1// SPDX-License-Identifier: GPL-2.0-only
2/* cpu_feature_enabled() cannot be used this early */
3#define USE_EARLY_PGTABLE_L5
4
5#include <linux/memblock.h>
6#include <linux/linkage.h>
7#include <linux/bitops.h>
8#include <linux/kernel.h>
9#include <linux/export.h>
10#include <linux/percpu.h>
11#include <linux/string.h>
12#include <linux/ctype.h>
13#include <linux/delay.h>
14#include <linux/sched/mm.h>
15#include <linux/sched/clock.h>
16#include <linux/sched/task.h>
17#include <linux/sched/smt.h>
18#include <linux/init.h>
19#include <linux/kprobes.h>
20#include <linux/kgdb.h>
21#include <linux/mem_encrypt.h>
22#include <linux/smp.h>
23#include <linux/cpu.h>
24#include <linux/io.h>
25#include <linux/syscore_ops.h>
26#include <linux/pgtable.h>
27#include <linux/stackprotector.h>
28#include <linux/utsname.h>
29
30#include <asm/alternative.h>
31#include <asm/cmdline.h>
32#include <asm/perf_event.h>
33#include <asm/mmu_context.h>
34#include <asm/doublefault.h>
35#include <asm/archrandom.h>
36#include <asm/hypervisor.h>
37#include <asm/processor.h>
38#include <asm/tlbflush.h>
39#include <asm/debugreg.h>
40#include <asm/sections.h>
41#include <asm/vsyscall.h>
42#include <linux/topology.h>
43#include <linux/cpumask.h>
44#include <linux/atomic.h>
45#include <asm/proto.h>
46#include <asm/setup.h>
47#include <asm/apic.h>
48#include <asm/desc.h>
49#include <asm/fpu/api.h>
50#include <asm/mtrr.h>
51#include <asm/hwcap2.h>
52#include <linux/numa.h>
53#include <asm/numa.h>
54#include <asm/asm.h>
55#include <asm/bugs.h>
56#include <asm/cpu.h>
57#include <asm/mce.h>
58#include <asm/msr.h>
59#include <asm/cacheinfo.h>
60#include <asm/memtype.h>
61#include <asm/microcode.h>
62#include <asm/intel-family.h>
63#include <asm/cpu_device_id.h>
64#include <asm/fred.h>
65#include <asm/uv/uv.h>
66#include <asm/ia32.h>
67#include <asm/set_memory.h>
68#include <asm/traps.h>
69#include <asm/sev.h>
70#include <asm/tdx.h>
71
72#include "cpu.h"
73
74DEFINE_PER_CPU_READ_MOSTLY(struct cpuinfo_x86, cpu_info);
75EXPORT_PER_CPU_SYMBOL(cpu_info);
76
77u32 elf_hwcap2 __read_mostly;
78
79/* Number of siblings per CPU package */
80unsigned int __max_threads_per_core __ro_after_init = 1;
81EXPORT_SYMBOL(__max_threads_per_core);
82
83unsigned int __max_dies_per_package __ro_after_init = 1;
84EXPORT_SYMBOL(__max_dies_per_package);
85
86unsigned int __max_logical_packages __ro_after_init = 1;
87EXPORT_SYMBOL(__max_logical_packages);
88
89unsigned int __num_cores_per_package __ro_after_init = 1;
90EXPORT_SYMBOL(__num_cores_per_package);
91
92unsigned int __num_threads_per_package __ro_after_init = 1;
93EXPORT_SYMBOL(__num_threads_per_package);
94
95static struct ppin_info {
96	int	feature;
97	int	msr_ppin_ctl;
98	int	msr_ppin;
99} ppin_info[] = {
100	[X86_VENDOR_INTEL] = {
101		.feature = X86_FEATURE_INTEL_PPIN,
102		.msr_ppin_ctl = MSR_PPIN_CTL,
103		.msr_ppin = MSR_PPIN
104	},
105	[X86_VENDOR_AMD] = {
106		.feature = X86_FEATURE_AMD_PPIN,
107		.msr_ppin_ctl = MSR_AMD_PPIN_CTL,
108		.msr_ppin = MSR_AMD_PPIN
109	},
110};
111
112static const struct x86_cpu_id ppin_cpuids[] = {
113	X86_MATCH_FEATURE(X86_FEATURE_AMD_PPIN, &ppin_info[X86_VENDOR_AMD]),
114	X86_MATCH_FEATURE(X86_FEATURE_INTEL_PPIN, &ppin_info[X86_VENDOR_INTEL]),
115
116	/* Legacy models without CPUID enumeration */
117	X86_MATCH_INTEL_FAM6_MODEL(IVYBRIDGE_X, &ppin_info[X86_VENDOR_INTEL]),
118	X86_MATCH_INTEL_FAM6_MODEL(HASWELL_X, &ppin_info[X86_VENDOR_INTEL]),
119	X86_MATCH_INTEL_FAM6_MODEL(BROADWELL_D, &ppin_info[X86_VENDOR_INTEL]),
120	X86_MATCH_INTEL_FAM6_MODEL(BROADWELL_X, &ppin_info[X86_VENDOR_INTEL]),
121	X86_MATCH_INTEL_FAM6_MODEL(SKYLAKE_X, &ppin_info[X86_VENDOR_INTEL]),
122	X86_MATCH_INTEL_FAM6_MODEL(ICELAKE_X, &ppin_info[X86_VENDOR_INTEL]),
123	X86_MATCH_INTEL_FAM6_MODEL(ICELAKE_D, &ppin_info[X86_VENDOR_INTEL]),
124	X86_MATCH_INTEL_FAM6_MODEL(SAPPHIRERAPIDS_X, &ppin_info[X86_VENDOR_INTEL]),
125	X86_MATCH_INTEL_FAM6_MODEL(EMERALDRAPIDS_X, &ppin_info[X86_VENDOR_INTEL]),
126	X86_MATCH_INTEL_FAM6_MODEL(XEON_PHI_KNL, &ppin_info[X86_VENDOR_INTEL]),
127	X86_MATCH_INTEL_FAM6_MODEL(XEON_PHI_KNM, &ppin_info[X86_VENDOR_INTEL]),
128
129	{}
130};
131
132static void ppin_init(struct cpuinfo_x86 *c)
133{
134	const struct x86_cpu_id *id;
135	unsigned long long val;
136	struct ppin_info *info;
137
138	id = x86_match_cpu(ppin_cpuids);
139	if (!id)
140		return;
141
142	/*
143	 * Testing the presence of the MSR is not enough. Need to check
144	 * that the PPIN_CTL allows reading of the PPIN.
145	 */
146	info = (struct ppin_info *)id->driver_data;
147
148	if (rdmsrl_safe(info->msr_ppin_ctl, &val))
149		goto clear_ppin;
150
151	if ((val & 3UL) == 1UL) {
152		/* PPIN locked in disabled mode */
153		goto clear_ppin;
154	}
155
156	/* If PPIN is disabled, try to enable */
157	if (!(val & 2UL)) {
158		wrmsrl_safe(info->msr_ppin_ctl,  val | 2UL);
159		rdmsrl_safe(info->msr_ppin_ctl, &val);
160	}
161
162	/* Is the enable bit set? */
163	if (val & 2UL) {
164		c->ppin = __rdmsr(info->msr_ppin);
165		set_cpu_cap(c, info->feature);
166		return;
167	}
168
169clear_ppin:
170	clear_cpu_cap(c, info->feature);
171}
172
173static void default_init(struct cpuinfo_x86 *c)
174{
175#ifdef CONFIG_X86_64
176	cpu_detect_cache_sizes(c);
177#else
178	/* Not much we can do here... */
179	/* Check if at least it has cpuid */
180	if (c->cpuid_level == -1) {
181		/* No cpuid. It must be an ancient CPU */
182		if (c->x86 == 4)
183			strcpy(c->x86_model_id, "486");
184		else if (c->x86 == 3)
185			strcpy(c->x86_model_id, "386");
186	}
187#endif
188}
189
190static const struct cpu_dev default_cpu = {
191	.c_init		= default_init,
192	.c_vendor	= "Unknown",
193	.c_x86_vendor	= X86_VENDOR_UNKNOWN,
194};
195
196static const struct cpu_dev *this_cpu = &default_cpu;
197
198DEFINE_PER_CPU_PAGE_ALIGNED(struct gdt_page, gdt_page) = { .gdt = {
199#ifdef CONFIG_X86_64
200	/*
201	 * We need valid kernel segments for data and code in long mode too
202	 * IRET will check the segment types  kkeil 2000/10/28
203	 * Also sysret mandates a special GDT layout
204	 *
205	 * TLS descriptors are currently at a different place compared to i386.
206	 * Hopefully nobody expects them at a fixed place (Wine?)
207	 */
208	[GDT_ENTRY_KERNEL32_CS]		= GDT_ENTRY_INIT(DESC_CODE32, 0, 0xfffff),
209	[GDT_ENTRY_KERNEL_CS]		= GDT_ENTRY_INIT(DESC_CODE64, 0, 0xfffff),
210	[GDT_ENTRY_KERNEL_DS]		= GDT_ENTRY_INIT(DESC_DATA64, 0, 0xfffff),
211	[GDT_ENTRY_DEFAULT_USER32_CS]	= GDT_ENTRY_INIT(DESC_CODE32 | DESC_USER, 0, 0xfffff),
212	[GDT_ENTRY_DEFAULT_USER_DS]	= GDT_ENTRY_INIT(DESC_DATA64 | DESC_USER, 0, 0xfffff),
213	[GDT_ENTRY_DEFAULT_USER_CS]	= GDT_ENTRY_INIT(DESC_CODE64 | DESC_USER, 0, 0xfffff),
214#else
215	[GDT_ENTRY_KERNEL_CS]		= GDT_ENTRY_INIT(DESC_CODE32, 0, 0xfffff),
216	[GDT_ENTRY_KERNEL_DS]		= GDT_ENTRY_INIT(DESC_DATA32, 0, 0xfffff),
217	[GDT_ENTRY_DEFAULT_USER_CS]	= GDT_ENTRY_INIT(DESC_CODE32 | DESC_USER, 0, 0xfffff),
218	[GDT_ENTRY_DEFAULT_USER_DS]	= GDT_ENTRY_INIT(DESC_DATA32 | DESC_USER, 0, 0xfffff),
219	/*
220	 * Segments used for calling PnP BIOS have byte granularity.
221	 * They code segments and data segments have fixed 64k limits,
222	 * the transfer segment sizes are set at run time.
223	 */
224	[GDT_ENTRY_PNPBIOS_CS32]	= GDT_ENTRY_INIT(DESC_CODE32_BIOS, 0, 0xffff),
225	[GDT_ENTRY_PNPBIOS_CS16]	= GDT_ENTRY_INIT(DESC_CODE16, 0, 0xffff),
226	[GDT_ENTRY_PNPBIOS_DS]		= GDT_ENTRY_INIT(DESC_DATA16, 0, 0xffff),
227	[GDT_ENTRY_PNPBIOS_TS1]		= GDT_ENTRY_INIT(DESC_DATA16, 0, 0),
228	[GDT_ENTRY_PNPBIOS_TS2]		= GDT_ENTRY_INIT(DESC_DATA16, 0, 0),
229	/*
230	 * The APM segments have byte granularity and their bases
231	 * are set at run time.  All have 64k limits.
232	 */
233	[GDT_ENTRY_APMBIOS_BASE]	= GDT_ENTRY_INIT(DESC_CODE32_BIOS, 0, 0xffff),
234	[GDT_ENTRY_APMBIOS_BASE+1]	= GDT_ENTRY_INIT(DESC_CODE16, 0, 0xffff),
235	[GDT_ENTRY_APMBIOS_BASE+2]	= GDT_ENTRY_INIT(DESC_DATA32_BIOS, 0, 0xffff),
236
237	[GDT_ENTRY_ESPFIX_SS]		= GDT_ENTRY_INIT(DESC_DATA32, 0, 0xfffff),
238	[GDT_ENTRY_PERCPU]		= GDT_ENTRY_INIT(DESC_DATA32, 0, 0xfffff),
239#endif
240} };
241EXPORT_PER_CPU_SYMBOL_GPL(gdt_page);
242
243#ifdef CONFIG_X86_64
244static int __init x86_nopcid_setup(char *s)
245{
246	/* nopcid doesn't accept parameters */
247	if (s)
248		return -EINVAL;
249
250	/* do not emit a message if the feature is not present */
251	if (!boot_cpu_has(X86_FEATURE_PCID))
252		return 0;
253
254	setup_clear_cpu_cap(X86_FEATURE_PCID);
255	pr_info("nopcid: PCID feature disabled\n");
256	return 0;
257}
258early_param("nopcid", x86_nopcid_setup);
259#endif
260
261static int __init x86_noinvpcid_setup(char *s)
262{
263	/* noinvpcid doesn't accept parameters */
264	if (s)
265		return -EINVAL;
266
267	/* do not emit a message if the feature is not present */
268	if (!boot_cpu_has(X86_FEATURE_INVPCID))
269		return 0;
270
271	setup_clear_cpu_cap(X86_FEATURE_INVPCID);
272	pr_info("noinvpcid: INVPCID feature disabled\n");
273	return 0;
274}
275early_param("noinvpcid", x86_noinvpcid_setup);
276
277#ifdef CONFIG_X86_32
278static int cachesize_override = -1;
279static int disable_x86_serial_nr = 1;
280
281static int __init cachesize_setup(char *str)
282{
283	get_option(&str, &cachesize_override);
284	return 1;
285}
286__setup("cachesize=", cachesize_setup);
287
288/* Standard macro to see if a specific flag is changeable */
289static inline int flag_is_changeable_p(u32 flag)
290{
291	u32 f1, f2;
292
293	/*
294	 * Cyrix and IDT cpus allow disabling of CPUID
295	 * so the code below may return different results
296	 * when it is executed before and after enabling
297	 * the CPUID. Add "volatile" to not allow gcc to
298	 * optimize the subsequent calls to this function.
299	 */
300	asm volatile ("pushfl		\n\t"
301		      "pushfl		\n\t"
302		      "popl %0		\n\t"
303		      "movl %0, %1	\n\t"
304		      "xorl %2, %0	\n\t"
305		      "pushl %0		\n\t"
306		      "popfl		\n\t"
307		      "pushfl		\n\t"
308		      "popl %0		\n\t"
309		      "popfl		\n\t"
310
311		      : "=&r" (f1), "=&r" (f2)
312		      : "ir" (flag));
313
314	return ((f1^f2) & flag) != 0;
315}
316
317/* Probe for the CPUID instruction */
318int have_cpuid_p(void)
319{
320	return flag_is_changeable_p(X86_EFLAGS_ID);
321}
322
323static void squash_the_stupid_serial_number(struct cpuinfo_x86 *c)
324{
325	unsigned long lo, hi;
326
327	if (!cpu_has(c, X86_FEATURE_PN) || !disable_x86_serial_nr)
328		return;
329
330	/* Disable processor serial number: */
331
332	rdmsr(MSR_IA32_BBL_CR_CTL, lo, hi);
333	lo |= 0x200000;
334	wrmsr(MSR_IA32_BBL_CR_CTL, lo, hi);
335
336	pr_notice("CPU serial number disabled.\n");
337	clear_cpu_cap(c, X86_FEATURE_PN);
338
339	/* Disabling the serial number may affect the cpuid level */
340	c->cpuid_level = cpuid_eax(0);
341}
342
343static int __init x86_serial_nr_setup(char *s)
344{
345	disable_x86_serial_nr = 0;
346	return 1;
347}
348__setup("serialnumber", x86_serial_nr_setup);
349#else
350static inline int flag_is_changeable_p(u32 flag)
351{
352	return 1;
353}
354static inline void squash_the_stupid_serial_number(struct cpuinfo_x86 *c)
355{
356}
357#endif
358
359static __always_inline void setup_smep(struct cpuinfo_x86 *c)
360{
361	if (cpu_has(c, X86_FEATURE_SMEP))
362		cr4_set_bits(X86_CR4_SMEP);
363}
364
365static __always_inline void setup_smap(struct cpuinfo_x86 *c)
366{
367	unsigned long eflags = native_save_fl();
368
369	/* This should have been cleared long ago */
370	BUG_ON(eflags & X86_EFLAGS_AC);
371
372	if (cpu_has(c, X86_FEATURE_SMAP))
373		cr4_set_bits(X86_CR4_SMAP);
374}
375
376static __always_inline void setup_umip(struct cpuinfo_x86 *c)
377{
378	/* Check the boot processor, plus build option for UMIP. */
379	if (!cpu_feature_enabled(X86_FEATURE_UMIP))
380		goto out;
381
382	/* Check the current processor's cpuid bits. */
383	if (!cpu_has(c, X86_FEATURE_UMIP))
384		goto out;
385
386	cr4_set_bits(X86_CR4_UMIP);
387
388	pr_info_once("x86/cpu: User Mode Instruction Prevention (UMIP) activated\n");
389
390	return;
391
392out:
393	/*
394	 * Make sure UMIP is disabled in case it was enabled in a
395	 * previous boot (e.g., via kexec).
396	 */
397	cr4_clear_bits(X86_CR4_UMIP);
398}
399
400/* These bits should not change their value after CPU init is finished. */
401static const unsigned long cr4_pinned_mask = X86_CR4_SMEP | X86_CR4_SMAP | X86_CR4_UMIP |
402					     X86_CR4_FSGSBASE | X86_CR4_CET | X86_CR4_FRED;
403static DEFINE_STATIC_KEY_FALSE_RO(cr_pinning);
404static unsigned long cr4_pinned_bits __ro_after_init;
405
406void native_write_cr0(unsigned long val)
407{
408	unsigned long bits_missing = 0;
409
410set_register:
411	asm volatile("mov %0,%%cr0": "+r" (val) : : "memory");
412
413	if (static_branch_likely(&cr_pinning)) {
414		if (unlikely((val & X86_CR0_WP) != X86_CR0_WP)) {
415			bits_missing = X86_CR0_WP;
416			val |= bits_missing;
417			goto set_register;
418		}
419		/* Warn after we've set the missing bits. */
420		WARN_ONCE(bits_missing, "CR0 WP bit went missing!?\n");
421	}
422}
423EXPORT_SYMBOL(native_write_cr0);
424
425void __no_profile native_write_cr4(unsigned long val)
426{
427	unsigned long bits_changed = 0;
428
429set_register:
430	asm volatile("mov %0,%%cr4": "+r" (val) : : "memory");
431
432	if (static_branch_likely(&cr_pinning)) {
433		if (unlikely((val & cr4_pinned_mask) != cr4_pinned_bits)) {
434			bits_changed = (val & cr4_pinned_mask) ^ cr4_pinned_bits;
435			val = (val & ~cr4_pinned_mask) | cr4_pinned_bits;
436			goto set_register;
437		}
438		/* Warn after we've corrected the changed bits. */
439		WARN_ONCE(bits_changed, "pinned CR4 bits changed: 0x%lx!?\n",
440			  bits_changed);
441	}
442}
443#if IS_MODULE(CONFIG_LKDTM)
444EXPORT_SYMBOL_GPL(native_write_cr4);
445#endif
446
447void cr4_update_irqsoff(unsigned long set, unsigned long clear)
448{
449	unsigned long newval, cr4 = this_cpu_read(cpu_tlbstate.cr4);
450
451	lockdep_assert_irqs_disabled();
452
453	newval = (cr4 & ~clear) | set;
454	if (newval != cr4) {
455		this_cpu_write(cpu_tlbstate.cr4, newval);
456		__write_cr4(newval);
457	}
458}
459EXPORT_SYMBOL(cr4_update_irqsoff);
460
461/* Read the CR4 shadow. */
462unsigned long cr4_read_shadow(void)
463{
464	return this_cpu_read(cpu_tlbstate.cr4);
465}
466EXPORT_SYMBOL_GPL(cr4_read_shadow);
467
468void cr4_init(void)
469{
470	unsigned long cr4 = __read_cr4();
471
472	if (boot_cpu_has(X86_FEATURE_PCID))
473		cr4 |= X86_CR4_PCIDE;
474	if (static_branch_likely(&cr_pinning))
475		cr4 = (cr4 & ~cr4_pinned_mask) | cr4_pinned_bits;
476
477	__write_cr4(cr4);
478
479	/* Initialize cr4 shadow for this CPU. */
480	this_cpu_write(cpu_tlbstate.cr4, cr4);
481}
482
483/*
484 * Once CPU feature detection is finished (and boot params have been
485 * parsed), record any of the sensitive CR bits that are set, and
486 * enable CR pinning.
487 */
488static void __init setup_cr_pinning(void)
489{
490	cr4_pinned_bits = this_cpu_read(cpu_tlbstate.cr4) & cr4_pinned_mask;
491	static_key_enable(&cr_pinning.key);
492}
493
494static __init int x86_nofsgsbase_setup(char *arg)
495{
496	/* Require an exact match without trailing characters. */
497	if (strlen(arg))
498		return 0;
499
500	/* Do not emit a message if the feature is not present. */
501	if (!boot_cpu_has(X86_FEATURE_FSGSBASE))
502		return 1;
503
504	setup_clear_cpu_cap(X86_FEATURE_FSGSBASE);
505	pr_info("FSGSBASE disabled via kernel command line\n");
506	return 1;
507}
508__setup("nofsgsbase", x86_nofsgsbase_setup);
509
510/*
511 * Protection Keys are not available in 32-bit mode.
512 */
513static bool pku_disabled;
514
515static __always_inline void setup_pku(struct cpuinfo_x86 *c)
516{
517	if (c == &boot_cpu_data) {
518		if (pku_disabled || !cpu_feature_enabled(X86_FEATURE_PKU))
519			return;
520		/*
521		 * Setting CR4.PKE will cause the X86_FEATURE_OSPKE cpuid
522		 * bit to be set.  Enforce it.
523		 */
524		setup_force_cpu_cap(X86_FEATURE_OSPKE);
525
526	} else if (!cpu_feature_enabled(X86_FEATURE_OSPKE)) {
527		return;
528	}
529
530	cr4_set_bits(X86_CR4_PKE);
531	/* Load the default PKRU value */
532	pkru_write_default();
533}
534
535#ifdef CONFIG_X86_INTEL_MEMORY_PROTECTION_KEYS
536static __init int setup_disable_pku(char *arg)
537{
538	/*
539	 * Do not clear the X86_FEATURE_PKU bit.  All of the
540	 * runtime checks are against OSPKE so clearing the
541	 * bit does nothing.
542	 *
543	 * This way, we will see "pku" in cpuinfo, but not
544	 * "ospke", which is exactly what we want.  It shows
545	 * that the CPU has PKU, but the OS has not enabled it.
546	 * This happens to be exactly how a system would look
547	 * if we disabled the config option.
548	 */
549	pr_info("x86: 'nopku' specified, disabling Memory Protection Keys\n");
550	pku_disabled = true;
551	return 1;
552}
553__setup("nopku", setup_disable_pku);
554#endif
555
556#ifdef CONFIG_X86_KERNEL_IBT
557
558__noendbr u64 ibt_save(bool disable)
559{
560	u64 msr = 0;
561
562	if (cpu_feature_enabled(X86_FEATURE_IBT)) {
563		rdmsrl(MSR_IA32_S_CET, msr);
564		if (disable)
565			wrmsrl(MSR_IA32_S_CET, msr & ~CET_ENDBR_EN);
566	}
567
568	return msr;
569}
570
571__noendbr void ibt_restore(u64 save)
572{
573	u64 msr;
574
575	if (cpu_feature_enabled(X86_FEATURE_IBT)) {
576		rdmsrl(MSR_IA32_S_CET, msr);
577		msr &= ~CET_ENDBR_EN;
578		msr |= (save & CET_ENDBR_EN);
579		wrmsrl(MSR_IA32_S_CET, msr);
580	}
581}
582
583#endif
584
585static __always_inline void setup_cet(struct cpuinfo_x86 *c)
586{
587	bool user_shstk, kernel_ibt;
588
589	if (!IS_ENABLED(CONFIG_X86_CET))
590		return;
591
592	kernel_ibt = HAS_KERNEL_IBT && cpu_feature_enabled(X86_FEATURE_IBT);
593	user_shstk = cpu_feature_enabled(X86_FEATURE_SHSTK) &&
594		     IS_ENABLED(CONFIG_X86_USER_SHADOW_STACK);
595
596	if (!kernel_ibt && !user_shstk)
597		return;
598
599	if (user_shstk)
600		set_cpu_cap(c, X86_FEATURE_USER_SHSTK);
601
602	if (kernel_ibt)
603		wrmsrl(MSR_IA32_S_CET, CET_ENDBR_EN);
604	else
605		wrmsrl(MSR_IA32_S_CET, 0);
606
607	cr4_set_bits(X86_CR4_CET);
608
609	if (kernel_ibt && ibt_selftest()) {
610		pr_err("IBT selftest: Failed!\n");
611		wrmsrl(MSR_IA32_S_CET, 0);
612		setup_clear_cpu_cap(X86_FEATURE_IBT);
613	}
614}
615
616__noendbr void cet_disable(void)
617{
618	if (!(cpu_feature_enabled(X86_FEATURE_IBT) ||
619	      cpu_feature_enabled(X86_FEATURE_SHSTK)))
620		return;
621
622	wrmsrl(MSR_IA32_S_CET, 0);
623	wrmsrl(MSR_IA32_U_CET, 0);
624}
625
626/*
627 * Some CPU features depend on higher CPUID levels, which may not always
628 * be available due to CPUID level capping or broken virtualization
629 * software.  Add those features to this table to auto-disable them.
630 */
631struct cpuid_dependent_feature {
632	u32 feature;
633	u32 level;
634};
635
636static const struct cpuid_dependent_feature
637cpuid_dependent_features[] = {
638	{ X86_FEATURE_MWAIT,		0x00000005 },
639	{ X86_FEATURE_DCA,		0x00000009 },
640	{ X86_FEATURE_XSAVE,		0x0000000d },
641	{ 0, 0 }
642};
643
644static void filter_cpuid_features(struct cpuinfo_x86 *c, bool warn)
645{
646	const struct cpuid_dependent_feature *df;
647
648	for (df = cpuid_dependent_features; df->feature; df++) {
649
650		if (!cpu_has(c, df->feature))
651			continue;
652		/*
653		 * Note: cpuid_level is set to -1 if unavailable, but
654		 * extended_extended_level is set to 0 if unavailable
655		 * and the legitimate extended levels are all negative
656		 * when signed; hence the weird messing around with
657		 * signs here...
658		 */
659		if (!((s32)df->level < 0 ?
660		     (u32)df->level > (u32)c->extended_cpuid_level :
661		     (s32)df->level > (s32)c->cpuid_level))
662			continue;
663
664		clear_cpu_cap(c, df->feature);
665		if (!warn)
666			continue;
667
668		pr_warn("CPU: CPU feature " X86_CAP_FMT " disabled, no CPUID level 0x%x\n",
669			x86_cap_flag(df->feature), df->level);
670	}
671}
672
673/*
674 * Naming convention should be: <Name> [(<Codename>)]
675 * This table only is used unless init_<vendor>() below doesn't set it;
676 * in particular, if CPUID levels 0x80000002..4 are supported, this
677 * isn't used
678 */
679
680/* Look up CPU names by table lookup. */
681static const char *table_lookup_model(struct cpuinfo_x86 *c)
682{
683#ifdef CONFIG_X86_32
684	const struct legacy_cpu_model_info *info;
685
686	if (c->x86_model >= 16)
687		return NULL;	/* Range check */
688
689	if (!this_cpu)
690		return NULL;
691
692	info = this_cpu->legacy_models;
693
694	while (info->family) {
695		if (info->family == c->x86)
696			return info->model_names[c->x86_model];
697		info++;
698	}
699#endif
700	return NULL;		/* Not found */
701}
702
703/* Aligned to unsigned long to avoid split lock in atomic bitmap ops */
704__u32 cpu_caps_cleared[NCAPINTS + NBUGINTS] __aligned(sizeof(unsigned long));
705__u32 cpu_caps_set[NCAPINTS + NBUGINTS] __aligned(sizeof(unsigned long));
706
707#ifdef CONFIG_X86_32
708/* The 32-bit entry code needs to find cpu_entry_area. */
709DEFINE_PER_CPU(struct cpu_entry_area *, cpu_entry_area);
710#endif
711
712/* Load the original GDT from the per-cpu structure */
713void load_direct_gdt(int cpu)
714{
715	struct desc_ptr gdt_descr;
716
717	gdt_descr.address = (long)get_cpu_gdt_rw(cpu);
718	gdt_descr.size = GDT_SIZE - 1;
719	load_gdt(&gdt_descr);
720}
721EXPORT_SYMBOL_GPL(load_direct_gdt);
722
723/* Load a fixmap remapping of the per-cpu GDT */
724void load_fixmap_gdt(int cpu)
725{
726	struct desc_ptr gdt_descr;
727
728	gdt_descr.address = (long)get_cpu_gdt_ro(cpu);
729	gdt_descr.size = GDT_SIZE - 1;
730	load_gdt(&gdt_descr);
731}
732EXPORT_SYMBOL_GPL(load_fixmap_gdt);
733
734/**
735 * switch_gdt_and_percpu_base - Switch to direct GDT and runtime per CPU base
736 * @cpu:	The CPU number for which this is invoked
737 *
738 * Invoked during early boot to switch from early GDT and early per CPU to
739 * the direct GDT and the runtime per CPU area. On 32-bit the percpu base
740 * switch is implicit by loading the direct GDT. On 64bit this requires
741 * to update GSBASE.
742 */
743void __init switch_gdt_and_percpu_base(int cpu)
744{
745	load_direct_gdt(cpu);
746
747#ifdef CONFIG_X86_64
748	/*
749	 * No need to load %gs. It is already correct.
750	 *
751	 * Writing %gs on 64bit would zero GSBASE which would make any per
752	 * CPU operation up to the point of the wrmsrl() fault.
753	 *
754	 * Set GSBASE to the new offset. Until the wrmsrl() happens the
755	 * early mapping is still valid. That means the GSBASE update will
756	 * lose any prior per CPU data which was not copied over in
757	 * setup_per_cpu_areas().
758	 *
759	 * This works even with stackprotector enabled because the
760	 * per CPU stack canary is 0 in both per CPU areas.
761	 */
762	wrmsrl(MSR_GS_BASE, cpu_kernelmode_gs_base(cpu));
763#else
764	/*
765	 * %fs is already set to __KERNEL_PERCPU, but after switching GDT
766	 * it is required to load FS again so that the 'hidden' part is
767	 * updated from the new GDT. Up to this point the early per CPU
768	 * translation is active. Any content of the early per CPU data
769	 * which was not copied over in setup_per_cpu_areas() is lost.
770	 */
771	loadsegment(fs, __KERNEL_PERCPU);
772#endif
773}
774
775static const struct cpu_dev *cpu_devs[X86_VENDOR_NUM] = {};
776
777static void get_model_name(struct cpuinfo_x86 *c)
778{
779	unsigned int *v;
780	char *p, *q, *s;
781
782	if (c->extended_cpuid_level < 0x80000004)
783		return;
784
785	v = (unsigned int *)c->x86_model_id;
786	cpuid(0x80000002, &v[0], &v[1], &v[2], &v[3]);
787	cpuid(0x80000003, &v[4], &v[5], &v[6], &v[7]);
788	cpuid(0x80000004, &v[8], &v[9], &v[10], &v[11]);
789	c->x86_model_id[48] = 0;
790
791	/* Trim whitespace */
792	p = q = s = &c->x86_model_id[0];
793
794	while (*p == ' ')
795		p++;
796
797	while (*p) {
798		/* Note the last non-whitespace index */
799		if (!isspace(*p))
800			s = q;
801
802		*q++ = *p++;
803	}
804
805	*(s + 1) = '\0';
806}
807
808void cpu_detect_cache_sizes(struct cpuinfo_x86 *c)
809{
810	unsigned int n, dummy, ebx, ecx, edx, l2size;
811
812	n = c->extended_cpuid_level;
813
814	if (n >= 0x80000005) {
815		cpuid(0x80000005, &dummy, &ebx, &ecx, &edx);
816		c->x86_cache_size = (ecx>>24) + (edx>>24);
817#ifdef CONFIG_X86_64
818		/* On K8 L1 TLB is inclusive, so don't count it */
819		c->x86_tlbsize = 0;
820#endif
821	}
822
823	if (n < 0x80000006)	/* Some chips just has a large L1. */
824		return;
825
826	cpuid(0x80000006, &dummy, &ebx, &ecx, &edx);
827	l2size = ecx >> 16;
828
829#ifdef CONFIG_X86_64
830	c->x86_tlbsize += ((ebx >> 16) & 0xfff) + (ebx & 0xfff);
831#else
832	/* do processor-specific cache resizing */
833	if (this_cpu->legacy_cache_size)
834		l2size = this_cpu->legacy_cache_size(c, l2size);
835
836	/* Allow user to override all this if necessary. */
837	if (cachesize_override != -1)
838		l2size = cachesize_override;
839
840	if (l2size == 0)
841		return;		/* Again, no L2 cache is possible */
842#endif
843
844	c->x86_cache_size = l2size;
845}
846
847u16 __read_mostly tlb_lli_4k[NR_INFO];
848u16 __read_mostly tlb_lli_2m[NR_INFO];
849u16 __read_mostly tlb_lli_4m[NR_INFO];
850u16 __read_mostly tlb_lld_4k[NR_INFO];
851u16 __read_mostly tlb_lld_2m[NR_INFO];
852u16 __read_mostly tlb_lld_4m[NR_INFO];
853u16 __read_mostly tlb_lld_1g[NR_INFO];
854
855static void cpu_detect_tlb(struct cpuinfo_x86 *c)
856{
857	if (this_cpu->c_detect_tlb)
858		this_cpu->c_detect_tlb(c);
859
860	pr_info("Last level iTLB entries: 4KB %d, 2MB %d, 4MB %d\n",
861		tlb_lli_4k[ENTRIES], tlb_lli_2m[ENTRIES],
862		tlb_lli_4m[ENTRIES]);
863
864	pr_info("Last level dTLB entries: 4KB %d, 2MB %d, 4MB %d, 1GB %d\n",
865		tlb_lld_4k[ENTRIES], tlb_lld_2m[ENTRIES],
866		tlb_lld_4m[ENTRIES], tlb_lld_1g[ENTRIES]);
867}
868
869static void get_cpu_vendor(struct cpuinfo_x86 *c)
870{
871	char *v = c->x86_vendor_id;
872	int i;
873
874	for (i = 0; i < X86_VENDOR_NUM; i++) {
875		if (!cpu_devs[i])
876			break;
877
878		if (!strcmp(v, cpu_devs[i]->c_ident[0]) ||
879		    (cpu_devs[i]->c_ident[1] &&
880		     !strcmp(v, cpu_devs[i]->c_ident[1]))) {
881
882			this_cpu = cpu_devs[i];
883			c->x86_vendor = this_cpu->c_x86_vendor;
884			return;
885		}
886	}
887
888	pr_err_once("CPU: vendor_id '%s' unknown, using generic init.\n" \
889		    "CPU: Your system may be unstable.\n", v);
890
891	c->x86_vendor = X86_VENDOR_UNKNOWN;
892	this_cpu = &default_cpu;
893}
894
895void cpu_detect(struct cpuinfo_x86 *c)
896{
897	/* Get vendor name */
898	cpuid(0x00000000, (unsigned int *)&c->cpuid_level,
899	      (unsigned int *)&c->x86_vendor_id[0],
900	      (unsigned int *)&c->x86_vendor_id[8],
901	      (unsigned int *)&c->x86_vendor_id[4]);
902
903	c->x86 = 4;
904	/* Intel-defined flags: level 0x00000001 */
905	if (c->cpuid_level >= 0x00000001) {
906		u32 junk, tfms, cap0, misc;
907
908		cpuid(0x00000001, &tfms, &misc, &junk, &cap0);
909		c->x86		= x86_family(tfms);
910		c->x86_model	= x86_model(tfms);
911		c->x86_stepping	= x86_stepping(tfms);
912
913		if (cap0 & (1<<19)) {
914			c->x86_clflush_size = ((misc >> 8) & 0xff) * 8;
915			c->x86_cache_alignment = c->x86_clflush_size;
916		}
917	}
918}
919
920static void apply_forced_caps(struct cpuinfo_x86 *c)
921{
922	int i;
923
924	for (i = 0; i < NCAPINTS + NBUGINTS; i++) {
925		c->x86_capability[i] &= ~cpu_caps_cleared[i];
926		c->x86_capability[i] |= cpu_caps_set[i];
927	}
928}
929
930static void init_speculation_control(struct cpuinfo_x86 *c)
931{
932	/*
933	 * The Intel SPEC_CTRL CPUID bit implies IBRS and IBPB support,
934	 * and they also have a different bit for STIBP support. Also,
935	 * a hypervisor might have set the individual AMD bits even on
936	 * Intel CPUs, for finer-grained selection of what's available.
937	 */
938	if (cpu_has(c, X86_FEATURE_SPEC_CTRL)) {
939		set_cpu_cap(c, X86_FEATURE_IBRS);
940		set_cpu_cap(c, X86_FEATURE_IBPB);
941		set_cpu_cap(c, X86_FEATURE_MSR_SPEC_CTRL);
942	}
943
944	if (cpu_has(c, X86_FEATURE_INTEL_STIBP))
945		set_cpu_cap(c, X86_FEATURE_STIBP);
946
947	if (cpu_has(c, X86_FEATURE_SPEC_CTRL_SSBD) ||
948	    cpu_has(c, X86_FEATURE_VIRT_SSBD))
949		set_cpu_cap(c, X86_FEATURE_SSBD);
950
951	if (cpu_has(c, X86_FEATURE_AMD_IBRS)) {
952		set_cpu_cap(c, X86_FEATURE_IBRS);
953		set_cpu_cap(c, X86_FEATURE_MSR_SPEC_CTRL);
954	}
955
956	if (cpu_has(c, X86_FEATURE_AMD_IBPB))
957		set_cpu_cap(c, X86_FEATURE_IBPB);
958
959	if (cpu_has(c, X86_FEATURE_AMD_STIBP)) {
960		set_cpu_cap(c, X86_FEATURE_STIBP);
961		set_cpu_cap(c, X86_FEATURE_MSR_SPEC_CTRL);
962	}
963
964	if (cpu_has(c, X86_FEATURE_AMD_SSBD)) {
965		set_cpu_cap(c, X86_FEATURE_SSBD);
966		set_cpu_cap(c, X86_FEATURE_MSR_SPEC_CTRL);
967		clear_cpu_cap(c, X86_FEATURE_VIRT_SSBD);
968	}
969}
970
971void get_cpu_cap(struct cpuinfo_x86 *c)
972{
973	u32 eax, ebx, ecx, edx;
974
975	/* Intel-defined flags: level 0x00000001 */
976	if (c->cpuid_level >= 0x00000001) {
977		cpuid(0x00000001, &eax, &ebx, &ecx, &edx);
978
979		c->x86_capability[CPUID_1_ECX] = ecx;
980		c->x86_capability[CPUID_1_EDX] = edx;
981	}
982
983	/* Thermal and Power Management Leaf: level 0x00000006 (eax) */
984	if (c->cpuid_level >= 0x00000006)
985		c->x86_capability[CPUID_6_EAX] = cpuid_eax(0x00000006);
986
987	/* Additional Intel-defined flags: level 0x00000007 */
988	if (c->cpuid_level >= 0x00000007) {
989		cpuid_count(0x00000007, 0, &eax, &ebx, &ecx, &edx);
990		c->x86_capability[CPUID_7_0_EBX] = ebx;
991		c->x86_capability[CPUID_7_ECX] = ecx;
992		c->x86_capability[CPUID_7_EDX] = edx;
993
994		/* Check valid sub-leaf index before accessing it */
995		if (eax >= 1) {
996			cpuid_count(0x00000007, 1, &eax, &ebx, &ecx, &edx);
997			c->x86_capability[CPUID_7_1_EAX] = eax;
998		}
999	}
1000
1001	/* Extended state features: level 0x0000000d */
1002	if (c->cpuid_level >= 0x0000000d) {
1003		cpuid_count(0x0000000d, 1, &eax, &ebx, &ecx, &edx);
1004
1005		c->x86_capability[CPUID_D_1_EAX] = eax;
1006	}
1007
1008	/* AMD-defined flags: level 0x80000001 */
1009	eax = cpuid_eax(0x80000000);
1010	c->extended_cpuid_level = eax;
1011
1012	if ((eax & 0xffff0000) == 0x80000000) {
1013		if (eax >= 0x80000001) {
1014			cpuid(0x80000001, &eax, &ebx, &ecx, &edx);
1015
1016			c->x86_capability[CPUID_8000_0001_ECX] = ecx;
1017			c->x86_capability[CPUID_8000_0001_EDX] = edx;
1018		}
1019	}
1020
1021	if (c->extended_cpuid_level >= 0x80000007) {
1022		cpuid(0x80000007, &eax, &ebx, &ecx, &edx);
1023
1024		c->x86_capability[CPUID_8000_0007_EBX] = ebx;
1025		c->x86_power = edx;
1026	}
1027
1028	if (c->extended_cpuid_level >= 0x80000008) {
1029		cpuid(0x80000008, &eax, &ebx, &ecx, &edx);
1030		c->x86_capability[CPUID_8000_0008_EBX] = ebx;
1031	}
1032
1033	if (c->extended_cpuid_level >= 0x8000000a)
1034		c->x86_capability[CPUID_8000_000A_EDX] = cpuid_edx(0x8000000a);
1035
1036	if (c->extended_cpuid_level >= 0x8000001f)
1037		c->x86_capability[CPUID_8000_001F_EAX] = cpuid_eax(0x8000001f);
1038
1039	if (c->extended_cpuid_level >= 0x80000021)
1040		c->x86_capability[CPUID_8000_0021_EAX] = cpuid_eax(0x80000021);
1041
1042	init_scattered_cpuid_features(c);
1043	init_speculation_control(c);
1044
1045	/*
1046	 * Clear/Set all flags overridden by options, after probe.
1047	 * This needs to happen each time we re-probe, which may happen
1048	 * several times during CPU initialization.
1049	 */
1050	apply_forced_caps(c);
1051}
1052
1053void get_cpu_address_sizes(struct cpuinfo_x86 *c)
1054{
1055	u32 eax, ebx, ecx, edx;
1056	bool vp_bits_from_cpuid = true;
1057
1058	if (!cpu_has(c, X86_FEATURE_CPUID) ||
1059	    (c->extended_cpuid_level < 0x80000008))
1060		vp_bits_from_cpuid = false;
1061
1062	if (vp_bits_from_cpuid) {
1063		cpuid(0x80000008, &eax, &ebx, &ecx, &edx);
1064
1065		c->x86_virt_bits = (eax >> 8) & 0xff;
1066		c->x86_phys_bits = eax & 0xff;
1067	} else {
1068		if (IS_ENABLED(CONFIG_X86_64)) {
1069			c->x86_clflush_size = 64;
1070			c->x86_phys_bits = 36;
1071			c->x86_virt_bits = 48;
1072		} else {
1073			c->x86_clflush_size = 32;
1074			c->x86_virt_bits = 32;
1075			c->x86_phys_bits = 32;
1076
1077			if (cpu_has(c, X86_FEATURE_PAE) ||
1078			    cpu_has(c, X86_FEATURE_PSE36))
1079				c->x86_phys_bits = 36;
1080		}
1081	}
1082	c->x86_cache_bits = c->x86_phys_bits;
1083	c->x86_cache_alignment = c->x86_clflush_size;
1084}
1085
1086static void identify_cpu_without_cpuid(struct cpuinfo_x86 *c)
1087{
1088#ifdef CONFIG_X86_32
1089	int i;
1090
1091	/*
1092	 * First of all, decide if this is a 486 or higher
1093	 * It's a 486 if we can modify the AC flag
1094	 */
1095	if (flag_is_changeable_p(X86_EFLAGS_AC))
1096		c->x86 = 4;
1097	else
1098		c->x86 = 3;
1099
1100	for (i = 0; i < X86_VENDOR_NUM; i++)
1101		if (cpu_devs[i] && cpu_devs[i]->c_identify) {
1102			c->x86_vendor_id[0] = 0;
1103			cpu_devs[i]->c_identify(c);
1104			if (c->x86_vendor_id[0]) {
1105				get_cpu_vendor(c);
1106				break;
1107			}
1108		}
1109#endif
1110}
1111
1112#define NO_SPECULATION		BIT(0)
1113#define NO_MELTDOWN		BIT(1)
1114#define NO_SSB			BIT(2)
1115#define NO_L1TF			BIT(3)
1116#define NO_MDS			BIT(4)
1117#define MSBDS_ONLY		BIT(5)
1118#define NO_SWAPGS		BIT(6)
1119#define NO_ITLB_MULTIHIT	BIT(7)
1120#define NO_SPECTRE_V2		BIT(8)
1121#define NO_MMIO			BIT(9)
1122#define NO_EIBRS_PBRSB		BIT(10)
1123#define NO_BHI			BIT(11)
1124
1125#define VULNWL(vendor, family, model, whitelist)	\
1126	X86_MATCH_VENDOR_FAM_MODEL(vendor, family, model, whitelist)
1127
1128#define VULNWL_INTEL(model, whitelist)		\
1129	VULNWL(INTEL, 6, INTEL_FAM6_##model, whitelist)
1130
1131#define VULNWL_AMD(family, whitelist)		\
1132	VULNWL(AMD, family, X86_MODEL_ANY, whitelist)
1133
1134#define VULNWL_HYGON(family, whitelist)		\
1135	VULNWL(HYGON, family, X86_MODEL_ANY, whitelist)
1136
1137static const __initconst struct x86_cpu_id cpu_vuln_whitelist[] = {
1138	VULNWL(ANY,	4, X86_MODEL_ANY,	NO_SPECULATION),
1139	VULNWL(CENTAUR,	5, X86_MODEL_ANY,	NO_SPECULATION),
1140	VULNWL(INTEL,	5, X86_MODEL_ANY,	NO_SPECULATION),
1141	VULNWL(NSC,	5, X86_MODEL_ANY,	NO_SPECULATION),
1142	VULNWL(VORTEX,	5, X86_MODEL_ANY,	NO_SPECULATION),
1143	VULNWL(VORTEX,	6, X86_MODEL_ANY,	NO_SPECULATION),
1144
1145	/* Intel Family 6 */
1146	VULNWL_INTEL(TIGERLAKE,			NO_MMIO),
1147	VULNWL_INTEL(TIGERLAKE_L,		NO_MMIO),
1148	VULNWL_INTEL(ALDERLAKE,			NO_MMIO),
1149	VULNWL_INTEL(ALDERLAKE_L,		NO_MMIO),
1150
1151	VULNWL_INTEL(ATOM_SALTWELL,		NO_SPECULATION | NO_ITLB_MULTIHIT),
1152	VULNWL_INTEL(ATOM_SALTWELL_TABLET,	NO_SPECULATION | NO_ITLB_MULTIHIT),
1153	VULNWL_INTEL(ATOM_SALTWELL_MID,		NO_SPECULATION | NO_ITLB_MULTIHIT),
1154	VULNWL_INTEL(ATOM_BONNELL,		NO_SPECULATION | NO_ITLB_MULTIHIT),
1155	VULNWL_INTEL(ATOM_BONNELL_MID,		NO_SPECULATION | NO_ITLB_MULTIHIT),
1156
1157	VULNWL_INTEL(ATOM_SILVERMONT,		NO_SSB | NO_L1TF | MSBDS_ONLY | NO_SWAPGS | NO_ITLB_MULTIHIT),
1158	VULNWL_INTEL(ATOM_SILVERMONT_D,		NO_SSB | NO_L1TF | MSBDS_ONLY | NO_SWAPGS | NO_ITLB_MULTIHIT),
1159	VULNWL_INTEL(ATOM_SILVERMONT_MID,	NO_SSB | NO_L1TF | MSBDS_ONLY | NO_SWAPGS | NO_ITLB_MULTIHIT),
1160	VULNWL_INTEL(ATOM_AIRMONT,		NO_SSB | NO_L1TF | MSBDS_ONLY | NO_SWAPGS | NO_ITLB_MULTIHIT),
1161	VULNWL_INTEL(XEON_PHI_KNL,		NO_SSB | NO_L1TF | MSBDS_ONLY | NO_SWAPGS | NO_ITLB_MULTIHIT),
1162	VULNWL_INTEL(XEON_PHI_KNM,		NO_SSB | NO_L1TF | MSBDS_ONLY | NO_SWAPGS | NO_ITLB_MULTIHIT),
1163
1164	VULNWL_INTEL(CORE_YONAH,		NO_SSB),
1165
1166	VULNWL_INTEL(ATOM_AIRMONT_MID,		NO_L1TF | MSBDS_ONLY | NO_SWAPGS | NO_ITLB_MULTIHIT),
1167	VULNWL_INTEL(ATOM_AIRMONT_NP,		NO_L1TF | NO_SWAPGS | NO_ITLB_MULTIHIT),
1168
1169	VULNWL_INTEL(ATOM_GOLDMONT,		NO_MDS | NO_L1TF | NO_SWAPGS | NO_ITLB_MULTIHIT | NO_MMIO),
1170	VULNWL_INTEL(ATOM_GOLDMONT_D,		NO_MDS | NO_L1TF | NO_SWAPGS | NO_ITLB_MULTIHIT | NO_MMIO),
1171	VULNWL_INTEL(ATOM_GOLDMONT_PLUS,	NO_MDS | NO_L1TF | NO_SWAPGS | NO_ITLB_MULTIHIT | NO_MMIO | NO_EIBRS_PBRSB),
1172
1173	/*
1174	 * Technically, swapgs isn't serializing on AMD (despite it previously
1175	 * being documented as such in the APM).  But according to AMD, %gs is
1176	 * updated non-speculatively, and the issuing of %gs-relative memory
1177	 * operands will be blocked until the %gs update completes, which is
1178	 * good enough for our purposes.
1179	 */
1180
1181	VULNWL_INTEL(ATOM_TREMONT,		NO_EIBRS_PBRSB),
1182	VULNWL_INTEL(ATOM_TREMONT_L,		NO_EIBRS_PBRSB),
1183	VULNWL_INTEL(ATOM_TREMONT_D,		NO_ITLB_MULTIHIT | NO_EIBRS_PBRSB),
1184
1185	/* AMD Family 0xf - 0x12 */
1186	VULNWL_AMD(0x0f,	NO_MELTDOWN | NO_SSB | NO_L1TF | NO_MDS | NO_SWAPGS | NO_ITLB_MULTIHIT | NO_MMIO | NO_BHI),
1187	VULNWL_AMD(0x10,	NO_MELTDOWN | NO_SSB | NO_L1TF | NO_MDS | NO_SWAPGS | NO_ITLB_MULTIHIT | NO_MMIO | NO_BHI),
1188	VULNWL_AMD(0x11,	NO_MELTDOWN | NO_SSB | NO_L1TF | NO_MDS | NO_SWAPGS | NO_ITLB_MULTIHIT | NO_MMIO | NO_BHI),
1189	VULNWL_AMD(0x12,	NO_MELTDOWN | NO_SSB | NO_L1TF | NO_MDS | NO_SWAPGS | NO_ITLB_MULTIHIT | NO_MMIO | NO_BHI),
1190
1191	/* FAMILY_ANY must be last, otherwise 0x0f - 0x12 matches won't work */
1192	VULNWL_AMD(X86_FAMILY_ANY,	NO_MELTDOWN | NO_L1TF | NO_MDS | NO_SWAPGS | NO_ITLB_MULTIHIT | NO_MMIO | NO_EIBRS_PBRSB | NO_BHI),
1193	VULNWL_HYGON(X86_FAMILY_ANY,	NO_MELTDOWN | NO_L1TF | NO_MDS | NO_SWAPGS | NO_ITLB_MULTIHIT | NO_MMIO | NO_EIBRS_PBRSB | NO_BHI),
1194
1195	/* Zhaoxin Family 7 */
1196	VULNWL(CENTAUR,	7, X86_MODEL_ANY,	NO_SPECTRE_V2 | NO_SWAPGS | NO_MMIO | NO_BHI),
1197	VULNWL(ZHAOXIN,	7, X86_MODEL_ANY,	NO_SPECTRE_V2 | NO_SWAPGS | NO_MMIO | NO_BHI),
1198	{}
1199};
1200
1201#define VULNBL(vendor, family, model, blacklist)	\
1202	X86_MATCH_VENDOR_FAM_MODEL(vendor, family, model, blacklist)
1203
1204#define VULNBL_INTEL_STEPPINGS(model, steppings, issues)		   \
1205	X86_MATCH_VENDOR_FAM_MODEL_STEPPINGS_FEATURE(INTEL, 6,		   \
1206					    INTEL_FAM6_##model, steppings, \
1207					    X86_FEATURE_ANY, issues)
1208
1209#define VULNBL_AMD(family, blacklist)		\
1210	VULNBL(AMD, family, X86_MODEL_ANY, blacklist)
1211
1212#define VULNBL_HYGON(family, blacklist)		\
1213	VULNBL(HYGON, family, X86_MODEL_ANY, blacklist)
1214
1215#define SRBDS		BIT(0)
1216/* CPU is affected by X86_BUG_MMIO_STALE_DATA */
1217#define MMIO		BIT(1)
1218/* CPU is affected by Shared Buffers Data Sampling (SBDS), a variant of X86_BUG_MMIO_STALE_DATA */
1219#define MMIO_SBDS	BIT(2)
1220/* CPU is affected by RETbleed, speculating where you would not expect it */
1221#define RETBLEED	BIT(3)
1222/* CPU is affected by SMT (cross-thread) return predictions */
1223#define SMT_RSB		BIT(4)
1224/* CPU is affected by SRSO */
1225#define SRSO		BIT(5)
1226/* CPU is affected by GDS */
1227#define GDS		BIT(6)
1228/* CPU is affected by Register File Data Sampling */
1229#define RFDS		BIT(7)
1230
1231static const struct x86_cpu_id cpu_vuln_blacklist[] __initconst = {
1232	VULNBL_INTEL_STEPPINGS(IVYBRIDGE,	X86_STEPPING_ANY,		SRBDS),
1233	VULNBL_INTEL_STEPPINGS(HASWELL,		X86_STEPPING_ANY,		SRBDS),
1234	VULNBL_INTEL_STEPPINGS(HASWELL_L,	X86_STEPPING_ANY,		SRBDS),
1235	VULNBL_INTEL_STEPPINGS(HASWELL_G,	X86_STEPPING_ANY,		SRBDS),
1236	VULNBL_INTEL_STEPPINGS(HASWELL_X,	X86_STEPPING_ANY,		MMIO),
1237	VULNBL_INTEL_STEPPINGS(BROADWELL_D,	X86_STEPPING_ANY,		MMIO),
1238	VULNBL_INTEL_STEPPINGS(BROADWELL_G,	X86_STEPPING_ANY,		SRBDS),
1239	VULNBL_INTEL_STEPPINGS(BROADWELL_X,	X86_STEPPING_ANY,		MMIO),
1240	VULNBL_INTEL_STEPPINGS(BROADWELL,	X86_STEPPING_ANY,		SRBDS),
1241	VULNBL_INTEL_STEPPINGS(SKYLAKE_X,	X86_STEPPING_ANY,		MMIO | RETBLEED | GDS),
1242	VULNBL_INTEL_STEPPINGS(SKYLAKE_L,	X86_STEPPING_ANY,		MMIO | RETBLEED | GDS | SRBDS),
1243	VULNBL_INTEL_STEPPINGS(SKYLAKE,		X86_STEPPING_ANY,		MMIO | RETBLEED | GDS | SRBDS),
1244	VULNBL_INTEL_STEPPINGS(KABYLAKE_L,	X86_STEPPING_ANY,		MMIO | RETBLEED | GDS | SRBDS),
1245	VULNBL_INTEL_STEPPINGS(KABYLAKE,	X86_STEPPING_ANY,		MMIO | RETBLEED | GDS | SRBDS),
1246	VULNBL_INTEL_STEPPINGS(CANNONLAKE_L,	X86_STEPPING_ANY,		RETBLEED),
1247	VULNBL_INTEL_STEPPINGS(ICELAKE_L,	X86_STEPPING_ANY,		MMIO | MMIO_SBDS | RETBLEED | GDS),
1248	VULNBL_INTEL_STEPPINGS(ICELAKE_D,	X86_STEPPING_ANY,		MMIO | GDS),
1249	VULNBL_INTEL_STEPPINGS(ICELAKE_X,	X86_STEPPING_ANY,		MMIO | GDS),
1250	VULNBL_INTEL_STEPPINGS(COMETLAKE,	X86_STEPPING_ANY,		MMIO | MMIO_SBDS | RETBLEED | GDS),
1251	VULNBL_INTEL_STEPPINGS(COMETLAKE_L,	X86_STEPPINGS(0x0, 0x0),	MMIO | RETBLEED),
1252	VULNBL_INTEL_STEPPINGS(COMETLAKE_L,	X86_STEPPING_ANY,		MMIO | MMIO_SBDS | RETBLEED | GDS),
1253	VULNBL_INTEL_STEPPINGS(TIGERLAKE_L,	X86_STEPPING_ANY,		GDS),
1254	VULNBL_INTEL_STEPPINGS(TIGERLAKE,	X86_STEPPING_ANY,		GDS),
1255	VULNBL_INTEL_STEPPINGS(LAKEFIELD,	X86_STEPPING_ANY,		MMIO | MMIO_SBDS | RETBLEED),
1256	VULNBL_INTEL_STEPPINGS(ROCKETLAKE,	X86_STEPPING_ANY,		MMIO | RETBLEED | GDS),
1257	VULNBL_INTEL_STEPPINGS(ALDERLAKE,	X86_STEPPING_ANY,		RFDS),
1258	VULNBL_INTEL_STEPPINGS(ALDERLAKE_L,	X86_STEPPING_ANY,		RFDS),
1259	VULNBL_INTEL_STEPPINGS(RAPTORLAKE,	X86_STEPPING_ANY,		RFDS),
1260	VULNBL_INTEL_STEPPINGS(RAPTORLAKE_P,	X86_STEPPING_ANY,		RFDS),
1261	VULNBL_INTEL_STEPPINGS(RAPTORLAKE_S,	X86_STEPPING_ANY,		RFDS),
1262	VULNBL_INTEL_STEPPINGS(ATOM_GRACEMONT,	X86_STEPPING_ANY,		RFDS),
1263	VULNBL_INTEL_STEPPINGS(ATOM_TREMONT,	X86_STEPPING_ANY,		MMIO | MMIO_SBDS | RFDS),
1264	VULNBL_INTEL_STEPPINGS(ATOM_TREMONT_D,	X86_STEPPING_ANY,		MMIO | RFDS),
1265	VULNBL_INTEL_STEPPINGS(ATOM_TREMONT_L,	X86_STEPPING_ANY,		MMIO | MMIO_SBDS | RFDS),
1266	VULNBL_INTEL_STEPPINGS(ATOM_GOLDMONT,	X86_STEPPING_ANY,		RFDS),
1267	VULNBL_INTEL_STEPPINGS(ATOM_GOLDMONT_D,	X86_STEPPING_ANY,		RFDS),
1268	VULNBL_INTEL_STEPPINGS(ATOM_GOLDMONT_PLUS, X86_STEPPING_ANY,		RFDS),
1269
1270	VULNBL_AMD(0x15, RETBLEED),
1271	VULNBL_AMD(0x16, RETBLEED),
1272	VULNBL_AMD(0x17, RETBLEED | SMT_RSB | SRSO),
1273	VULNBL_HYGON(0x18, RETBLEED | SMT_RSB | SRSO),
1274	VULNBL_AMD(0x19, SRSO),
1275	{}
1276};
1277
1278static bool __init cpu_matches(const struct x86_cpu_id *table, unsigned long which)
1279{
1280	const struct x86_cpu_id *m = x86_match_cpu(table);
1281
1282	return m && !!(m->driver_data & which);
1283}
1284
1285u64 x86_read_arch_cap_msr(void)
1286{
1287	u64 x86_arch_cap_msr = 0;
1288
1289	if (boot_cpu_has(X86_FEATURE_ARCH_CAPABILITIES))
1290		rdmsrl(MSR_IA32_ARCH_CAPABILITIES, x86_arch_cap_msr);
1291
1292	return x86_arch_cap_msr;
1293}
1294
1295static bool arch_cap_mmio_immune(u64 x86_arch_cap_msr)
1296{
1297	return (x86_arch_cap_msr & ARCH_CAP_FBSDP_NO &&
1298		x86_arch_cap_msr & ARCH_CAP_PSDP_NO &&
1299		x86_arch_cap_msr & ARCH_CAP_SBDR_SSDP_NO);
1300}
1301
1302static bool __init vulnerable_to_rfds(u64 x86_arch_cap_msr)
1303{
1304	/* The "immunity" bit trumps everything else: */
1305	if (x86_arch_cap_msr & ARCH_CAP_RFDS_NO)
1306		return false;
1307
1308	/*
1309	 * VMMs set ARCH_CAP_RFDS_CLEAR for processors not in the blacklist to
1310	 * indicate that mitigation is needed because guest is running on a
1311	 * vulnerable hardware or may migrate to such hardware:
1312	 */
1313	if (x86_arch_cap_msr & ARCH_CAP_RFDS_CLEAR)
1314		return true;
1315
1316	/* Only consult the blacklist when there is no enumeration: */
1317	return cpu_matches(cpu_vuln_blacklist, RFDS);
1318}
1319
1320static void __init cpu_set_bug_bits(struct cpuinfo_x86 *c)
1321{
1322	u64 x86_arch_cap_msr = x86_read_arch_cap_msr();
1323
1324	/* Set ITLB_MULTIHIT bug if cpu is not in the whitelist and not mitigated */
1325	if (!cpu_matches(cpu_vuln_whitelist, NO_ITLB_MULTIHIT) &&
1326	    !(x86_arch_cap_msr & ARCH_CAP_PSCHANGE_MC_NO))
1327		setup_force_cpu_bug(X86_BUG_ITLB_MULTIHIT);
1328
1329	if (cpu_matches(cpu_vuln_whitelist, NO_SPECULATION))
1330		return;
1331
1332	setup_force_cpu_bug(X86_BUG_SPECTRE_V1);
1333
1334	if (!cpu_matches(cpu_vuln_whitelist, NO_SPECTRE_V2))
1335		setup_force_cpu_bug(X86_BUG_SPECTRE_V2);
1336
1337	if (!cpu_matches(cpu_vuln_whitelist, NO_SSB) &&
1338	    !(x86_arch_cap_msr & ARCH_CAP_SSB_NO) &&
1339	   !cpu_has(c, X86_FEATURE_AMD_SSB_NO))
1340		setup_force_cpu_bug(X86_BUG_SPEC_STORE_BYPASS);
1341
1342	/*
1343	 * AMD's AutoIBRS is equivalent to Intel's eIBRS - use the Intel feature
1344	 * flag and protect from vendor-specific bugs via the whitelist.
1345	 *
1346	 * Don't use AutoIBRS when SNP is enabled because it degrades host
1347	 * userspace indirect branch performance.
1348	 */
1349	if ((x86_arch_cap_msr & ARCH_CAP_IBRS_ALL) ||
1350	    (cpu_has(c, X86_FEATURE_AUTOIBRS) &&
1351	     !cpu_feature_enabled(X86_FEATURE_SEV_SNP))) {
1352		setup_force_cpu_cap(X86_FEATURE_IBRS_ENHANCED);
1353		if (!cpu_matches(cpu_vuln_whitelist, NO_EIBRS_PBRSB) &&
1354		    !(x86_arch_cap_msr & ARCH_CAP_PBRSB_NO))
1355			setup_force_cpu_bug(X86_BUG_EIBRS_PBRSB);
1356	}
1357
1358	if (!cpu_matches(cpu_vuln_whitelist, NO_MDS) &&
1359	    !(x86_arch_cap_msr & ARCH_CAP_MDS_NO)) {
1360		setup_force_cpu_bug(X86_BUG_MDS);
1361		if (cpu_matches(cpu_vuln_whitelist, MSBDS_ONLY))
1362			setup_force_cpu_bug(X86_BUG_MSBDS_ONLY);
1363	}
1364
1365	if (!cpu_matches(cpu_vuln_whitelist, NO_SWAPGS))
1366		setup_force_cpu_bug(X86_BUG_SWAPGS);
1367
1368	/*
1369	 * When the CPU is not mitigated for TAA (TAA_NO=0) set TAA bug when:
1370	 *	- TSX is supported or
1371	 *	- TSX_CTRL is present
1372	 *
1373	 * TSX_CTRL check is needed for cases when TSX could be disabled before
1374	 * the kernel boot e.g. kexec.
1375	 * TSX_CTRL check alone is not sufficient for cases when the microcode
1376	 * update is not present or running as guest that don't get TSX_CTRL.
1377	 */
1378	if (!(x86_arch_cap_msr & ARCH_CAP_TAA_NO) &&
1379	    (cpu_has(c, X86_FEATURE_RTM) ||
1380	     (x86_arch_cap_msr & ARCH_CAP_TSX_CTRL_MSR)))
1381		setup_force_cpu_bug(X86_BUG_TAA);
1382
1383	/*
1384	 * SRBDS affects CPUs which support RDRAND or RDSEED and are listed
1385	 * in the vulnerability blacklist.
1386	 *
1387	 * Some of the implications and mitigation of Shared Buffers Data
1388	 * Sampling (SBDS) are similar to SRBDS. Give SBDS same treatment as
1389	 * SRBDS.
1390	 */
1391	if ((cpu_has(c, X86_FEATURE_RDRAND) ||
1392	     cpu_has(c, X86_FEATURE_RDSEED)) &&
1393	    cpu_matches(cpu_vuln_blacklist, SRBDS | MMIO_SBDS))
1394		    setup_force_cpu_bug(X86_BUG_SRBDS);
1395
1396	/*
1397	 * Processor MMIO Stale Data bug enumeration
1398	 *
1399	 * Affected CPU list is generally enough to enumerate the vulnerability,
1400	 * but for virtualization case check for ARCH_CAP MSR bits also, VMM may
1401	 * not want the guest to enumerate the bug.
1402	 *
1403	 * Set X86_BUG_MMIO_UNKNOWN for CPUs that are neither in the blacklist,
1404	 * nor in the whitelist and also don't enumerate MSR ARCH_CAP MMIO bits.
1405	 */
1406	if (!arch_cap_mmio_immune(x86_arch_cap_msr)) {
1407		if (cpu_matches(cpu_vuln_blacklist, MMIO))
1408			setup_force_cpu_bug(X86_BUG_MMIO_STALE_DATA);
1409		else if (!cpu_matches(cpu_vuln_whitelist, NO_MMIO))
1410			setup_force_cpu_bug(X86_BUG_MMIO_UNKNOWN);
1411	}
1412
1413	if (!cpu_has(c, X86_FEATURE_BTC_NO)) {
1414		if (cpu_matches(cpu_vuln_blacklist, RETBLEED) || (x86_arch_cap_msr & ARCH_CAP_RSBA))
1415			setup_force_cpu_bug(X86_BUG_RETBLEED);
1416	}
1417
1418	if (cpu_matches(cpu_vuln_blacklist, SMT_RSB))
1419		setup_force_cpu_bug(X86_BUG_SMT_RSB);
1420
1421	if (!cpu_has(c, X86_FEATURE_SRSO_NO)) {
1422		if (cpu_matches(cpu_vuln_blacklist, SRSO))
1423			setup_force_cpu_bug(X86_BUG_SRSO);
1424	}
1425
1426	/*
1427	 * Check if CPU is vulnerable to GDS. If running in a virtual machine on
1428	 * an affected processor, the VMM may have disabled the use of GATHER by
1429	 * disabling AVX2. The only way to do this in HW is to clear XCR0[2],
1430	 * which means that AVX will be disabled.
1431	 */
1432	if (cpu_matches(cpu_vuln_blacklist, GDS) && !(x86_arch_cap_msr & ARCH_CAP_GDS_NO) &&
1433	    boot_cpu_has(X86_FEATURE_AVX))
1434		setup_force_cpu_bug(X86_BUG_GDS);
1435
1436	if (vulnerable_to_rfds(x86_arch_cap_msr))
1437		setup_force_cpu_bug(X86_BUG_RFDS);
1438
1439	/* When virtualized, eIBRS could be hidden, assume vulnerable */
1440	if (!(x86_arch_cap_msr & ARCH_CAP_BHI_NO) &&
1441	    !cpu_matches(cpu_vuln_whitelist, NO_BHI) &&
1442	    (boot_cpu_has(X86_FEATURE_IBRS_ENHANCED) ||
1443	     boot_cpu_has(X86_FEATURE_HYPERVISOR)))
1444		setup_force_cpu_bug(X86_BUG_BHI);
1445
1446	if (cpu_matches(cpu_vuln_whitelist, NO_MELTDOWN))
1447		return;
1448
1449	/* Rogue Data Cache Load? No! */
1450	if (x86_arch_cap_msr & ARCH_CAP_RDCL_NO)
1451		return;
1452
1453	setup_force_cpu_bug(X86_BUG_CPU_MELTDOWN);
1454
1455	if (cpu_matches(cpu_vuln_whitelist, NO_L1TF))
1456		return;
1457
1458	setup_force_cpu_bug(X86_BUG_L1TF);
1459}
1460
1461/*
1462 * The NOPL instruction is supposed to exist on all CPUs of family >= 6;
1463 * unfortunately, that's not true in practice because of early VIA
1464 * chips and (more importantly) broken virtualizers that are not easy
1465 * to detect. In the latter case it doesn't even *fail* reliably, so
1466 * probing for it doesn't even work. Disable it completely on 32-bit
1467 * unless we can find a reliable way to detect all the broken cases.
1468 * Enable it explicitly on 64-bit for non-constant inputs of cpu_has().
1469 */
1470static void detect_nopl(void)
1471{
1472#ifdef CONFIG_X86_32
1473	setup_clear_cpu_cap(X86_FEATURE_NOPL);
1474#else
1475	setup_force_cpu_cap(X86_FEATURE_NOPL);
1476#endif
1477}
1478
1479/*
1480 * We parse cpu parameters early because fpu__init_system() is executed
1481 * before parse_early_param().
1482 */
1483static void __init cpu_parse_early_param(void)
1484{
1485	char arg[128];
1486	char *argptr = arg, *opt;
1487	int arglen, taint = 0;
1488
1489#ifdef CONFIG_X86_32
1490	if (cmdline_find_option_bool(boot_command_line, "no387"))
1491#ifdef CONFIG_MATH_EMULATION
1492		setup_clear_cpu_cap(X86_FEATURE_FPU);
1493#else
1494		pr_err("Option 'no387' required CONFIG_MATH_EMULATION enabled.\n");
1495#endif
1496
1497	if (cmdline_find_option_bool(boot_command_line, "nofxsr"))
1498		setup_clear_cpu_cap(X86_FEATURE_FXSR);
1499#endif
1500
1501	if (cmdline_find_option_bool(boot_command_line, "noxsave"))
1502		setup_clear_cpu_cap(X86_FEATURE_XSAVE);
1503
1504	if (cmdline_find_option_bool(boot_command_line, "noxsaveopt"))
1505		setup_clear_cpu_cap(X86_FEATURE_XSAVEOPT);
1506
1507	if (cmdline_find_option_bool(boot_command_line, "noxsaves"))
1508		setup_clear_cpu_cap(X86_FEATURE_XSAVES);
1509
1510	if (cmdline_find_option_bool(boot_command_line, "nousershstk"))
1511		setup_clear_cpu_cap(X86_FEATURE_USER_SHSTK);
1512
1513	arglen = cmdline_find_option(boot_command_line, "clearcpuid", arg, sizeof(arg));
1514	if (arglen <= 0)
1515		return;
1516
1517	pr_info("Clearing CPUID bits:");
1518
1519	while (argptr) {
1520		bool found __maybe_unused = false;
1521		unsigned int bit;
1522
1523		opt = strsep(&argptr, ",");
1524
1525		/*
1526		 * Handle naked numbers first for feature flags which don't
1527		 * have names.
1528		 */
1529		if (!kstrtouint(opt, 10, &bit)) {
1530			if (bit < NCAPINTS * 32) {
1531
1532				/* empty-string, i.e., ""-defined feature flags */
1533				if (!x86_cap_flags[bit])
1534					pr_cont(" " X86_CAP_FMT_NUM, x86_cap_flag_num(bit));
1535				else
1536					pr_cont(" " X86_CAP_FMT, x86_cap_flag(bit));
1537
1538				setup_clear_cpu_cap(bit);
1539				taint++;
1540			}
1541			/*
1542			 * The assumption is that there are no feature names with only
1543			 * numbers in the name thus go to the next argument.
1544			 */
1545			continue;
1546		}
1547
1548		for (bit = 0; bit < 32 * NCAPINTS; bit++) {
1549			if (!x86_cap_flag(bit))
1550				continue;
1551
1552			if (strcmp(x86_cap_flag(bit), opt))
1553				continue;
1554
1555			pr_cont(" %s", opt);
1556			setup_clear_cpu_cap(bit);
1557			taint++;
1558			found = true;
1559			break;
1560		}
1561
1562		if (!found)
1563			pr_cont(" (unknown: %s)", opt);
1564	}
1565	pr_cont("\n");
1566
1567	if (taint)
1568		add_taint(TAINT_CPU_OUT_OF_SPEC, LOCKDEP_STILL_OK);
1569}
1570
1571/*
1572 * Do minimum CPU detection early.
1573 * Fields really needed: vendor, cpuid_level, family, model, mask,
1574 * cache alignment.
1575 * The others are not touched to avoid unwanted side effects.
1576 *
1577 * WARNING: this function is only called on the boot CPU.  Don't add code
1578 * here that is supposed to run on all CPUs.
1579 */
1580static void __init early_identify_cpu(struct cpuinfo_x86 *c)
1581{
1582	memset(&c->x86_capability, 0, sizeof(c->x86_capability));
1583	c->extended_cpuid_level = 0;
1584
1585	if (!have_cpuid_p())
1586		identify_cpu_without_cpuid(c);
1587
1588	/* cyrix could have cpuid enabled via c_identify()*/
1589	if (have_cpuid_p()) {
1590		cpu_detect(c);
1591		get_cpu_vendor(c);
1592		get_cpu_cap(c);
1593		setup_force_cpu_cap(X86_FEATURE_CPUID);
1594		get_cpu_address_sizes(c);
1595		cpu_parse_early_param();
1596
1597		cpu_init_topology(c);
1598
1599		if (this_cpu->c_early_init)
1600			this_cpu->c_early_init(c);
1601
1602		c->cpu_index = 0;
1603		filter_cpuid_features(c, false);
1604
1605		if (this_cpu->c_bsp_init)
1606			this_cpu->c_bsp_init(c);
1607	} else {
1608		setup_clear_cpu_cap(X86_FEATURE_CPUID);
1609		get_cpu_address_sizes(c);
1610		cpu_init_topology(c);
1611	}
1612
1613	setup_force_cpu_cap(X86_FEATURE_ALWAYS);
1614
1615	cpu_set_bug_bits(c);
1616
1617	sld_setup(c);
1618
1619#ifdef CONFIG_X86_32
1620	/*
1621	 * Regardless of whether PCID is enumerated, the SDM says
1622	 * that it can't be enabled in 32-bit mode.
1623	 */
1624	setup_clear_cpu_cap(X86_FEATURE_PCID);
1625#endif
1626
1627	/*
1628	 * Later in the boot process pgtable_l5_enabled() relies on
1629	 * cpu_feature_enabled(X86_FEATURE_LA57). If 5-level paging is not
1630	 * enabled by this point we need to clear the feature bit to avoid
1631	 * false-positives at the later stage.
1632	 *
1633	 * pgtable_l5_enabled() can be false here for several reasons:
1634	 *  - 5-level paging is disabled compile-time;
1635	 *  - it's 32-bit kernel;
1636	 *  - machine doesn't support 5-level paging;
1637	 *  - user specified 'no5lvl' in kernel command line.
1638	 */
1639	if (!pgtable_l5_enabled())
1640		setup_clear_cpu_cap(X86_FEATURE_LA57);
1641
1642	detect_nopl();
1643}
1644
1645void __init early_cpu_init(void)
1646{
1647	const struct cpu_dev *const *cdev;
1648	int count = 0;
1649
1650#ifdef CONFIG_PROCESSOR_SELECT
1651	pr_info("KERNEL supported cpus:\n");
1652#endif
1653
1654	for (cdev = __x86_cpu_dev_start; cdev < __x86_cpu_dev_end; cdev++) {
1655		const struct cpu_dev *cpudev = *cdev;
1656
1657		if (count >= X86_VENDOR_NUM)
1658			break;
1659		cpu_devs[count] = cpudev;
1660		count++;
1661
1662#ifdef CONFIG_PROCESSOR_SELECT
1663		{
1664			unsigned int j;
1665
1666			for (j = 0; j < 2; j++) {
1667				if (!cpudev->c_ident[j])
1668					continue;
1669				pr_info("  %s %s\n", cpudev->c_vendor,
1670					cpudev->c_ident[j]);
1671			}
1672		}
1673#endif
1674	}
1675	early_identify_cpu(&boot_cpu_data);
1676}
1677
1678static bool detect_null_seg_behavior(void)
1679{
1680	/*
1681	 * Empirically, writing zero to a segment selector on AMD does
1682	 * not clear the base, whereas writing zero to a segment
1683	 * selector on Intel does clear the base.  Intel's behavior
1684	 * allows slightly faster context switches in the common case
1685	 * where GS is unused by the prev and next threads.
1686	 *
1687	 * Since neither vendor documents this anywhere that I can see,
1688	 * detect it directly instead of hard-coding the choice by
1689	 * vendor.
1690	 *
1691	 * I've designated AMD's behavior as the "bug" because it's
1692	 * counterintuitive and less friendly.
1693	 */
1694
1695	unsigned long old_base, tmp;
1696	rdmsrl(MSR_FS_BASE, old_base);
1697	wrmsrl(MSR_FS_BASE, 1);
1698	loadsegment(fs, 0);
1699	rdmsrl(MSR_FS_BASE, tmp);
1700	wrmsrl(MSR_FS_BASE, old_base);
1701	return tmp == 0;
1702}
1703
1704void check_null_seg_clears_base(struct cpuinfo_x86 *c)
1705{
1706	/* BUG_NULL_SEG is only relevant with 64bit userspace */
1707	if (!IS_ENABLED(CONFIG_X86_64))
1708		return;
1709
1710	if (cpu_has(c, X86_FEATURE_NULL_SEL_CLR_BASE))
1711		return;
1712
1713	/*
1714	 * CPUID bit above wasn't set. If this kernel is still running
1715	 * as a HV guest, then the HV has decided not to advertize
1716	 * that CPUID bit for whatever reason.	For example, one
1717	 * member of the migration pool might be vulnerable.  Which
1718	 * means, the bug is present: set the BUG flag and return.
1719	 */
1720	if (cpu_has(c, X86_FEATURE_HYPERVISOR)) {
1721		set_cpu_bug(c, X86_BUG_NULL_SEG);
1722		return;
1723	}
1724
1725	/*
1726	 * Zen2 CPUs also have this behaviour, but no CPUID bit.
1727	 * 0x18 is the respective family for Hygon.
1728	 */
1729	if ((c->x86 == 0x17 || c->x86 == 0x18) &&
1730	    detect_null_seg_behavior())
1731		return;
1732
1733	/* All the remaining ones are affected */
1734	set_cpu_bug(c, X86_BUG_NULL_SEG);
1735}
1736
1737static void generic_identify(struct cpuinfo_x86 *c)
1738{
1739	c->extended_cpuid_level = 0;
1740
1741	if (!have_cpuid_p())
1742		identify_cpu_without_cpuid(c);
1743
1744	/* cyrix could have cpuid enabled via c_identify()*/
1745	if (!have_cpuid_p())
1746		return;
1747
1748	cpu_detect(c);
1749
1750	get_cpu_vendor(c);
1751
1752	get_cpu_cap(c);
1753
1754	get_cpu_address_sizes(c);
1755
1756	get_model_name(c); /* Default name */
1757
1758	/*
1759	 * ESPFIX is a strange bug.  All real CPUs have it.  Paravirt
1760	 * systems that run Linux at CPL > 0 may or may not have the
1761	 * issue, but, even if they have the issue, there's absolutely
1762	 * nothing we can do about it because we can't use the real IRET
1763	 * instruction.
1764	 *
1765	 * NB: For the time being, only 32-bit kernels support
1766	 * X86_BUG_ESPFIX as such.  64-bit kernels directly choose
1767	 * whether to apply espfix using paravirt hooks.  If any
1768	 * non-paravirt system ever shows up that does *not* have the
1769	 * ESPFIX issue, we can change this.
1770	 */
1771#ifdef CONFIG_X86_32
1772	set_cpu_bug(c, X86_BUG_ESPFIX);
1773#endif
1774}
1775
1776/*
1777 * This does the hard work of actually picking apart the CPU stuff...
1778 */
1779static void identify_cpu(struct cpuinfo_x86 *c)
1780{
1781	int i;
1782
1783	c->loops_per_jiffy = loops_per_jiffy;
1784	c->x86_cache_size = 0;
1785	c->x86_vendor = X86_VENDOR_UNKNOWN;
1786	c->x86_model = c->x86_stepping = 0;	/* So far unknown... */
1787	c->x86_vendor_id[0] = '\0'; /* Unset */
1788	c->x86_model_id[0] = '\0';  /* Unset */
1789#ifdef CONFIG_X86_64
1790	c->x86_clflush_size = 64;
1791	c->x86_phys_bits = 36;
1792	c->x86_virt_bits = 48;
1793#else
1794	c->cpuid_level = -1;	/* CPUID not detected */
1795	c->x86_clflush_size = 32;
1796	c->x86_phys_bits = 32;
1797	c->x86_virt_bits = 32;
1798#endif
1799	c->x86_cache_alignment = c->x86_clflush_size;
1800	memset(&c->x86_capability, 0, sizeof(c->x86_capability));
1801#ifdef CONFIG_X86_VMX_FEATURE_NAMES
1802	memset(&c->vmx_capability, 0, sizeof(c->vmx_capability));
1803#endif
1804
1805	generic_identify(c);
1806
1807	cpu_parse_topology(c);
1808
1809	if (this_cpu->c_identify)
1810		this_cpu->c_identify(c);
1811
1812	/* Clear/Set all flags overridden by options, after probe */
1813	apply_forced_caps(c);
1814
1815	/*
1816	 * Set default APIC and TSC_DEADLINE MSR fencing flag. AMD and
1817	 * Hygon will clear it in ->c_init() below.
1818	 */
1819	set_cpu_cap(c, X86_FEATURE_APIC_MSRS_FENCE);
1820
1821	/*
1822	 * Vendor-specific initialization.  In this section we
1823	 * canonicalize the feature flags, meaning if there are
1824	 * features a certain CPU supports which CPUID doesn't
1825	 * tell us, CPUID claiming incorrect flags, or other bugs,
1826	 * we handle them here.
1827	 *
1828	 * At the end of this section, c->x86_capability better
1829	 * indicate the features this CPU genuinely supports!
1830	 */
1831	if (this_cpu->c_init)
1832		this_cpu->c_init(c);
1833
1834	/* Disable the PN if appropriate */
1835	squash_the_stupid_serial_number(c);
1836
1837	/* Set up SMEP/SMAP/UMIP */
1838	setup_smep(c);
1839	setup_smap(c);
1840	setup_umip(c);
1841
1842	/* Enable FSGSBASE instructions if available. */
1843	if (cpu_has(c, X86_FEATURE_FSGSBASE)) {
1844		cr4_set_bits(X86_CR4_FSGSBASE);
1845		elf_hwcap2 |= HWCAP2_FSGSBASE;
1846	}
1847
1848	/*
1849	 * The vendor-specific functions might have changed features.
1850	 * Now we do "generic changes."
1851	 */
1852
1853	/* Filter out anything that depends on CPUID levels we don't have */
1854	filter_cpuid_features(c, true);
1855
1856	/* If the model name is still unset, do table lookup. */
1857	if (!c->x86_model_id[0]) {
1858		const char *p;
1859		p = table_lookup_model(c);
1860		if (p)
1861			strcpy(c->x86_model_id, p);
1862		else
1863			/* Last resort... */
1864			sprintf(c->x86_model_id, "%02x/%02x",
1865				c->x86, c->x86_model);
1866	}
1867
1868	x86_init_rdrand(c);
1869	setup_pku(c);
1870	setup_cet(c);
1871
1872	/*
1873	 * Clear/Set all flags overridden by options, need do it
1874	 * before following smp all cpus cap AND.
1875	 */
1876	apply_forced_caps(c);
1877
1878	/*
1879	 * On SMP, boot_cpu_data holds the common feature set between
1880	 * all CPUs; so make sure that we indicate which features are
1881	 * common between the CPUs.  The first time this routine gets
1882	 * executed, c == &boot_cpu_data.
1883	 */
1884	if (c != &boot_cpu_data) {
1885		/* AND the already accumulated flags with these */
1886		for (i = 0; i < NCAPINTS; i++)
1887			boot_cpu_data.x86_capability[i] &= c->x86_capability[i];
1888
1889		/* OR, i.e. replicate the bug flags */
1890		for (i = NCAPINTS; i < NCAPINTS + NBUGINTS; i++)
1891			c->x86_capability[i] |= boot_cpu_data.x86_capability[i];
1892	}
1893
1894	ppin_init(c);
1895
1896	/* Init Machine Check Exception if available. */
1897	mcheck_cpu_init(c);
1898
1899#ifdef CONFIG_NUMA
1900	numa_add_cpu(smp_processor_id());
1901#endif
1902}
1903
1904/*
1905 * Set up the CPU state needed to execute SYSENTER/SYSEXIT instructions
1906 * on 32-bit kernels:
1907 */
1908#ifdef CONFIG_X86_32
1909void enable_sep_cpu(void)
1910{
1911	struct tss_struct *tss;
1912	int cpu;
1913
1914	if (!boot_cpu_has(X86_FEATURE_SEP))
1915		return;
1916
1917	cpu = get_cpu();
1918	tss = &per_cpu(cpu_tss_rw, cpu);
1919
1920	/*
1921	 * We cache MSR_IA32_SYSENTER_CS's value in the TSS's ss1 field --
1922	 * see the big comment in struct x86_hw_tss's definition.
1923	 */
1924
1925	tss->x86_tss.ss1 = __KERNEL_CS;
1926	wrmsr(MSR_IA32_SYSENTER_CS, tss->x86_tss.ss1, 0);
1927	wrmsr(MSR_IA32_SYSENTER_ESP, (unsigned long)(cpu_entry_stack(cpu) + 1), 0);
1928	wrmsr(MSR_IA32_SYSENTER_EIP, (unsigned long)entry_SYSENTER_32, 0);
1929
1930	put_cpu();
1931}
1932#endif
1933
1934static __init void identify_boot_cpu(void)
1935{
1936	identify_cpu(&boot_cpu_data);
1937	if (HAS_KERNEL_IBT && cpu_feature_enabled(X86_FEATURE_IBT))
1938		pr_info("CET detected: Indirect Branch Tracking enabled\n");
1939#ifdef CONFIG_X86_32
1940	enable_sep_cpu();
1941#endif
1942	cpu_detect_tlb(&boot_cpu_data);
1943	setup_cr_pinning();
1944
1945	tsx_init();
1946	tdx_init();
1947	lkgs_init();
1948}
1949
1950void identify_secondary_cpu(struct cpuinfo_x86 *c)
1951{
1952	BUG_ON(c == &boot_cpu_data);
1953	identify_cpu(c);
1954#ifdef CONFIG_X86_32
1955	enable_sep_cpu();
1956#endif
1957	x86_spec_ctrl_setup_ap();
1958	update_srbds_msr();
1959	if (boot_cpu_has_bug(X86_BUG_GDS))
1960		update_gds_msr();
1961
1962	tsx_ap_init();
1963}
1964
1965void print_cpu_info(struct cpuinfo_x86 *c)
1966{
1967	const char *vendor = NULL;
1968
1969	if (c->x86_vendor < X86_VENDOR_NUM) {
1970		vendor = this_cpu->c_vendor;
1971	} else {
1972		if (c->cpuid_level >= 0)
1973			vendor = c->x86_vendor_id;
1974	}
1975
1976	if (vendor && !strstr(c->x86_model_id, vendor))
1977		pr_cont("%s ", vendor);
1978
1979	if (c->x86_model_id[0])
1980		pr_cont("%s", c->x86_model_id);
1981	else
1982		pr_cont("%d86", c->x86);
1983
1984	pr_cont(" (family: 0x%x, model: 0x%x", c->x86, c->x86_model);
1985
1986	if (c->x86_stepping || c->cpuid_level >= 0)
1987		pr_cont(", stepping: 0x%x)\n", c->x86_stepping);
1988	else
1989		pr_cont(")\n");
1990}
1991
1992/*
1993 * clearcpuid= was already parsed in cpu_parse_early_param().  This dummy
1994 * function prevents it from becoming an environment variable for init.
1995 */
1996static __init int setup_clearcpuid(char *arg)
1997{
1998	return 1;
1999}
2000__setup("clearcpuid=", setup_clearcpuid);
2001
2002DEFINE_PER_CPU_ALIGNED(struct pcpu_hot, pcpu_hot) = {
2003	.current_task	= &init_task,
2004	.preempt_count	= INIT_PREEMPT_COUNT,
2005	.top_of_stack	= TOP_OF_INIT_STACK,
2006};
2007EXPORT_PER_CPU_SYMBOL(pcpu_hot);
2008EXPORT_PER_CPU_SYMBOL(const_pcpu_hot);
2009
2010#ifdef CONFIG_X86_64
2011DEFINE_PER_CPU_FIRST(struct fixed_percpu_data,
2012		     fixed_percpu_data) __aligned(PAGE_SIZE) __visible;
2013EXPORT_PER_CPU_SYMBOL_GPL(fixed_percpu_data);
2014
2015static void wrmsrl_cstar(unsigned long val)
2016{
2017	/*
2018	 * Intel CPUs do not support 32-bit SYSCALL. Writing to MSR_CSTAR
2019	 * is so far ignored by the CPU, but raises a #VE trap in a TDX
2020	 * guest. Avoid the pointless write on all Intel CPUs.
2021	 */
2022	if (boot_cpu_data.x86_vendor != X86_VENDOR_INTEL)
2023		wrmsrl(MSR_CSTAR, val);
2024}
2025
2026static inline void idt_syscall_init(void)
2027{
2028	wrmsrl(MSR_LSTAR, (unsigned long)entry_SYSCALL_64);
2029
2030	if (ia32_enabled()) {
2031		wrmsrl_cstar((unsigned long)entry_SYSCALL_compat);
2032		/*
2033		 * This only works on Intel CPUs.
2034		 * On AMD CPUs these MSRs are 32-bit, CPU truncates MSR_IA32_SYSENTER_EIP.
2035		 * This does not cause SYSENTER to jump to the wrong location, because
2036		 * AMD doesn't allow SYSENTER in long mode (either 32- or 64-bit).
2037		 */
2038		wrmsrl_safe(MSR_IA32_SYSENTER_CS, (u64)__KERNEL_CS);
2039		wrmsrl_safe(MSR_IA32_SYSENTER_ESP,
2040			    (unsigned long)(cpu_entry_stack(smp_processor_id()) + 1));
2041		wrmsrl_safe(MSR_IA32_SYSENTER_EIP, (u64)entry_SYSENTER_compat);
2042	} else {
2043		wrmsrl_cstar((unsigned long)entry_SYSCALL32_ignore);
2044		wrmsrl_safe(MSR_IA32_SYSENTER_CS, (u64)GDT_ENTRY_INVALID_SEG);
2045		wrmsrl_safe(MSR_IA32_SYSENTER_ESP, 0ULL);
2046		wrmsrl_safe(MSR_IA32_SYSENTER_EIP, 0ULL);
2047	}
2048
2049	/*
2050	 * Flags to clear on syscall; clear as much as possible
2051	 * to minimize user space-kernel interference.
2052	 */
2053	wrmsrl(MSR_SYSCALL_MASK,
2054	       X86_EFLAGS_CF|X86_EFLAGS_PF|X86_EFLAGS_AF|
2055	       X86_EFLAGS_ZF|X86_EFLAGS_SF|X86_EFLAGS_TF|
2056	       X86_EFLAGS_IF|X86_EFLAGS_DF|X86_EFLAGS_OF|
2057	       X86_EFLAGS_IOPL|X86_EFLAGS_NT|X86_EFLAGS_RF|
2058	       X86_EFLAGS_AC|X86_EFLAGS_ID);
2059}
2060
2061/* May not be marked __init: used by software suspend */
2062void syscall_init(void)
2063{
2064	/* The default user and kernel segments */
2065	wrmsr(MSR_STAR, 0, (__USER32_CS << 16) | __KERNEL_CS);
2066
2067	/*
2068	 * Except the IA32_STAR MSR, there is NO need to setup SYSCALL and
2069	 * SYSENTER MSRs for FRED, because FRED uses the ring 3 FRED
2070	 * entrypoint for SYSCALL and SYSENTER, and ERETU is the only legit
2071	 * instruction to return to ring 3 (both sysexit and sysret cause
2072	 * #UD when FRED is enabled).
2073	 */
2074	if (!cpu_feature_enabled(X86_FEATURE_FRED))
2075		idt_syscall_init();
2076}
2077
2078#else	/* CONFIG_X86_64 */
2079
2080#ifdef CONFIG_STACKPROTECTOR
2081DEFINE_PER_CPU(unsigned long, __stack_chk_guard);
2082EXPORT_PER_CPU_SYMBOL(__stack_chk_guard);
2083#endif
2084
2085#endif	/* CONFIG_X86_64 */
2086
2087/*
2088 * Clear all 6 debug registers:
2089 */
2090static void clear_all_debug_regs(void)
2091{
2092	int i;
2093
2094	for (i = 0; i < 8; i++) {
2095		/* Ignore db4, db5 */
2096		if ((i == 4) || (i == 5))
2097			continue;
2098
2099		set_debugreg(0, i);
2100	}
2101}
2102
2103#ifdef CONFIG_KGDB
2104/*
2105 * Restore debug regs if using kgdbwait and you have a kernel debugger
2106 * connection established.
2107 */
2108static void dbg_restore_debug_regs(void)
2109{
2110	if (unlikely(kgdb_connected && arch_kgdb_ops.correct_hw_break))
2111		arch_kgdb_ops.correct_hw_break();
2112}
2113#else /* ! CONFIG_KGDB */
2114#define dbg_restore_debug_regs()
2115#endif /* ! CONFIG_KGDB */
2116
2117static inline void setup_getcpu(int cpu)
2118{
2119	unsigned long cpudata = vdso_encode_cpunode(cpu, early_cpu_to_node(cpu));
2120	struct desc_struct d = { };
2121
2122	if (boot_cpu_has(X86_FEATURE_RDTSCP) || boot_cpu_has(X86_FEATURE_RDPID))
2123		wrmsr(MSR_TSC_AUX, cpudata, 0);
2124
2125	/* Store CPU and node number in limit. */
2126	d.limit0 = cpudata;
2127	d.limit1 = cpudata >> 16;
2128
2129	d.type = 5;		/* RO data, expand down, accessed */
2130	d.dpl = 3;		/* Visible to user code */
2131	d.s = 1;		/* Not a system segment */
2132	d.p = 1;		/* Present */
2133	d.d = 1;		/* 32-bit */
2134
2135	write_gdt_entry(get_cpu_gdt_rw(cpu), GDT_ENTRY_CPUNODE, &d, DESCTYPE_S);
2136}
2137
2138#ifdef CONFIG_X86_64
2139static inline void tss_setup_ist(struct tss_struct *tss)
2140{
2141	/* Set up the per-CPU TSS IST stacks */
2142	tss->x86_tss.ist[IST_INDEX_DF] = __this_cpu_ist_top_va(DF);
2143	tss->x86_tss.ist[IST_INDEX_NMI] = __this_cpu_ist_top_va(NMI);
2144	tss->x86_tss.ist[IST_INDEX_DB] = __this_cpu_ist_top_va(DB);
2145	tss->x86_tss.ist[IST_INDEX_MCE] = __this_cpu_ist_top_va(MCE);
2146	/* Only mapped when SEV-ES is active */
2147	tss->x86_tss.ist[IST_INDEX_VC] = __this_cpu_ist_top_va(VC);
2148}
2149#else /* CONFIG_X86_64 */
2150static inline void tss_setup_ist(struct tss_struct *tss) { }
2151#endif /* !CONFIG_X86_64 */
2152
2153static inline void tss_setup_io_bitmap(struct tss_struct *tss)
2154{
2155	tss->x86_tss.io_bitmap_base = IO_BITMAP_OFFSET_INVALID;
2156
2157#ifdef CONFIG_X86_IOPL_IOPERM
2158	tss->io_bitmap.prev_max = 0;
2159	tss->io_bitmap.prev_sequence = 0;
2160	memset(tss->io_bitmap.bitmap, 0xff, sizeof(tss->io_bitmap.bitmap));
2161	/*
2162	 * Invalidate the extra array entry past the end of the all
2163	 * permission bitmap as required by the hardware.
2164	 */
2165	tss->io_bitmap.mapall[IO_BITMAP_LONGS] = ~0UL;
2166#endif
2167}
2168
2169/*
2170 * Setup everything needed to handle exceptions from the IDT, including the IST
2171 * exceptions which use paranoid_entry().
2172 */
2173void cpu_init_exception_handling(void)
2174{
2175	struct tss_struct *tss = this_cpu_ptr(&cpu_tss_rw);
2176	int cpu = raw_smp_processor_id();
2177
2178	/* paranoid_entry() gets the CPU number from the GDT */
2179	setup_getcpu(cpu);
2180
2181	/* For IDT mode, IST vectors need to be set in TSS. */
2182	if (!cpu_feature_enabled(X86_FEATURE_FRED))
2183		tss_setup_ist(tss);
2184	tss_setup_io_bitmap(tss);
2185	set_tss_desc(cpu, &get_cpu_entry_area(cpu)->tss.x86_tss);
2186
2187	load_TR_desc();
2188
2189	/* GHCB needs to be setup to handle #VC. */
2190	setup_ghcb();
2191
2192	if (cpu_feature_enabled(X86_FEATURE_FRED))
2193		cpu_init_fred_exceptions();
2194	else
2195		load_current_idt();
2196}
2197
2198/*
2199 * cpu_init() initializes state that is per-CPU. Some data is already
2200 * initialized (naturally) in the bootstrap process, such as the GDT.  We
2201 * reload it nevertheless, this function acts as a 'CPU state barrier',
2202 * nothing should get across.
2203 */
2204void cpu_init(void)
2205{
2206	struct task_struct *cur = current;
2207	int cpu = raw_smp_processor_id();
2208
2209#ifdef CONFIG_NUMA
2210	if (this_cpu_read(numa_node) == 0 &&
2211	    early_cpu_to_node(cpu) != NUMA_NO_NODE)
2212		set_numa_node(early_cpu_to_node(cpu));
2213#endif
2214	pr_debug("Initializing CPU#%d\n", cpu);
2215
2216	if (IS_ENABLED(CONFIG_X86_64) || cpu_feature_enabled(X86_FEATURE_VME) ||
2217	    boot_cpu_has(X86_FEATURE_TSC) || boot_cpu_has(X86_FEATURE_DE))
2218		cr4_clear_bits(X86_CR4_VME|X86_CR4_PVI|X86_CR4_TSD|X86_CR4_DE);
2219
2220	if (IS_ENABLED(CONFIG_X86_64)) {
2221		loadsegment(fs, 0);
2222		memset(cur->thread.tls_array, 0, GDT_ENTRY_TLS_ENTRIES * 8);
2223		syscall_init();
2224
2225		wrmsrl(MSR_FS_BASE, 0);
2226		wrmsrl(MSR_KERNEL_GS_BASE, 0);
2227		barrier();
2228
2229		x2apic_setup();
2230	}
2231
2232	mmgrab(&init_mm);
2233	cur->active_mm = &init_mm;
2234	BUG_ON(cur->mm);
2235	initialize_tlbstate_and_flush();
2236	enter_lazy_tlb(&init_mm, cur);
2237
2238	/*
2239	 * sp0 points to the entry trampoline stack regardless of what task
2240	 * is running.
2241	 */
2242	load_sp0((unsigned long)(cpu_entry_stack(cpu) + 1));
2243
2244	load_mm_ldt(&init_mm);
2245
2246	clear_all_debug_regs();
2247	dbg_restore_debug_regs();
2248
2249	doublefault_init_cpu_tss();
2250
2251	if (is_uv_system())
2252		uv_cpu_init();
2253
2254	load_fixmap_gdt(cpu);
2255}
2256
2257#ifdef CONFIG_MICROCODE_LATE_LOADING
2258/**
2259 * store_cpu_caps() - Store a snapshot of CPU capabilities
2260 * @curr_info: Pointer where to store it
2261 *
2262 * Returns: None
2263 */
2264void store_cpu_caps(struct cpuinfo_x86 *curr_info)
2265{
2266	/* Reload CPUID max function as it might've changed. */
2267	curr_info->cpuid_level = cpuid_eax(0);
2268
2269	/* Copy all capability leafs and pick up the synthetic ones. */
2270	memcpy(&curr_info->x86_capability, &boot_cpu_data.x86_capability,
2271	       sizeof(curr_info->x86_capability));
2272
2273	/* Get the hardware CPUID leafs */
2274	get_cpu_cap(curr_info);
2275}
2276
2277/**
2278 * microcode_check() - Check if any CPU capabilities changed after an update.
2279 * @prev_info:	CPU capabilities stored before an update.
2280 *
2281 * The microcode loader calls this upon late microcode load to recheck features,
2282 * only when microcode has been updated. Caller holds and CPU hotplug lock.
2283 *
2284 * Return: None
2285 */
2286void microcode_check(struct cpuinfo_x86 *prev_info)
2287{
2288	struct cpuinfo_x86 curr_info;
2289
2290	perf_check_microcode();
2291
2292	amd_check_microcode();
2293
2294	store_cpu_caps(&curr_info);
2295
2296	if (!memcmp(&prev_info->x86_capability, &curr_info.x86_capability,
2297		    sizeof(prev_info->x86_capability)))
2298		return;
2299
2300	pr_warn("x86/CPU: CPU features have changed after loading microcode, but might not take effect.\n");
2301	pr_warn("x86/CPU: Please consider either early loading through initrd/built-in or a potential BIOS update.\n");
2302}
2303#endif
2304
2305/*
2306 * Invoked from core CPU hotplug code after hotplug operations
2307 */
2308void arch_smt_update(void)
2309{
2310	/* Handle the speculative execution misfeatures */
2311	cpu_bugs_smt_update();
2312	/* Check whether IPI broadcasting can be enabled */
2313	apic_smt_update();
2314}
2315
2316void __init arch_cpu_finalize_init(void)
2317{
2318	struct cpuinfo_x86 *c = this_cpu_ptr(&cpu_info);
2319
2320	identify_boot_cpu();
2321
2322	select_idle_routine();
2323
2324	/*
2325	 * identify_boot_cpu() initialized SMT support information, let the
2326	 * core code know.
2327	 */
2328	cpu_smt_set_num_threads(__max_threads_per_core, __max_threads_per_core);
2329
2330	if (!IS_ENABLED(CONFIG_SMP)) {
2331		pr_info("CPU: ");
2332		print_cpu_info(&boot_cpu_data);
2333	}
2334
2335	cpu_select_mitigations();
2336
2337	arch_smt_update();
2338
2339	if (IS_ENABLED(CONFIG_X86_32)) {
2340		/*
2341		 * Check whether this is a real i386 which is not longer
2342		 * supported and fixup the utsname.
2343		 */
2344		if (boot_cpu_data.x86 < 4)
2345			panic("Kernel requires i486+ for 'invlpg' and other features");
2346
2347		init_utsname()->machine[1] =
2348			'0' + (boot_cpu_data.x86 > 6 ? 6 : boot_cpu_data.x86);
2349	}
2350
2351	/*
2352	 * Must be before alternatives because it might set or clear
2353	 * feature bits.
2354	 */
2355	fpu__init_system();
2356	fpu__init_cpu();
2357
2358	/*
2359	 * Ensure that access to the per CPU representation has the initial
2360	 * boot CPU configuration.
2361	 */
2362	*c = boot_cpu_data;
2363	c->initialized = true;
2364
2365	alternative_instructions();
2366
2367	if (IS_ENABLED(CONFIG_X86_64)) {
2368		/*
2369		 * Make sure the first 2MB area is not mapped by huge pages
2370		 * There are typically fixed size MTRRs in there and overlapping
2371		 * MTRRs into large pages causes slow downs.
2372		 *
2373		 * Right now we don't do that with gbpages because there seems
2374		 * very little benefit for that case.
2375		 */
2376		if (!direct_gbpages)
2377			set_memory_4k((unsigned long)__va(0), 1);
2378	} else {
2379		fpu__init_check_bugs();
2380	}
2381
2382	/*
2383	 * This needs to be called before any devices perform DMA
2384	 * operations that might use the SWIOTLB bounce buffers. It will
2385	 * mark the bounce buffers as decrypted so that their usage will
2386	 * not cause "plain-text" data to be decrypted when accessed. It
2387	 * must be called after late_time_init() so that Hyper-V x86/x64
2388	 * hypercalls work when the SWIOTLB bounce buffers are decrypted.
2389	 */
2390	mem_encrypt_init();
2391}
2392