAVE)) {
397		if (ustate->xsave.header.xfeatures & ~XFEATURE_MASK_FPSSE)
398			return -EINVAL;
399		if (ustate->fxsave.mxcsr & ~mxcsr_feature_mask)
400			return -EINVAL;
401		memcpy(&kstate->regs.fxsave, &ustate->fxsave, sizeof(ustate->fxsave));
402		return 0;
403	}
404
405	if (ustate->xsave.header.xfeatures & ~xcr0)
406		return -EINVAL;
407
408	/*
409	 * Nullify @vpkru to preserve its current value if PKRU's bit isn't set
410	 * in the header.  KVM's odd ABI is to leave PKRU untouched in this
411	 * case (all other components are eventually re-initialized).
412	 */
413	if (!(ustate->xsave.header.xfeatures & XFEATURE_MASK_PKRU))
414		vpkru = NULL;
415
416	return copy_uabi_from_kernel_to_xstate(kstate, ustate, vpkru);
417}
418EXPORT_SYMBOL_GPL(fpu_copy_uabi_to_guest_fpstate);
419#endif /* CONFIG_KVM */
420
421void kernel_fpu_begin_mask(unsigned int kfpu_mask)
422{
423	preempt_disable();
424
425	WARN_ON_FPU(!irq_fpu_usable());
426	WARN_ON_FPU(this_cpu_read(in_kernel_fpu));
427
428	this_cpu_write(in_kernel_fpu, true);
429
430	if (!(current->flags & (PF_KTHREAD | PF_USER_WORKER)) &&
431	    !test_thread_flag(TIF_NEED_FPU_LOAD)) {
432		set_thread_flag(TIF_NEED_FPU_LOAD);
433		save_fpregs_to_fpstate(&current->thread.fpu);
434	}
435	__cpu_invalidate_fpregs_state();
436
437	/* Put sane initial values into the control registers. */
438	if (likely(kfpu_mask & KFPU_MXCSR) && boot_cpu_has(X86_FEATURE_XMM))
439		ldmxcsr(MXCSR_DEFAULT);
440
441	if (unlikely(kfpu_mask & KFPU_387) && boot_cpu_has(X86_FEATURE_FPU))
442		asm volatile ("fninit");
443}
444EXPORT_SYMBOL_GPL(kernel_fpu_begin_mask);
445
446void kernel_fpu_end(void)
447{
448	WARN_ON_FPU(!this_cpu_read(in_kernel_fpu));
449
450	this_cpu_write(in_kernel_fpu, false);
451	preempt_enable();
452}
453EXPORT_SYMBOL_GPL(kernel_fpu_end);
454
455/*
456 * Sync the FPU register state to current's memory register state when the
457 * current task owns the FPU. The hardware register state is preserved.
458 */
459void fpu_sync_fpstate(struct fpu *fpu)
460{
461	WARN_ON_FPU(fpu != &current->thread.fpu);
462
463	fpregs_lock();
464	trace_x86_fpu_before_save(fpu);
465
466	if (!test_thread_flag(TIF_NEED_FPU_LOAD))
467		save_fpregs_to_fpstate(fpu);
468
469	trace_x86_fpu_after_save(fpu);
470	fpregs_unlock();
471}
472
473static inline unsigned int init_fpstate_copy_size(void)
474{
475	if (!use_xsave())
476		return fpu_kernel_cfg.default_size;
477
478	/* XSAVE(S) just needs the legacy and the xstate header part */
479	return sizeof(init_fpstate.regs.xsave);
480}
481
482static inline void fpstate_init_fxstate(struct fpstate *fpstate)
483{
484	fpstate->regs.fxsave.cwd = 0x37f;
485	fpstate->regs.fxsave.mxcsr = MXCSR_DEFAULT;
486}
487
488/*
489 * Legacy x87 fpstate state init:
490 */
491static inline void fpstate_init_fstate(struct fpstate *fpstate)
492{
493	fpstate->regs.fsave.cwd = 0xffff037fu;
494	fpstate->regs.fsave.swd = 0xffff0000u;
495	fpstate->regs.fsave.twd = 0xffffffffu;
496	fpstate->regs.fsave.fos = 0xffff0000u;
497}
498
499/*
500 * Used in two places:
501 * 1) Early boot to setup init_fpstate for non XSAVE systems
502 * 2) fpu_init_fpstate_user() which is invoked from KVM
503 */
504void fpstate_init_user(struct fpstate *fpstate)
505{
506	if (!cpu_feature_enabled(X86_FEATURE_FPU)) {
507		fpstate_init_soft(&fpstate->regs.soft);
508		return;
509	}
510
511	xstate_init_xcomp_bv(&fpstate->regs.xsave, fpstate->xfeatures);
512
513	if (cpu_feature_enabled(X86_FEATURE_FXSR))
514		fpstate_init_fxstate(fpstate);
515	else
516		fpstate_init_fstate(fpstate);
517}
518
519static void __fpstate_reset(struct fpstate *fpstate, u64 xfd)
520{
521	/* Initialize sizes and feature masks */
522	fpstate->size		= fpu_kernel_cfg.default_size;
523	fpstate->user_size	= fpu_user_cfg.default_size;
524	fpstate->xfeatures	= fpu_kernel_cfg.default_features;
525	fpstate->user_xfeatures	= fpu_user_cfg.default_features;
526	fpstate->xfd		= xfd;
527}
528
529void fpstate_reset(struct fpu *fpu)
530{
531	/* Set the fpstate pointer to the default fpstate */
532	fpu->fpstate = &fpu->__fpstate;
533	__fpstate_reset(fpu->fpstate, init_fpstate.xfd);
534
535	/* Initialize the permission related info in fpu */
536	fpu->perm.__state_perm		= fpu_kernel_cfg.default_features;
537	fpu->perm.__state_size		= fpu_kernel_cfg.default_size;
538	fpu->perm.__user_state_size	= fpu_user_cfg.default_size;
539	/* Same defaults for guests */
540	fpu->guest_perm = fpu->perm;
541}
542
543static inline void fpu_inherit_perms(struct fpu *dst_fpu)
544{
545	if (fpu_state_size_dynamic()) {
546		struct fpu *src_fpu = &current->group_leader->thread.fpu;
547
548		spin_lock_irq(&current->sighand->siglock);
549		/* Fork also inherits the permissions of the parent */
550		dst_fpu->perm = src_fpu->perm;
551		dst_fpu->guest_perm = src_fpu->guest_perm;
552		spin_unlock_irq(&current->sighand->siglock);
553	}
554}
555
556/* A passed ssp of zero will not cause any update */
557static int update_fpu_shstk(struct task_struct *dst, unsigned long ssp)
558{
559#ifdef CONFIG_X86_USER_SHADOW_STACK
560	struct cet_user_state *xstate;
561
562	/* If ssp update is not needed. */
563	if (!ssp)
564		return 0;
565
566	xstate = get_xsave_addr(&dst->thread.fpu.fpstate->regs.xsave,
567				XFEATURE_CET_USER);
568
569	/*
570	 * If there is a non-zero ssp, then 'dst' must be configured with a shadow
571	 * stack and the fpu state should be up to date since it was just copied
572	 * from the parent in fpu_clone(). So there must be a valid non-init CET
573	 * state location in the buffer.
574	 */
575	if (WARN_ON_ONCE(!xstate))
576		return 1;
577
578	xstate->user_ssp = (u64)ssp;
579#endif
580	return 0;
581}
582
583/* Clone current's FPU state on fork */
584int fpu_clone(struct task_struct *dst, unsigned long clone_flags, bool minimal,
585	      unsigned long ssp)
586{
587	struct fpu *src_fpu = &current->thread.fpu;
588	struct fpu *dst_fpu = &dst->thread.fpu;
589
590	/* The new task's FPU state cannot be valid in the hardware. */
591	dst_fpu->last_cpu = -1;
592
593	fpstate_reset(dst_fpu);
594
595	if (!cpu_feature_enabled(X86_FEATURE_FPU))
596		return 0;
597
598	/*
599	 * Enforce reload for user space tasks and prevent kernel threads
600	 * from trying to save the FPU registers on context switch.
601	 */
602	set_tsk_thread_flag(dst, TIF_NEED_FPU_LOAD);
603
604	/*
605	 * No FPU state inheritance for kernel threads and IO
606	 * worker threads.
607	 */
608	if (minimal) {
609		/* Clear out the minimal state */
610		memcpy(&dst_fpu->fpstate->regs, &init_fpstate.regs,
611		       init_fpstate_copy_size());
612		return 0;
613	}
614
615	/*
616	 * If a new feature is added, ensure all dynamic features are
617	 * caller-saved from here!
618	 */
619	BUILD_BUG_ON(XFEATURE_MASK_USER_DYNAMIC != XFEATURE_MASK_XTILE_DATA);
620
621	/*
622	 * Save the default portion of the current FPU state into the
623	 * clone. Assume all dynamic features to be defined as caller-
624	 * saved, which enables skipping both the expansion of fpstate
625	 * and the copying of any dynamic state.
626	 *
627	 * Do not use memcpy() when TIF_NEED_FPU_LOAD is set because
628	 * copying is not valid when current uses non-default states.
629	 */
630	fpregs_lock();
631	if (test_thread_flag(TIF_NEED_FPU_LOAD))
632		fpregs_restore_userregs();
633	save_fpregs_to_fpstate(dst_fpu);
634	fpregs_unlock();
635	if (!(clone_flags & CLONE_THREAD))
636		fpu_inherit_perms(dst_fpu);
637
638	/*
639	 * Children never inherit PASID state.
640	 * Force it to have its init value:
641	 */
642	if (use_xsave())
643		dst_fpu->fpstate->regs.xsave.header.xfeatures &= ~XFEATURE_MASK_PASID;
644
645	/*
646	 * Update shadow stack pointer, in case it changed during clone.
647	 */
648	if (update_fpu_shstk(dst, ssp))
649		return 1;
650
651	trace_x86_fpu_copy_src(src_fpu);
652	trace_x86_fpu_copy_dst(dst_fpu);
653
654	return 0;
655}
656
657/*
658 * Whitelist the FPU register state embedded into task_struct for hardened
659 * usercopy.
660 */
661void fpu_thread_struct_whitelist(unsigned long *offset, unsigned long *size)
662{
663	*offset = offsetof(struct thread_struct, fpu.__fpstate.regs);
664	*size = fpu_kernel_cfg.default_size;
665}
666
667/*
668 * Drops current FPU state: deactivates the fpregs and
669 * the fpstate. NOTE: it still leaves previous contents
670 * in the fpregs in the eager-FPU case.
671 *
672 * This function can be used in cases where we know that
673 * a state-restore is coming: either an explicit one,
674 * or a reschedule.
675 */
676void fpu__drop(struct fpu *fpu)
677{
678	preempt_disable();
679
680	if (fpu == &current->thread.fpu) {
681		/* Ignore delayed exceptions from user space */
682		asm volatile("1: fwait\n"
683			     "2:\n"
684			     _ASM_EXTABLE(1b, 2b));
685		fpregs_deactivate(fpu);
686	}
687
688	trace_x86_fpu_dropped(fpu);
689
690	preempt_enable();
691}
692
693/*
694 * Clear FPU registers by setting them up from the init fpstate.
695 * Caller must do fpregs_[un]lock() around it.
696 */
697static inline void restore_fpregs_from_init_fpstate(u64 features_mask)
698{
699	if (use_xsave())
700		os_xrstor(&init_fpstate, features_mask);
701	else if (use_fxsr())
702		fxrstor(&init_fpstate.regs.fxsave);
703	else
704		frstor(&init_fpstate.regs.fsave);
705
706	pkru_write_default();
707}
708
709/*
710 * Reset current->fpu memory state to the init values.
711 */
712static void fpu_reset_fpregs(void)
713{
714	struct fpu *fpu = &current->thread.fpu;
715
716	fpregs_lock();
717	__fpu_invalidate_fpregs_state(fpu);
718	/*
719	 * This does not change the actual hardware registers. It just
720	 * resets the memory image and sets TIF_NEED_FPU_LOAD so a
721	 * subsequent return to usermode will reload the registers from the
722	 * task's memory image.
723	 *
724	 * Do not use fpstate_init() here. Just copy init_fpstate which has
725	 * the correct content already except for PKRU.
726	 *
727	 * PKRU handling does not rely on the xstate when restoring for
728	 * user space as PKRU is eagerly written in switch_to() and
729	 * flush_thread().
730	 */
731	memcpy(&fpu->fpstate->regs, &init_fpstate.regs, init_fpstate_copy_size());
732	set_thread_flag(TIF_NEED_FPU_LOAD);
733	fpregs_unlock();
734}
735
736/*
737 * Reset current's user FPU states to the init states.  current's
738 * supervisor states, if any, are not modified by this function.  The
739 * caller guarantees that the XSTATE header in memory is intact.
740 */
741void fpu__clear_user_states(struct fpu *fpu)
742{
743	WARN_ON_FPU(fpu != &current->thread.fpu);
744
745	fpregs_lock();
746	if (!cpu_feature_enabled(X86_FEATURE_FPU)) {
747		fpu_reset_fpregs();
748		fpregs_unlock();
749		return;
750	}
751
752	/*
753	 * Ensure that current's supervisor states are loaded into their
754	 * corresponding registers.
755	 */
756	if (xfeatures_mask_supervisor() &&
757	    !fpregs_state_valid(fpu, smp_processor_id()))
758		os_xrstor_supervisor(fpu->fpstate);
759
760	/* Reset user states in registers. */
761	restore_fpregs_from_init_fpstate(XFEATURE_MASK_USER_RESTORE);
762
763	/*
764	 * Now all FPU registers have their desired values.  Inform the FPU
765	 * state machine that current's FPU registers are in the hardware
766	 * registers. The memory image does not need to be updated because
767	 * any operation relying on it has to save the registers first when
768	 * current's FPU is marked active.
769	 */
770	fpregs_mark_activate();
771	fpregs_unlock();
772}
773
774void fpu_flush_thread(void)
775{
776	fpstate_reset(&current->thread.fpu);
777	fpu_reset_fpregs();
778}
779/*
780 * Load FPU context before returning to userspace.
781 */
782void switch_fpu_return(void)
783{
784	if (!static_cpu_has(X86_FEATURE_FPU))
785		return;
786
787	fpregs_restore_userregs();
788}
789EXPORT_SYMBOL_GPL(switch_fpu_return);
790
791void fpregs_lock_and_load(void)
792{
793	/*
794	 * fpregs_lock() only disables preemption (mostly). So modifying state
795	 * in an interrupt could screw up some in progress fpregs operation.
796	 * Warn about it.
797	 */
798	WARN_ON_ONCE(!irq_fpu_usable());
799	WARN_ON_ONCE(current->flags & PF_KTHREAD);
800
801	fpregs_lock();
802
803	fpregs_assert_state_consistent();
804
805	if (test_thread_flag(TIF_NEED_FPU_LOAD))
806		fpregs_restore_userregs();
807}
808
809#ifdef CONFIG_X86_DEBUG_FPU
810/*
811 * If current FPU state according to its tracking (loaded FPU context on this
812 * CPU) is not valid then we must have TIF_NEED_FPU_LOAD set so the context is
813 * loaded on return to userland.
814 */
815void fpregs_assert_state_consistent(void)
816{
817	struct fpu *fpu = &current->thread.fpu;
818
819	if (test_thread_flag(TIF_NEED_FPU_LOAD))
820		return;
821
822	WARN_ON_FPU(!fpregs_state_valid(fpu, smp_processor_id()));
823}
824EXPORT_SYMBOL_GPL(fpregs_assert_state_consistent);
825#endif
826
827void fpregs_mark_activate(void)
828{
829	struct fpu *fpu = &current->thread.fpu;
830
831	fpregs_activate(fpu);
832	fpu->last_cpu = smp_processor_id();
833	clear_thread_flag(TIF_NEED_FPU_LOAD);
834}
835
836/*
837 * x87 math exception handling:
838 */
839
840int fpu__exception_code(struct fpu *fpu, int trap_nr)
841{
842	int err;
843
844	if (trap_nr == X86_TRAP_MF) {
845		unsigned short cwd, swd;
846		/*
847		 * (~cwd & swd) will mask out exceptions that are not set to unmasked
848		 * status.  0x3f is the exception bits in these regs, 0x200 is the
849		 * C1 reg you need in case of a stack fault, 0x040 is the stack
850		 * fault bit.  We should only be taking one exception at a time,
851		 * so if this combination doesn't produce any single exception,
852		 * then we have a bad program that isn't synchronizing its FPU usage
853		 * and it will suffer the consequences since we won't be able to
854		 * fully reproduce the context of the exception.
855		 */
856		if (boot_cpu_has(X86_FEATURE_FXSR)) {
857			cwd = fpu->fpstate->regs.fxsave.cwd;
858			swd = fpu->fpstate->regs.fxsave.swd;
859		} else {
860			cwd = (unsigned short)fpu->fpstate->regs.fsave.cwd;
861			swd = (unsigned short)fpu->fpstate->regs.fsave.swd;
862		}
863
864		err = swd & ~cwd;
865	} else {
866		/*
867		 * The SIMD FPU exceptions are handled a little differently, as there
868		 * is only a single status/control register.  Thus, to determine which
869		 * unmasked exception was caught we must mask the exception mask bits
870		 * at 0x1f80, and then use these to mask the exception bits at 0x3f.
871		 */
872		unsigned short mxcsr = MXCSR_DEFAULT;
873
874		if (boot_cpu_has(X86_FEATURE_XMM))
875			mxcsr = fpu->fpstate->regs.fxsave.mxcsr;
876
877		err = ~(mxcsr >> 7) & mxcsr;
878	}
879
880	if (err & 0x001) {	/* Invalid op */
881		/*
882		 * swd & 0x240 == 0x040: Stack Underflow
883		 * swd & 0x240 == 0x240: Stack Overflow
884		 * User must clear the SF bit (0x40) if set
885		 */
886		return FPE_FLTINV;
887	} else if (err & 0x004) { /* Divide by Zero */
888		return FPE_FLTDIV;
889	} else if (err & 0x008) { /* Overflow */
890		return FPE_FLTOVF;
891	} else if (err & 0x012) { /* Denormal, Underflow */
892		return FPE_FLTUND;
893	} else if (err & 0x020) { /* Precision */
894		return FPE_FLTRES;
895	}
896
897	/*
898	 * If we're using IRQ 13, or supposedly even some trap
899	 * X86_TRAP_MF implementations, it's possible
900	 * we get a spurious trap, which is not an error.
901	 */
902	return 0;
903}
904
905/*
906 * Initialize register state that may prevent from entering low-power idle.
907 * This function will be invoked from the cpuidle driver only when needed.
908 */
909noinstr void fpu_idle_fpregs(void)
910{
911	/* Note: AMX_TILE being enabled implies XGETBV1 support */
912	if (cpu_feature_enabled(X86_FEATURE_AMX_TILE) &&
913	    (xfeatures_in_use() & XFEATURE_MASK_XTILE)) {
914		tile_release();
915		__this_cpu_write(fpu_fpregs_owner_ctx, NULL);
916	}
917}
918