1// SPDX-License-Identifier: GPL-2.0
2/*
3 * Resource Director Technology (RDT)
4 *
5 * Pseudo-locking support built on top of Cache Allocation Technology (CAT)
6 *
7 * Copyright (C) 2018 Intel Corporation
8 *
9 * Author: Reinette Chatre <reinette.chatre@intel.com>
10 */
11
12#define pr_fmt(fmt)	KBUILD_MODNAME ": " fmt
13
14#include <linux/cacheinfo.h>
15#include <linux/cpu.h>
16#include <linux/cpumask.h>
17#include <linux/debugfs.h>
18#include <linux/kthread.h>
19#include <linux/mman.h>
20#include <linux/perf_event.h>
21#include <linux/pm_qos.h>
22#include <linux/slab.h>
23#include <linux/uaccess.h>
24
25#include <asm/cacheflush.h>
26#include <asm/intel-family.h>
27#include <asm/resctrl.h>
28#include <asm/perf_event.h>
29
30#include "../../events/perf_event.h" /* For X86_CONFIG() */
31#include "internal.h"
32
33#define CREATE_TRACE_POINTS
34#include "pseudo_lock_event.h"
35
36/*
37 * The bits needed to disable hardware prefetching varies based on the
38 * platform. During initialization we will discover which bits to use.
39 */
40static u64 prefetch_disable_bits;
41
42/*
43 * Major number assigned to and shared by all devices exposing
44 * pseudo-locked regions.
45 */
46static unsigned int pseudo_lock_major;
47static unsigned long pseudo_lock_minor_avail = GENMASK(MINORBITS, 0);
48
49static char *pseudo_lock_devnode(const struct device *dev, umode_t *mode)
50{
51	const struct rdtgroup *rdtgrp;
52
53	rdtgrp = dev_get_drvdata(dev);
54	if (mode)
55		*mode = 0600;
56	return kasprintf(GFP_KERNEL, "pseudo_lock/%s", rdtgrp->kn->name);
57}
58
59static const struct class pseudo_lock_class = {
60	.name = "pseudo_lock",
61	.devnode = pseudo_lock_devnode,
62};
63
64/**
65 * get_prefetch_disable_bits - prefetch disable bits of supported platforms
66 * @void: It takes no parameters.
67 *
68 * Capture the list of platforms that have been validated to support
69 * pseudo-locking. This includes testing to ensure pseudo-locked regions
70 * with low cache miss rates can be created under variety of load conditions
71 * as well as that these pseudo-locked regions can maintain their low cache
72 * miss rates under variety of load conditions for significant lengths of time.
73 *
74 * After a platform has been validated to support pseudo-locking its
75 * hardware prefetch disable bits are included here as they are documented
76 * in the SDM.
77 *
78 * When adding a platform here also add support for its cache events to
79 * measure_cycles_perf_fn()
80 *
81 * Return:
82 * If platform is supported, the bits to disable hardware prefetchers, 0
83 * if platform is not supported.
84 */
85static u64 get_prefetch_disable_bits(void)
86{
87	if (boot_cpu_data.x86_vendor != X86_VENDOR_INTEL ||
88	    boot_cpu_data.x86 != 6)
89		return 0;
90
91	switch (boot_cpu_data.x86_model) {
92	case INTEL_FAM6_BROADWELL_X:
93		/*
94		 * SDM defines bits of MSR_MISC_FEATURE_CONTROL register
95		 * as:
96		 * 0    L2 Hardware Prefetcher Disable (R/W)
97		 * 1    L2 Adjacent Cache Line Prefetcher Disable (R/W)
98		 * 2    DCU Hardware Prefetcher Disable (R/W)
99		 * 3    DCU IP Prefetcher Disable (R/W)
100		 * 63:4 Reserved
101		 */
102		return 0xF;
103	case INTEL_FAM6_ATOM_GOLDMONT:
104	case INTEL_FAM6_ATOM_GOLDMONT_PLUS:
105		/*
106		 * SDM defines bits of MSR_MISC_FEATURE_CONTROL register
107		 * as:
108		 * 0     L2 Hardware Prefetcher Disable (R/W)
109		 * 1     Reserved
110		 * 2     DCU Hardware Prefetcher Disable (R/W)
111		 * 63:3  Reserved
112		 */
113		return 0x5;
114	}
115
116	return 0;
117}
118
119/**
120 * pseudo_lock_minor_get - Obtain available minor number
121 * @minor: Pointer to where new minor number will be stored
122 *
123 * A bitmask is used to track available minor numbers. Here the next free
124 * minor number is marked as unavailable and returned.
125 *
126 * Return: 0 on success, <0 on failure.
127 */
128static int pseudo_lock_minor_get(unsigned int *minor)
129{
130	unsigned long first_bit;
131
132	first_bit = find_first_bit(&pseudo_lock_minor_avail, MINORBITS);
133
134	if (first_bit == MINORBITS)
135		return -ENOSPC;
136
137	__clear_bit(first_bit, &pseudo_lock_minor_avail);
138	*minor = first_bit;
139
140	return 0;
141}
142
143/**
144 * pseudo_lock_minor_release - Return minor number to available
145 * @minor: The minor number made available
146 */
147static void pseudo_lock_minor_release(unsigned int minor)
148{
149	__set_bit(minor, &pseudo_lock_minor_avail);
150}
151
152/**
153 * region_find_by_minor - Locate a pseudo-lock region by inode minor number
154 * @minor: The minor number of the device representing pseudo-locked region
155 *
156 * When the character device is accessed we need to determine which
157 * pseudo-locked region it belongs to. This is done by matching the minor
158 * number of the device to the pseudo-locked region it belongs.
159 *
160 * Minor numbers are assigned at the time a pseudo-locked region is associated
161 * with a cache instance.
162 *
163 * Return: On success return pointer to resource group owning the pseudo-locked
164 *         region, NULL on failure.
165 */
166static struct rdtgroup *region_find_by_minor(unsigned int minor)
167{
168	struct rdtgroup *rdtgrp, *rdtgrp_match = NULL;
169
170	list_for_each_entry(rdtgrp, &rdt_all_groups, rdtgroup_list) {
171		if (rdtgrp->plr && rdtgrp->plr->minor == minor) {
172			rdtgrp_match = rdtgrp;
173			break;
174		}
175	}
176	return rdtgrp_match;
177}
178
179/**
180 * struct pseudo_lock_pm_req - A power management QoS request list entry
181 * @list:	Entry within the @pm_reqs list for a pseudo-locked region
182 * @req:	PM QoS request
183 */
184struct pseudo_lock_pm_req {
185	struct list_head list;
186	struct dev_pm_qos_request req;
187};
188
189static void pseudo_lock_cstates_relax(struct pseudo_lock_region *plr)
190{
191	struct pseudo_lock_pm_req *pm_req, *next;
192
193	list_for_each_entry_safe(pm_req, next, &plr->pm_reqs, list) {
194		dev_pm_qos_remove_request(&pm_req->req);
195		list_del(&pm_req->list);
196		kfree(pm_req);
197	}
198}
199
200/**
201 * pseudo_lock_cstates_constrain - Restrict cores from entering C6
202 * @plr: Pseudo-locked region
203 *
204 * To prevent the cache from being affected by power management entering
205 * C6 has to be avoided. This is accomplished by requesting a latency
206 * requirement lower than lowest C6 exit latency of all supported
207 * platforms as found in the cpuidle state tables in the intel_idle driver.
208 * At this time it is possible to do so with a single latency requirement
209 * for all supported platforms.
210 *
211 * Since Goldmont is supported, which is affected by X86_BUG_MONITOR,
212 * the ACPI latencies need to be considered while keeping in mind that C2
213 * may be set to map to deeper sleep states. In this case the latency
214 * requirement needs to prevent entering C2 also.
215 *
216 * Return: 0 on success, <0 on failure
217 */
218static int pseudo_lock_cstates_constrain(struct pseudo_lock_region *plr)
219{
220	struct pseudo_lock_pm_req *pm_req;
221	int cpu;
222	int ret;
223
224	for_each_cpu(cpu, &plr->d->cpu_mask) {
225		pm_req = kzalloc(sizeof(*pm_req), GFP_KERNEL);
226		if (!pm_req) {
227			rdt_last_cmd_puts("Failure to allocate memory for PM QoS\n");
228			ret = -ENOMEM;
229			goto out_err;
230		}
231		ret = dev_pm_qos_add_request(get_cpu_device(cpu),
232					     &pm_req->req,
233					     DEV_PM_QOS_RESUME_LATENCY,
234					     30);
235		if (ret < 0) {
236			rdt_last_cmd_printf("Failed to add latency req CPU%d\n",
237					    cpu);
238			kfree(pm_req);
239			ret = -1;
240			goto out_err;
241		}
242		list_add(&pm_req->list, &plr->pm_reqs);
243	}
244
245	return 0;
246
247out_err:
248	pseudo_lock_cstates_relax(plr);
249	return ret;
250}
251
252/**
253 * pseudo_lock_region_clear - Reset pseudo-lock region data
254 * @plr: pseudo-lock region
255 *
256 * All content of the pseudo-locked region is reset - any memory allocated
257 * freed.
258 *
259 * Return: void
260 */
261static void pseudo_lock_region_clear(struct pseudo_lock_region *plr)
262{
263	plr->size = 0;
264	plr->line_size = 0;
265	kfree(plr->kmem);
266	plr->kmem = NULL;
267	plr->s = NULL;
268	if (plr->d)
269		plr->d->plr = NULL;
270	plr->d = NULL;
271	plr->cbm = 0;
272	plr->debugfs_dir = NULL;
273}
274
275/**
276 * pseudo_lock_region_init - Initialize pseudo-lock region information
277 * @plr: pseudo-lock region
278 *
279 * Called after user provided a schemata to be pseudo-locked. From the
280 * schemata the &struct pseudo_lock_region is on entry already initialized
281 * with the resource, domain, and capacity bitmask. Here the information
282 * required for pseudo-locking is deduced from this data and &struct
283 * pseudo_lock_region initialized further. This information includes:
284 * - size in bytes of the region to be pseudo-locked
285 * - cache line size to know the stride with which data needs to be accessed
286 *   to be pseudo-locked
287 * - a cpu associated with the cache instance on which the pseudo-locking
288 *   flow can be executed
289 *
290 * Return: 0 on success, <0 on failure. Descriptive error will be written
291 * to last_cmd_status buffer.
292 */
293static int pseudo_lock_region_init(struct pseudo_lock_region *plr)
294{
295	struct cpu_cacheinfo *ci;
296	int ret;
297	int i;
298
299	/* Pick the first cpu we find that is associated with the cache. */
300	plr->cpu = cpumask_first(&plr->d->cpu_mask);
301
302	if (!cpu_online(plr->cpu)) {
303		rdt_last_cmd_printf("CPU %u associated with cache not online\n",
304				    plr->cpu);
305		ret = -ENODEV;
306		goto out_region;
307	}
308
309	ci = get_cpu_cacheinfo(plr->cpu);
310
311	plr->size = rdtgroup_cbm_to_size(plr->s->res, plr->d, plr->cbm);
312
313	for (i = 0; i < ci->num_leaves; i++) {
314		if (ci->info_list[i].level == plr->s->res->cache_level) {
315			plr->line_size = ci->info_list[i].coherency_line_size;
316			return 0;
317		}
318	}
319
320	ret = -1;
321	rdt_last_cmd_puts("Unable to determine cache line size\n");
322out_region:
323	pseudo_lock_region_clear(plr);
324	return ret;
325}
326
327/**
328 * pseudo_lock_init - Initialize a pseudo-lock region
329 * @rdtgrp: resource group to which new pseudo-locked region will belong
330 *
331 * A pseudo-locked region is associated with a resource group. When this
332 * association is created the pseudo-locked region is initialized. The
333 * details of the pseudo-locked region are not known at this time so only
334 * allocation is done and association established.
335 *
336 * Return: 0 on success, <0 on failure
337 */
338static int pseudo_lock_init(struct rdtgroup *rdtgrp)
339{
340	struct pseudo_lock_region *plr;
341
342	plr = kzalloc(sizeof(*plr), GFP_KERNEL);
343	if (!plr)
344		return -ENOMEM;
345
346	init_waitqueue_head(&plr->lock_thread_wq);
347	INIT_LIST_HEAD(&plr->pm_reqs);
348	rdtgrp->plr = plr;
349	return 0;
350}
351
352/**
353 * pseudo_lock_region_alloc - Allocate kernel memory that will be pseudo-locked
354 * @plr: pseudo-lock region
355 *
356 * Initialize the details required to set up the pseudo-locked region and
357 * allocate the contiguous memory that will be pseudo-locked to the cache.
358 *
359 * Return: 0 on success, <0 on failure.  Descriptive error will be written
360 * to last_cmd_status buffer.
361 */
362static int pseudo_lock_region_alloc(struct pseudo_lock_region *plr)
363{
364	int ret;
365
366	ret = pseudo_lock_region_init(plr);
367	if (ret < 0)
368		return ret;
369
370	/*
371	 * We do not yet support contiguous regions larger than
372	 * KMALLOC_MAX_SIZE.
373	 */
374	if (plr->size > KMALLOC_MAX_SIZE) {
375		rdt_last_cmd_puts("Requested region exceeds maximum size\n");
376		ret = -E2BIG;
377		goto out_region;
378	}
379
380	plr->kmem = kzalloc(plr->size, GFP_KERNEL);
381	if (!plr->kmem) {
382		rdt_last_cmd_puts("Unable to allocate memory\n");
383		ret = -ENOMEM;
384		goto out_region;
385	}
386
387	ret = 0;
388	goto out;
389out_region:
390	pseudo_lock_region_clear(plr);
391out:
392	return ret;
393}
394
395/**
396 * pseudo_lock_free - Free a pseudo-locked region
397 * @rdtgrp: resource group to which pseudo-locked region belonged
398 *
399 * The pseudo-locked region's resources have already been released, or not
400 * yet created at this point. Now it can be freed and disassociated from the
401 * resource group.
402 *
403 * Return: void
404 */
405static void pseudo_lock_free(struct rdtgroup *rdtgrp)
406{
407	pseudo_lock_region_clear(rdtgrp->plr);
408	kfree(rdtgrp->plr);
409	rdtgrp->plr = NULL;
410}
411
412/**
413 * pseudo_lock_fn - Load kernel memory into cache
414 * @_rdtgrp: resource group to which pseudo-lock region belongs
415 *
416 * This is the core pseudo-locking flow.
417 *
418 * First we ensure that the kernel memory cannot be found in the cache.
419 * Then, while taking care that there will be as little interference as
420 * possible, the memory to be loaded is accessed while core is running
421 * with class of service set to the bitmask of the pseudo-locked region.
422 * After this is complete no future CAT allocations will be allowed to
423 * overlap with this bitmask.
424 *
425 * Local register variables are utilized to ensure that the memory region
426 * to be locked is the only memory access made during the critical locking
427 * loop.
428 *
429 * Return: 0. Waiter on waitqueue will be woken on completion.
430 */
431static int pseudo_lock_fn(void *_rdtgrp)
432{
433	struct rdtgroup *rdtgrp = _rdtgrp;
434	struct pseudo_lock_region *plr = rdtgrp->plr;
435	u32 rmid_p, closid_p;
436	unsigned long i;
437	u64 saved_msr;
438#ifdef CONFIG_KASAN
439	/*
440	 * The registers used for local register variables are also used
441	 * when KASAN is active. When KASAN is active we use a regular
442	 * variable to ensure we always use a valid pointer, but the cost
443	 * is that this variable will enter the cache through evicting the
444	 * memory we are trying to lock into the cache. Thus expect lower
445	 * pseudo-locking success rate when KASAN is active.
446	 */
447	unsigned int line_size;
448	unsigned int size;
449	void *mem_r;
450#else
451	register unsigned int line_size asm("esi");
452	register unsigned int size asm("edi");
453	register void *mem_r asm(_ASM_BX);
454#endif /* CONFIG_KASAN */
455
456	/*
457	 * Make sure none of the allocated memory is cached. If it is we
458	 * will get a cache hit in below loop from outside of pseudo-locked
459	 * region.
460	 * wbinvd (as opposed to clflush/clflushopt) is required to
461	 * increase likelihood that allocated cache portion will be filled
462	 * with associated memory.
463	 */
464	native_wbinvd();
465
466	/*
467	 * Always called with interrupts enabled. By disabling interrupts
468	 * ensure that we will not be preempted during this critical section.
469	 */
470	local_irq_disable();
471
472	/*
473	 * Call wrmsr and rdmsr as directly as possible to avoid tracing
474	 * clobbering local register variables or affecting cache accesses.
475	 *
476	 * Disable the hardware prefetcher so that when the end of the memory
477	 * being pseudo-locked is reached the hardware will not read beyond
478	 * the buffer and evict pseudo-locked memory read earlier from the
479	 * cache.
480	 */
481	saved_msr = __rdmsr(MSR_MISC_FEATURE_CONTROL);
482	__wrmsr(MSR_MISC_FEATURE_CONTROL, prefetch_disable_bits, 0x0);
483	closid_p = this_cpu_read(pqr_state.cur_closid);
484	rmid_p = this_cpu_read(pqr_state.cur_rmid);
485	mem_r = plr->kmem;
486	size = plr->size;
487	line_size = plr->line_size;
488	/*
489	 * Critical section begin: start by writing the closid associated
490	 * with the capacity bitmask of the cache region being
491	 * pseudo-locked followed by reading of kernel memory to load it
492	 * into the cache.
493	 */
494	__wrmsr(MSR_IA32_PQR_ASSOC, rmid_p, rdtgrp->closid);
495	/*
496	 * Cache was flushed earlier. Now access kernel memory to read it
497	 * into cache region associated with just activated plr->closid.
498	 * Loop over data twice:
499	 * - In first loop the cache region is shared with the page walker
500	 *   as it populates the paging structure caches (including TLB).
501	 * - In the second loop the paging structure caches are used and
502	 *   cache region is populated with the memory being referenced.
503	 */
504	for (i = 0; i < size; i += PAGE_SIZE) {
505		/*
506		 * Add a barrier to prevent speculative execution of this
507		 * loop reading beyond the end of the buffer.
508		 */
509		rmb();
510		asm volatile("mov (%0,%1,1), %%eax\n\t"
511			:
512			: "r" (mem_r), "r" (i)
513			: "%eax", "memory");
514	}
515	for (i = 0; i < size; i += line_size) {
516		/*
517		 * Add a barrier to prevent speculative execution of this
518		 * loop reading beyond the end of the buffer.
519		 */
520		rmb();
521		asm volatile("mov (%0,%1,1), %%eax\n\t"
522			:
523			: "r" (mem_r), "r" (i)
524			: "%eax", "memory");
525	}
526	/*
527	 * Critical section end: restore closid with capacity bitmask that
528	 * does not overlap with pseudo-locked region.
529	 */
530	__wrmsr(MSR_IA32_PQR_ASSOC, rmid_p, closid_p);
531
532	/* Re-enable the hardware prefetcher(s) */
533	wrmsrl(MSR_MISC_FEATURE_CONTROL, saved_msr);
534	local_irq_enable();
535
536	plr->thread_done = 1;
537	wake_up_interruptible(&plr->lock_thread_wq);
538	return 0;
539}
540
541/**
542 * rdtgroup_monitor_in_progress - Test if monitoring in progress
543 * @rdtgrp: resource group being queried
544 *
545 * Return: 1 if monitor groups have been created for this resource
546 * group, 0 otherwise.
547 */
548static int rdtgroup_monitor_in_progress(struct rdtgroup *rdtgrp)
549{
550	return !list_empty(&rdtgrp->mon.crdtgrp_list);
551}
552
553/**
554 * rdtgroup_locksetup_user_restrict - Restrict user access to group
555 * @rdtgrp: resource group needing access restricted
556 *
557 * A resource group used for cache pseudo-locking cannot have cpus or tasks
558 * assigned to it. This is communicated to the user by restricting access
559 * to all the files that can be used to make such changes.
560 *
561 * Permissions restored with rdtgroup_locksetup_user_restore()
562 *
563 * Return: 0 on success, <0 on failure. If a failure occurs during the
564 * restriction of access an attempt will be made to restore permissions but
565 * the state of the mode of these files will be uncertain when a failure
566 * occurs.
567 */
568static int rdtgroup_locksetup_user_restrict(struct rdtgroup *rdtgrp)
569{
570	int ret;
571
572	ret = rdtgroup_kn_mode_restrict(rdtgrp, "tasks");
573	if (ret)
574		return ret;
575
576	ret = rdtgroup_kn_mode_restrict(rdtgrp, "cpus");
577	if (ret)
578		goto err_tasks;
579
580	ret = rdtgroup_kn_mode_restrict(rdtgrp, "cpus_list");
581	if (ret)
582		goto err_cpus;
583
584	if (resctrl_arch_mon_capable()) {
585		ret = rdtgroup_kn_mode_restrict(rdtgrp, "mon_groups");
586		if (ret)
587			goto err_cpus_list;
588	}
589
590	ret = 0;
591	goto out;
592
593err_cpus_list:
594	rdtgroup_kn_mode_restore(rdtgrp, "cpus_list", 0777);
595err_cpus:
596	rdtgroup_kn_mode_restore(rdtgrp, "cpus", 0777);
597err_tasks:
598	rdtgroup_kn_mode_restore(rdtgrp, "tasks", 0777);
599out:
600	return ret;
601}
602
603/**
604 * rdtgroup_locksetup_user_restore - Restore user access to group
605 * @rdtgrp: resource group needing access restored
606 *
607 * Restore all file access previously removed using
608 * rdtgroup_locksetup_user_restrict()
609 *
610 * Return: 0 on success, <0 on failure.  If a failure occurs during the
611 * restoration of access an attempt will be made to restrict permissions
612 * again but the state of the mode of these files will be uncertain when
613 * a failure occurs.
614 */
615static int rdtgroup_locksetup_user_restore(struct rdtgroup *rdtgrp)
616{
617	int ret;
618
619	ret = rdtgroup_kn_mode_restore(rdtgrp, "tasks", 0777);
620	if (ret)
621		return ret;
622
623	ret = rdtgroup_kn_mode_restore(rdtgrp, "cpus", 0777);
624	if (ret)
625		goto err_tasks;
626
627	ret = rdtgroup_kn_mode_restore(rdtgrp, "cpus_list", 0777);
628	if (ret)
629		goto err_cpus;
630
631	if (resctrl_arch_mon_capable()) {
632		ret = rdtgroup_kn_mode_restore(rdtgrp, "mon_groups", 0777);
633		if (ret)
634			goto err_cpus_list;
635	}
636
637	ret = 0;
638	goto out;
639
640err_cpus_list:
641	rdtgroup_kn_mode_restrict(rdtgrp, "cpus_list");
642err_cpus:
643	rdtgroup_kn_mode_restrict(rdtgrp, "cpus");
644err_tasks:
645	rdtgroup_kn_mode_restrict(rdtgrp, "tasks");
646out:
647	return ret;
648}
649
650/**
651 * rdtgroup_locksetup_enter - Resource group enters locksetup mode
652 * @rdtgrp: resource group requested to enter locksetup mode
653 *
654 * A resource group enters locksetup mode to reflect that it would be used
655 * to represent a pseudo-locked region and is in the process of being set
656 * up to do so. A resource group used for a pseudo-locked region would
657 * lose the closid associated with it so we cannot allow it to have any
658 * tasks or cpus assigned nor permit tasks or cpus to be assigned in the
659 * future. Monitoring of a pseudo-locked region is not allowed either.
660 *
661 * The above and more restrictions on a pseudo-locked region are checked
662 * for and enforced before the resource group enters the locksetup mode.
663 *
664 * Returns: 0 if the resource group successfully entered locksetup mode, <0
665 * on failure. On failure the last_cmd_status buffer is updated with text to
666 * communicate details of failure to the user.
667 */
668int rdtgroup_locksetup_enter(struct rdtgroup *rdtgrp)
669{
670	int ret;
671
672	/*
673	 * The default resource group can neither be removed nor lose the
674	 * default closid associated with it.
675	 */
676	if (rdtgrp == &rdtgroup_default) {
677		rdt_last_cmd_puts("Cannot pseudo-lock default group\n");
678		return -EINVAL;
679	}
680
681	/*
682	 * Cache Pseudo-locking not supported when CDP is enabled.
683	 *
684	 * Some things to consider if you would like to enable this
685	 * support (using L3 CDP as example):
686	 * - When CDP is enabled two separate resources are exposed,
687	 *   L3DATA and L3CODE, but they are actually on the same cache.
688	 *   The implication for pseudo-locking is that if a
689	 *   pseudo-locked region is created on a domain of one
690	 *   resource (eg. L3CODE), then a pseudo-locked region cannot
691	 *   be created on that same domain of the other resource
692	 *   (eg. L3DATA). This is because the creation of a
693	 *   pseudo-locked region involves a call to wbinvd that will
694	 *   affect all cache allocations on particular domain.
695	 * - Considering the previous, it may be possible to only
696	 *   expose one of the CDP resources to pseudo-locking and
697	 *   hide the other. For example, we could consider to only
698	 *   expose L3DATA and since the L3 cache is unified it is
699	 *   still possible to place instructions there are execute it.
700	 * - If only one region is exposed to pseudo-locking we should
701	 *   still keep in mind that availability of a portion of cache
702	 *   for pseudo-locking should take into account both resources.
703	 *   Similarly, if a pseudo-locked region is created in one
704	 *   resource, the portion of cache used by it should be made
705	 *   unavailable to all future allocations from both resources.
706	 */
707	if (resctrl_arch_get_cdp_enabled(RDT_RESOURCE_L3) ||
708	    resctrl_arch_get_cdp_enabled(RDT_RESOURCE_L2)) {
709		rdt_last_cmd_puts("CDP enabled\n");
710		return -EINVAL;
711	}
712
713	/*
714	 * Not knowing the bits to disable prefetching implies that this
715	 * platform does not support Cache Pseudo-Locking.
716	 */
717	prefetch_disable_bits = get_prefetch_disable_bits();
718	if (prefetch_disable_bits == 0) {
719		rdt_last_cmd_puts("Pseudo-locking not supported\n");
720		return -EINVAL;
721	}
722
723	if (rdtgroup_monitor_in_progress(rdtgrp)) {
724		rdt_last_cmd_puts("Monitoring in progress\n");
725		return -EINVAL;
726	}
727
728	if (rdtgroup_tasks_assigned(rdtgrp)) {
729		rdt_last_cmd_puts("Tasks assigned to resource group\n");
730		return -EINVAL;
731	}
732
733	if (!cpumask_empty(&rdtgrp->cpu_mask)) {
734		rdt_last_cmd_puts("CPUs assigned to resource group\n");
735		return -EINVAL;
736	}
737
738	if (rdtgroup_locksetup_user_restrict(rdtgrp)) {
739		rdt_last_cmd_puts("Unable to modify resctrl permissions\n");
740		return -EIO;
741	}
742
743	ret = pseudo_lock_init(rdtgrp);
744	if (ret) {
745		rdt_last_cmd_puts("Unable to init pseudo-lock region\n");
746		goto out_release;
747	}
748
749	/*
750	 * If this system is capable of monitoring a rmid would have been
751	 * allocated when the control group was created. This is not needed
752	 * anymore when this group would be used for pseudo-locking. This
753	 * is safe to call on platforms not capable of monitoring.
754	 */
755	free_rmid(rdtgrp->closid, rdtgrp->mon.rmid);
756
757	ret = 0;
758	goto out;
759
760out_release:
761	rdtgroup_locksetup_user_restore(rdtgrp);
762out:
763	return ret;
764}
765
766/**
767 * rdtgroup_locksetup_exit - resource group exist locksetup mode
768 * @rdtgrp: resource group
769 *
770 * When a resource group exits locksetup mode the earlier restrictions are
771 * lifted.
772 *
773 * Return: 0 on success, <0 on failure
774 */
775int rdtgroup_locksetup_exit(struct rdtgroup *rdtgrp)
776{
777	int ret;
778
779	if (resctrl_arch_mon_capable()) {
780		ret = alloc_rmid(rdtgrp->closid);
781		if (ret < 0) {
782			rdt_last_cmd_puts("Out of RMIDs\n");
783			return ret;
784		}
785		rdtgrp->mon.rmid = ret;
786	}
787
788	ret = rdtgroup_locksetup_user_restore(rdtgrp);
789	if (ret) {
790		free_rmid(rdtgrp->closid, rdtgrp->mon.rmid);
791		return ret;
792	}
793
794	pseudo_lock_free(rdtgrp);
795	return 0;
796}
797
798/**
799 * rdtgroup_cbm_overlaps_pseudo_locked - Test if CBM or portion is pseudo-locked
800 * @d: RDT domain
801 * @cbm: CBM to test
802 *
803 * @d represents a cache instance and @cbm a capacity bitmask that is
804 * considered for it. Determine if @cbm overlaps with any existing
805 * pseudo-locked region on @d.
806 *
807 * @cbm is unsigned long, even if only 32 bits are used, to make the
808 * bitmap functions work correctly.
809 *
810 * Return: true if @cbm overlaps with pseudo-locked region on @d, false
811 * otherwise.
812 */
813bool rdtgroup_cbm_overlaps_pseudo_locked(struct rdt_domain *d, unsigned long cbm)
814{
815	unsigned int cbm_len;
816	unsigned long cbm_b;
817
818	if (d->plr) {
819		cbm_len = d->plr->s->res->cache.cbm_len;
820		cbm_b = d->plr->cbm;
821		if (bitmap_intersects(&cbm, &cbm_b, cbm_len))
822			return true;
823	}
824	return false;
825}
826
827/**
828 * rdtgroup_pseudo_locked_in_hierarchy - Pseudo-locked region in cache hierarchy
829 * @d: RDT domain under test
830 *
831 * The setup of a pseudo-locked region affects all cache instances within
832 * the hierarchy of the region. It is thus essential to know if any
833 * pseudo-locked regions exist within a cache hierarchy to prevent any
834 * attempts to create new pseudo-locked regions in the same hierarchy.
835 *
836 * Return: true if a pseudo-locked region exists in the hierarchy of @d or
837 *         if it is not possible to test due to memory allocation issue,
838 *         false otherwise.
839 */
840bool rdtgroup_pseudo_locked_in_hierarchy(struct rdt_domain *d)
841{
842	cpumask_var_t cpu_with_psl;
843	struct rdt_resource *r;
844	struct rdt_domain *d_i;
845	bool ret = false;
846
847	/* Walking r->domains, ensure it can't race with cpuhp */
848	lockdep_assert_cpus_held();
849
850	if (!zalloc_cpumask_var(&cpu_with_psl, GFP_KERNEL))
851		return true;
852
853	/*
854	 * First determine which cpus have pseudo-locked regions
855	 * associated with them.
856	 */
857	for_each_alloc_capable_rdt_resource(r) {
858		list_for_each_entry(d_i, &r->domains, list) {
859			if (d_i->plr)
860				cpumask_or(cpu_with_psl, cpu_with_psl,
861					   &d_i->cpu_mask);
862		}
863	}
864
865	/*
866	 * Next test if new pseudo-locked region would intersect with
867	 * existing region.
868	 */
869	if (cpumask_intersects(&d->cpu_mask, cpu_with_psl))
870		ret = true;
871
872	free_cpumask_var(cpu_with_psl);
873	return ret;
874}
875
876/**
877 * measure_cycles_lat_fn - Measure cycle latency to read pseudo-locked memory
878 * @_plr: pseudo-lock region to measure
879 *
880 * There is no deterministic way to test if a memory region is cached. One
881 * way is to measure how long it takes to read the memory, the speed of
882 * access is a good way to learn how close to the cpu the data was. Even
883 * more, if the prefetcher is disabled and the memory is read at a stride
884 * of half the cache line, then a cache miss will be easy to spot since the
885 * read of the first half would be significantly slower than the read of
886 * the second half.
887 *
888 * Return: 0. Waiter on waitqueue will be woken on completion.
889 */
890static int measure_cycles_lat_fn(void *_plr)
891{
892	struct pseudo_lock_region *plr = _plr;
893	u32 saved_low, saved_high;
894	unsigned long i;
895	u64 start, end;
896	void *mem_r;
897
898	local_irq_disable();
899	/*
900	 * Disable hardware prefetchers.
901	 */
902	rdmsr(MSR_MISC_FEATURE_CONTROL, saved_low, saved_high);
903	wrmsr(MSR_MISC_FEATURE_CONTROL, prefetch_disable_bits, 0x0);
904	mem_r = READ_ONCE(plr->kmem);
905	/*
906	 * Dummy execute of the time measurement to load the needed
907	 * instructions into the L1 instruction cache.
908	 */
909	start = rdtsc_ordered();
910	for (i = 0; i < plr->size; i += 32) {
911		start = rdtsc_ordered();
912		asm volatile("mov (%0,%1,1), %%eax\n\t"
913			     :
914			     : "r" (mem_r), "r" (i)
915			     : "%eax", "memory");
916		end = rdtsc_ordered();
917		trace_pseudo_lock_mem_latency((u32)(end - start));
918	}
919	wrmsr(MSR_MISC_FEATURE_CONTROL, saved_low, saved_high);
920	local_irq_enable();
921	plr->thread_done = 1;
922	wake_up_interruptible(&plr->lock_thread_wq);
923	return 0;
924}
925
926/*
927 * Create a perf_event_attr for the hit and miss perf events that will
928 * be used during the performance measurement. A perf_event maintains
929 * a pointer to its perf_event_attr so a unique attribute structure is
930 * created for each perf_event.
931 *
932 * The actual configuration of the event is set right before use in order
933 * to use the X86_CONFIG macro.
934 */
935static struct perf_event_attr perf_miss_attr = {
936	.type		= PERF_TYPE_RAW,
937	.size		= sizeof(struct perf_event_attr),
938	.pinned		= 1,
939	.disabled	= 0,
940	.exclude_user	= 1,
941};
942
943static struct perf_event_attr perf_hit_attr = {
944	.type		= PERF_TYPE_RAW,
945	.size		= sizeof(struct perf_event_attr),
946	.pinned		= 1,
947	.disabled	= 0,
948	.exclude_user	= 1,
949};
950
951struct residency_counts {
952	u64 miss_before, hits_before;
953	u64 miss_after,  hits_after;
954};
955
956static int measure_residency_fn(struct perf_event_attr *miss_attr,
957				struct perf_event_attr *hit_attr,
958				struct pseudo_lock_region *plr,
959				struct residency_counts *counts)
960{
961	u64 hits_before = 0, hits_after = 0, miss_before = 0, miss_after = 0;
962	struct perf_event *miss_event, *hit_event;
963	int hit_pmcnum, miss_pmcnum;
964	u32 saved_low, saved_high;
965	unsigned int line_size;
966	unsigned int size;
967	unsigned long i;
968	void *mem_r;
969	u64 tmp;
970
971	miss_event = perf_event_create_kernel_counter(miss_attr, plr->cpu,
972						      NULL, NULL, NULL);
973	if (IS_ERR(miss_event))
974		goto out;
975
976	hit_event = perf_event_create_kernel_counter(hit_attr, plr->cpu,
977						     NULL, NULL, NULL);
978	if (IS_ERR(hit_event))
979		goto out_miss;
980
981	local_irq_disable();
982	/*
983	 * Check any possible error state of events used by performing
984	 * one local read.
985	 */
986	if (perf_event_read_local(miss_event, &tmp, NULL, NULL)) {
987		local_irq_enable();
988		goto out_hit;
989	}
990	if (perf_event_read_local(hit_event, &tmp, NULL, NULL)) {
991		local_irq_enable();
992		goto out_hit;
993	}
994
995	/*
996	 * Disable hardware prefetchers.
997	 */
998	rdmsr(MSR_MISC_FEATURE_CONTROL, saved_low, saved_high);
999	wrmsr(MSR_MISC_FEATURE_CONTROL, prefetch_disable_bits, 0x0);
1000
1001	/* Initialize rest of local variables */
1002	/*
1003	 * Performance event has been validated right before this with
1004	 * interrupts disabled - it is thus safe to read the counter index.
1005	 */
1006	miss_pmcnum = x86_perf_rdpmc_index(miss_event);
1007	hit_pmcnum = x86_perf_rdpmc_index(hit_event);
1008	line_size = READ_ONCE(plr->line_size);
1009	mem_r = READ_ONCE(plr->kmem);
1010	size = READ_ONCE(plr->size);
1011
1012	/*
1013	 * Read counter variables twice - first to load the instructions
1014	 * used in L1 cache, second to capture accurate value that does not
1015	 * include cache misses incurred because of instruction loads.
1016	 */
1017	rdpmcl(hit_pmcnum, hits_before);
1018	rdpmcl(miss_pmcnum, miss_before);
1019	/*
1020	 * From SDM: Performing back-to-back fast reads are not guaranteed
1021	 * to be monotonic.
1022	 * Use LFENCE to ensure all previous instructions are retired
1023	 * before proceeding.
1024	 */
1025	rmb();
1026	rdpmcl(hit_pmcnum, hits_before);
1027	rdpmcl(miss_pmcnum, miss_before);
1028	/*
1029	 * Use LFENCE to ensure all previous instructions are retired
1030	 * before proceeding.
1031	 */
1032	rmb();
1033	for (i = 0; i < size; i += line_size) {
1034		/*
1035		 * Add a barrier to prevent speculative execution of this
1036		 * loop reading beyond the end of the buffer.
1037		 */
1038		rmb();
1039		asm volatile("mov (%0,%1,1), %%eax\n\t"
1040			     :
1041			     : "r" (mem_r), "r" (i)
1042			     : "%eax", "memory");
1043	}
1044	/*
1045	 * Use LFENCE to ensure all previous instructions are retired
1046	 * before proceeding.
1047	 */
1048	rmb();
1049	rdpmcl(hit_pmcnum, hits_after);
1050	rdpmcl(miss_pmcnum, miss_after);
1051	/*
1052	 * Use LFENCE to ensure all previous instructions are retired
1053	 * before proceeding.
1054	 */
1055	rmb();
1056	/* Re-enable hardware prefetchers */
1057	wrmsr(MSR_MISC_FEATURE_CONTROL, saved_low, saved_high);
1058	local_irq_enable();
1059out_hit:
1060	perf_event_release_kernel(hit_event);
1061out_miss:
1062	perf_event_release_kernel(miss_event);
1063out:
1064	/*
1065	 * All counts will be zero on failure.
1066	 */
1067	counts->miss_before = miss_before;
1068	counts->hits_before = hits_before;
1069	counts->miss_after  = miss_after;
1070	counts->hits_after  = hits_after;
1071	return 0;
1072}
1073
1074static int measure_l2_residency(void *_plr)
1075{
1076	struct pseudo_lock_region *plr = _plr;
1077	struct residency_counts counts = {0};
1078
1079	/*
1080	 * Non-architectural event for the Goldmont Microarchitecture
1081	 * from Intel x86 Architecture Software Developer Manual (SDM):
1082	 * MEM_LOAD_UOPS_RETIRED D1H (event number)
1083	 * Umask values:
1084	 *     L2_HIT   02H
1085	 *     L2_MISS  10H
1086	 */
1087	switch (boot_cpu_data.x86_model) {
1088	case INTEL_FAM6_ATOM_GOLDMONT:
1089	case INTEL_FAM6_ATOM_GOLDMONT_PLUS:
1090		perf_miss_attr.config = X86_CONFIG(.event = 0xd1,
1091						   .umask = 0x10);
1092		perf_hit_attr.config = X86_CONFIG(.event = 0xd1,
1093						  .umask = 0x2);
1094		break;
1095	default:
1096		goto out;
1097	}
1098
1099	measure_residency_fn(&perf_miss_attr, &perf_hit_attr, plr, &counts);
1100	/*
1101	 * If a failure prevented the measurements from succeeding
1102	 * tracepoints will still be written and all counts will be zero.
1103	 */
1104	trace_pseudo_lock_l2(counts.hits_after - counts.hits_before,
1105			     counts.miss_after - counts.miss_before);
1106out:
1107	plr->thread_done = 1;
1108	wake_up_interruptible(&plr->lock_thread_wq);
1109	return 0;
1110}
1111
1112static int measure_l3_residency(void *_plr)
1113{
1114	struct pseudo_lock_region *plr = _plr;
1115	struct residency_counts counts = {0};
1116
1117	/*
1118	 * On Broadwell Microarchitecture the MEM_LOAD_UOPS_RETIRED event
1119	 * has two "no fix" errata associated with it: BDM35 and BDM100. On
1120	 * this platform the following events are used instead:
1121	 * LONGEST_LAT_CACHE 2EH (Documented in SDM)
1122	 *       REFERENCE 4FH
1123	 *       MISS      41H
1124	 */
1125
1126	switch (boot_cpu_data.x86_model) {
1127	case INTEL_FAM6_BROADWELL_X:
1128		/* On BDW the hit event counts references, not hits */
1129		perf_hit_attr.config = X86_CONFIG(.event = 0x2e,
1130						  .umask = 0x4f);
1131		perf_miss_attr.config = X86_CONFIG(.event = 0x2e,
1132						   .umask = 0x41);
1133		break;
1134	default:
1135		goto out;
1136	}
1137
1138	measure_residency_fn(&perf_miss_attr, &perf_hit_attr, plr, &counts);
1139	/*
1140	 * If a failure prevented the measurements from succeeding
1141	 * tracepoints will still be written and all counts will be zero.
1142	 */
1143
1144	counts.miss_after -= counts.miss_before;
1145	if (boot_cpu_data.x86_model == INTEL_FAM6_BROADWELL_X) {
1146		/*
1147		 * On BDW references and misses are counted, need to adjust.
1148		 * Sometimes the "hits" counter is a bit more than the
1149		 * references, for example, x references but x + 1 hits.
1150		 * To not report invalid hit values in this case we treat
1151		 * that as misses equal to references.
1152		 */
1153		/* First compute the number of cache references measured */
1154		counts.hits_after -= counts.hits_before;
1155		/* Next convert references to cache hits */
1156		counts.hits_after -= min(counts.miss_after, counts.hits_after);
1157	} else {
1158		counts.hits_after -= counts.hits_before;
1159	}
1160
1161	trace_pseudo_lock_l3(counts.hits_after, counts.miss_after);
1162out:
1163	plr->thread_done = 1;
1164	wake_up_interruptible(&plr->lock_thread_wq);
1165	return 0;
1166}
1167
1168/**
1169 * pseudo_lock_measure_cycles - Trigger latency measure to pseudo-locked region
1170 * @rdtgrp: Resource group to which the pseudo-locked region belongs.
1171 * @sel: Selector of which measurement to perform on a pseudo-locked region.
1172 *
1173 * The measurement of latency to access a pseudo-locked region should be
1174 * done from a cpu that is associated with that pseudo-locked region.
1175 * Determine which cpu is associated with this region and start a thread on
1176 * that cpu to perform the measurement, wait for that thread to complete.
1177 *
1178 * Return: 0 on success, <0 on failure
1179 */
1180static int pseudo_lock_measure_cycles(struct rdtgroup *rdtgrp, int sel)
1181{
1182	struct pseudo_lock_region *plr = rdtgrp->plr;
1183	struct task_struct *thread;
1184	unsigned int cpu;
1185	int ret = -1;
1186
1187	cpus_read_lock();
1188	mutex_lock(&rdtgroup_mutex);
1189
1190	if (rdtgrp->flags & RDT_DELETED) {
1191		ret = -ENODEV;
1192		goto out;
1193	}
1194
1195	if (!plr->d) {
1196		ret = -ENODEV;
1197		goto out;
1198	}
1199
1200	plr->thread_done = 0;
1201	cpu = cpumask_first(&plr->d->cpu_mask);
1202	if (!cpu_online(cpu)) {
1203		ret = -ENODEV;
1204		goto out;
1205	}
1206
1207	plr->cpu = cpu;
1208
1209	if (sel == 1)
1210		thread = kthread_create_on_node(measure_cycles_lat_fn, plr,
1211						cpu_to_node(cpu),
1212						"pseudo_lock_measure/%u",
1213						cpu);
1214	else if (sel == 2)
1215		thread = kthread_create_on_node(measure_l2_residency, plr,
1216						cpu_to_node(cpu),
1217						"pseudo_lock_measure/%u",
1218						cpu);
1219	else if (sel == 3)
1220		thread = kthread_create_on_node(measure_l3_residency, plr,
1221						cpu_to_node(cpu),
1222						"pseudo_lock_measure/%u",
1223						cpu);
1224	else
1225		goto out;
1226
1227	if (IS_ERR(thread)) {
1228		ret = PTR_ERR(thread);
1229		goto out;
1230	}
1231	kthread_bind(thread, cpu);
1232	wake_up_process(thread);
1233
1234	ret = wait_event_interruptible(plr->lock_thread_wq,
1235				       plr->thread_done == 1);
1236	if (ret < 0)
1237		goto out;
1238
1239	ret = 0;
1240
1241out:
1242	mutex_unlock(&rdtgroup_mutex);
1243	cpus_read_unlock();
1244	return ret;
1245}
1246
1247static ssize_t pseudo_lock_measure_trigger(struct file *file,
1248					   const char __user *user_buf,
1249					   size_t count, loff_t *ppos)
1250{
1251	struct rdtgroup *rdtgrp = file->private_data;
1252	size_t buf_size;
1253	char buf[32];
1254	int ret;
1255	int sel;
1256
1257	buf_size = min(count, (sizeof(buf) - 1));
1258	if (copy_from_user(buf, user_buf, buf_size))
1259		return -EFAULT;
1260
1261	buf[buf_size] = '\0';
1262	ret = kstrtoint(buf, 10, &sel);
1263	if (ret == 0) {
1264		if (sel != 1 && sel != 2 && sel != 3)
1265			return -EINVAL;
1266		ret = debugfs_file_get(file->f_path.dentry);
1267		if (ret)
1268			return ret;
1269		ret = pseudo_lock_measure_cycles(rdtgrp, sel);
1270		if (ret == 0)
1271			ret = count;
1272		debugfs_file_put(file->f_path.dentry);
1273	}
1274
1275	return ret;
1276}
1277
1278static const struct file_operations pseudo_measure_fops = {
1279	.write = pseudo_lock_measure_trigger,
1280	.open = simple_open,
1281	.llseek = default_llseek,
1282};
1283
1284/**
1285 * rdtgroup_pseudo_lock_create - Create a pseudo-locked region
1286 * @rdtgrp: resource group to which pseudo-lock region belongs
1287 *
1288 * Called when a resource group in the pseudo-locksetup mode receives a
1289 * valid schemata that should be pseudo-locked. Since the resource group is
1290 * in pseudo-locksetup mode the &struct pseudo_lock_region has already been
1291 * allocated and initialized with the essential information. If a failure
1292 * occurs the resource group remains in the pseudo-locksetup mode with the
1293 * &struct pseudo_lock_region associated with it, but cleared from all
1294 * information and ready for the user to re-attempt pseudo-locking by
1295 * writing the schemata again.
1296 *
1297 * Return: 0 if the pseudo-locked region was successfully pseudo-locked, <0
1298 * on failure. Descriptive error will be written to last_cmd_status buffer.
1299 */
1300int rdtgroup_pseudo_lock_create(struct rdtgroup *rdtgrp)
1301{
1302	struct pseudo_lock_region *plr = rdtgrp->plr;
1303	struct task_struct *thread;
1304	unsigned int new_minor;
1305	struct device *dev;
1306	int ret;
1307
1308	ret = pseudo_lock_region_alloc(plr);
1309	if (ret < 0)
1310		return ret;
1311
1312	ret = pseudo_lock_cstates_constrain(plr);
1313	if (ret < 0) {
1314		ret = -EINVAL;
1315		goto out_region;
1316	}
1317
1318	plr->thread_done = 0;
1319
1320	thread = kthread_create_on_node(pseudo_lock_fn, rdtgrp,
1321					cpu_to_node(plr->cpu),
1322					"pseudo_lock/%u", plr->cpu);
1323	if (IS_ERR(thread)) {
1324		ret = PTR_ERR(thread);
1325		rdt_last_cmd_printf("Locking thread returned error %d\n", ret);
1326		goto out_cstates;
1327	}
1328
1329	kthread_bind(thread, plr->cpu);
1330	wake_up_process(thread);
1331
1332	ret = wait_event_interruptible(plr->lock_thread_wq,
1333				       plr->thread_done == 1);
1334	if (ret < 0) {
1335		/*
1336		 * If the thread does not get on the CPU for whatever
1337		 * reason and the process which sets up the region is
1338		 * interrupted then this will leave the thread in runnable
1339		 * state and once it gets on the CPU it will dereference
1340		 * the cleared, but not freed, plr struct resulting in an
1341		 * empty pseudo-locking loop.
1342		 */
1343		rdt_last_cmd_puts("Locking thread interrupted\n");
1344		goto out_cstates;
1345	}
1346
1347	ret = pseudo_lock_minor_get(&new_minor);
1348	if (ret < 0) {
1349		rdt_last_cmd_puts("Unable to obtain a new minor number\n");
1350		goto out_cstates;
1351	}
1352
1353	/*
1354	 * Unlock access but do not release the reference. The
1355	 * pseudo-locked region will still be here on return.
1356	 *
1357	 * The mutex has to be released temporarily to avoid a potential
1358	 * deadlock with the mm->mmap_lock which is obtained in the
1359	 * device_create() and debugfs_create_dir() callpath below as well as
1360	 * before the mmap() callback is called.
1361	 */
1362	mutex_unlock(&rdtgroup_mutex);
1363
1364	if (!IS_ERR_OR_NULL(debugfs_resctrl)) {
1365		plr->debugfs_dir = debugfs_create_dir(rdtgrp->kn->name,
1366						      debugfs_resctrl);
1367		if (!IS_ERR_OR_NULL(plr->debugfs_dir))
1368			debugfs_create_file("pseudo_lock_measure", 0200,
1369					    plr->debugfs_dir, rdtgrp,
1370					    &pseudo_measure_fops);
1371	}
1372
1373	dev = device_create(&pseudo_lock_class, NULL,
1374			    MKDEV(pseudo_lock_major, new_minor),
1375			    rdtgrp, "%s", rdtgrp->kn->name);
1376
1377	mutex_lock(&rdtgroup_mutex);
1378
1379	if (IS_ERR(dev)) {
1380		ret = PTR_ERR(dev);
1381		rdt_last_cmd_printf("Failed to create character device: %d\n",
1382				    ret);
1383		goto out_debugfs;
1384	}
1385
1386	/* We released the mutex - check if group was removed while we did so */
1387	if (rdtgrp->flags & RDT_DELETED) {
1388		ret = -ENODEV;
1389		goto out_device;
1390	}
1391
1392	plr->minor = new_minor;
1393
1394	rdtgrp->mode = RDT_MODE_PSEUDO_LOCKED;
1395	closid_free(rdtgrp->closid);
1396	rdtgroup_kn_mode_restore(rdtgrp, "cpus", 0444);
1397	rdtgroup_kn_mode_restore(rdtgrp, "cpus_list", 0444);
1398
1399	ret = 0;
1400	goto out;
1401
1402out_device:
1403	device_destroy(&pseudo_lock_class, MKDEV(pseudo_lock_major, new_minor));
1404out_debugfs:
1405	debugfs_remove_recursive(plr->debugfs_dir);
1406	pseudo_lock_minor_release(new_minor);
1407out_cstates:
1408	pseudo_lock_cstates_relax(plr);
1409out_region:
1410	pseudo_lock_region_clear(plr);
1411out:
1412	return ret;
1413}
1414
1415/**
1416 * rdtgroup_pseudo_lock_remove - Remove a pseudo-locked region
1417 * @rdtgrp: resource group to which the pseudo-locked region belongs
1418 *
1419 * The removal of a pseudo-locked region can be initiated when the resource
1420 * group is removed from user space via a "rmdir" from userspace or the
1421 * unmount of the resctrl filesystem. On removal the resource group does
1422 * not go back to pseudo-locksetup mode before it is removed, instead it is
1423 * removed directly. There is thus asymmetry with the creation where the
1424 * &struct pseudo_lock_region is removed here while it was not created in
1425 * rdtgroup_pseudo_lock_create().
1426 *
1427 * Return: void
1428 */
1429void rdtgroup_pseudo_lock_remove(struct rdtgroup *rdtgrp)
1430{
1431	struct pseudo_lock_region *plr = rdtgrp->plr;
1432
1433	if (rdtgrp->mode == RDT_MODE_PSEUDO_LOCKSETUP) {
1434		/*
1435		 * Default group cannot be a pseudo-locked region so we can
1436		 * free closid here.
1437		 */
1438		closid_free(rdtgrp->closid);
1439		goto free;
1440	}
1441
1442	pseudo_lock_cstates_relax(plr);
1443	debugfs_remove_recursive(rdtgrp->plr->debugfs_dir);
1444	device_destroy(&pseudo_lock_class, MKDEV(pseudo_lock_major, plr->minor));
1445	pseudo_lock_minor_release(plr->minor);
1446
1447free:
1448	pseudo_lock_free(rdtgrp);
1449}
1450
1451static int pseudo_lock_dev_open(struct inode *inode, struct file *filp)
1452{
1453	struct rdtgroup *rdtgrp;
1454
1455	mutex_lock(&rdtgroup_mutex);
1456
1457	rdtgrp = region_find_by_minor(iminor(inode));
1458	if (!rdtgrp) {
1459		mutex_unlock(&rdtgroup_mutex);
1460		return -ENODEV;
1461	}
1462
1463	filp->private_data = rdtgrp;
1464	atomic_inc(&rdtgrp->waitcount);
1465	/* Perform a non-seekable open - llseek is not supported */
1466	filp->f_mode &= ~(FMODE_LSEEK | FMODE_PREAD | FMODE_PWRITE);
1467
1468	mutex_unlock(&rdtgroup_mutex);
1469
1470	return 0;
1471}
1472
1473static int pseudo_lock_dev_release(struct inode *inode, struct file *filp)
1474{
1475	struct rdtgroup *rdtgrp;
1476
1477	mutex_lock(&rdtgroup_mutex);
1478	rdtgrp = filp->private_data;
1479	WARN_ON(!rdtgrp);
1480	if (!rdtgrp) {
1481		mutex_unlock(&rdtgroup_mutex);
1482		return -ENODEV;
1483	}
1484	filp->private_data = NULL;
1485	atomic_dec(&rdtgrp->waitcount);
1486	mutex_unlock(&rdtgroup_mutex);
1487	return 0;
1488}
1489
1490static int pseudo_lock_dev_mremap(struct vm_area_struct *area)
1491{
1492	/* Not supported */
1493	return -EINVAL;
1494}
1495
1496static const struct vm_operations_struct pseudo_mmap_ops = {
1497	.mremap = pseudo_lock_dev_mremap,
1498};
1499
1500static int pseudo_lock_dev_mmap(struct file *filp, struct vm_area_struct *vma)
1501{
1502	unsigned long vsize = vma->vm_end - vma->vm_start;
1503	unsigned long off = vma->vm_pgoff << PAGE_SHIFT;
1504	struct pseudo_lock_region *plr;
1505	struct rdtgroup *rdtgrp;
1506	unsigned long physical;
1507	unsigned long psize;
1508
1509	mutex_lock(&rdtgroup_mutex);
1510
1511	rdtgrp = filp->private_data;
1512	WARN_ON(!rdtgrp);
1513	if (!rdtgrp) {
1514		mutex_unlock(&rdtgroup_mutex);
1515		return -ENODEV;
1516	}
1517
1518	plr = rdtgrp->plr;
1519
1520	if (!plr->d) {
1521		mutex_unlock(&rdtgroup_mutex);
1522		return -ENODEV;
1523	}
1524
1525	/*
1526	 * Task is required to run with affinity to the cpus associated
1527	 * with the pseudo-locked region. If this is not the case the task
1528	 * may be scheduled elsewhere and invalidate entries in the
1529	 * pseudo-locked region.
1530	 */
1531	if (!cpumask_subset(current->cpus_ptr, &plr->d->cpu_mask)) {
1532		mutex_unlock(&rdtgroup_mutex);
1533		return -EINVAL;
1534	}
1535
1536	physical = __pa(plr->kmem) >> PAGE_SHIFT;
1537	psize = plr->size - off;
1538
1539	if (off > plr->size) {
1540		mutex_unlock(&rdtgroup_mutex);
1541		return -ENOSPC;
1542	}
1543
1544	/*
1545	 * Ensure changes are carried directly to the memory being mapped,
1546	 * do not allow copy-on-write mapping.
1547	 */
1548	if (!(vma->vm_flags & VM_SHARED)) {
1549		mutex_unlock(&rdtgroup_mutex);
1550		return -EINVAL;
1551	}
1552
1553	if (vsize > psize) {
1554		mutex_unlock(&rdtgroup_mutex);
1555		return -ENOSPC;
1556	}
1557
1558	memset(plr->kmem + off, 0, vsize);
1559
1560	if (remap_pfn_range(vma, vma->vm_start, physical + vma->vm_pgoff,
1561			    vsize, vma->vm_page_prot)) {
1562		mutex_unlock(&rdtgroup_mutex);
1563		return -EAGAIN;
1564	}
1565	vma->vm_ops = &pseudo_mmap_ops;
1566	mutex_unlock(&rdtgroup_mutex);
1567	return 0;
1568}
1569
1570static const struct file_operations pseudo_lock_dev_fops = {
1571	.owner =	THIS_MODULE,
1572	.llseek =	no_llseek,
1573	.read =		NULL,
1574	.write =	NULL,
1575	.open =		pseudo_lock_dev_open,
1576	.release =	pseudo_lock_dev_release,
1577	.mmap =		pseudo_lock_dev_mmap,
1578};
1579
1580int rdt_pseudo_lock_init(void)
1581{
1582	int ret;
1583
1584	ret = register_chrdev(0, "pseudo_lock", &pseudo_lock_dev_fops);
1585	if (ret < 0)
1586		return ret;
1587
1588	pseudo_lock_major = ret;
1589
1590	ret = class_register(&pseudo_lock_class);
1591	if (ret) {
1592		unregister_chrdev(pseudo_lock_major, "pseudo_lock");
1593		return ret;
1594	}
1595
1596	return 0;
1597}
1598
1599void rdt_pseudo_lock_release(void)
1600{
1601	class_unregister(&pseudo_lock_class);
1602	unregister_chrdev(pseudo_lock_major, "pseudo_lock");
1603	pseudo_lock_major = 0;
1604}
1605