1// SPDX-License-Identifier: GPL-2.0
2/*  Copyright(c) 2016-20 Intel Corporation. */
3
4#include <linux/file.h>
5#include <linux/freezer.h>
6#include <linux/highmem.h>
7#include <linux/kthread.h>
8#include <linux/miscdevice.h>
9#include <linux/node.h>
10#include <linux/pagemap.h>
11#include <linux/ratelimit.h>
12#include <linux/sched/mm.h>
13#include <linux/sched/signal.h>
14#include <linux/slab.h>
15#include <linux/sysfs.h>
16#include <asm/sgx.h>
17#include "driver.h"
18#include "encl.h"
19#include "encls.h"
20
21struct sgx_epc_section sgx_epc_sections[SGX_MAX_EPC_SECTIONS];
22static int sgx_nr_epc_sections;
23static struct task_struct *ksgxd_tsk;
24static DECLARE_WAIT_QUEUE_HEAD(ksgxd_waitq);
25static DEFINE_XARRAY(sgx_epc_address_space);
26
27/*
28 * These variables are part of the state of the reclaimer, and must be accessed
29 * with sgx_reclaimer_lock acquired.
30 */
31static LIST_HEAD(sgx_active_page_list);
32static DEFINE_SPINLOCK(sgx_reclaimer_lock);
33
34static atomic_long_t sgx_nr_free_pages = ATOMIC_LONG_INIT(0);
35
36/* Nodes with one or more EPC sections. */
37static nodemask_t sgx_numa_mask;
38
39/*
40 * Array with one list_head for each possible NUMA node.  Each
41 * list contains all the sgx_epc_section's which are on that
42 * node.
43 */
44static struct sgx_numa_node *sgx_numa_nodes;
45
46static LIST_HEAD(sgx_dirty_page_list);
47
48/*
49 * Reset post-kexec EPC pages to the uninitialized state. The pages are removed
50 * from the input list, and made available for the page allocator. SECS pages
51 * prepending their children in the input list are left intact.
52 *
53 * Return 0 when sanitization was successful or kthread was stopped, and the
54 * number of unsanitized pages otherwise.
55 */
56static unsigned long __sgx_sanitize_pages(struct list_head *dirty_page_list)
57{
58	unsigned long left_dirty = 0;
59	struct sgx_epc_page *page;
60	LIST_HEAD(dirty);
61	int ret;
62
63	/* dirty_page_list is thread-local, no need for a lock: */
64	while (!list_empty(dirty_page_list)) {
65		if (kthread_should_stop())
66			return 0;
67
68		page = list_first_entry(dirty_page_list, struct sgx_epc_page, list);
69
70		/*
71		 * Checking page->poison without holding the node->lock
72		 * is racy, but losing the race (i.e. poison is set just
73		 * after the check) just means __eremove() will be uselessly
74		 * called for a page that sgx_free_epc_page() will put onto
75		 * the node->sgx_poison_page_list later.
76		 */
77		if (page->poison) {
78			struct sgx_epc_section *section = &sgx_epc_sections[page->section];
79			struct sgx_numa_node *node = section->node;
80
81			spin_lock(&node->lock);
82			list_move(&page->list, &node->sgx_poison_page_list);
83			spin_unlock(&node->lock);
84
85			continue;
86		}
87
88		ret = __eremove(sgx_get_epc_virt_addr(page));
89		if (!ret) {
90			/*
91			 * page is now sanitized.  Make it available via the SGX
92			 * page allocator:
93			 */
94			list_del(&page->list);
95			sgx_free_epc_page(page);
96		} else {
97			/* The page is not yet clean - move to the dirty list. */
98			list_move_tail(&page->list, &dirty);
99			left_dirty++;
100		}
101
102		cond_resched();
103	}
104
105	list_splice(&dirty, dirty_page_list);
106	return left_dirty;
107}
108
109static bool sgx_reclaimer_age(struct sgx_epc_page *epc_page)
110{
111	struct sgx_encl_page *page = epc_page->owner;
112	struct sgx_encl *encl = page->encl;
113	struct sgx_encl_mm *encl_mm;
114	bool ret = true;
115	int idx;
116
117	idx = srcu_read_lock(&encl->srcu);
118
119	list_for_each_entry_rcu(encl_mm, &encl->mm_list, list) {
120		if (!mmget_not_zero(encl_mm->mm))
121			continue;
122
123		mmap_read_lock(encl_mm->mm);
124		ret = !sgx_encl_test_and_clear_young(encl_mm->mm, page);
125		mmap_read_unlock(encl_mm->mm);
126
127		mmput_async(encl_mm->mm);
128
129		if (!ret)
130			break;
131	}
132
133	srcu_read_unlock(&encl->srcu, idx);
134
135	if (!ret)
136		return false;
137
138	return true;
139}
140
141static void sgx_reclaimer_block(struct sgx_epc_page *epc_page)
142{
143	struct sgx_encl_page *page = epc_page->owner;
144	unsigned long addr = page->desc & PAGE_MASK;
145	struct sgx_encl *encl = page->encl;
146	int ret;
147
148	sgx_zap_enclave_ptes(encl, addr);
149
150	mutex_lock(&encl->lock);
151
152	ret = __eblock(sgx_get_epc_virt_addr(epc_page));
153	if (encls_failed(ret))
154		ENCLS_WARN(ret, "EBLOCK");
155
156	mutex_unlock(&encl->lock);
157}
158
159static int __sgx_encl_ewb(struct sgx_epc_page *epc_page, void *va_slot,
160			  struct sgx_backing *backing)
161{
162	struct sgx_pageinfo pginfo;
163	int ret;
164
165	pginfo.addr = 0;
166	pginfo.secs = 0;
167
168	pginfo.contents = (unsigned long)kmap_local_page(backing->contents);
169	pginfo.metadata = (unsigned long)kmap_local_page(backing->pcmd) +
170			  backing->pcmd_offset;
171
172	ret = __ewb(&pginfo, sgx_get_epc_virt_addr(epc_page), va_slot);
173	set_page_dirty(backing->pcmd);
174	set_page_dirty(backing->contents);
175
176	kunmap_local((void *)(unsigned long)(pginfo.metadata -
177					      backing->pcmd_offset));
178	kunmap_local((void *)(unsigned long)pginfo.contents);
179
180	return ret;
181}
182
183void sgx_ipi_cb(void *info)
184{
185}
186
187/*
188 * Swap page to the regular memory transformed to the blocked state by using
189 * EBLOCK, which means that it can no longer be referenced (no new TLB entries).
190 *
191 * The first trial just tries to write the page assuming that some other thread
192 * has reset the count for threads inside the enclave by using ETRACK, and
193 * previous thread count has been zeroed out. The second trial calls ETRACK
194 * before EWB. If that fails we kick all the HW threads out, and then do EWB,
195 * which should be guaranteed the succeed.
196 */
197static void sgx_encl_ewb(struct sgx_epc_page *epc_page,
198			 struct sgx_backing *backing)
199{
200	struct sgx_encl_page *encl_page = epc_page->owner;
201	struct sgx_encl *encl = encl_page->encl;
202	struct sgx_va_page *va_page;
203	unsigned int va_offset;
204	void *va_slot;
205	int ret;
206
207	encl_page->desc &= ~SGX_ENCL_PAGE_BEING_RECLAIMED;
208
209	va_page = list_first_entry(&encl->va_pages, struct sgx_va_page,
210				   list);
211	va_offset = sgx_alloc_va_slot(va_page);
212	va_slot = sgx_get_epc_virt_addr(va_page->epc_page) + va_offset;
213	if (sgx_va_page_full(va_page))
214		list_move_tail(&va_page->list, &encl->va_pages);
215
216	ret = __sgx_encl_ewb(epc_page, va_slot, backing);
217	if (ret == SGX_NOT_TRACKED) {
218		ret = __etrack(sgx_get_epc_virt_addr(encl->secs.epc_page));
219		if (ret) {
220			if (encls_failed(ret))
221				ENCLS_WARN(ret, "ETRACK");
222		}
223
224		ret = __sgx_encl_ewb(epc_page, va_slot, backing);
225		if (ret == SGX_NOT_TRACKED) {
226			/*
227			 * Slow path, send IPIs to kick cpus out of the
228			 * enclave.  Note, it's imperative that the cpu
229			 * mask is generated *after* ETRACK, else we'll
230			 * miss cpus that entered the enclave between
231			 * generating the mask and incrementing epoch.
232			 */
233			on_each_cpu_mask(sgx_encl_cpumask(encl),
234					 sgx_ipi_cb, NULL, 1);
235			ret = __sgx_encl_ewb(epc_page, va_slot, backing);
236		}
237	}
238
239	if (ret) {
240		if (encls_failed(ret))
241			ENCLS_WARN(ret, "EWB");
242
243		sgx_free_va_slot(va_page, va_offset);
244	} else {
245		encl_page->desc |= va_offset;
246		encl_page->va_page = va_page;
247	}
248}
249
250static void sgx_reclaimer_write(struct sgx_epc_page *epc_page,
251				struct sgx_backing *backing)
252{
253	struct sgx_encl_page *encl_page = epc_page->owner;
254	struct sgx_encl *encl = encl_page->encl;
255	struct sgx_backing secs_backing;
256	int ret;
257
258	mutex_lock(&encl->lock);
259
260	sgx_encl_ewb(epc_page, backing);
261	encl_page->epc_page = NULL;
262	encl->secs_child_cnt--;
263	sgx_encl_put_backing(backing);
264
265	if (!encl->secs_child_cnt && test_bit(SGX_ENCL_INITIALIZED, &encl->flags)) {
266		ret = sgx_encl_alloc_backing(encl, PFN_DOWN(encl->size),
267					   &secs_backing);
268		if (ret)
269			goto out;
270
271		sgx_encl_ewb(encl->secs.epc_page, &secs_backing);
272
273		sgx_encl_free_epc_page(encl->secs.epc_page);
274		encl->secs.epc_page = NULL;
275
276		sgx_encl_put_backing(&secs_backing);
277	}
278
279out:
280	mutex_unlock(&encl->lock);
281}
282
283/*
284 * Take a fixed number of pages from the head of the active page pool and
285 * reclaim them to the enclave's private shmem files. Skip the pages, which have
286 * been accessed since the last scan. Move those pages to the tail of active
287 * page pool so that the pages get scanned in LRU like fashion.
288 *
289 * Batch process a chunk of pages (at the moment 16) in order to degrade amount
290 * of IPI's and ETRACK's potentially required. sgx_encl_ewb() does degrade a bit
291 * among the HW threads with three stage EWB pipeline (EWB, ETRACK + EWB and IPI
292 * + EWB) but not sufficiently. Reclaiming one page at a time would also be
293 * problematic as it would increase the lock contention too much, which would
294 * halt forward progress.
295 */
296static void sgx_reclaim_pages(void)
297{
298	struct sgx_epc_page *chunk[SGX_NR_TO_SCAN];
299	struct sgx_backing backing[SGX_NR_TO_SCAN];
300	struct sgx_encl_page *encl_page;
301	struct sgx_epc_page *epc_page;
302	pgoff_t page_index;
303	int cnt = 0;
304	int ret;
305	int i;
306
307	spin_lock(&sgx_reclaimer_lock);
308	for (i = 0; i < SGX_NR_TO_SCAN; i++) {
309		if (list_empty(&sgx_active_page_list))
310			break;
311
312		epc_page = list_first_entry(&sgx_active_page_list,
313					    struct sgx_epc_page, list);
314		list_del_init(&epc_page->list);
315		encl_page = epc_page->owner;
316
317		if (kref_get_unless_zero(&encl_page->encl->refcount) != 0)
318			chunk[cnt++] = epc_page;
319		else
320			/* The owner is freeing the page. No need to add the
321			 * page back to the list of reclaimable pages.
322			 */
323			epc_page->flags &= ~SGX_EPC_PAGE_RECLAIMER_TRACKED;
324	}
325	spin_unlock(&sgx_reclaimer_lock);
326
327	for (i = 0; i < cnt; i++) {
328		epc_page = chunk[i];
329		encl_page = epc_page->owner;
330
331		if (!sgx_reclaimer_age(epc_page))
332			goto skip;
333
334		page_index = PFN_DOWN(encl_page->desc - encl_page->encl->base);
335
336		mutex_lock(&encl_page->encl->lock);
337		ret = sgx_encl_alloc_backing(encl_page->encl, page_index, &backing[i]);
338		if (ret) {
339			mutex_unlock(&encl_page->encl->lock);
340			goto skip;
341		}
342
343		encl_page->desc |= SGX_ENCL_PAGE_BEING_RECLAIMED;
344		mutex_unlock(&encl_page->encl->lock);
345		continue;
346
347skip:
348		spin_lock(&sgx_reclaimer_lock);
349		list_add_tail(&epc_page->list, &sgx_active_page_list);
350		spin_unlock(&sgx_reclaimer_lock);
351
352		kref_put(&encl_page->encl->refcount, sgx_encl_release);
353
354		chunk[i] = NULL;
355	}
356
357	for (i = 0; i < cnt; i++) {
358		epc_page = chunk[i];
359		if (epc_page)
360			sgx_reclaimer_block(epc_page);
361	}
362
363	for (i = 0; i < cnt; i++) {
364		epc_page = chunk[i];
365		if (!epc_page)
366			continue;
367
368		encl_page = epc_page->owner;
369		sgx_reclaimer_write(epc_page, &backing[i]);
370
371		kref_put(&encl_page->encl->refcount, sgx_encl_release);
372		epc_page->flags &= ~SGX_EPC_PAGE_RECLAIMER_TRACKED;
373
374		sgx_free_epc_page(epc_page);
375	}
376}
377
378static bool sgx_should_reclaim(unsigned long watermark)
379{
380	return atomic_long_read(&sgx_nr_free_pages) < watermark &&
381	       !list_empty(&sgx_active_page_list);
382}
383
384/*
385 * sgx_reclaim_direct() should be called (without enclave's mutex held)
386 * in locations where SGX memory resources might be low and might be
387 * needed in order to make forward progress.
388 */
389void sgx_reclaim_direct(void)
390{
391	if (sgx_should_reclaim(SGX_NR_LOW_PAGES))
392		sgx_reclaim_pages();
393}
394
395static int ksgxd(void *p)
396{
397	set_freezable();
398
399	/*
400	 * Sanitize pages in order to recover from kexec(). The 2nd pass is
401	 * required for SECS pages, whose child pages blocked EREMOVE.
402	 */
403	__sgx_sanitize_pages(&sgx_dirty_page_list);
404	WARN_ON(__sgx_sanitize_pages(&sgx_dirty_page_list));
405
406	while (!kthread_should_stop()) {
407		if (try_to_freeze())
408			continue;
409
410		wait_event_freezable(ksgxd_waitq,
411				     kthread_should_stop() ||
412				     sgx_should_reclaim(SGX_NR_HIGH_PAGES));
413
414		if (sgx_should_reclaim(SGX_NR_HIGH_PAGES))
415			sgx_reclaim_pages();
416
417		cond_resched();
418	}
419
420	return 0;
421}
422
423static bool __init sgx_page_reclaimer_init(void)
424{
425	struct task_struct *tsk;
426
427	tsk = kthread_run(ksgxd, NULL, "ksgxd");
428	if (IS_ERR(tsk))
429		return false;
430
431	ksgxd_tsk = tsk;
432
433	return true;
434}
435
436bool current_is_ksgxd(void)
437{
438	return current == ksgxd_tsk;
439}
440
441static struct sgx_epc_page *__sgx_alloc_epc_page_from_node(int nid)
442{
443	struct sgx_numa_node *node = &sgx_numa_nodes[nid];
444	struct sgx_epc_page *page = NULL;
445
446	spin_lock(&node->lock);
447
448	if (list_empty(&node->free_page_list)) {
449		spin_unlock(&node->lock);
450		return NULL;
451	}
452
453	page = list_first_entry(&node->free_page_list, struct sgx_epc_page, list);
454	list_del_init(&page->list);
455	page->flags = 0;
456
457	spin_unlock(&node->lock);
458	atomic_long_dec(&sgx_nr_free_pages);
459
460	return page;
461}
462
463/**
464 * __sgx_alloc_epc_page() - Allocate an EPC page
465 *
466 * Iterate through NUMA nodes and reserve ia free EPC page to the caller. Start
467 * from the NUMA node, where the caller is executing.
468 *
469 * Return:
470 * - an EPC page:	A borrowed EPC pages were available.
471 * - NULL:		Out of EPC pages.
472 */
473struct sgx_epc_page *__sgx_alloc_epc_page(void)
474{
475	struct sgx_epc_page *page;
476	int nid_of_current = numa_node_id();
477	int nid = nid_of_current;
478
479	if (node_isset(nid_of_current, sgx_numa_mask)) {
480		page = __sgx_alloc_epc_page_from_node(nid_of_current);
481		if (page)
482			return page;
483	}
484
485	/* Fall back to the non-local NUMA nodes: */
486	while (true) {
487		nid = next_node_in(nid, sgx_numa_mask);
488		if (nid == nid_of_current)
489			break;
490
491		page = __sgx_alloc_epc_page_from_node(nid);
492		if (page)
493			return page;
494	}
495
496	return ERR_PTR(-ENOMEM);
497}
498
499/**
500 * sgx_mark_page_reclaimable() - Mark a page as reclaimable
501 * @page:	EPC page
502 *
503 * Mark a page as reclaimable and add it to the active page list. Pages
504 * are automatically removed from the active list when freed.
505 */
506void sgx_mark_page_reclaimable(struct sgx_epc_page *page)
507{
508	spin_lock(&sgx_reclaimer_lock);
509	page->flags |= SGX_EPC_PAGE_RECLAIMER_TRACKED;
510	list_add_tail(&page->list, &sgx_active_page_list);
511	spin_unlock(&sgx_reclaimer_lock);
512}
513
514/**
515 * sgx_unmark_page_reclaimable() - Remove a page from the reclaim list
516 * @page:	EPC page
517 *
518 * Clear the reclaimable flag and remove the page from the active page list.
519 *
520 * Return:
521 *   0 on success,
522 *   -EBUSY if the page is in the process of being reclaimed
523 */
524int sgx_unmark_page_reclaimable(struct sgx_epc_page *page)
525{
526	spin_lock(&sgx_reclaimer_lock);
527	if (page->flags & SGX_EPC_PAGE_RECLAIMER_TRACKED) {
528		/* The page is being reclaimed. */
529		if (list_empty(&page->list)) {
530			spin_unlock(&sgx_reclaimer_lock);
531			return -EBUSY;
532		}
533
534		list_del(&page->list);
535		page->flags &= ~SGX_EPC_PAGE_RECLAIMER_TRACKED;
536	}
537	spin_unlock(&sgx_reclaimer_lock);
538
539	return 0;
540}
541
542/**
543 * sgx_alloc_epc_page() - Allocate an EPC page
544 * @owner:	the owner of the EPC page
545 * @reclaim:	reclaim pages if necessary
546 *
547 * Iterate through EPC sections and borrow a free EPC page to the caller. When a
548 * page is no longer needed it must be released with sgx_free_epc_page(). If
549 * @reclaim is set to true, directly reclaim pages when we are out of pages. No
550 * mm's can be locked when @reclaim is set to true.
551 *
552 * Finally, wake up ksgxd when the number of pages goes below the watermark
553 * before returning back to the caller.
554 *
555 * Return:
556 *   an EPC page,
557 *   -errno on error
558 */
559struct sgx_epc_page *sgx_alloc_epc_page(void *owner, bool reclaim)
560{
561	struct sgx_epc_page *page;
562
563	for ( ; ; ) {
564		page = __sgx_alloc_epc_page();
565		if (!IS_ERR(page)) {
566			page->owner = owner;
567			break;
568		}
569
570		if (list_empty(&sgx_active_page_list))
571			return ERR_PTR(-ENOMEM);
572
573		if (!reclaim) {
574			page = ERR_PTR(-EBUSY);
575			break;
576		}
577
578		if (signal_pending(current)) {
579			page = ERR_PTR(-ERESTARTSYS);
580			break;
581		}
582
583		sgx_reclaim_pages();
584		cond_resched();
585	}
586
587	if (sgx_should_reclaim(SGX_NR_LOW_PAGES))
588		wake_up(&ksgxd_waitq);
589
590	return page;
591}
592
593/**
594 * sgx_free_epc_page() - Free an EPC page
595 * @page:	an EPC page
596 *
597 * Put the EPC page back to the list of free pages. It's the caller's
598 * responsibility to make sure that the page is in uninitialized state. In other
599 * words, do EREMOVE, EWB or whatever operation is necessary before calling
600 * this function.
601 */
602void sgx_free_epc_page(struct sgx_epc_page *page)
603{
604	struct sgx_epc_section *section = &sgx_epc_sections[page->section];
605	struct sgx_numa_node *node = section->node;
606
607	spin_lock(&node->lock);
608
609	page->owner = NULL;
610	if (page->poison)
611		list_add(&page->list, &node->sgx_poison_page_list);
612	else
613		list_add_tail(&page->list, &node->free_page_list);
614	page->flags = SGX_EPC_PAGE_IS_FREE;
615
616	spin_unlock(&node->lock);
617	atomic_long_inc(&sgx_nr_free_pages);
618}
619
620static bool __init sgx_setup_epc_section(u64 phys_addr, u64 size,
621					 unsigned long index,
622					 struct sgx_epc_section *section)
623{
624	unsigned long nr_pages = size >> PAGE_SHIFT;
625	unsigned long i;
626
627	section->virt_addr = memremap(phys_addr, size, MEMREMAP_WB);
628	if (!section->virt_addr)
629		return false;
630
631	section->pages = vmalloc(nr_pages * sizeof(struct sgx_epc_page));
632	if (!section->pages) {
633		memunmap(section->virt_addr);
634		return false;
635	}
636
637	section->phys_addr = phys_addr;
638	xa_store_range(&sgx_epc_address_space, section->phys_addr,
639		       phys_addr + size - 1, section, GFP_KERNEL);
640
641	for (i = 0; i < nr_pages; i++) {
642		section->pages[i].section = index;
643		section->pages[i].flags = 0;
644		section->pages[i].owner = NULL;
645		section->pages[i].poison = 0;
646		list_add_tail(&section->pages[i].list, &sgx_dirty_page_list);
647	}
648
649	return true;
650}
651
652bool arch_is_platform_page(u64 paddr)
653{
654	return !!xa_load(&sgx_epc_address_space, paddr);
655}
656EXPORT_SYMBOL_GPL(arch_is_platform_page);
657
658static struct sgx_epc_page *sgx_paddr_to_page(u64 paddr)
659{
660	struct sgx_epc_section *section;
661
662	section = xa_load(&sgx_epc_address_space, paddr);
663	if (!section)
664		return NULL;
665
666	return &section->pages[PFN_DOWN(paddr - section->phys_addr)];
667}
668
669/*
670 * Called in process context to handle a hardware reported
671 * error in an SGX EPC page.
672 * If the MF_ACTION_REQUIRED bit is set in flags, then the
673 * context is the task that consumed the poison data. Otherwise
674 * this is called from a kernel thread unrelated to the page.
675 */
676int arch_memory_failure(unsigned long pfn, int flags)
677{
678	struct sgx_epc_page *page = sgx_paddr_to_page(pfn << PAGE_SHIFT);
679	struct sgx_epc_section *section;
680	struct sgx_numa_node *node;
681
682	/*
683	 * mm/memory-failure.c calls this routine for all errors
684	 * where there isn't a "struct page" for the address. But that
685	 * includes other address ranges besides SGX.
686	 */
687	if (!page)
688		return -ENXIO;
689
690	/*
691	 * If poison was consumed synchronously. Send a SIGBUS to
692	 * the task. Hardware has already exited the SGX enclave and
693	 * will not allow re-entry to an enclave that has a memory
694	 * error. The signal may help the task understand why the
695	 * enclave is broken.
696	 */
697	if (flags & MF_ACTION_REQUIRED)
698		force_sig(SIGBUS);
699
700	section = &sgx_epc_sections[page->section];
701	node = section->node;
702
703	spin_lock(&node->lock);
704
705	/* Already poisoned? Nothing more to do */
706	if (page->poison)
707		goto out;
708
709	page->poison = 1;
710
711	/*
712	 * If the page is on a free list, move it to the per-node
713	 * poison page list.
714	 */
715	if (page->flags & SGX_EPC_PAGE_IS_FREE) {
716		list_move(&page->list, &node->sgx_poison_page_list);
717		goto out;
718	}
719
720	/*
721	 * TBD: Add additional plumbing to enable pre-emptive
722	 * action for asynchronous poison notification. Until
723	 * then just hope that the poison:
724	 * a) is not accessed - sgx_free_epc_page() will deal with it
725	 *    when the user gives it back
726	 * b) results in a recoverable machine check rather than
727	 *    a fatal one
728	 */
729out:
730	spin_unlock(&node->lock);
731	return 0;
732}
733
734/**
735 * A section metric is concatenated in a way that @low bits 12-31 define the
736 * bits 12-31 of the metric and @high bits 0-19 define the bits 32-51 of the
737 * metric.
738 */
739static inline u64 __init sgx_calc_section_metric(u64 low, u64 high)
740{
741	return (low & GENMASK_ULL(31, 12)) +
742	       ((high & GENMASK_ULL(19, 0)) << 32);
743}
744
745#ifdef CONFIG_NUMA
746static ssize_t sgx_total_bytes_show(struct device *dev, struct device_attribute *attr, char *buf)
747{
748	return sysfs_emit(buf, "%lu\n", sgx_numa_nodes[dev->id].size);
749}
750static DEVICE_ATTR_RO(sgx_total_bytes);
751
752static umode_t arch_node_attr_is_visible(struct kobject *kobj,
753		struct attribute *attr, int idx)
754{
755	/* Make all x86/ attributes invisible when SGX is not initialized: */
756	if (nodes_empty(sgx_numa_mask))
757		return 0;
758
759	return attr->mode;
760}
761
762static struct attribute *arch_node_dev_attrs[] = {
763	&dev_attr_sgx_total_bytes.attr,
764	NULL,
765};
766
767const struct attribute_group arch_node_dev_group = {
768	.name = "x86",
769	.attrs = arch_node_dev_attrs,
770	.is_visible = arch_node_attr_is_visible,
771};
772
773static void __init arch_update_sysfs_visibility(int nid)
774{
775	struct node *node = node_devices[nid];
776	int ret;
777
778	ret = sysfs_update_group(&node->dev.kobj, &arch_node_dev_group);
779
780	if (ret)
781		pr_err("sysfs update failed (%d), files may be invisible", ret);
782}
783#else /* !CONFIG_NUMA */
784static void __init arch_update_sysfs_visibility(int nid) {}
785#endif
786
787static bool __init sgx_page_cache_init(void)
788{
789	u32 eax, ebx, ecx, edx, type;
790	u64 pa, size;
791	int nid;
792	int i;
793
794	sgx_numa_nodes = kmalloc_array(num_possible_nodes(), sizeof(*sgx_numa_nodes), GFP_KERNEL);
795	if (!sgx_numa_nodes)
796		return false;
797
798	for (i = 0; i < ARRAY_SIZE(sgx_epc_sections); i++) {
799		cpuid_count(SGX_CPUID, i + SGX_CPUID_EPC, &eax, &ebx, &ecx, &edx);
800
801		type = eax & SGX_CPUID_EPC_MASK;
802		if (type == SGX_CPUID_EPC_INVALID)
803			break;
804
805		if (type != SGX_CPUID_EPC_SECTION) {
806			pr_err_once("Unknown EPC section type: %u\n", type);
807			break;
808		}
809
810		pa   = sgx_calc_section_metric(eax, ebx);
811		size = sgx_calc_section_metric(ecx, edx);
812
813		pr_info("EPC section 0x%llx-0x%llx\n", pa, pa + size - 1);
814
815		if (!sgx_setup_epc_section(pa, size, i, &sgx_epc_sections[i])) {
816			pr_err("No free memory for an EPC section\n");
817			break;
818		}
819
820		nid = numa_map_to_online_node(phys_to_target_node(pa));
821		if (nid == NUMA_NO_NODE) {
822			/* The physical address is already printed above. */
823			pr_warn(FW_BUG "Unable to map EPC section to online node. Fallback to the NUMA node 0.\n");
824			nid = 0;
825		}
826
827		if (!node_isset(nid, sgx_numa_mask)) {
828			spin_lock_init(&sgx_numa_nodes[nid].lock);
829			INIT_LIST_HEAD(&sgx_numa_nodes[nid].free_page_list);
830			INIT_LIST_HEAD(&sgx_numa_nodes[nid].sgx_poison_page_list);
831			node_set(nid, sgx_numa_mask);
832			sgx_numa_nodes[nid].size = 0;
833
834			/* Make SGX-specific node sysfs files visible: */
835			arch_update_sysfs_visibility(nid);
836		}
837
838		sgx_epc_sections[i].node =  &sgx_numa_nodes[nid];
839		sgx_numa_nodes[nid].size += size;
840
841		sgx_nr_epc_sections++;
842	}
843
844	if (!sgx_nr_epc_sections) {
845		pr_err("There are zero EPC sections.\n");
846		return false;
847	}
848
849	return true;
850}
851
852/*
853 * Update the SGX_LEPUBKEYHASH MSRs to the values specified by caller.
854 * Bare-metal driver requires to update them to hash of enclave's signer
855 * before EINIT. KVM needs to update them to guest's virtual MSR values
856 * before doing EINIT from guest.
857 */
858void sgx_update_lepubkeyhash(u64 *lepubkeyhash)
859{
860	int i;
861
862	WARN_ON_ONCE(preemptible());
863
864	for (i = 0; i < 4; i++)
865		wrmsrl(MSR_IA32_SGXLEPUBKEYHASH0 + i, lepubkeyhash[i]);
866}
867
868const struct file_operations sgx_provision_fops = {
869	.owner			= THIS_MODULE,
870};
871
872static struct miscdevice sgx_dev_provision = {
873	.minor = MISC_DYNAMIC_MINOR,
874	.name = "sgx_provision",
875	.nodename = "sgx_provision",
876	.fops = &sgx_provision_fops,
877};
878
879/**
880 * sgx_set_attribute() - Update allowed attributes given file descriptor
881 * @allowed_attributes:		Pointer to allowed enclave attributes
882 * @attribute_fd:		File descriptor for specific attribute
883 *
884 * Append enclave attribute indicated by file descriptor to allowed
885 * attributes. Currently only SGX_ATTR_PROVISIONKEY indicated by
886 * /dev/sgx_provision is supported.
887 *
888 * Return:
889 * -0:		SGX_ATTR_PROVISIONKEY is appended to allowed_attributes
890 * -EINVAL:	Invalid, or not supported file descriptor
891 */
892int sgx_set_attribute(unsigned long *allowed_attributes,
893		      unsigned int attribute_fd)
894{
895	struct fd f = fdget(attribute_fd);
896
897	if (!f.file)
898		return -EINVAL;
899
900	if (f.file->f_op != &sgx_provision_fops) {
901		fdput(f);
902		return -EINVAL;
903	}
904
905	*allowed_attributes |= SGX_ATTR_PROVISIONKEY;
906
907	fdput(f);
908	return 0;
909}
910EXPORT_SYMBOL_GPL(sgx_set_attribute);
911
912static int __init sgx_init(void)
913{
914	int ret;
915	int i;
916
917	if (!cpu_feature_enabled(X86_FEATURE_SGX))
918		return -ENODEV;
919
920	if (!sgx_page_cache_init())
921		return -ENOMEM;
922
923	if (!sgx_page_reclaimer_init()) {
924		ret = -ENOMEM;
925		goto err_page_cache;
926	}
927
928	ret = misc_register(&sgx_dev_provision);
929	if (ret)
930		goto err_kthread;
931
932	/*
933	 * Always try to initialize the native *and* KVM drivers.
934	 * The KVM driver is less picky than the native one and
935	 * can function if the native one is not supported on the
936	 * current system or fails to initialize.
937	 *
938	 * Error out only if both fail to initialize.
939	 */
940	ret = sgx_drv_init();
941
942	if (sgx_vepc_init() && ret)
943		goto err_provision;
944
945	return 0;
946
947err_provision:
948	misc_deregister(&sgx_dev_provision);
949
950err_kthread:
951	kthread_stop(ksgxd_tsk);
952
953err_page_cache:
954	for (i = 0; i < sgx_nr_epc_sections; i++) {
955		vfree(sgx_epc_sections[i].pages);
956		memunmap(sgx_epc_sections[i].virt_addr);
957	}
958
959	return ret;
960}
961
962device_initcall(sgx_init);
963