1// SPDX-License-Identifier: GPL-2.0
2#include <linux/kernel.h>
3#include <linux/pgtable.h>
4
5#include <linux/string.h>
6#include <linux/bitops.h>
7#include <linux/smp.h>
8#include <linux/sched.h>
9#include <linux/sched/clock.h>
10#include <linux/semaphore.h>
11#include <linux/thread_info.h>
12#include <linux/init.h>
13#include <linux/uaccess.h>
14#include <linux/workqueue.h>
15#include <linux/delay.h>
16#include <linux/cpuhotplug.h>
17
18#include <asm/cpufeature.h>
19#include <asm/msr.h>
20#include <asm/bugs.h>
21#include <asm/cpu.h>
22#include <asm/intel-family.h>
23#include <asm/microcode.h>
24#include <asm/hwcap2.h>
25#include <asm/elf.h>
26#include <asm/cpu_device_id.h>
27#include <asm/cmdline.h>
28#include <asm/traps.h>
29#include <asm/resctrl.h>
30#include <asm/numa.h>
31#include <asm/thermal.h>
32
33#ifdef CONFIG_X86_64
34#include <linux/topology.h>
35#endif
36
37#include "cpu.h"
38
39#ifdef CONFIG_X86_LOCAL_APIC
40#include <asm/mpspec.h>
41#include <asm/apic.h>
42#endif
43
44enum split_lock_detect_state {
45	sld_off = 0,
46	sld_warn,
47	sld_fatal,
48	sld_ratelimit,
49};
50
51/*
52 * Default to sld_off because most systems do not support split lock detection.
53 * sld_state_setup() will switch this to sld_warn on systems that support
54 * split lock/bus lock detect, unless there is a command line override.
55 */
56static enum split_lock_detect_state sld_state __ro_after_init = sld_off;
57static u64 msr_test_ctrl_cache __ro_after_init;
58
59/*
60 * With a name like MSR_TEST_CTL it should go without saying, but don't touch
61 * MSR_TEST_CTL unless the CPU is one of the whitelisted models.  Writing it
62 * on CPUs that do not support SLD can cause fireworks, even when writing '0'.
63 */
64static bool cpu_model_supports_sld __ro_after_init;
65
66/*
67 * Processors which have self-snooping capability can handle conflicting
68 * memory type across CPUs by snooping its own cache. However, there exists
69 * CPU models in which having conflicting memory types still leads to
70 * unpredictable behavior, machine check errors, or hangs. Clear this
71 * feature to prevent its use on machines with known erratas.
72 */
73static void check_memory_type_self_snoop_errata(struct cpuinfo_x86 *c)
74{
75	switch (c->x86_model) {
76	case INTEL_FAM6_CORE_YONAH:
77	case INTEL_FAM6_CORE2_MEROM:
78	case INTEL_FAM6_CORE2_MEROM_L:
79	case INTEL_FAM6_CORE2_PENRYN:
80	case INTEL_FAM6_CORE2_DUNNINGTON:
81	case INTEL_FAM6_NEHALEM:
82	case INTEL_FAM6_NEHALEM_G:
83	case INTEL_FAM6_NEHALEM_EP:
84	case INTEL_FAM6_NEHALEM_EX:
85	case INTEL_FAM6_WESTMERE:
86	case INTEL_FAM6_WESTMERE_EP:
87	case INTEL_FAM6_SANDYBRIDGE:
88		setup_clear_cpu_cap(X86_FEATURE_SELFSNOOP);
89	}
90}
91
92static bool ring3mwait_disabled __read_mostly;
93
94static int __init ring3mwait_disable(char *__unused)
95{
96	ring3mwait_disabled = true;
97	return 1;
98}
99__setup("ring3mwait=disable", ring3mwait_disable);
100
101static void probe_xeon_phi_r3mwait(struct cpuinfo_x86 *c)
102{
103	/*
104	 * Ring 3 MONITOR/MWAIT feature cannot be detected without
105	 * cpu model and family comparison.
106	 */
107	if (c->x86 != 6)
108		return;
109	switch (c->x86_model) {
110	case INTEL_FAM6_XEON_PHI_KNL:
111	case INTEL_FAM6_XEON_PHI_KNM:
112		break;
113	default:
114		return;
115	}
116
117	if (ring3mwait_disabled)
118		return;
119
120	set_cpu_cap(c, X86_FEATURE_RING3MWAIT);
121	this_cpu_or(msr_misc_features_shadow,
122		    1UL << MSR_MISC_FEATURES_ENABLES_RING3MWAIT_BIT);
123
124	if (c == &boot_cpu_data)
125		ELF_HWCAP2 |= HWCAP2_RING3MWAIT;
126}
127
128/*
129 * Early microcode releases for the Spectre v2 mitigation were broken.
130 * Information taken from;
131 * - https://newsroom.intel.com/wp-content/uploads/sites/11/2018/03/microcode-update-guidance.pdf
132 * - https://kb.vmware.com/s/article/52345
133 * - Microcode revisions observed in the wild
134 * - Release note from 20180108 microcode release
135 */
136struct sku_microcode {
137	u8 model;
138	u8 stepping;
139	u32 microcode;
140};
141static const struct sku_microcode spectre_bad_microcodes[] = {
142	{ INTEL_FAM6_KABYLAKE,		0x0B,	0x80 },
143	{ INTEL_FAM6_KABYLAKE,		0x0A,	0x80 },
144	{ INTEL_FAM6_KABYLAKE,		0x09,	0x80 },
145	{ INTEL_FAM6_KABYLAKE_L,	0x0A,	0x80 },
146	{ INTEL_FAM6_KABYLAKE_L,	0x09,	0x80 },
147	{ INTEL_FAM6_SKYLAKE_X,		0x03,	0x0100013e },
148	{ INTEL_FAM6_SKYLAKE_X,		0x04,	0x0200003c },
149	{ INTEL_FAM6_BROADWELL,		0x04,	0x28 },
150	{ INTEL_FAM6_BROADWELL_G,	0x01,	0x1b },
151	{ INTEL_FAM6_BROADWELL_D,	0x02,	0x14 },
152	{ INTEL_FAM6_BROADWELL_D,	0x03,	0x07000011 },
153	{ INTEL_FAM6_BROADWELL_X,	0x01,	0x0b000025 },
154	{ INTEL_FAM6_HASWELL_L,		0x01,	0x21 },
155	{ INTEL_FAM6_HASWELL_G,		0x01,	0x18 },
156	{ INTEL_FAM6_HASWELL,		0x03,	0x23 },
157	{ INTEL_FAM6_HASWELL_X,		0x02,	0x3b },
158	{ INTEL_FAM6_HASWELL_X,		0x04,	0x10 },
159	{ INTEL_FAM6_IVYBRIDGE_X,	0x04,	0x42a },
160	/* Observed in the wild */
161	{ INTEL_FAM6_SANDYBRIDGE_X,	0x06,	0x61b },
162	{ INTEL_FAM6_SANDYBRIDGE_X,	0x07,	0x712 },
163};
164
165static bool bad_spectre_microcode(struct cpuinfo_x86 *c)
166{
167	int i;
168
169	/*
170	 * We know that the hypervisor lie to us on the microcode version so
171	 * we may as well hope that it is running the correct version.
172	 */
173	if (cpu_has(c, X86_FEATURE_HYPERVISOR))
174		return false;
175
176	if (c->x86 != 6)
177		return false;
178
179	for (i = 0; i < ARRAY_SIZE(spectre_bad_microcodes); i++) {
180		if (c->x86_model == spectre_bad_microcodes[i].model &&
181		    c->x86_stepping == spectre_bad_microcodes[i].stepping)
182			return (c->microcode <= spectre_bad_microcodes[i].microcode);
183	}
184	return false;
185}
186
187#define MSR_IA32_TME_ACTIVATE		0x982
188
189/* Helpers to access TME_ACTIVATE MSR */
190#define TME_ACTIVATE_LOCKED(x)		(x & 0x1)
191#define TME_ACTIVATE_ENABLED(x)		(x & 0x2)
192
193#define TME_ACTIVATE_POLICY(x)		((x >> 4) & 0xf)	/* Bits 7:4 */
194#define TME_ACTIVATE_POLICY_AES_XTS_128	0
195
196#define TME_ACTIVATE_KEYID_BITS(x)	((x >> 32) & 0xf)	/* Bits 35:32 */
197
198#define TME_ACTIVATE_CRYPTO_ALGS(x)	((x >> 48) & 0xffff)	/* Bits 63:48 */
199#define TME_ACTIVATE_CRYPTO_AES_XTS_128	1
200
201/* Values for mktme_status (SW only construct) */
202#define MKTME_ENABLED			0
203#define MKTME_DISABLED			1
204#define MKTME_UNINITIALIZED		2
205static int mktme_status = MKTME_UNINITIALIZED;
206
207static void detect_tme_early(struct cpuinfo_x86 *c)
208{
209	u64 tme_activate, tme_policy, tme_crypto_algs;
210	int keyid_bits = 0, nr_keyids = 0;
211	static u64 tme_activate_cpu0 = 0;
212
213	rdmsrl(MSR_IA32_TME_ACTIVATE, tme_activate);
214
215	if (mktme_status != MKTME_UNINITIALIZED) {
216		if (tme_activate != tme_activate_cpu0) {
217			/* Broken BIOS? */
218			pr_err_once("x86/tme: configuration is inconsistent between CPUs\n");
219			pr_err_once("x86/tme: MKTME is not usable\n");
220			mktme_status = MKTME_DISABLED;
221
222			/* Proceed. We may need to exclude bits from x86_phys_bits. */
223		}
224	} else {
225		tme_activate_cpu0 = tme_activate;
226	}
227
228	if (!TME_ACTIVATE_LOCKED(tme_activate) || !TME_ACTIVATE_ENABLED(tme_activate)) {
229		pr_info_once("x86/tme: not enabled by BIOS\n");
230		mktme_status = MKTME_DISABLED;
231		return;
232	}
233
234	if (mktme_status != MKTME_UNINITIALIZED)
235		goto detect_keyid_bits;
236
237	pr_info("x86/tme: enabled by BIOS\n");
238
239	tme_policy = TME_ACTIVATE_POLICY(tme_activate);
240	if (tme_policy != TME_ACTIVATE_POLICY_AES_XTS_128)
241		pr_warn("x86/tme: Unknown policy is active: %#llx\n", tme_policy);
242
243	tme_crypto_algs = TME_ACTIVATE_CRYPTO_ALGS(tme_activate);
244	if (!(tme_crypto_algs & TME_ACTIVATE_CRYPTO_AES_XTS_128)) {
245		pr_err("x86/mktme: No known encryption algorithm is supported: %#llx\n",
246				tme_crypto_algs);
247		mktme_status = MKTME_DISABLED;
248	}
249detect_keyid_bits:
250	keyid_bits = TME_ACTIVATE_KEYID_BITS(tme_activate);
251	nr_keyids = (1UL << keyid_bits) - 1;
252	if (nr_keyids) {
253		pr_info_once("x86/mktme: enabled by BIOS\n");
254		pr_info_once("x86/mktme: %d KeyIDs available\n", nr_keyids);
255	} else {
256		pr_info_once("x86/mktme: disabled by BIOS\n");
257	}
258
259	if (mktme_status == MKTME_UNINITIALIZED) {
260		/* MKTME is usable */
261		mktme_status = MKTME_ENABLED;
262	}
263
264	/*
265	 * KeyID bits effectively lower the number of physical address
266	 * bits.  Update cpuinfo_x86::x86_phys_bits accordingly.
267	 */
268	c->x86_phys_bits -= keyid_bits;
269}
270
271static void early_init_intel(struct cpuinfo_x86 *c)
272{
273	u64 misc_enable;
274
275	/* Unmask CPUID levels if masked: */
276	if (c->x86 > 6 || (c->x86 == 6 && c->x86_model >= 0xd)) {
277		if (msr_clear_bit(MSR_IA32_MISC_ENABLE,
278				  MSR_IA32_MISC_ENABLE_LIMIT_CPUID_BIT) > 0) {
279			c->cpuid_level = cpuid_eax(0);
280			get_cpu_cap(c);
281		}
282	}
283
284	if ((c->x86 == 0xf && c->x86_model >= 0x03) ||
285		(c->x86 == 0x6 && c->x86_model >= 0x0e))
286		set_cpu_cap(c, X86_FEATURE_CONSTANT_TSC);
287
288	if (c->x86 >= 6 && !cpu_has(c, X86_FEATURE_IA64))
289		c->microcode = intel_get_microcode_revision();
290
291	/* Now if any of them are set, check the blacklist and clear the lot */
292	if ((cpu_has(c, X86_FEATURE_SPEC_CTRL) ||
293	     cpu_has(c, X86_FEATURE_INTEL_STIBP) ||
294	     cpu_has(c, X86_FEATURE_IBRS) || cpu_has(c, X86_FEATURE_IBPB) ||
295	     cpu_has(c, X86_FEATURE_STIBP)) && bad_spectre_microcode(c)) {
296		pr_warn("Intel Spectre v2 broken microcode detected; disabling Speculation Control\n");
297		setup_clear_cpu_cap(X86_FEATURE_IBRS);
298		setup_clear_cpu_cap(X86_FEATURE_IBPB);
299		setup_clear_cpu_cap(X86_FEATURE_STIBP);
300		setup_clear_cpu_cap(X86_FEATURE_SPEC_CTRL);
301		setup_clear_cpu_cap(X86_FEATURE_MSR_SPEC_CTRL);
302		setup_clear_cpu_cap(X86_FEATURE_INTEL_STIBP);
303		setup_clear_cpu_cap(X86_FEATURE_SSBD);
304		setup_clear_cpu_cap(X86_FEATURE_SPEC_CTRL_SSBD);
305	}
306
307	/*
308	 * Atom erratum AAE44/AAF40/AAG38/AAH41:
309	 *
310	 * A race condition between speculative fetches and invalidating
311	 * a large page.  This is worked around in microcode, but we
312	 * need the microcode to have already been loaded... so if it is
313	 * not, recommend a BIOS update and disable large pages.
314	 */
315	if (c->x86 == 6 && c->x86_model == 0x1c && c->x86_stepping <= 2 &&
316	    c->microcode < 0x20e) {
317		pr_warn("Atom PSE erratum detected, BIOS microcode update recommended\n");
318		clear_cpu_cap(c, X86_FEATURE_PSE);
319	}
320
321#ifdef CONFIG_X86_64
322	set_cpu_cap(c, X86_FEATURE_SYSENTER32);
323#else
324	/* Netburst reports 64 bytes clflush size, but does IO in 128 bytes */
325	if (c->x86 == 15 && c->x86_cache_alignment == 64)
326		c->x86_cache_alignment = 128;
327#endif
328
329	/* CPUID workaround for 0F33/0F34 CPU */
330	if (c->x86 == 0xF && c->x86_model == 0x3
331	    && (c->x86_stepping == 0x3 || c->x86_stepping == 0x4))
332		c->x86_phys_bits = 36;
333
334	/*
335	 * c->x86_power is 8000_0007 edx. Bit 8 is TSC runs at constant rate
336	 * with P/T states and does not stop in deep C-states.
337	 *
338	 * It is also reliable across cores and sockets. (but not across
339	 * cabinets - we turn it off in that case explicitly.)
340	 */
341	if (c->x86_power & (1 << 8)) {
342		set_cpu_cap(c, X86_FEATURE_CONSTANT_TSC);
343		set_cpu_cap(c, X86_FEATURE_NONSTOP_TSC);
344	}
345
346	/* Penwell and Cloverview have the TSC which doesn't sleep on S3 */
347	if (c->x86 == 6) {
348		switch (c->x86_model) {
349		case INTEL_FAM6_ATOM_SALTWELL_MID:
350		case INTEL_FAM6_ATOM_SALTWELL_TABLET:
351		case INTEL_FAM6_ATOM_SILVERMONT_MID:
352		case INTEL_FAM6_ATOM_AIRMONT_NP:
353			set_cpu_cap(c, X86_FEATURE_NONSTOP_TSC_S3);
354			break;
355		default:
356			break;
357		}
358	}
359
360	/*
361	 * There is a known erratum on Pentium III and Core Solo
362	 * and Core Duo CPUs.
363	 * " Page with PAT set to WC while associated MTRR is UC
364	 *   may consolidate to UC "
365	 * Because of this erratum, it is better to stick with
366	 * setting WC in MTRR rather than using PAT on these CPUs.
367	 *
368	 * Enable PAT WC only on P4, Core 2 or later CPUs.
369	 */
370	if (c->x86 == 6 && c->x86_model < 15)
371		clear_cpu_cap(c, X86_FEATURE_PAT);
372
373	/*
374	 * If fast string is not enabled in IA32_MISC_ENABLE for any reason,
375	 * clear the fast string and enhanced fast string CPU capabilities.
376	 */
377	if (c->x86 > 6 || (c->x86 == 6 && c->x86_model >= 0xd)) {
378		rdmsrl(MSR_IA32_MISC_ENABLE, misc_enable);
379		if (!(misc_enable & MSR_IA32_MISC_ENABLE_FAST_STRING)) {
380			pr_info("Disabled fast string operations\n");
381			setup_clear_cpu_cap(X86_FEATURE_REP_GOOD);
382			setup_clear_cpu_cap(X86_FEATURE_ERMS);
383		}
384	}
385
386	/*
387	 * Intel Quark Core DevMan_001.pdf section 6.4.11
388	 * "The operating system also is required to invalidate (i.e., flush)
389	 *  the TLB when any changes are made to any of the page table entries.
390	 *  The operating system must reload CR3 to cause the TLB to be flushed"
391	 *
392	 * As a result, boot_cpu_has(X86_FEATURE_PGE) in arch/x86/include/asm/tlbflush.h
393	 * should be false so that __flush_tlb_all() causes CR3 instead of CR4.PGE
394	 * to be modified.
395	 */
396	if (c->x86 == 5 && c->x86_model == 9) {
397		pr_info("Disabling PGE capability bit\n");
398		setup_clear_cpu_cap(X86_FEATURE_PGE);
399	}
400
401	check_memory_type_self_snoop_errata(c);
402
403	/*
404	 * Adjust the number of physical bits early because it affects the
405	 * valid bits of the MTRR mask registers.
406	 */
407	if (cpu_has(c, X86_FEATURE_TME))
408		detect_tme_early(c);
409}
410
411static void bsp_init_intel(struct cpuinfo_x86 *c)
412{
413	resctrl_cpu_detect(c);
414}
415
416#ifdef CONFIG_X86_32
417/*
418 *	Early probe support logic for ppro memory erratum #50
419 *
420 *	This is called before we do cpu ident work
421 */
422
423int ppro_with_ram_bug(void)
424{
425	/* Uses data from early_cpu_detect now */
426	if (boot_cpu_data.x86_vendor == X86_VENDOR_INTEL &&
427	    boot_cpu_data.x86 == 6 &&
428	    boot_cpu_data.x86_model == 1 &&
429	    boot_cpu_data.x86_stepping < 8) {
430		pr_info("Pentium Pro with Errata#50 detected. Taking evasive action.\n");
431		return 1;
432	}
433	return 0;
434}
435
436static void intel_smp_check(struct cpuinfo_x86 *c)
437{
438	/* calling is from identify_secondary_cpu() ? */
439	if (!c->cpu_index)
440		return;
441
442	/*
443	 * Mask B, Pentium, but not Pentium MMX
444	 */
445	if (c->x86 == 5 &&
446	    c->x86_stepping >= 1 && c->x86_stepping <= 4 &&
447	    c->x86_model <= 3) {
448		/*
449		 * Remember we have B step Pentia with bugs
450		 */
451		WARN_ONCE(1, "WARNING: SMP operation may be unreliable"
452				    "with B stepping processors.\n");
453	}
454}
455
456static int forcepae;
457static int __init forcepae_setup(char *__unused)
458{
459	forcepae = 1;
460	return 1;
461}
462__setup("forcepae", forcepae_setup);
463
464static void intel_workarounds(struct cpuinfo_x86 *c)
465{
466#ifdef CONFIG_X86_F00F_BUG
467	/*
468	 * All models of Pentium and Pentium with MMX technology CPUs
469	 * have the F0 0F bug, which lets nonprivileged users lock up the
470	 * system. Announce that the fault handler will be checking for it.
471	 * The Quark is also family 5, but does not have the same bug.
472	 */
473	clear_cpu_bug(c, X86_BUG_F00F);
474	if (c->x86 == 5 && c->x86_model < 9) {
475		static int f00f_workaround_enabled;
476
477		set_cpu_bug(c, X86_BUG_F00F);
478		if (!f00f_workaround_enabled) {
479			pr_notice("Intel Pentium with F0 0F bug - workaround enabled.\n");
480			f00f_workaround_enabled = 1;
481		}
482	}
483#endif
484
485	/*
486	 * SEP CPUID bug: Pentium Pro reports SEP but doesn't have it until
487	 * model 3 mask 3
488	 */
489	if ((c->x86<<8 | c->x86_model<<4 | c->x86_stepping) < 0x633)
490		clear_cpu_cap(c, X86_FEATURE_SEP);
491
492	/*
493	 * PAE CPUID issue: many Pentium M report no PAE but may have a
494	 * functionally usable PAE implementation.
495	 * Forcefully enable PAE if kernel parameter "forcepae" is present.
496	 */
497	if (forcepae) {
498		pr_warn("PAE forced!\n");
499		set_cpu_cap(c, X86_FEATURE_PAE);
500		add_taint(TAINT_CPU_OUT_OF_SPEC, LOCKDEP_NOW_UNRELIABLE);
501	}
502
503	/*
504	 * P4 Xeon erratum 037 workaround.
505	 * Hardware prefetcher may cause stale data to be loaded into the cache.
506	 */
507	if ((c->x86 == 15) && (c->x86_model == 1) && (c->x86_stepping == 1)) {
508		if (msr_set_bit(MSR_IA32_MISC_ENABLE,
509				MSR_IA32_MISC_ENABLE_PREFETCH_DISABLE_BIT) > 0) {
510			pr_info("CPU: C0 stepping P4 Xeon detected.\n");
511			pr_info("CPU: Disabling hardware prefetching (Erratum 037)\n");
512		}
513	}
514
515	/*
516	 * See if we have a good local APIC by checking for buggy Pentia,
517	 * i.e. all B steppings and the C2 stepping of P54C when using their
518	 * integrated APIC (see 11AP erratum in "Pentium Processor
519	 * Specification Update").
520	 */
521	if (boot_cpu_has(X86_FEATURE_APIC) && (c->x86<<8 | c->x86_model<<4) == 0x520 &&
522	    (c->x86_stepping < 0x6 || c->x86_stepping == 0xb))
523		set_cpu_bug(c, X86_BUG_11AP);
524
525
526#ifdef CONFIG_X86_INTEL_USERCOPY
527	/*
528	 * Set up the preferred alignment for movsl bulk memory moves
529	 */
530	switch (c->x86) {
531	case 4:		/* 486: untested */
532		break;
533	case 5:		/* Old Pentia: untested */
534		break;
535	case 6:		/* PII/PIII only like movsl with 8-byte alignment */
536		movsl_mask.mask = 7;
537		break;
538	case 15:	/* P4 is OK down to 8-byte alignment */
539		movsl_mask.mask = 7;
540		break;
541	}
542#endif
543
544	intel_smp_check(c);
545}
546#else
547static void intel_workarounds(struct cpuinfo_x86 *c)
548{
549}
550#endif
551
552static void srat_detect_node(struct cpuinfo_x86 *c)
553{
554#ifdef CONFIG_NUMA
555	unsigned node;
556	int cpu = smp_processor_id();
557
558	/* Don't do the funky fallback heuristics the AMD version employs
559	   for now. */
560	node = numa_cpu_node(cpu);
561	if (node == NUMA_NO_NODE || !node_online(node)) {
562		/* reuse the value from init_cpu_to_node() */
563		node = cpu_to_node(cpu);
564	}
565	numa_set_node(cpu, node);
566#endif
567}
568
569static void init_cpuid_fault(struct cpuinfo_x86 *c)
570{
571	u64 msr;
572
573	if (!rdmsrl_safe(MSR_PLATFORM_INFO, &msr)) {
574		if (msr & MSR_PLATFORM_INFO_CPUID_FAULT)
575			set_cpu_cap(c, X86_FEATURE_CPUID_FAULT);
576	}
577}
578
579static void init_intel_misc_features(struct cpuinfo_x86 *c)
580{
581	u64 msr;
582
583	if (rdmsrl_safe(MSR_MISC_FEATURES_ENABLES, &msr))
584		return;
585
586	/* Clear all MISC features */
587	this_cpu_write(msr_misc_features_shadow, 0);
588
589	/* Check features and update capabilities and shadow control bits */
590	init_cpuid_fault(c);
591	probe_xeon_phi_r3mwait(c);
592
593	msr = this_cpu_read(msr_misc_features_shadow);
594	wrmsrl(MSR_MISC_FEATURES_ENABLES, msr);
595}
596
597static void split_lock_init(void);
598static void bus_lock_init(void);
599
600static void init_intel(struct cpuinfo_x86 *c)
601{
602	early_init_intel(c);
603
604	intel_workarounds(c);
605
606	init_intel_cacheinfo(c);
607
608	if (c->cpuid_level > 9) {
609		unsigned eax = cpuid_eax(10);
610		/* Check for version and the number of counters */
611		if ((eax & 0xff) && (((eax>>8) & 0xff) > 1))
612			set_cpu_cap(c, X86_FEATURE_ARCH_PERFMON);
613	}
614
615	if (cpu_has(c, X86_FEATURE_XMM2))
616		set_cpu_cap(c, X86_FEATURE_LFENCE_RDTSC);
617
618	if (boot_cpu_has(X86_FEATURE_DS)) {
619		unsigned int l1, l2;
620
621		rdmsr(MSR_IA32_MISC_ENABLE, l1, l2);
622		if (!(l1 & MSR_IA32_MISC_ENABLE_BTS_UNAVAIL))
623			set_cpu_cap(c, X86_FEATURE_BTS);
624		if (!(l1 & MSR_IA32_MISC_ENABLE_PEBS_UNAVAIL))
625			set_cpu_cap(c, X86_FEATURE_PEBS);
626	}
627
628	if (c->x86 == 6 && boot_cpu_has(X86_FEATURE_CLFLUSH) &&
629	    (c->x86_model == 29 || c->x86_model == 46 || c->x86_model == 47))
630		set_cpu_bug(c, X86_BUG_CLFLUSH_MONITOR);
631
632	if (c->x86 == 6 && boot_cpu_has(X86_FEATURE_MWAIT) &&
633		((c->x86_model == INTEL_FAM6_ATOM_GOLDMONT)))
634		set_cpu_bug(c, X86_BUG_MONITOR);
635
636#ifdef CONFIG_X86_64
637	if (c->x86 == 15)
638		c->x86_cache_alignment = c->x86_clflush_size * 2;
639	if (c->x86 == 6)
640		set_cpu_cap(c, X86_FEATURE_REP_GOOD);
641#else
642	/*
643	 * Names for the Pentium II/Celeron processors
644	 * detectable only by also checking the cache size.
645	 * Dixon is NOT a Celeron.
646	 */
647	if (c->x86 == 6) {
648		unsigned int l2 = c->x86_cache_size;
649		char *p = NULL;
650
651		switch (c->x86_model) {
652		case 5:
653			if (l2 == 0)
654				p = "Celeron (Covington)";
655			else if (l2 == 256)
656				p = "Mobile Pentium II (Dixon)";
657			break;
658
659		case 6:
660			if (l2 == 128)
661				p = "Celeron (Mendocino)";
662			else if (c->x86_stepping == 0 || c->x86_stepping == 5)
663				p = "Celeron-A";
664			break;
665
666		case 8:
667			if (l2 == 128)
668				p = "Celeron (Coppermine)";
669			break;
670		}
671
672		if (p)
673			strcpy(c->x86_model_id, p);
674	}
675
676	if (c->x86 == 15)
677		set_cpu_cap(c, X86_FEATURE_P4);
678	if (c->x86 == 6)
679		set_cpu_cap(c, X86_FEATURE_P3);
680#endif
681
682	/* Work around errata */
683	srat_detect_node(c);
684
685	init_ia32_feat_ctl(c);
686
687	init_intel_misc_features(c);
688
689	split_lock_init();
690	bus_lock_init();
691
692	intel_init_thermal(c);
693}
694
695#ifdef CONFIG_X86_32
696static unsigned int intel_size_cache(struct cpuinfo_x86 *c, unsigned int size)
697{
698	/*
699	 * Intel PIII Tualatin. This comes in two flavours.
700	 * One has 256kb of cache, the other 512. We have no way
701	 * to determine which, so we use a boottime override
702	 * for the 512kb model, and assume 256 otherwise.
703	 */
704	if ((c->x86 == 6) && (c->x86_model == 11) && (size == 0))
705		size = 256;
706
707	/*
708	 * Intel Quark SoC X1000 contains a 4-way set associative
709	 * 16K cache with a 16 byte cache line and 256 lines per tag
710	 */
711	if ((c->x86 == 5) && (c->x86_model == 9))
712		size = 16;
713	return size;
714}
715#endif
716
717#define TLB_INST_4K	0x01
718#define TLB_INST_4M	0x02
719#define TLB_INST_2M_4M	0x03
720
721#define TLB_INST_ALL	0x05
722#define TLB_INST_1G	0x06
723
724#define TLB_DATA_4K	0x11
725#define TLB_DATA_4M	0x12
726#define TLB_DATA_2M_4M	0x13
727#define TLB_DATA_4K_4M	0x14
728
729#define TLB_DATA_1G	0x16
730
731#define TLB_DATA0_4K	0x21
732#define TLB_DATA0_4M	0x22
733#define TLB_DATA0_2M_4M	0x23
734
735#define STLB_4K		0x41
736#define STLB_4K_2M	0x42
737
738static const struct _tlb_table intel_tlb_table[] = {
739	{ 0x01, TLB_INST_4K,		32,	" TLB_INST 4 KByte pages, 4-way set associative" },
740	{ 0x02, TLB_INST_4M,		2,	" TLB_INST 4 MByte pages, full associative" },
741	{ 0x03, TLB_DATA_4K,		64,	" TLB_DATA 4 KByte pages, 4-way set associative" },
742	{ 0x04, TLB_DATA_4M,		8,	" TLB_DATA 4 MByte pages, 4-way set associative" },
743	{ 0x05, TLB_DATA_4M,		32,	" TLB_DATA 4 MByte pages, 4-way set associative" },
744	{ 0x0b, TLB_INST_4M,		4,	" TLB_INST 4 MByte pages, 4-way set associative" },
745	{ 0x4f, TLB_INST_4K,		32,	" TLB_INST 4 KByte pages" },
746	{ 0x50, TLB_INST_ALL,		64,	" TLB_INST 4 KByte and 2-MByte or 4-MByte pages" },
747	{ 0x51, TLB_INST_ALL,		128,	" TLB_INST 4 KByte and 2-MByte or 4-MByte pages" },
748	{ 0x52, TLB_INST_ALL,		256,	" TLB_INST 4 KByte and 2-MByte or 4-MByte pages" },
749	{ 0x55, TLB_INST_2M_4M,		7,	" TLB_INST 2-MByte or 4-MByte pages, fully associative" },
750	{ 0x56, TLB_DATA0_4M,		16,	" TLB_DATA0 4 MByte pages, 4-way set associative" },
751	{ 0x57, TLB_DATA0_4K,		16,	" TLB_DATA0 4 KByte pages, 4-way associative" },
752	{ 0x59, TLB_DATA0_4K,		16,	" TLB_DATA0 4 KByte pages, fully associative" },
753	{ 0x5a, TLB_DATA0_2M_4M,	32,	" TLB_DATA0 2-MByte or 4 MByte pages, 4-way set associative" },
754	{ 0x5b, TLB_DATA_4K_4M,		64,	" TLB_DATA 4 KByte and 4 MByte pages" },
755	{ 0x5c, TLB_DATA_4K_4M,		128,	" TLB_DATA 4 KByte and 4 MByte pages" },
756	{ 0x5d, TLB_DATA_4K_4M,		256,	" TLB_DATA 4 KByte and 4 MByte pages" },
757	{ 0x61, TLB_INST_4K,		48,	" TLB_INST 4 KByte pages, full associative" },
758	{ 0x63, TLB_DATA_1G,		4,	" TLB_DATA 1 GByte pages, 4-way set associative" },
759	{ 0x6b, TLB_DATA_4K,		256,	" TLB_DATA 4 KByte pages, 8-way associative" },
760	{ 0x6c, TLB_DATA_2M_4M,		128,	" TLB_DATA 2 MByte or 4 MByte pages, 8-way associative" },
761	{ 0x6d, TLB_DATA_1G,		16,	" TLB_DATA 1 GByte pages, fully associative" },
762	{ 0x76, TLB_INST_2M_4M,		8,	" TLB_INST 2-MByte or 4-MByte pages, fully associative" },
763	{ 0xb0, TLB_INST_4K,		128,	" TLB_INST 4 KByte pages, 4-way set associative" },
764	{ 0xb1, TLB_INST_2M_4M,		4,	" TLB_INST 2M pages, 4-way, 8 entries or 4M pages, 4-way entries" },
765	{ 0xb2, TLB_INST_4K,		64,	" TLB_INST 4KByte pages, 4-way set associative" },
766	{ 0xb3, TLB_DATA_4K,		128,	" TLB_DATA 4 KByte pages, 4-way set associative" },
767	{ 0xb4, TLB_DATA_4K,		256,	" TLB_DATA 4 KByte pages, 4-way associative" },
768	{ 0xb5, TLB_INST_4K,		64,	" TLB_INST 4 KByte pages, 8-way set associative" },
769	{ 0xb6, TLB_INST_4K,		128,	" TLB_INST 4 KByte pages, 8-way set associative" },
770	{ 0xba, TLB_DATA_4K,		64,	" TLB_DATA 4 KByte pages, 4-way associative" },
771	{ 0xc0, TLB_DATA_4K_4M,		8,	" TLB_DATA 4 KByte and 4 MByte pages, 4-way associative" },
772	{ 0xc1, STLB_4K_2M,		1024,	" STLB 4 KByte and 2 MByte pages, 8-way associative" },
773	{ 0xc2, TLB_DATA_2M_4M,		16,	" TLB_DATA 2 MByte/4MByte pages, 4-way associative" },
774	{ 0xca, STLB_4K,		512,	" STLB 4 KByte pages, 4-way associative" },
775	{ 0x00, 0, 0 }
776};
777
778static void intel_tlb_lookup(const unsigned char desc)
779{
780	unsigned char k;
781	if (desc == 0)
782		return;
783
784	/* look up this descriptor in the table */
785	for (k = 0; intel_tlb_table[k].descriptor != desc &&
786	     intel_tlb_table[k].descriptor != 0; k++)
787		;
788
789	if (intel_tlb_table[k].tlb_type == 0)
790		return;
791
792	switch (intel_tlb_table[k].tlb_type) {
793	case STLB_4K:
794		if (tlb_lli_4k[ENTRIES] < intel_tlb_table[k].entries)
795			tlb_lli_4k[ENTRIES] = intel_tlb_table[k].entries;
796		if (tlb_lld_4k[ENTRIES] < intel_tlb_table[k].entries)
797			tlb_lld_4k[ENTRIES] = intel_tlb_table[k].entries;
798		break;
799	case STLB_4K_2M:
800		if (tlb_lli_4k[ENTRIES] < intel_tlb_table[k].entries)
801			tlb_lli_4k[ENTRIES] = intel_tlb_table[k].entries;
802		if (tlb_lld_4k[ENTRIES] < intel_tlb_table[k].entries)
803			tlb_lld_4k[ENTRIES] = intel_tlb_table[k].entries;
804		if (tlb_lli_2m[ENTRIES] < intel_tlb_table[k].entries)
805			tlb_lli_2m[ENTRIES] = intel_tlb_table[k].entries;
806		if (tlb_lld_2m[ENTRIES] < intel_tlb_table[k].entries)
807			tlb_lld_2m[ENTRIES] = intel_tlb_table[k].entries;
808		if (tlb_lli_4m[ENTRIES] < intel_tlb_table[k].entries)
809			tlb_lli_4m[ENTRIES] = intel_tlb_table[k].entries;
810		if (tlb_lld_4m[ENTRIES] < intel_tlb_table[k].entries)
811			tlb_lld_4m[ENTRIES] = intel_tlb_table[k].entries;
812		break;
813	case TLB_INST_ALL:
814		if (tlb_lli_4k[ENTRIES] < intel_tlb_table[k].entries)
815			tlb_lli_4k[ENTRIES] = intel_tlb_table[k].entries;
816		if (tlb_lli_2m[ENTRIES] < intel_tlb_table[k].entries)
817			tlb_lli_2m[ENTRIES] = intel_tlb_table[k].entries;
818		if (tlb_lli_4m[ENTRIES] < intel_tlb_table[k].entries)
819			tlb_lli_4m[ENTRIES] = intel_tlb_table[k].entries;
820		break;
821	case TLB_INST_4K:
822		if (tlb_lli_4k[ENTRIES] < intel_tlb_table[k].entries)
823			tlb_lli_4k[ENTRIES] = intel_tlb_table[k].entries;
824		break;
825	case TLB_INST_4M:
826		if (tlb_lli_4m[ENTRIES] < intel_tlb_table[k].entries)
827			tlb_lli_4m[ENTRIES] = intel_tlb_table[k].entries;
828		break;
829	case TLB_INST_2M_4M:
830		if (tlb_lli_2m[ENTRIES] < intel_tlb_table[k].entries)
831			tlb_lli_2m[ENTRIES] = intel_tlb_table[k].entries;
832		if (tlb_lli_4m[ENTRIES] < intel_tlb_table[k].entries)
833			tlb_lli_4m[ENTRIES] = intel_tlb_table[k].entries;
834		break;
835	case TLB_DATA_4K:
836	case TLB_DATA0_4K:
837		if (tlb_lld_4k[ENTRIES] < intel_tlb_table[k].entries)
838			tlb_lld_4k[ENTRIES] = intel_tlb_table[k].entries;
839		break;
840	case TLB_DATA_4M:
841	case TLB_DATA0_4M:
842		if (tlb_lld_4m[ENTRIES] < intel_tlb_table[k].entries)
843			tlb_lld_4m[ENTRIES] = intel_tlb_table[k].entries;
844		break;
845	case TLB_DATA_2M_4M:
846	case TLB_DATA0_2M_4M:
847		if (tlb_lld_2m[ENTRIES] < intel_tlb_table[k].entries)
848			tlb_lld_2m[ENTRIES] = intel_tlb_table[k].entries;
849		if (tlb_lld_4m[ENTRIES] < intel_tlb_table[k].entries)
850			tlb_lld_4m[ENTRIES] = intel_tlb_table[k].entries;
851		break;
852	case TLB_DATA_4K_4M:
853		if (tlb_lld_4k[ENTRIES] < intel_tlb_table[k].entries)
854			tlb_lld_4k[ENTRIES] = intel_tlb_table[k].entries;
855		if (tlb_lld_4m[ENTRIES] < intel_tlb_table[k].entries)
856			tlb_lld_4m[ENTRIES] = intel_tlb_table[k].entries;
857		break;
858	case TLB_DATA_1G:
859		if (tlb_lld_1g[ENTRIES] < intel_tlb_table[k].entries)
860			tlb_lld_1g[ENTRIES] = intel_tlb_table[k].entries;
861		break;
862	}
863}
864
865static void intel_detect_tlb(struct cpuinfo_x86 *c)
866{
867	int i, j, n;
868	unsigned int regs[4];
869	unsigned char *desc = (unsigned char *)regs;
870
871	if (c->cpuid_level < 2)
872		return;
873
874	/* Number of times to iterate */
875	n = cpuid_eax(2) & 0xFF;
876
877	for (i = 0 ; i < n ; i++) {
878		cpuid(2, &regs[0], &regs[1], &regs[2], &regs[3]);
879
880		/* If bit 31 is set, this is an unknown format */
881		for (j = 0 ; j < 3 ; j++)
882			if (regs[j] & (1 << 31))
883				regs[j] = 0;
884
885		/* Byte 0 is level count, not a descriptor */
886		for (j = 1 ; j < 16 ; j++)
887			intel_tlb_lookup(desc[j]);
888	}
889}
890
891static const struct cpu_dev intel_cpu_dev = {
892	.c_vendor	= "Intel",
893	.c_ident	= { "GenuineIntel" },
894#ifdef CONFIG_X86_32
895	.legacy_models = {
896		{ .family = 4, .model_names =
897		  {
898			  [0] = "486 DX-25/33",
899			  [1] = "486 DX-50",
900			  [2] = "486 SX",
901			  [3] = "486 DX/2",
902			  [4] = "486 SL",
903			  [5] = "486 SX/2",
904			  [7] = "486 DX/2-WB",
905			  [8] = "486 DX/4",
906			  [9] = "486 DX/4-WB"
907		  }
908		},
909		{ .family = 5, .model_names =
910		  {
911			  [0] = "Pentium 60/66 A-step",
912			  [1] = "Pentium 60/66",
913			  [2] = "Pentium 75 - 200",
914			  [3] = "OverDrive PODP5V83",
915			  [4] = "Pentium MMX",
916			  [7] = "Mobile Pentium 75 - 200",
917			  [8] = "Mobile Pentium MMX",
918			  [9] = "Quark SoC X1000",
919		  }
920		},
921		{ .family = 6, .model_names =
922		  {
923			  [0] = "Pentium Pro A-step",
924			  [1] = "Pentium Pro",
925			  [3] = "Pentium II (Klamath)",
926			  [4] = "Pentium II (Deschutes)",
927			  [5] = "Pentium II (Deschutes)",
928			  [6] = "Mobile Pentium II",
929			  [7] = "Pentium III (Katmai)",
930			  [8] = "Pentium III (Coppermine)",
931			  [10] = "Pentium III (Cascades)",
932			  [11] = "Pentium III (Tualatin)",
933		  }
934		},
935		{ .family = 15, .model_names =
936		  {
937			  [0] = "Pentium 4 (Unknown)",
938			  [1] = "Pentium 4 (Willamette)",
939			  [2] = "Pentium 4 (Northwood)",
940			  [4] = "Pentium 4 (Foster)",
941			  [5] = "Pentium 4 (Foster)",
942		  }
943		},
944	},
945	.legacy_cache_size = intel_size_cache,
946#endif
947	.c_detect_tlb	= intel_detect_tlb,
948	.c_early_init   = early_init_intel,
949	.c_bsp_init	= bsp_init_intel,
950	.c_init		= init_intel,
951	.c_x86_vendor	= X86_VENDOR_INTEL,
952};
953
954cpu_dev_register(intel_cpu_dev);
955
956#undef pr_fmt
957#define pr_fmt(fmt) "x86/split lock detection: " fmt
958
959static const struct {
960	const char			*option;
961	enum split_lock_detect_state	state;
962} sld_options[] __initconst = {
963	{ "off",	sld_off   },
964	{ "warn",	sld_warn  },
965	{ "fatal",	sld_fatal },
966	{ "ratelimit:", sld_ratelimit },
967};
968
969static struct ratelimit_state bld_ratelimit;
970
971static unsigned int sysctl_sld_mitigate = 1;
972static DEFINE_SEMAPHORE(buslock_sem, 1);
973
974#ifdef CONFIG_PROC_SYSCTL
975static struct ctl_table sld_sysctls[] = {
976	{
977		.procname       = "split_lock_mitigate",
978		.data           = &sysctl_sld_mitigate,
979		.maxlen         = sizeof(unsigned int),
980		.mode           = 0644,
981		.proc_handler	= proc_douintvec_minmax,
982		.extra1         = SYSCTL_ZERO,
983		.extra2         = SYSCTL_ONE,
984	},
985};
986
987static int __init sld_mitigate_sysctl_init(void)
988{
989	register_sysctl_init("kernel", sld_sysctls);
990	return 0;
991}
992
993late_initcall(sld_mitigate_sysctl_init);
994#endif
995
996static inline bool match_option(const char *arg, int arglen, const char *opt)
997{
998	int len = strlen(opt), ratelimit;
999
1000	if (strncmp(arg, opt, len))
1001		return false;
1002
1003	/*
1004	 * Min ratelimit is 1 bus lock/sec.
1005	 * Max ratelimit is 1000 bus locks/sec.
1006	 */
1007	if (sscanf(arg, "ratelimit:%d", &ratelimit) == 1 &&
1008	    ratelimit > 0 && ratelimit <= 1000) {
1009		ratelimit_state_init(&bld_ratelimit, HZ, ratelimit);
1010		ratelimit_set_flags(&bld_ratelimit, RATELIMIT_MSG_ON_RELEASE);
1011		return true;
1012	}
1013
1014	return len == arglen;
1015}
1016
1017static bool split_lock_verify_msr(bool on)
1018{
1019	u64 ctrl, tmp;
1020
1021	if (rdmsrl_safe(MSR_TEST_CTRL, &ctrl))
1022		return false;
1023	if (on)
1024		ctrl |= MSR_TEST_CTRL_SPLIT_LOCK_DETECT;
1025	else
1026		ctrl &= ~MSR_TEST_CTRL_SPLIT_LOCK_DETECT;
1027	if (wrmsrl_safe(MSR_TEST_CTRL, ctrl))
1028		return false;
1029	rdmsrl(MSR_TEST_CTRL, tmp);
1030	return ctrl == tmp;
1031}
1032
1033static void __init sld_state_setup(void)
1034{
1035	enum split_lock_detect_state state = sld_warn;
1036	char arg[20];
1037	int i, ret;
1038
1039	if (!boot_cpu_has(X86_FEATURE_SPLIT_LOCK_DETECT) &&
1040	    !boot_cpu_has(X86_FEATURE_BUS_LOCK_DETECT))
1041		return;
1042
1043	ret = cmdline_find_option(boot_command_line, "split_lock_detect",
1044				  arg, sizeof(arg));
1045	if (ret >= 0) {
1046		for (i = 0; i < ARRAY_SIZE(sld_options); i++) {
1047			if (match_option(arg, ret, sld_options[i].option)) {
1048				state = sld_options[i].state;
1049				break;
1050			}
1051		}
1052	}
1053	sld_state = state;
1054}
1055
1056static void __init __split_lock_setup(void)
1057{
1058	if (!split_lock_verify_msr(false)) {
1059		pr_info("MSR access failed: Disabled\n");
1060		return;
1061	}
1062
1063	rdmsrl(MSR_TEST_CTRL, msr_test_ctrl_cache);
1064
1065	if (!split_lock_verify_msr(true)) {
1066		pr_info("MSR access failed: Disabled\n");
1067		return;
1068	}
1069
1070	/* Restore the MSR to its cached value. */
1071	wrmsrl(MSR_TEST_CTRL, msr_test_ctrl_cache);
1072
1073	setup_force_cpu_cap(X86_FEATURE_SPLIT_LOCK_DETECT);
1074}
1075
1076/*
1077 * MSR_TEST_CTRL is per core, but we treat it like a per CPU MSR. Locking
1078 * is not implemented as one thread could undo the setting of the other
1079 * thread immediately after dropping the lock anyway.
1080 */
1081static void sld_update_msr(bool on)
1082{
1083	u64 test_ctrl_val = msr_test_ctrl_cache;
1084
1085	if (on)
1086		test_ctrl_val |= MSR_TEST_CTRL_SPLIT_LOCK_DETECT;
1087
1088	wrmsrl(MSR_TEST_CTRL, test_ctrl_val);
1089}
1090
1091static void split_lock_init(void)
1092{
1093	/*
1094	 * #DB for bus lock handles ratelimit and #AC for split lock is
1095	 * disabled.
1096	 */
1097	if (sld_state == sld_ratelimit) {
1098		split_lock_verify_msr(false);
1099		return;
1100	}
1101
1102	if (cpu_model_supports_sld)
1103		split_lock_verify_msr(sld_state != sld_off);
1104}
1105
1106static void __split_lock_reenable_unlock(struct work_struct *work)
1107{
1108	sld_update_msr(true);
1109	up(&buslock_sem);
1110}
1111
1112static DECLARE_DELAYED_WORK(sl_reenable_unlock, __split_lock_reenable_unlock);
1113
1114static void __split_lock_reenable(struct work_struct *work)
1115{
1116	sld_update_msr(true);
1117}
1118static DECLARE_DELAYED_WORK(sl_reenable, __split_lock_reenable);
1119
1120/*
1121 * If a CPU goes offline with pending delayed work to re-enable split lock
1122 * detection then the delayed work will be executed on some other CPU. That
1123 * handles releasing the buslock_sem, but because it executes on a
1124 * different CPU probably won't re-enable split lock detection. This is a
1125 * problem on HT systems since the sibling CPU on the same core may then be
1126 * left running with split lock detection disabled.
1127 *
1128 * Unconditionally re-enable detection here.
1129 */
1130static int splitlock_cpu_offline(unsigned int cpu)
1131{
1132	sld_update_msr(true);
1133
1134	return 0;
1135}
1136
1137static void split_lock_warn(unsigned long ip)
1138{
1139	struct delayed_work *work;
1140	int cpu;
1141
1142	if (!current->reported_split_lock)
1143		pr_warn_ratelimited("#AC: %s/%d took a split_lock trap at address: 0x%lx\n",
1144				    current->comm, current->pid, ip);
1145	current->reported_split_lock = 1;
1146
1147	if (sysctl_sld_mitigate) {
1148		/*
1149		 * misery factor #1:
1150		 * sleep 10ms before trying to execute split lock.
1151		 */
1152		if (msleep_interruptible(10) > 0)
1153			return;
1154		/*
1155		 * Misery factor #2:
1156		 * only allow one buslocked disabled core at a time.
1157		 */
1158		if (down_interruptible(&buslock_sem) == -EINTR)
1159			return;
1160		work = &sl_reenable_unlock;
1161	} else {
1162		work = &sl_reenable;
1163	}
1164
1165	cpu = get_cpu();
1166	schedule_delayed_work_on(cpu, work, 2);
1167
1168	/* Disable split lock detection on this CPU to make progress */
1169	sld_update_msr(false);
1170	put_cpu();
1171}
1172
1173bool handle_guest_split_lock(unsigned long ip)
1174{
1175	if (sld_state == sld_warn) {
1176		split_lock_warn(ip);
1177		return true;
1178	}
1179
1180	pr_warn_once("#AC: %s/%d %s split_lock trap at address: 0x%lx\n",
1181		     current->comm, current->pid,
1182		     sld_state == sld_fatal ? "fatal" : "bogus", ip);
1183
1184	current->thread.error_code = 0;
1185	current->thread.trap_nr = X86_TRAP_AC;
1186	force_sig_fault(SIGBUS, BUS_ADRALN, NULL);
1187	return false;
1188}
1189EXPORT_SYMBOL_GPL(handle_guest_split_lock);
1190
1191static void bus_lock_init(void)
1192{
1193	u64 val;
1194
1195	if (!boot_cpu_has(X86_FEATURE_BUS_LOCK_DETECT))
1196		return;
1197
1198	rdmsrl(MSR_IA32_DEBUGCTLMSR, val);
1199
1200	if ((boot_cpu_has(X86_FEATURE_SPLIT_LOCK_DETECT) &&
1201	    (sld_state == sld_warn || sld_state == sld_fatal)) ||
1202	    sld_state == sld_off) {
1203		/*
1204		 * Warn and fatal are handled by #AC for split lock if #AC for
1205		 * split lock is supported.
1206		 */
1207		val &= ~DEBUGCTLMSR_BUS_LOCK_DETECT;
1208	} else {
1209		val |= DEBUGCTLMSR_BUS_LOCK_DETECT;
1210	}
1211
1212	wrmsrl(MSR_IA32_DEBUGCTLMSR, val);
1213}
1214
1215bool handle_user_split_lock(struct pt_regs *regs, long error_code)
1216{
1217	if ((regs->flags & X86_EFLAGS_AC) || sld_state == sld_fatal)
1218		return false;
1219	split_lock_warn(regs->ip);
1220	return true;
1221}
1222
1223void handle_bus_lock(struct pt_regs *regs)
1224{
1225	switch (sld_state) {
1226	case sld_off:
1227		break;
1228	case sld_ratelimit:
1229		/* Enforce no more than bld_ratelimit bus locks/sec. */
1230		while (!__ratelimit(&bld_ratelimit))
1231			msleep(20);
1232		/* Warn on the bus lock. */
1233		fallthrough;
1234	case sld_warn:
1235		pr_warn_ratelimited("#DB: %s/%d took a bus_lock trap at address: 0x%lx\n",
1236				    current->comm, current->pid, regs->ip);
1237		break;
1238	case sld_fatal:
1239		force_sig_fault(SIGBUS, BUS_ADRALN, NULL);
1240		break;
1241	}
1242}
1243
1244/*
1245 * CPU models that are known to have the per-core split-lock detection
1246 * feature even though they do not enumerate IA32_CORE_CAPABILITIES.
1247 */
1248static const struct x86_cpu_id split_lock_cpu_ids[] __initconst = {
1249	X86_MATCH_INTEL_FAM6_MODEL(ICELAKE_X,	0),
1250	X86_MATCH_INTEL_FAM6_MODEL(ICELAKE_L,	0),
1251	X86_MATCH_INTEL_FAM6_MODEL(ICELAKE_D,	0),
1252	{}
1253};
1254
1255static void __init split_lock_setup(struct cpuinfo_x86 *c)
1256{
1257	const struct x86_cpu_id *m;
1258	u64 ia32_core_caps;
1259
1260	if (boot_cpu_has(X86_FEATURE_HYPERVISOR))
1261		return;
1262
1263	/* Check for CPUs that have support but do not enumerate it: */
1264	m = x86_match_cpu(split_lock_cpu_ids);
1265	if (m)
1266		goto supported;
1267
1268	if (!cpu_has(c, X86_FEATURE_CORE_CAPABILITIES))
1269		return;
1270
1271	/*
1272	 * Not all bits in MSR_IA32_CORE_CAPS are architectural, but
1273	 * MSR_IA32_CORE_CAPS_SPLIT_LOCK_DETECT is.  All CPUs that set
1274	 * it have split lock detection.
1275	 */
1276	rdmsrl(MSR_IA32_CORE_CAPS, ia32_core_caps);
1277	if (ia32_core_caps & MSR_IA32_CORE_CAPS_SPLIT_LOCK_DETECT)
1278		goto supported;
1279
1280	/* CPU is not in the model list and does not have the MSR bit: */
1281	return;
1282
1283supported:
1284	cpu_model_supports_sld = true;
1285	__split_lock_setup();
1286}
1287
1288static void sld_state_show(void)
1289{
1290	if (!boot_cpu_has(X86_FEATURE_BUS_LOCK_DETECT) &&
1291	    !boot_cpu_has(X86_FEATURE_SPLIT_LOCK_DETECT))
1292		return;
1293
1294	switch (sld_state) {
1295	case sld_off:
1296		pr_info("disabled\n");
1297		break;
1298	case sld_warn:
1299		if (boot_cpu_has(X86_FEATURE_SPLIT_LOCK_DETECT)) {
1300			pr_info("#AC: crashing the kernel on kernel split_locks and warning on user-space split_locks\n");
1301			if (cpuhp_setup_state(CPUHP_AP_ONLINE_DYN,
1302					      "x86/splitlock", NULL, splitlock_cpu_offline) < 0)
1303				pr_warn("No splitlock CPU offline handler\n");
1304		} else if (boot_cpu_has(X86_FEATURE_BUS_LOCK_DETECT)) {
1305			pr_info("#DB: warning on user-space bus_locks\n");
1306		}
1307		break;
1308	case sld_fatal:
1309		if (boot_cpu_has(X86_FEATURE_SPLIT_LOCK_DETECT)) {
1310			pr_info("#AC: crashing the kernel on kernel split_locks and sending SIGBUS on user-space split_locks\n");
1311		} else if (boot_cpu_has(X86_FEATURE_BUS_LOCK_DETECT)) {
1312			pr_info("#DB: sending SIGBUS on user-space bus_locks%s\n",
1313				boot_cpu_has(X86_FEATURE_SPLIT_LOCK_DETECT) ?
1314				" from non-WB" : "");
1315		}
1316		break;
1317	case sld_ratelimit:
1318		if (boot_cpu_has(X86_FEATURE_BUS_LOCK_DETECT))
1319			pr_info("#DB: setting system wide bus lock rate limit to %u/sec\n", bld_ratelimit.burst);
1320		break;
1321	}
1322}
1323
1324void __init sld_setup(struct cpuinfo_x86 *c)
1325{
1326	split_lock_setup(c);
1327	sld_state_setup();
1328	sld_state_show();
1329}
1330
1331#define X86_HYBRID_CPU_TYPE_ID_SHIFT	24
1332
1333/**
1334 * get_this_hybrid_cpu_type() - Get the type of this hybrid CPU
1335 *
1336 * Returns the CPU type [31:24] (i.e., Atom or Core) of a CPU in
1337 * a hybrid processor. If the processor is not hybrid, returns 0.
1338 */
1339u8 get_this_hybrid_cpu_type(void)
1340{
1341	if (!cpu_feature_enabled(X86_FEATURE_HYBRID_CPU))
1342		return 0;
1343
1344	return cpuid_eax(0x0000001a) >> X86_HYBRID_CPU_TYPE_ID_SHIFT;
1345}
1346