1// SPDX-License-Identifier: GPL-2.0-or-later
2/*
3 * CPU Microcode Update Driver for Linux
4 *
5 * Copyright (C) 2000-2006 Tigran Aivazian <aivazian.tigran@gmail.com>
6 *	      2006	Shaohua Li <shaohua.li@intel.com>
7 *	      2013-2016	Borislav Petkov <bp@alien8.de>
8 *
9 * X86 CPU microcode early update for Linux:
10 *
11 *	Copyright (C) 2012 Fenghua Yu <fenghua.yu@intel.com>
12 *			   H Peter Anvin" <hpa@zytor.com>
13 *		  (C) 2015 Borislav Petkov <bp@alien8.de>
14 *
15 * This driver allows to upgrade microcode on x86 processors.
16 */
17
18#define pr_fmt(fmt) "microcode: " fmt
19
20#include <linux/platform_device.h>
21#include <linux/stop_machine.h>
22#include <linux/syscore_ops.h>
23#include <linux/miscdevice.h>
24#include <linux/capability.h>
25#include <linux/firmware.h>
26#include <linux/cpumask.h>
27#include <linux/kernel.h>
28#include <linux/delay.h>
29#include <linux/mutex.h>
30#include <linux/cpu.h>
31#include <linux/nmi.h>
32#include <linux/fs.h>
33#include <linux/mm.h>
34
35#include <asm/apic.h>
36#include <asm/cpu_device_id.h>
37#include <asm/perf_event.h>
38#include <asm/processor.h>
39#include <asm/cmdline.h>
40#include <asm/setup.h>
41
42#include "internal.h"
43
44static struct microcode_ops	*microcode_ops;
45bool dis_ucode_ldr = true;
46
47bool force_minrev = IS_ENABLED(CONFIG_MICROCODE_LATE_FORCE_MINREV);
48module_param(force_minrev, bool, S_IRUSR | S_IWUSR);
49
50/*
51 * Synchronization.
52 *
53 * All non cpu-hotplug-callback call sites use:
54 *
55 * - cpus_read_lock/unlock() to synchronize with
56 *   the cpu-hotplug-callback call sites.
57 *
58 * We guarantee that only a single cpu is being
59 * updated at any particular moment of time.
60 */
61struct ucode_cpu_info		ucode_cpu_info[NR_CPUS];
62
63struct cpu_info_ctx {
64	struct cpu_signature	*cpu_sig;
65	int			err;
66};
67
68/*
69 * Those patch levels cannot be updated to newer ones and thus should be final.
70 */
71static u32 final_levels[] = {
72	0x01000098,
73	0x0100009f,
74	0x010000af,
75	0, /* T-101 terminator */
76};
77
78struct early_load_data early_data;
79
80/*
81 * Check the current patch level on this CPU.
82 *
83 * Returns:
84 *  - true: if update should stop
85 *  - false: otherwise
86 */
87static bool amd_check_current_patch_level(void)
88{
89	u32 lvl, dummy, i;
90	u32 *levels;
91
92	native_rdmsr(MSR_AMD64_PATCH_LEVEL, lvl, dummy);
93
94	levels = final_levels;
95
96	for (i = 0; levels[i]; i++) {
97		if (lvl == levels[i])
98			return true;
99	}
100	return false;
101}
102
103static bool __init check_loader_disabled_bsp(void)
104{
105	static const char *__dis_opt_str = "dis_ucode_ldr";
106	const char *cmdline = boot_command_line;
107	const char *option  = __dis_opt_str;
108
109	/*
110	 * CPUID(1).ECX[31]: reserved for hypervisor use. This is still not
111	 * completely accurate as xen pv guests don't see that CPUID bit set but
112	 * that's good enough as they don't land on the BSP path anyway.
113	 */
114	if (native_cpuid_ecx(1) & BIT(31))
115		return true;
116
117	if (x86_cpuid_vendor() == X86_VENDOR_AMD) {
118		if (amd_check_current_patch_level())
119			return true;
120	}
121
122	if (cmdline_find_option_bool(cmdline, option) <= 0)
123		dis_ucode_ldr = false;
124
125	return dis_ucode_ldr;
126}
127
128void __init load_ucode_bsp(void)
129{
130	unsigned int cpuid_1_eax;
131	bool intel = true;
132
133	if (!have_cpuid_p())
134		return;
135
136	cpuid_1_eax = native_cpuid_eax(1);
137
138	switch (x86_cpuid_vendor()) {
139	case X86_VENDOR_INTEL:
140		if (x86_family(cpuid_1_eax) < 6)
141			return;
142		break;
143
144	case X86_VENDOR_AMD:
145		if (x86_family(cpuid_1_eax) < 0x10)
146			return;
147		intel = false;
148		break;
149
150	default:
151		return;
152	}
153
154	if (check_loader_disabled_bsp())
155		return;
156
157	if (intel)
158		load_ucode_intel_bsp(&early_data);
159	else
160		load_ucode_amd_bsp(&early_data, cpuid_1_eax);
161}
162
163void load_ucode_ap(void)
164{
165	unsigned int cpuid_1_eax;
166
167	if (dis_ucode_ldr)
168		return;
169
170	cpuid_1_eax = native_cpuid_eax(1);
171
172	switch (x86_cpuid_vendor()) {
173	case X86_VENDOR_INTEL:
174		if (x86_family(cpuid_1_eax) >= 6)
175			load_ucode_intel_ap();
176		break;
177	case X86_VENDOR_AMD:
178		if (x86_family(cpuid_1_eax) >= 0x10)
179			load_ucode_amd_ap(cpuid_1_eax);
180		break;
181	default:
182		break;
183	}
184}
185
186struct cpio_data __init find_microcode_in_initrd(const char *path)
187{
188#ifdef CONFIG_BLK_DEV_INITRD
189	unsigned long start = 0;
190	size_t size;
191
192#ifdef CONFIG_X86_32
193	size = boot_params.hdr.ramdisk_size;
194	/* Early load on BSP has a temporary mapping. */
195	if (size)
196		start = initrd_start_early;
197
198#else /* CONFIG_X86_64 */
199	size  = (unsigned long)boot_params.ext_ramdisk_size << 32;
200	size |= boot_params.hdr.ramdisk_size;
201
202	if (size) {
203		start  = (unsigned long)boot_params.ext_ramdisk_image << 32;
204		start |= boot_params.hdr.ramdisk_image;
205		start += PAGE_OFFSET;
206	}
207#endif
208
209	/*
210	 * Fixup the start address: after reserve_initrd() runs, initrd_start
211	 * has the virtual address of the beginning of the initrd. It also
212	 * possibly relocates the ramdisk. In either case, initrd_start contains
213	 * the updated address so use that instead.
214	 */
215	if (initrd_start)
216		start = initrd_start;
217
218	return find_cpio_data(path, (void *)start, size, NULL);
219#else /* !CONFIG_BLK_DEV_INITRD */
220	return (struct cpio_data){ NULL, 0, "" };
221#endif
222}
223
224static void reload_early_microcode(unsigned int cpu)
225{
226	int vendor, family;
227
228	vendor = x86_cpuid_vendor();
229	family = x86_cpuid_family();
230
231	switch (vendor) {
232	case X86_VENDOR_INTEL:
233		if (family >= 6)
234			reload_ucode_intel();
235		break;
236	case X86_VENDOR_AMD:
237		if (family >= 0x10)
238			reload_ucode_amd(cpu);
239		break;
240	default:
241		break;
242	}
243}
244
245/* fake device for request_firmware */
246static struct platform_device	*microcode_pdev;
247
248#ifdef CONFIG_MICROCODE_LATE_LOADING
249/*
250 * Late loading dance. Why the heavy-handed stomp_machine effort?
251 *
252 * - HT siblings must be idle and not execute other code while the other sibling
253 *   is loading microcode in order to avoid any negative interactions caused by
254 *   the loading.
255 *
256 * - In addition, microcode update on the cores must be serialized until this
257 *   requirement can be relaxed in the future. Right now, this is conservative
258 *   and good.
259 */
260enum sibling_ctrl {
261	/* Spinwait with timeout */
262	SCTRL_WAIT,
263	/* Invoke the microcode_apply() callback */
264	SCTRL_APPLY,
265	/* Proceed without invoking the microcode_apply() callback */
266	SCTRL_DONE,
267};
268
269struct microcode_ctrl {
270	enum sibling_ctrl	ctrl;
271	enum ucode_state	result;
272	unsigned int		ctrl_cpu;
273	bool			nmi_enabled;
274};
275
276DEFINE_STATIC_KEY_FALSE(microcode_nmi_handler_enable);
277static DEFINE_PER_CPU(struct microcode_ctrl, ucode_ctrl);
278static atomic_t late_cpus_in, offline_in_nmi;
279static unsigned int loops_per_usec;
280static cpumask_t cpu_offline_mask;
281
282static noinstr bool wait_for_cpus(atomic_t *cnt)
283{
284	unsigned int timeout, loops;
285
286	WARN_ON_ONCE(raw_atomic_dec_return(cnt) < 0);
287
288	for (timeout = 0; timeout < USEC_PER_SEC; timeout++) {
289		if (!raw_atomic_read(cnt))
290			return true;
291
292		for (loops = 0; loops < loops_per_usec; loops++)
293			cpu_relax();
294
295		/* If invoked directly, tickle the NMI watchdog */
296		if (!microcode_ops->use_nmi && !(timeout % USEC_PER_MSEC)) {
297			instrumentation_begin();
298			touch_nmi_watchdog();
299			instrumentation_end();
300		}
301	}
302	/* Prevent the late comers from making progress and let them time out */
303	raw_atomic_inc(cnt);
304	return false;
305}
306
307static noinstr bool wait_for_ctrl(void)
308{
309	unsigned int timeout, loops;
310
311	for (timeout = 0; timeout < USEC_PER_SEC; timeout++) {
312		if (raw_cpu_read(ucode_ctrl.ctrl) != SCTRL_WAIT)
313			return true;
314
315		for (loops = 0; loops < loops_per_usec; loops++)
316			cpu_relax();
317
318		/* If invoked directly, tickle the NMI watchdog */
319		if (!microcode_ops->use_nmi && !(timeout % USEC_PER_MSEC)) {
320			instrumentation_begin();
321			touch_nmi_watchdog();
322			instrumentation_end();
323		}
324	}
325	return false;
326}
327
328/*
329 * Protected against instrumentation up to the point where the primary
330 * thread completed the update. See microcode_nmi_handler() for details.
331 */
332static noinstr bool load_secondary_wait(unsigned int ctrl_cpu)
333{
334	/* Initial rendezvous to ensure that all CPUs have arrived */
335	if (!wait_for_cpus(&late_cpus_in)) {
336		raw_cpu_write(ucode_ctrl.result, UCODE_TIMEOUT);
337		return false;
338	}
339
340	/*
341	 * Wait for primary threads to complete. If one of them hangs due
342	 * to the update, there is no way out. This is non-recoverable
343	 * because the CPU might hold locks or resources and confuse the
344	 * scheduler, watchdogs etc. There is no way to safely evacuate the
345	 * machine.
346	 */
347	if (wait_for_ctrl())
348		return true;
349
350	instrumentation_begin();
351	panic("Microcode load: Primary CPU %d timed out\n", ctrl_cpu);
352	instrumentation_end();
353}
354
355/*
356 * Protected against instrumentation up to the point where the primary
357 * thread completed the update. See microcode_nmi_handler() for details.
358 */
359static noinstr void load_secondary(unsigned int cpu)
360{
361	unsigned int ctrl_cpu = raw_cpu_read(ucode_ctrl.ctrl_cpu);
362	enum ucode_state ret;
363
364	if (!load_secondary_wait(ctrl_cpu)) {
365		instrumentation_begin();
366		pr_err_once("load: %d CPUs timed out\n",
367			    atomic_read(&late_cpus_in) - 1);
368		instrumentation_end();
369		return;
370	}
371
372	/* Primary thread completed. Allow to invoke instrumentable code */
373	instrumentation_begin();
374	/*
375	 * If the primary succeeded then invoke the apply() callback,
376	 * otherwise copy the state from the primary thread.
377	 */
378	if (this_cpu_read(ucode_ctrl.ctrl) == SCTRL_APPLY)
379		ret = microcode_ops->apply_microcode(cpu);
380	else
381		ret = per_cpu(ucode_ctrl.result, ctrl_cpu);
382
383	this_cpu_write(ucode_ctrl.result, ret);
384	this_cpu_write(ucode_ctrl.ctrl, SCTRL_DONE);
385	instrumentation_end();
386}
387
388static void __load_primary(unsigned int cpu)
389{
390	struct cpumask *secondaries = topology_sibling_cpumask(cpu);
391	enum sibling_ctrl ctrl;
392	enum ucode_state ret;
393	unsigned int sibling;
394
395	/* Initial rendezvous to ensure that all CPUs have arrived */
396	if (!wait_for_cpus(&late_cpus_in)) {
397		this_cpu_write(ucode_ctrl.result, UCODE_TIMEOUT);
398		pr_err_once("load: %d CPUs timed out\n", atomic_read(&late_cpus_in) - 1);
399		return;
400	}
401
402	ret = microcode_ops->apply_microcode(cpu);
403	this_cpu_write(ucode_ctrl.result, ret);
404	this_cpu_write(ucode_ctrl.ctrl, SCTRL_DONE);
405
406	/*
407	 * If the update was successful, let the siblings run the apply()
408	 * callback. If not, tell them it's done. This also covers the
409	 * case where the CPU has uniform loading at package or system
410	 * scope implemented but does not advertise it.
411	 */
412	if (ret == UCODE_UPDATED || ret == UCODE_OK)
413		ctrl = SCTRL_APPLY;
414	else
415		ctrl = SCTRL_DONE;
416
417	for_each_cpu(sibling, secondaries) {
418		if (sibling != cpu)
419			per_cpu(ucode_ctrl.ctrl, sibling) = ctrl;
420	}
421}
422
423static bool kick_offline_cpus(unsigned int nr_offl)
424{
425	unsigned int cpu, timeout;
426
427	for_each_cpu(cpu, &cpu_offline_mask) {
428		/* Enable the rendezvous handler and send NMI */
429		per_cpu(ucode_ctrl.nmi_enabled, cpu) = true;
430		apic_send_nmi_to_offline_cpu(cpu);
431	}
432
433	/* Wait for them to arrive */
434	for (timeout = 0; timeout < (USEC_PER_SEC / 2); timeout++) {
435		if (atomic_read(&offline_in_nmi) == nr_offl)
436			return true;
437		udelay(1);
438	}
439	/* Let the others time out */
440	return false;
441}
442
443static void release_offline_cpus(void)
444{
445	unsigned int cpu;
446
447	for_each_cpu(cpu, &cpu_offline_mask)
448		per_cpu(ucode_ctrl.ctrl, cpu) = SCTRL_DONE;
449}
450
451static void load_primary(unsigned int cpu)
452{
453	unsigned int nr_offl = cpumask_weight(&cpu_offline_mask);
454	bool proceed = true;
455
456	/* Kick soft-offlined SMT siblings if required */
457	if (!cpu && nr_offl)
458		proceed = kick_offline_cpus(nr_offl);
459
460	/* If the soft-offlined CPUs did not respond, abort */
461	if (proceed)
462		__load_primary(cpu);
463
464	/* Unconditionally release soft-offlined SMT siblings if required */
465	if (!cpu && nr_offl)
466		release_offline_cpus();
467}
468
469/*
470 * Minimal stub rendezvous handler for soft-offlined CPUs which participate
471 * in the NMI rendezvous to protect against a concurrent NMI on affected
472 * CPUs.
473 */
474void noinstr microcode_offline_nmi_handler(void)
475{
476	if (!raw_cpu_read(ucode_ctrl.nmi_enabled))
477		return;
478	raw_cpu_write(ucode_ctrl.nmi_enabled, false);
479	raw_cpu_write(ucode_ctrl.result, UCODE_OFFLINE);
480	raw_atomic_inc(&offline_in_nmi);
481	wait_for_ctrl();
482}
483
484static noinstr bool microcode_update_handler(void)
485{
486	unsigned int cpu = raw_smp_processor_id();
487
488	if (raw_cpu_read(ucode_ctrl.ctrl_cpu) == cpu) {
489		instrumentation_begin();
490		load_primary(cpu);
491		instrumentation_end();
492	} else {
493		load_secondary(cpu);
494	}
495
496	instrumentation_begin();
497	touch_nmi_watchdog();
498	instrumentation_end();
499
500	return true;
501}
502
503/*
504 * Protection against instrumentation is required for CPUs which are not
505 * safe against an NMI which is delivered to the secondary SMT sibling
506 * while the primary thread updates the microcode. Instrumentation can end
507 * up in #INT3, #DB and #PF. The IRET from those exceptions reenables NMI
508 * which is the opposite of what the NMI rendezvous is trying to achieve.
509 *
510 * The primary thread is safe versus instrumentation as the actual
511 * microcode update handles this correctly. It's only the sibling code
512 * path which must be NMI safe until the primary thread completed the
513 * update.
514 */
515bool noinstr microcode_nmi_handler(void)
516{
517	if (!raw_cpu_read(ucode_ctrl.nmi_enabled))
518		return false;
519
520	raw_cpu_write(ucode_ctrl.nmi_enabled, false);
521	return microcode_update_handler();
522}
523
524static int load_cpus_stopped(void *unused)
525{
526	if (microcode_ops->use_nmi) {
527		/* Enable the NMI handler and raise NMI */
528		this_cpu_write(ucode_ctrl.nmi_enabled, true);
529		apic->send_IPI(smp_processor_id(), NMI_VECTOR);
530	} else {
531		/* Just invoke the handler directly */
532		microcode_update_handler();
533	}
534	return 0;
535}
536
537static int load_late_stop_cpus(bool is_safe)
538{
539	unsigned int cpu, updated = 0, failed = 0, timedout = 0, siblings = 0;
540	unsigned int nr_offl, offline = 0;
541	int old_rev = boot_cpu_data.microcode;
542	struct cpuinfo_x86 prev_info;
543
544	if (!is_safe) {
545		pr_err("Late microcode loading without minimal revision check.\n");
546		pr_err("You should switch to early loading, if possible.\n");
547	}
548
549	atomic_set(&late_cpus_in, num_online_cpus());
550	atomic_set(&offline_in_nmi, 0);
551	loops_per_usec = loops_per_jiffy / (TICK_NSEC / 1000);
552
553	/*
554	 * Take a snapshot before the microcode update in order to compare and
555	 * check whether any bits changed after an update.
556	 */
557	store_cpu_caps(&prev_info);
558
559	if (microcode_ops->use_nmi)
560		static_branch_enable_cpuslocked(&microcode_nmi_handler_enable);
561
562	stop_machine_cpuslocked(load_cpus_stopped, NULL, cpu_online_mask);
563
564	if (microcode_ops->use_nmi)
565		static_branch_disable_cpuslocked(&microcode_nmi_handler_enable);
566
567	/* Analyze the results */
568	for_each_cpu_and(cpu, cpu_present_mask, &cpus_booted_once_mask) {
569		switch (per_cpu(ucode_ctrl.result, cpu)) {
570		case UCODE_UPDATED:	updated++; break;
571		case UCODE_TIMEOUT:	timedout++; break;
572		case UCODE_OK:		siblings++; break;
573		case UCODE_OFFLINE:	offline++; break;
574		default:		failed++; break;
575		}
576	}
577
578	if (microcode_ops->finalize_late_load)
579		microcode_ops->finalize_late_load(!updated);
580
581	if (!updated) {
582		/* Nothing changed. */
583		if (!failed && !timedout)
584			return 0;
585
586		nr_offl = cpumask_weight(&cpu_offline_mask);
587		if (offline < nr_offl) {
588			pr_warn("%u offline siblings did not respond.\n",
589				nr_offl - atomic_read(&offline_in_nmi));
590			return -EIO;
591		}
592		pr_err("update failed: %u CPUs failed %u CPUs timed out\n",
593		       failed, timedout);
594		return -EIO;
595	}
596
597	if (!is_safe || failed || timedout)
598		add_taint(TAINT_CPU_OUT_OF_SPEC, LOCKDEP_STILL_OK);
599
600	pr_info("load: updated on %u primary CPUs with %u siblings\n", updated, siblings);
601	if (failed || timedout) {
602		pr_err("load incomplete. %u CPUs timed out or failed\n",
603		       num_online_cpus() - (updated + siblings));
604	}
605	pr_info("revision: 0x%x -> 0x%x\n", old_rev, boot_cpu_data.microcode);
606	microcode_check(&prev_info);
607
608	return updated + siblings == num_online_cpus() ? 0 : -EIO;
609}
610
611/*
612 * This function does two things:
613 *
614 * 1) Ensure that all required CPUs which are present and have been booted
615 *    once are online.
616 *
617 *    To pass this check, all primary threads must be online.
618 *
619 *    If the microcode load is not safe against NMI then all SMT threads
620 *    must be online as well because they still react to NMIs when they are
621 *    soft-offlined and parked in one of the play_dead() variants. So if a
622 *    NMI hits while the primary thread updates the microcode the resulting
623 *    behaviour is undefined. The default play_dead() implementation on
624 *    modern CPUs uses MWAIT, which is also not guaranteed to be safe
625 *    against a microcode update which affects MWAIT.
626 *
627 *    As soft-offlined CPUs still react on NMIs, the SMT sibling
628 *    restriction can be lifted when the vendor driver signals to use NMI
629 *    for rendezvous and the APIC provides a mechanism to send an NMI to a
630 *    soft-offlined CPU. The soft-offlined CPUs are then able to
631 *    participate in the rendezvous in a trivial stub handler.
632 *
633 * 2) Initialize the per CPU control structure and create a cpumask
634 *    which contains "offline"; secondary threads, so they can be handled
635 *    correctly by a control CPU.
636 */
637static bool setup_cpus(void)
638{
639	struct microcode_ctrl ctrl = { .ctrl = SCTRL_WAIT, .result = -1, };
640	bool allow_smt_offline;
641	unsigned int cpu;
642
643	allow_smt_offline = microcode_ops->nmi_safe ||
644		(microcode_ops->use_nmi && apic->nmi_to_offline_cpu);
645
646	cpumask_clear(&cpu_offline_mask);
647
648	for_each_cpu_and(cpu, cpu_present_mask, &cpus_booted_once_mask) {
649		/*
650		 * Offline CPUs sit in one of the play_dead() functions
651		 * with interrupts disabled, but they still react on NMIs
652		 * and execute arbitrary code. Also MWAIT being updated
653		 * while the offline CPU sits there is not necessarily safe
654		 * on all CPU variants.
655		 *
656		 * Mark them in the offline_cpus mask which will be handled
657		 * by CPU0 later in the update process.
658		 *
659		 * Ensure that the primary thread is online so that it is
660		 * guaranteed that all cores are updated.
661		 */
662		if (!cpu_online(cpu)) {
663			if (topology_is_primary_thread(cpu) || !allow_smt_offline) {
664				pr_err("CPU %u not online, loading aborted\n", cpu);
665				return false;
666			}
667			cpumask_set_cpu(cpu, &cpu_offline_mask);
668			per_cpu(ucode_ctrl, cpu) = ctrl;
669			continue;
670		}
671
672		/*
673		 * Initialize the per CPU state. This is core scope for now,
674		 * but prepared to take package or system scope into account.
675		 */
676		ctrl.ctrl_cpu = cpumask_first(topology_sibling_cpumask(cpu));
677		per_cpu(ucode_ctrl, cpu) = ctrl;
678	}
679	return true;
680}
681
682static int load_late_locked(void)
683{
684	if (!setup_cpus())
685		return -EBUSY;
686
687	switch (microcode_ops->request_microcode_fw(0, &microcode_pdev->dev)) {
688	case UCODE_NEW:
689		return load_late_stop_cpus(false);
690	case UCODE_NEW_SAFE:
691		return load_late_stop_cpus(true);
692	case UCODE_NFOUND:
693		return -ENOENT;
694	default:
695		return -EBADFD;
696	}
697}
698
699static ssize_t reload_store(struct device *dev,
700			    struct device_attribute *attr,
701			    const char *buf, size_t size)
702{
703	unsigned long val;
704	ssize_t ret;
705
706	ret = kstrtoul(buf, 0, &val);
707	if (ret || val != 1)
708		return -EINVAL;
709
710	cpus_read_lock();
711	ret = load_late_locked();
712	cpus_read_unlock();
713
714	return ret ? : size;
715}
716
717static DEVICE_ATTR_WO(reload);
718#endif
719
720static ssize_t version_show(struct device *dev,
721			struct device_attribute *attr, char *buf)
722{
723	struct ucode_cpu_info *uci = ucode_cpu_info + dev->id;
724
725	return sprintf(buf, "0x%x\n", uci->cpu_sig.rev);
726}
727
728static ssize_t processor_flags_show(struct device *dev,
729			struct device_attribute *attr, char *buf)
730{
731	struct ucode_cpu_info *uci = ucode_cpu_info + dev->id;
732
733	return sprintf(buf, "0x%x\n", uci->cpu_sig.pf);
734}
735
736static DEVICE_ATTR_RO(version);
737static DEVICE_ATTR_RO(processor_flags);
738
739static struct attribute *mc_default_attrs[] = {
740	&dev_attr_version.attr,
741	&dev_attr_processor_flags.attr,
742	NULL
743};
744
745static const struct attribute_group mc_attr_group = {
746	.attrs			= mc_default_attrs,
747	.name			= "microcode",
748};
749
750static void microcode_fini_cpu(int cpu)
751{
752	if (microcode_ops->microcode_fini_cpu)
753		microcode_ops->microcode_fini_cpu(cpu);
754}
755
756/**
757 * microcode_bsp_resume - Update boot CPU microcode during resume.
758 */
759void microcode_bsp_resume(void)
760{
761	int cpu = smp_processor_id();
762	struct ucode_cpu_info *uci = ucode_cpu_info + cpu;
763
764	if (uci->mc)
765		microcode_ops->apply_microcode(cpu);
766	else
767		reload_early_microcode(cpu);
768}
769
770static struct syscore_ops mc_syscore_ops = {
771	.resume	= microcode_bsp_resume,
772};
773
774static int mc_cpu_online(unsigned int cpu)
775{
776	struct ucode_cpu_info *uci = ucode_cpu_info + cpu;
777	struct device *dev = get_cpu_device(cpu);
778
779	memset(uci, 0, sizeof(*uci));
780
781	microcode_ops->collect_cpu_info(cpu, &uci->cpu_sig);
782	cpu_data(cpu).microcode = uci->cpu_sig.rev;
783	if (!cpu)
784		boot_cpu_data.microcode = uci->cpu_sig.rev;
785
786	if (sysfs_create_group(&dev->kobj, &mc_attr_group))
787		pr_err("Failed to create group for CPU%d\n", cpu);
788	return 0;
789}
790
791static int mc_cpu_down_prep(unsigned int cpu)
792{
793	struct device *dev = get_cpu_device(cpu);
794
795	microcode_fini_cpu(cpu);
796	sysfs_remove_group(&dev->kobj, &mc_attr_group);
797	return 0;
798}
799
800static struct attribute *cpu_root_microcode_attrs[] = {
801#ifdef CONFIG_MICROCODE_LATE_LOADING
802	&dev_attr_reload.attr,
803#endif
804	NULL
805};
806
807static const struct attribute_group cpu_root_microcode_group = {
808	.name  = "microcode",
809	.attrs = cpu_root_microcode_attrs,
810};
811
812static int __init microcode_init(void)
813{
814	struct device *dev_root;
815	struct cpuinfo_x86 *c = &boot_cpu_data;
816	int error;
817
818	if (dis_ucode_ldr)
819		return -EINVAL;
820
821	if (c->x86_vendor == X86_VENDOR_INTEL)
822		microcode_ops = init_intel_microcode();
823	else if (c->x86_vendor == X86_VENDOR_AMD)
824		microcode_ops = init_amd_microcode();
825	else
826		pr_err("no support for this CPU vendor\n");
827
828	if (!microcode_ops)
829		return -ENODEV;
830
831	pr_info_once("Current revision: 0x%08x\n", (early_data.new_rev ?: early_data.old_rev));
832
833	if (early_data.new_rev)
834		pr_info_once("Updated early from: 0x%08x\n", early_data.old_rev);
835
836	microcode_pdev = platform_device_register_simple("microcode", -1, NULL, 0);
837	if (IS_ERR(microcode_pdev))
838		return PTR_ERR(microcode_pdev);
839
840	dev_root = bus_get_dev_root(&cpu_subsys);
841	if (dev_root) {
842		error = sysfs_create_group(&dev_root->kobj, &cpu_root_microcode_group);
843		put_device(dev_root);
844		if (error) {
845			pr_err("Error creating microcode group!\n");
846			goto out_pdev;
847		}
848	}
849
850	register_syscore_ops(&mc_syscore_ops);
851	cpuhp_setup_state(CPUHP_AP_ONLINE_DYN, "x86/microcode:online",
852			  mc_cpu_online, mc_cpu_down_prep);
853
854	return 0;
855
856 out_pdev:
857	platform_device_unregister(microcode_pdev);
858	return error;
859
860}
861late_initcall(microcode_init);
862