1// SPDX-License-Identifier: GPL-2.0
2/*
3 *  Copyright (C) 1994  Linus Torvalds
4 *
5 *  Cyrix stuff, June 1998 by:
6 *	- Rafael R. Reilova (moved everything from head.S),
7 *        <rreilova@ececs.uc.edu>
8 *	- Channing Corn (tests & fixes),
9 *	- Andrew D. Balsa (code cleanup).
10 */
11#include <linux/init.h>
12#include <linux/cpu.h>
13#include <linux/module.h>
14#include <linux/nospec.h>
15#include <linux/prctl.h>
16#include <linux/sched/smt.h>
17#include <linux/pgtable.h>
18#include <linux/bpf.h>
19
20#include <asm/spec-ctrl.h>
21#include <asm/cmdline.h>
22#include <asm/bugs.h>
23#include <asm/processor.h>
24#include <asm/processor-flags.h>
25#include <asm/fpu/api.h>
26#include <asm/msr.h>
27#include <asm/vmx.h>
28#include <asm/paravirt.h>
29#include <asm/intel-family.h>
30#include <asm/e820/api.h>
31#include <asm/hypervisor.h>
32#include <asm/tlbflush.h>
33#include <asm/cpu.h>
34
35#include "cpu.h"
36
37static void __init spectre_v1_select_mitigation(void);
38static void __init spectre_v2_select_mitigation(void);
39static void __init retbleed_select_mitigation(void);
40static void __init spectre_v2_user_select_mitigation(void);
41static void __init ssb_select_mitigation(void);
42static void __init l1tf_select_mitigation(void);
43static void __init mds_select_mitigation(void);
44static void __init md_clear_update_mitigation(void);
45static void __init md_clear_select_mitigation(void);
46static void __init taa_select_mitigation(void);
47static void __init mmio_select_mitigation(void);
48static void __init srbds_select_mitigation(void);
49static void __init l1d_flush_select_mitigation(void);
50static void __init srso_select_mitigation(void);
51static void __init gds_select_mitigation(void);
52
53/* The base value of the SPEC_CTRL MSR without task-specific bits set */
54u64 x86_spec_ctrl_base;
55EXPORT_SYMBOL_GPL(x86_spec_ctrl_base);
56
57/* The current value of the SPEC_CTRL MSR with task-specific bits set */
58DEFINE_PER_CPU(u64, x86_spec_ctrl_current);
59EXPORT_PER_CPU_SYMBOL_GPL(x86_spec_ctrl_current);
60
61u64 x86_pred_cmd __ro_after_init = PRED_CMD_IBPB;
62EXPORT_SYMBOL_GPL(x86_pred_cmd);
63
64static u64 __ro_after_init x86_arch_cap_msr;
65
66static DEFINE_MUTEX(spec_ctrl_mutex);
67
68void (*x86_return_thunk)(void) __ro_after_init = __x86_return_thunk;
69
70/* Update SPEC_CTRL MSR and its cached copy unconditionally */
71static void update_spec_ctrl(u64 val)
72{
73	this_cpu_write(x86_spec_ctrl_current, val);
74	wrmsrl(MSR_IA32_SPEC_CTRL, val);
75}
76
77/*
78 * Keep track of the SPEC_CTRL MSR value for the current task, which may differ
79 * from x86_spec_ctrl_base due to STIBP/SSB in __speculation_ctrl_update().
80 */
81void update_spec_ctrl_cond(u64 val)
82{
83	if (this_cpu_read(x86_spec_ctrl_current) == val)
84		return;
85
86	this_cpu_write(x86_spec_ctrl_current, val);
87
88	/*
89	 * When KERNEL_IBRS this MSR is written on return-to-user, unless
90	 * forced the update can be delayed until that time.
91	 */
92	if (!cpu_feature_enabled(X86_FEATURE_KERNEL_IBRS))
93		wrmsrl(MSR_IA32_SPEC_CTRL, val);
94}
95
96noinstr u64 spec_ctrl_current(void)
97{
98	return this_cpu_read(x86_spec_ctrl_current);
99}
100EXPORT_SYMBOL_GPL(spec_ctrl_current);
101
102/*
103 * AMD specific MSR info for Speculative Store Bypass control.
104 * x86_amd_ls_cfg_ssbd_mask is initialized in identify_boot_cpu().
105 */
106u64 __ro_after_init x86_amd_ls_cfg_base;
107u64 __ro_after_init x86_amd_ls_cfg_ssbd_mask;
108
109/* Control conditional STIBP in switch_to() */
110DEFINE_STATIC_KEY_FALSE(switch_to_cond_stibp);
111/* Control conditional IBPB in switch_mm() */
112DEFINE_STATIC_KEY_FALSE(switch_mm_cond_ibpb);
113/* Control unconditional IBPB in switch_mm() */
114DEFINE_STATIC_KEY_FALSE(switch_mm_always_ibpb);
115
116/* Control MDS CPU buffer clear before idling (halt, mwait) */
117DEFINE_STATIC_KEY_FALSE(mds_idle_clear);
118EXPORT_SYMBOL_GPL(mds_idle_clear);
119
120/*
121 * Controls whether l1d flush based mitigations are enabled,
122 * based on hw features and admin setting via boot parameter
123 * defaults to false
124 */
125DEFINE_STATIC_KEY_FALSE(switch_mm_cond_l1d_flush);
126
127/* Controls CPU Fill buffer clear before KVM guest MMIO accesses */
128DEFINE_STATIC_KEY_FALSE(mmio_stale_data_clear);
129EXPORT_SYMBOL_GPL(mmio_stale_data_clear);
130
131void __init cpu_select_mitigations(void)
132{
133	/*
134	 * Read the SPEC_CTRL MSR to account for reserved bits which may
135	 * have unknown values. AMD64_LS_CFG MSR is cached in the early AMD
136	 * init code as it is not enumerated and depends on the family.
137	 */
138	if (cpu_feature_enabled(X86_FEATURE_MSR_SPEC_CTRL)) {
139		rdmsrl(MSR_IA32_SPEC_CTRL, x86_spec_ctrl_base);
140
141		/*
142		 * Previously running kernel (kexec), may have some controls
143		 * turned ON. Clear them and let the mitigations setup below
144		 * rediscover them based on configuration.
145		 */
146		x86_spec_ctrl_base &= ~SPEC_CTRL_MITIGATIONS_MASK;
147	}
148
149	x86_arch_cap_msr = x86_read_arch_cap_msr();
150
151	/* Select the proper CPU mitigations before patching alternatives: */
152	spectre_v1_select_mitigation();
153	spectre_v2_select_mitigation();
154	/*
155	 * retbleed_select_mitigation() relies on the state set by
156	 * spectre_v2_select_mitigation(); specifically it wants to know about
157	 * spectre_v2=ibrs.
158	 */
159	retbleed_select_mitigation();
160	/*
161	 * spectre_v2_user_select_mitigation() relies on the state set by
162	 * retbleed_select_mitigation(); specifically the STIBP selection is
163	 * forced for UNRET or IBPB.
164	 */
165	spectre_v2_user_select_mitigation();
166	ssb_select_mitigation();
167	l1tf_select_mitigation();
168	md_clear_select_mitigation();
169	srbds_select_mitigation();
170	l1d_flush_select_mitigation();
171
172	/*
173	 * srso_select_mitigation() depends and must run after
174	 * retbleed_select_mitigation().
175	 */
176	srso_select_mitigation();
177	gds_select_mitigation();
178}
179
180/*
181 * NOTE: This function is *only* called for SVM, since Intel uses
182 * MSR_IA32_SPEC_CTRL for SSBD.
183 */
184void
185x86_virt_spec_ctrl(u64 guest_virt_spec_ctrl, bool setguest)
186{
187	u64 guestval, hostval;
188	struct thread_info *ti = current_thread_info();
189
190	/*
191	 * If SSBD is not handled in MSR_SPEC_CTRL on AMD, update
192	 * MSR_AMD64_L2_CFG or MSR_VIRT_SPEC_CTRL if supported.
193	 */
194	if (!static_cpu_has(X86_FEATURE_LS_CFG_SSBD) &&
195	    !static_cpu_has(X86_FEATURE_VIRT_SSBD))
196		return;
197
198	/*
199	 * If the host has SSBD mitigation enabled, force it in the host's
200	 * virtual MSR value. If its not permanently enabled, evaluate
201	 * current's TIF_SSBD thread flag.
202	 */
203	if (static_cpu_has(X86_FEATURE_SPEC_STORE_BYPASS_DISABLE))
204		hostval = SPEC_CTRL_SSBD;
205	else
206		hostval = ssbd_tif_to_spec_ctrl(ti->flags);
207
208	/* Sanitize the guest value */
209	guestval = guest_virt_spec_ctrl & SPEC_CTRL_SSBD;
210
211	if (hostval != guestval) {
212		unsigned long tif;
213
214		tif = setguest ? ssbd_spec_ctrl_to_tif(guestval) :
215				 ssbd_spec_ctrl_to_tif(hostval);
216
217		speculation_ctrl_update(tif);
218	}
219}
220EXPORT_SYMBOL_GPL(x86_virt_spec_ctrl);
221
222static void x86_amd_ssb_disable(void)
223{
224	u64 msrval = x86_amd_ls_cfg_base | x86_amd_ls_cfg_ssbd_mask;
225
226	if (boot_cpu_has(X86_FEATURE_VIRT_SSBD))
227		wrmsrl(MSR_AMD64_VIRT_SPEC_CTRL, SPEC_CTRL_SSBD);
228	else if (boot_cpu_has(X86_FEATURE_LS_CFG_SSBD))
229		wrmsrl(MSR_AMD64_LS_CFG, msrval);
230}
231
232#undef pr_fmt
233#define pr_fmt(fmt)	"MDS: " fmt
234
235/* Default mitigation for MDS-affected CPUs */
236static enum mds_mitigations mds_mitigation __ro_after_init = MDS_MITIGATION_FULL;
237static bool mds_nosmt __ro_after_init = false;
238
239static const char * const mds_strings[] = {
240	[MDS_MITIGATION_OFF]	= "Vulnerable",
241	[MDS_MITIGATION_FULL]	= "Mitigation: Clear CPU buffers",
242	[MDS_MITIGATION_VMWERV]	= "Vulnerable: Clear CPU buffers attempted, no microcode",
243};
244
245static void __init mds_select_mitigation(void)
246{
247	if (!boot_cpu_has_bug(X86_BUG_MDS) || cpu_mitigations_off()) {
248		mds_mitigation = MDS_MITIGATION_OFF;
249		return;
250	}
251
252	if (mds_mitigation == MDS_MITIGATION_FULL) {
253		if (!boot_cpu_has(X86_FEATURE_MD_CLEAR))
254			mds_mitigation = MDS_MITIGATION_VMWERV;
255
256		setup_force_cpu_cap(X86_FEATURE_CLEAR_CPU_BUF);
257
258		if (!boot_cpu_has(X86_BUG_MSBDS_ONLY) &&
259		    (mds_nosmt || cpu_mitigations_auto_nosmt()))
260			cpu_smt_disable(false);
261	}
262}
263
264static int __init mds_cmdline(char *str)
265{
266	if (!boot_cpu_has_bug(X86_BUG_MDS))
267		return 0;
268
269	if (!str)
270		return -EINVAL;
271
272	if (!strcmp(str, "off"))
273		mds_mitigation = MDS_MITIGATION_OFF;
274	else if (!strcmp(str, "full"))
275		mds_mitigation = MDS_MITIGATION_FULL;
276	else if (!strcmp(str, "full,nosmt")) {
277		mds_mitigation = MDS_MITIGATION_FULL;
278		mds_nosmt = true;
279	}
280
281	return 0;
282}
283early_param("mds", mds_cmdline);
284
285#undef pr_fmt
286#define pr_fmt(fmt)	"TAA: " fmt
287
288enum taa_mitigations {
289	TAA_MITIGATION_OFF,
290	TAA_MITIGATION_UCODE_NEEDED,
291	TAA_MITIGATION_VERW,
292	TAA_MITIGATION_TSX_DISABLED,
293};
294
295/* Default mitigation for TAA-affected CPUs */
296static enum taa_mitigations taa_mitigation __ro_after_init = TAA_MITIGATION_VERW;
297static bool taa_nosmt __ro_after_init;
298
299static const char * const taa_strings[] = {
300	[TAA_MITIGATION_OFF]		= "Vulnerable",
301	[TAA_MITIGATION_UCODE_NEEDED]	= "Vulnerable: Clear CPU buffers attempted, no microcode",
302	[TAA_MITIGATION_VERW]		= "Mitigation: Clear CPU buffers",
303	[TAA_MITIGATION_TSX_DISABLED]	= "Mitigation: TSX disabled",
304};
305
306static void __init taa_select_mitigation(void)
307{
308	if (!boot_cpu_has_bug(X86_BUG_TAA)) {
309		taa_mitigation = TAA_MITIGATION_OFF;
310		return;
311	}
312
313	/* TSX previously disabled by tsx=off */
314	if (!boot_cpu_has(X86_FEATURE_RTM)) {
315		taa_mitigation = TAA_MITIGATION_TSX_DISABLED;
316		return;
317	}
318
319	if (cpu_mitigations_off()) {
320		taa_mitigation = TAA_MITIGATION_OFF;
321		return;
322	}
323
324	/*
325	 * TAA mitigation via VERW is turned off if both
326	 * tsx_async_abort=off and mds=off are specified.
327	 */
328	if (taa_mitigation == TAA_MITIGATION_OFF &&
329	    mds_mitigation == MDS_MITIGATION_OFF)
330		return;
331
332	if (boot_cpu_has(X86_FEATURE_MD_CLEAR))
333		taa_mitigation = TAA_MITIGATION_VERW;
334	else
335		taa_mitigation = TAA_MITIGATION_UCODE_NEEDED;
336
337	/*
338	 * VERW doesn't clear the CPU buffers when MD_CLEAR=1 and MDS_NO=1.
339	 * A microcode update fixes this behavior to clear CPU buffers. It also
340	 * adds support for MSR_IA32_TSX_CTRL which is enumerated by the
341	 * ARCH_CAP_TSX_CTRL_MSR bit.
342	 *
343	 * On MDS_NO=1 CPUs if ARCH_CAP_TSX_CTRL_MSR is not set, microcode
344	 * update is required.
345	 */
346	if ( (x86_arch_cap_msr & ARCH_CAP_MDS_NO) &&
347	    !(x86_arch_cap_msr & ARCH_CAP_TSX_CTRL_MSR))
348		taa_mitigation = TAA_MITIGATION_UCODE_NEEDED;
349
350	/*
351	 * TSX is enabled, select alternate mitigation for TAA which is
352	 * the same as MDS. Enable MDS static branch to clear CPU buffers.
353	 *
354	 * For guests that can't determine whether the correct microcode is
355	 * present on host, enable the mitigation for UCODE_NEEDED as well.
356	 */
357	setup_force_cpu_cap(X86_FEATURE_CLEAR_CPU_BUF);
358
359	if (taa_nosmt || cpu_mitigations_auto_nosmt())
360		cpu_smt_disable(false);
361}
362
363static int __init tsx_async_abort_parse_cmdline(char *str)
364{
365	if (!boot_cpu_has_bug(X86_BUG_TAA))
366		return 0;
367
368	if (!str)
369		return -EINVAL;
370
371	if (!strcmp(str, "off")) {
372		taa_mitigation = TAA_MITIGATION_OFF;
373	} else if (!strcmp(str, "full")) {
374		taa_mitigation = TAA_MITIGATION_VERW;
375	} else if (!strcmp(str, "full,nosmt")) {
376		taa_mitigation = TAA_MITIGATION_VERW;
377		taa_nosmt = true;
378	}
379
380	return 0;
381}
382early_param("tsx_async_abort", tsx_async_abort_parse_cmdline);
383
384#undef pr_fmt
385#define pr_fmt(fmt)	"MMIO Stale Data: " fmt
386
387enum mmio_mitigations {
388	MMIO_MITIGATION_OFF,
389	MMIO_MITIGATION_UCODE_NEEDED,
390	MMIO_MITIGATION_VERW,
391};
392
393/* Default mitigation for Processor MMIO Stale Data vulnerabilities */
394static enum mmio_mitigations mmio_mitigation __ro_after_init = MMIO_MITIGATION_VERW;
395static bool mmio_nosmt __ro_after_init = false;
396
397static const char * const mmio_strings[] = {
398	[MMIO_MITIGATION_OFF]		= "Vulnerable",
399	[MMIO_MITIGATION_UCODE_NEEDED]	= "Vulnerable: Clear CPU buffers attempted, no microcode",
400	[MMIO_MITIGATION_VERW]		= "Mitigation: Clear CPU buffers",
401};
402
403static void __init mmio_select_mitigation(void)
404{
405	if (!boot_cpu_has_bug(X86_BUG_MMIO_STALE_DATA) ||
406	     boot_cpu_has_bug(X86_BUG_MMIO_UNKNOWN) ||
407	     cpu_mitigations_off()) {
408		mmio_mitigation = MMIO_MITIGATION_OFF;
409		return;
410	}
411
412	if (mmio_mitigation == MMIO_MITIGATION_OFF)
413		return;
414
415	/*
416	 * Enable CPU buffer clear mitigation for host and VMM, if also affected
417	 * by MDS or TAA. Otherwise, enable mitigation for VMM only.
418	 */
419	if (boot_cpu_has_bug(X86_BUG_MDS) || (boot_cpu_has_bug(X86_BUG_TAA) &&
420					      boot_cpu_has(X86_FEATURE_RTM)))
421		setup_force_cpu_cap(X86_FEATURE_CLEAR_CPU_BUF);
422
423	/*
424	 * X86_FEATURE_CLEAR_CPU_BUF could be enabled by other VERW based
425	 * mitigations, disable KVM-only mitigation in that case.
426	 */
427	if (boot_cpu_has(X86_FEATURE_CLEAR_CPU_BUF))
428		static_branch_disable(&mmio_stale_data_clear);
429	else
430		static_branch_enable(&mmio_stale_data_clear);
431
432	/*
433	 * If Processor-MMIO-Stale-Data bug is present and Fill Buffer data can
434	 * be propagated to uncore buffers, clearing the Fill buffers on idle
435	 * is required irrespective of SMT state.
436	 */
437	if (!(x86_arch_cap_msr & ARCH_CAP_FBSDP_NO))
438		static_branch_enable(&mds_idle_clear);
439
440	/*
441	 * Check if the system has the right microcode.
442	 *
443	 * CPU Fill buffer clear mitigation is enumerated by either an explicit
444	 * FB_CLEAR or by the presence of both MD_CLEAR and L1D_FLUSH on MDS
445	 * affected systems.
446	 */
447	if ((x86_arch_cap_msr & ARCH_CAP_FB_CLEAR) ||
448	    (boot_cpu_has(X86_FEATURE_MD_CLEAR) &&
449	     boot_cpu_has(X86_FEATURE_FLUSH_L1D) &&
450	     !(x86_arch_cap_msr & ARCH_CAP_MDS_NO)))
451		mmio_mitigation = MMIO_MITIGATION_VERW;
452	else
453		mmio_mitigation = MMIO_MITIGATION_UCODE_NEEDED;
454
455	if (mmio_nosmt || cpu_mitigations_auto_nosmt())
456		cpu_smt_disable(false);
457}
458
459static int __init mmio_stale_data_parse_cmdline(char *str)
460{
461	if (!boot_cpu_has_bug(X86_BUG_MMIO_STALE_DATA))
462		return 0;
463
464	if (!str)
465		return -EINVAL;
466
467	if (!strcmp(str, "off")) {
468		mmio_mitigation = MMIO_MITIGATION_OFF;
469	} else if (!strcmp(str, "full")) {
470		mmio_mitigation = MMIO_MITIGATION_VERW;
471	} else if (!strcmp(str, "full,nosmt")) {
472		mmio_mitigation = MMIO_MITIGATION_VERW;
473		mmio_nosmt = true;
474	}
475
476	return 0;
477}
478early_param("mmio_stale_data", mmio_stale_data_parse_cmdline);
479
480#undef pr_fmt
481#define pr_fmt(fmt)	"Register File Data Sampling: " fmt
482
483enum rfds_mitigations {
484	RFDS_MITIGATION_OFF,
485	RFDS_MITIGATION_VERW,
486	RFDS_MITIGATION_UCODE_NEEDED,
487};
488
489/* Default mitigation for Register File Data Sampling */
490static enum rfds_mitigations rfds_mitigation __ro_after_init =
491	IS_ENABLED(CONFIG_MITIGATION_RFDS) ? RFDS_MITIGATION_VERW : RFDS_MITIGATION_OFF;
492
493static const char * const rfds_strings[] = {
494	[RFDS_MITIGATION_OFF]			= "Vulnerable",
495	[RFDS_MITIGATION_VERW]			= "Mitigation: Clear Register File",
496	[RFDS_MITIGATION_UCODE_NEEDED]		= "Vulnerable: No microcode",
497};
498
499static void __init rfds_select_mitigation(void)
500{
501	if (!boot_cpu_has_bug(X86_BUG_RFDS) || cpu_mitigations_off()) {
502		rfds_mitigation = RFDS_MITIGATION_OFF;
503		return;
504	}
505	if (rfds_mitigation == RFDS_MITIGATION_OFF)
506		return;
507
508	if (x86_arch_cap_msr & ARCH_CAP_RFDS_CLEAR)
509		setup_force_cpu_cap(X86_FEATURE_CLEAR_CPU_BUF);
510	else
511		rfds_mitigation = RFDS_MITIGATION_UCODE_NEEDED;
512}
513
514static __init int rfds_parse_cmdline(char *str)
515{
516	if (!str)
517		return -EINVAL;
518
519	if (!boot_cpu_has_bug(X86_BUG_RFDS))
520		return 0;
521
522	if (!strcmp(str, "off"))
523		rfds_mitigation = RFDS_MITIGATION_OFF;
524	else if (!strcmp(str, "on"))
525		rfds_mitigation = RFDS_MITIGATION_VERW;
526
527	return 0;
528}
529early_param("reg_file_data_sampling", rfds_parse_cmdline);
530
531#undef pr_fmt
532#define pr_fmt(fmt)     "" fmt
533
534static void __init md_clear_update_mitigation(void)
535{
536	if (cpu_mitigations_off())
537		return;
538
539	if (!boot_cpu_has(X86_FEATURE_CLEAR_CPU_BUF))
540		goto out;
541
542	/*
543	 * X86_FEATURE_CLEAR_CPU_BUF is now enabled. Update MDS, TAA and MMIO
544	 * Stale Data mitigation, if necessary.
545	 */
546	if (mds_mitigation == MDS_MITIGATION_OFF &&
547	    boot_cpu_has_bug(X86_BUG_MDS)) {
548		mds_mitigation = MDS_MITIGATION_FULL;
549		mds_select_mitigation();
550	}
551	if (taa_mitigation == TAA_MITIGATION_OFF &&
552	    boot_cpu_has_bug(X86_BUG_TAA)) {
553		taa_mitigation = TAA_MITIGATION_VERW;
554		taa_select_mitigation();
555	}
556	/*
557	 * MMIO_MITIGATION_OFF is not checked here so that mmio_stale_data_clear
558	 * gets updated correctly as per X86_FEATURE_CLEAR_CPU_BUF state.
559	 */
560	if (boot_cpu_has_bug(X86_BUG_MMIO_STALE_DATA)) {
561		mmio_mitigation = MMIO_MITIGATION_VERW;
562		mmio_select_mitigation();
563	}
564	if (rfds_mitigation == RFDS_MITIGATION_OFF &&
565	    boot_cpu_has_bug(X86_BUG_RFDS)) {
566		rfds_mitigation = RFDS_MITIGATION_VERW;
567		rfds_select_mitigation();
568	}
569out:
570	if (boot_cpu_has_bug(X86_BUG_MDS))
571		pr_info("MDS: %s\n", mds_strings[mds_mitigation]);
572	if (boot_cpu_has_bug(X86_BUG_TAA))
573		pr_info("TAA: %s\n", taa_strings[taa_mitigation]);
574	if (boot_cpu_has_bug(X86_BUG_MMIO_STALE_DATA))
575		pr_info("MMIO Stale Data: %s\n", mmio_strings[mmio_mitigation]);
576	else if (boot_cpu_has_bug(X86_BUG_MMIO_UNKNOWN))
577		pr_info("MMIO Stale Data: Unknown: No mitigations\n");
578	if (boot_cpu_has_bug(X86_BUG_RFDS))
579		pr_info("Register File Data Sampling: %s\n", rfds_strings[rfds_mitigation]);
580}
581
582static void __init md_clear_select_mitigation(void)
583{
584	mds_select_mitigation();
585	taa_select_mitigation();
586	mmio_select_mitigation();
587	rfds_select_mitigation();
588
589	/*
590	 * As these mitigations are inter-related and rely on VERW instruction
591	 * to clear the microarchitural buffers, update and print their status
592	 * after mitigation selection is done for each of these vulnerabilities.
593	 */
594	md_clear_update_mitigation();
595}
596
597#undef pr_fmt
598#define pr_fmt(fmt)	"SRBDS: " fmt
599
600enum srbds_mitigations {
601	SRBDS_MITIGATION_OFF,
602	SRBDS_MITIGATION_UCODE_NEEDED,
603	SRBDS_MITIGATION_FULL,
604	SRBDS_MITIGATION_TSX_OFF,
605	SRBDS_MITIGATION_HYPERVISOR,
606};
607
608static enum srbds_mitigations srbds_mitigation __ro_after_init = SRBDS_MITIGATION_FULL;
609
610static const char * const srbds_strings[] = {
611	[SRBDS_MITIGATION_OFF]		= "Vulnerable",
612	[SRBDS_MITIGATION_UCODE_NEEDED]	= "Vulnerable: No microcode",
613	[SRBDS_MITIGATION_FULL]		= "Mitigation: Microcode",
614	[SRBDS_MITIGATION_TSX_OFF]	= "Mitigation: TSX disabled",
615	[SRBDS_MITIGATION_HYPERVISOR]	= "Unknown: Dependent on hypervisor status",
616};
617
618static bool srbds_off;
619
620void update_srbds_msr(void)
621{
622	u64 mcu_ctrl;
623
624	if (!boot_cpu_has_bug(X86_BUG_SRBDS))
625		return;
626
627	if (boot_cpu_has(X86_FEATURE_HYPERVISOR))
628		return;
629
630	if (srbds_mitigation == SRBDS_MITIGATION_UCODE_NEEDED)
631		return;
632
633	/*
634	 * A MDS_NO CPU for which SRBDS mitigation is not needed due to TSX
635	 * being disabled and it hasn't received the SRBDS MSR microcode.
636	 */
637	if (!boot_cpu_has(X86_FEATURE_SRBDS_CTRL))
638		return;
639
640	rdmsrl(MSR_IA32_MCU_OPT_CTRL, mcu_ctrl);
641
642	switch (srbds_mitigation) {
643	case SRBDS_MITIGATION_OFF:
644	case SRBDS_MITIGATION_TSX_OFF:
645		mcu_ctrl |= RNGDS_MITG_DIS;
646		break;
647	case SRBDS_MITIGATION_FULL:
648		mcu_ctrl &= ~RNGDS_MITG_DIS;
649		break;
650	default:
651		break;
652	}
653
654	wrmsrl(MSR_IA32_MCU_OPT_CTRL, mcu_ctrl);
655}
656
657static void __init srbds_select_mitigation(void)
658{
659	if (!boot_cpu_has_bug(X86_BUG_SRBDS))
660		return;
661
662	/*
663	 * Check to see if this is one of the MDS_NO systems supporting TSX that
664	 * are only exposed to SRBDS when TSX is enabled or when CPU is affected
665	 * by Processor MMIO Stale Data vulnerability.
666	 */
667	if ((x86_arch_cap_msr & ARCH_CAP_MDS_NO) && !boot_cpu_has(X86_FEATURE_RTM) &&
668	    !boot_cpu_has_bug(X86_BUG_MMIO_STALE_DATA))
669		srbds_mitigation = SRBDS_MITIGATION_TSX_OFF;
670	else if (boot_cpu_has(X86_FEATURE_HYPERVISOR))
671		srbds_mitigation = SRBDS_MITIGATION_HYPERVISOR;
672	else if (!boot_cpu_has(X86_FEATURE_SRBDS_CTRL))
673		srbds_mitigation = SRBDS_MITIGATION_UCODE_NEEDED;
674	else if (cpu_mitigations_off() || srbds_off)
675		srbds_mitigation = SRBDS_MITIGATION_OFF;
676
677	update_srbds_msr();
678	pr_info("%s\n", srbds_strings[srbds_mitigation]);
679}
680
681static int __init srbds_parse_cmdline(char *str)
682{
683	if (!str)
684		return -EINVAL;
685
686	if (!boot_cpu_has_bug(X86_BUG_SRBDS))
687		return 0;
688
689	srbds_off = !strcmp(str, "off");
690	return 0;
691}
692early_param("srbds", srbds_parse_cmdline);
693
694#undef pr_fmt
695#define pr_fmt(fmt)     "L1D Flush : " fmt
696
697enum l1d_flush_mitigations {
698	L1D_FLUSH_OFF = 0,
699	L1D_FLUSH_ON,
700};
701
702static enum l1d_flush_mitigations l1d_flush_mitigation __initdata = L1D_FLUSH_OFF;
703
704static void __init l1d_flush_select_mitigation(void)
705{
706	if (!l1d_flush_mitigation || !boot_cpu_has(X86_FEATURE_FLUSH_L1D))
707		return;
708
709	static_branch_enable(&switch_mm_cond_l1d_flush);
710	pr_info("Conditional flush on switch_mm() enabled\n");
711}
712
713static int __init l1d_flush_parse_cmdline(char *str)
714{
715	if (!strcmp(str, "on"))
716		l1d_flush_mitigation = L1D_FLUSH_ON;
717
718	return 0;
719}
720early_param("l1d_flush", l1d_flush_parse_cmdline);
721
722#undef pr_fmt
723#define pr_fmt(fmt)	"GDS: " fmt
724
725enum gds_mitigations {
726	GDS_MITIGATION_OFF,
727	GDS_MITIGATION_UCODE_NEEDED,
728	GDS_MITIGATION_FORCE,
729	GDS_MITIGATION_FULL,
730	GDS_MITIGATION_FULL_LOCKED,
731	GDS_MITIGATION_HYPERVISOR,
732};
733
734#if IS_ENABLED(CONFIG_MITIGATION_GDS_FORCE)
735static enum gds_mitigations gds_mitigation __ro_after_init = GDS_MITIGATION_FORCE;
736#else
737static enum gds_mitigations gds_mitigation __ro_after_init = GDS_MITIGATION_FULL;
738#endif
739
740static const char * const gds_strings[] = {
741	[GDS_MITIGATION_OFF]		= "Vulnerable",
742	[GDS_MITIGATION_UCODE_NEEDED]	= "Vulnerable: No microcode",
743	[GDS_MITIGATION_FORCE]		= "Mitigation: AVX disabled, no microcode",
744	[GDS_MITIGATION_FULL]		= "Mitigation: Microcode",
745	[GDS_MITIGATION_FULL_LOCKED]	= "Mitigation: Microcode (locked)",
746	[GDS_MITIGATION_HYPERVISOR]	= "Unknown: Dependent on hypervisor status",
747};
748
749bool gds_ucode_mitigated(void)
750{
751	return (gds_mitigation == GDS_MITIGATION_FULL ||
752		gds_mitigation == GDS_MITIGATION_FULL_LOCKED);
753}
754EXPORT_SYMBOL_GPL(gds_ucode_mitigated);
755
756void update_gds_msr(void)
757{
758	u64 mcu_ctrl_after;
759	u64 mcu_ctrl;
760
761	switch (gds_mitigation) {
762	case GDS_MITIGATION_OFF:
763		rdmsrl(MSR_IA32_MCU_OPT_CTRL, mcu_ctrl);
764		mcu_ctrl |= GDS_MITG_DIS;
765		break;
766	case GDS_MITIGATION_FULL_LOCKED:
767		/*
768		 * The LOCKED state comes from the boot CPU. APs might not have
769		 * the same state. Make sure the mitigation is enabled on all
770		 * CPUs.
771		 */
772	case GDS_MITIGATION_FULL:
773		rdmsrl(MSR_IA32_MCU_OPT_CTRL, mcu_ctrl);
774		mcu_ctrl &= ~GDS_MITG_DIS;
775		break;
776	case GDS_MITIGATION_FORCE:
777	case GDS_MITIGATION_UCODE_NEEDED:
778	case GDS_MITIGATION_HYPERVISOR:
779		return;
780	}
781
782	wrmsrl(MSR_IA32_MCU_OPT_CTRL, mcu_ctrl);
783
784	/*
785	 * Check to make sure that the WRMSR value was not ignored. Writes to
786	 * GDS_MITG_DIS will be ignored if this processor is locked but the boot
787	 * processor was not.
788	 */
789	rdmsrl(MSR_IA32_MCU_OPT_CTRL, mcu_ctrl_after);
790	WARN_ON_ONCE(mcu_ctrl != mcu_ctrl_after);
791}
792
793static void __init gds_select_mitigation(void)
794{
795	u64 mcu_ctrl;
796
797	if (!boot_cpu_has_bug(X86_BUG_GDS))
798		return;
799
800	if (boot_cpu_has(X86_FEATURE_HYPERVISOR)) {
801		gds_mitigation = GDS_MITIGATION_HYPERVISOR;
802		goto out;
803	}
804
805	if (cpu_mitigations_off())
806		gds_mitigation = GDS_MITIGATION_OFF;
807	/* Will verify below that mitigation _can_ be disabled */
808
809	/* No microcode */
810	if (!(x86_arch_cap_msr & ARCH_CAP_GDS_CTRL)) {
811		if (gds_mitigation == GDS_MITIGATION_FORCE) {
812			/*
813			 * This only needs to be done on the boot CPU so do it
814			 * here rather than in update_gds_msr()
815			 */
816			setup_clear_cpu_cap(X86_FEATURE_AVX);
817			pr_warn("Microcode update needed! Disabling AVX as mitigation.\n");
818		} else {
819			gds_mitigation = GDS_MITIGATION_UCODE_NEEDED;
820		}
821		goto out;
822	}
823
824	/* Microcode has mitigation, use it */
825	if (gds_mitigation == GDS_MITIGATION_FORCE)
826		gds_mitigation = GDS_MITIGATION_FULL;
827
828	rdmsrl(MSR_IA32_MCU_OPT_CTRL, mcu_ctrl);
829	if (mcu_ctrl & GDS_MITG_LOCKED) {
830		if (gds_mitigation == GDS_MITIGATION_OFF)
831			pr_warn("Mitigation locked. Disable failed.\n");
832
833		/*
834		 * The mitigation is selected from the boot CPU. All other CPUs
835		 * _should_ have the same state. If the boot CPU isn't locked
836		 * but others are then update_gds_msr() will WARN() of the state
837		 * mismatch. If the boot CPU is locked update_gds_msr() will
838		 * ensure the other CPUs have the mitigation enabled.
839		 */
840		gds_mitigation = GDS_MITIGATION_FULL_LOCKED;
841	}
842
843	update_gds_msr();
844out:
845	pr_info("%s\n", gds_strings[gds_mitigation]);
846}
847
848static int __init gds_parse_cmdline(char *str)
849{
850	if (!str)
851		return -EINVAL;
852
853	if (!boot_cpu_has_bug(X86_BUG_GDS))
854		return 0;
855
856	if (!strcmp(str, "off"))
857		gds_mitigation = GDS_MITIGATION_OFF;
858	else if (!strcmp(str, "force"))
859		gds_mitigation = GDS_MITIGATION_FORCE;
860
861	return 0;
862}
863early_param("gather_data_sampling", gds_parse_cmdline);
864
865#undef pr_fmt
866#define pr_fmt(fmt)     "Spectre V1 : " fmt
867
868enum spectre_v1_mitigation {
869	SPECTRE_V1_MITIGATION_NONE,
870	SPECTRE_V1_MITIGATION_AUTO,
871};
872
873static enum spectre_v1_mitigation spectre_v1_mitigation __ro_after_init =
874	SPECTRE_V1_MITIGATION_AUTO;
875
876static const char * const spectre_v1_strings[] = {
877	[SPECTRE_V1_MITIGATION_NONE] = "Vulnerable: __user pointer sanitization and usercopy barriers only; no swapgs barriers",
878	[SPECTRE_V1_MITIGATION_AUTO] = "Mitigation: usercopy/swapgs barriers and __user pointer sanitization",
879};
880
881/*
882 * Does SMAP provide full mitigation against speculative kernel access to
883 * userspace?
884 */
885static bool smap_works_speculatively(void)
886{
887	if (!boot_cpu_has(X86_FEATURE_SMAP))
888		return false;
889
890	/*
891	 * On CPUs which are vulnerable to Meltdown, SMAP does not
892	 * prevent speculative access to user data in the L1 cache.
893	 * Consider SMAP to be non-functional as a mitigation on these
894	 * CPUs.
895	 */
896	if (boot_cpu_has(X86_BUG_CPU_MELTDOWN))
897		return false;
898
899	return true;
900}
901
902static void __init spectre_v1_select_mitigation(void)
903{
904	if (!boot_cpu_has_bug(X86_BUG_SPECTRE_V1) || cpu_mitigations_off()) {
905		spectre_v1_mitigation = SPECTRE_V1_MITIGATION_NONE;
906		return;
907	}
908
909	if (spectre_v1_mitigation == SPECTRE_V1_MITIGATION_AUTO) {
910		/*
911		 * With Spectre v1, a user can speculatively control either
912		 * path of a conditional swapgs with a user-controlled GS
913		 * value.  The mitigation is to add lfences to both code paths.
914		 *
915		 * If FSGSBASE is enabled, the user can put a kernel address in
916		 * GS, in which case SMAP provides no protection.
917		 *
918		 * If FSGSBASE is disabled, the user can only put a user space
919		 * address in GS.  That makes an attack harder, but still
920		 * possible if there's no SMAP protection.
921		 */
922		if (boot_cpu_has(X86_FEATURE_FSGSBASE) ||
923		    !smap_works_speculatively()) {
924			/*
925			 * Mitigation can be provided from SWAPGS itself or
926			 * PTI as the CR3 write in the Meltdown mitigation
927			 * is serializing.
928			 *
929			 * If neither is there, mitigate with an LFENCE to
930			 * stop speculation through swapgs.
931			 */
932			if (boot_cpu_has_bug(X86_BUG_SWAPGS) &&
933			    !boot_cpu_has(X86_FEATURE_PTI))
934				setup_force_cpu_cap(X86_FEATURE_FENCE_SWAPGS_USER);
935
936			/*
937			 * Enable lfences in the kernel entry (non-swapgs)
938			 * paths, to prevent user entry from speculatively
939			 * skipping swapgs.
940			 */
941			setup_force_cpu_cap(X86_FEATURE_FENCE_SWAPGS_KERNEL);
942		}
943	}
944
945	pr_info("%s\n", spectre_v1_strings[spectre_v1_mitigation]);
946}
947
948static int __init nospectre_v1_cmdline(char *str)
949{
950	spectre_v1_mitigation = SPECTRE_V1_MITIGATION_NONE;
951	return 0;
952}
953early_param("nospectre_v1", nospectre_v1_cmdline);
954
955enum spectre_v2_mitigation spectre_v2_enabled __ro_after_init = SPECTRE_V2_NONE;
956
957#undef pr_fmt
958#define pr_fmt(fmt)     "RETBleed: " fmt
959
960enum retbleed_mitigation {
961	RETBLEED_MITIGATION_NONE,
962	RETBLEED_MITIGATION_UNRET,
963	RETBLEED_MITIGATION_IBPB,
964	RETBLEED_MITIGATION_IBRS,
965	RETBLEED_MITIGATION_EIBRS,
966	RETBLEED_MITIGATION_STUFF,
967};
968
969enum retbleed_mitigation_cmd {
970	RETBLEED_CMD_OFF,
971	RETBLEED_CMD_AUTO,
972	RETBLEED_CMD_UNRET,
973	RETBLEED_CMD_IBPB,
974	RETBLEED_CMD_STUFF,
975};
976
977static const char * const retbleed_strings[] = {
978	[RETBLEED_MITIGATION_NONE]	= "Vulnerable",
979	[RETBLEED_MITIGATION_UNRET]	= "Mitigation: untrained return thunk",
980	[RETBLEED_MITIGATION_IBPB]	= "Mitigation: IBPB",
981	[RETBLEED_MITIGATION_IBRS]	= "Mitigation: IBRS",
982	[RETBLEED_MITIGATION_EIBRS]	= "Mitigation: Enhanced IBRS",
983	[RETBLEED_MITIGATION_STUFF]	= "Mitigation: Stuffing",
984};
985
986static enum retbleed_mitigation retbleed_mitigation __ro_after_init =
987	RETBLEED_MITIGATION_NONE;
988static enum retbleed_mitigation_cmd retbleed_cmd __ro_after_init =
989	RETBLEED_CMD_AUTO;
990
991static int __ro_after_init retbleed_nosmt = false;
992
993static int __init retbleed_parse_cmdline(char *str)
994{
995	if (!str)
996		return -EINVAL;
997
998	while (str) {
999		char *next = strchr(str, ',');
1000		if (next) {
1001			*next = 0;
1002			next++;
1003		}
1004
1005		if (!strcmp(str, "off")) {
1006			retbleed_cmd = RETBLEED_CMD_OFF;
1007		} else if (!strcmp(str, "auto")) {
1008			retbleed_cmd = RETBLEED_CMD_AUTO;
1009		} else if (!strcmp(str, "unret")) {
1010			retbleed_cmd = RETBLEED_CMD_UNRET;
1011		} else if (!strcmp(str, "ibpb")) {
1012			retbleed_cmd = RETBLEED_CMD_IBPB;
1013		} else if (!strcmp(str, "stuff")) {
1014			retbleed_cmd = RETBLEED_CMD_STUFF;
1015		} else if (!strcmp(str, "nosmt")) {
1016			retbleed_nosmt = true;
1017		} else if (!strcmp(str, "force")) {
1018			setup_force_cpu_bug(X86_BUG_RETBLEED);
1019		} else {
1020			pr_err("Ignoring unknown retbleed option (%s).", str);
1021		}
1022
1023		str = next;
1024	}
1025
1026	return 0;
1027}
1028early_param("retbleed", retbleed_parse_cmdline);
1029
1030#define RETBLEED_UNTRAIN_MSG "WARNING: BTB untrained return thunk mitigation is only effective on AMD/Hygon!\n"
1031#define RETBLEED_INTEL_MSG "WARNING: Spectre v2 mitigation leaves CPU vulnerable to RETBleed attacks, data leaks possible!\n"
1032
1033static void __init retbleed_select_mitigation(void)
1034{
1035	bool mitigate_smt = false;
1036
1037	if (!boot_cpu_has_bug(X86_BUG_RETBLEED) || cpu_mitigations_off())
1038		return;
1039
1040	switch (retbleed_cmd) {
1041	case RETBLEED_CMD_OFF:
1042		return;
1043
1044	case RETBLEED_CMD_UNRET:
1045		if (IS_ENABLED(CONFIG_MITIGATION_UNRET_ENTRY)) {
1046			retbleed_mitigation = RETBLEED_MITIGATION_UNRET;
1047		} else {
1048			pr_err("WARNING: kernel not compiled with MITIGATION_UNRET_ENTRY.\n");
1049			goto do_cmd_auto;
1050		}
1051		break;
1052
1053	case RETBLEED_CMD_IBPB:
1054		if (!boot_cpu_has(X86_FEATURE_IBPB)) {
1055			pr_err("WARNING: CPU does not support IBPB.\n");
1056			goto do_cmd_auto;
1057		} else if (IS_ENABLED(CONFIG_MITIGATION_IBPB_ENTRY)) {
1058			retbleed_mitigation = RETBLEED_MITIGATION_IBPB;
1059		} else {
1060			pr_err("WARNING: kernel not compiled with MITIGATION_IBPB_ENTRY.\n");
1061			goto do_cmd_auto;
1062		}
1063		break;
1064
1065	case RETBLEED_CMD_STUFF:
1066		if (IS_ENABLED(CONFIG_MITIGATION_CALL_DEPTH_TRACKING) &&
1067		    spectre_v2_enabled == SPECTRE_V2_RETPOLINE) {
1068			retbleed_mitigation = RETBLEED_MITIGATION_STUFF;
1069
1070		} else {
1071			if (IS_ENABLED(CONFIG_MITIGATION_CALL_DEPTH_TRACKING))
1072				pr_err("WARNING: retbleed=stuff depends on spectre_v2=retpoline\n");
1073			else
1074				pr_err("WARNING: kernel not compiled with MITIGATION_CALL_DEPTH_TRACKING.\n");
1075
1076			goto do_cmd_auto;
1077		}
1078		break;
1079
1080do_cmd_auto:
1081	case RETBLEED_CMD_AUTO:
1082		if (boot_cpu_data.x86_vendor == X86_VENDOR_AMD ||
1083		    boot_cpu_data.x86_vendor == X86_VENDOR_HYGON) {
1084			if (IS_ENABLED(CONFIG_MITIGATION_UNRET_ENTRY))
1085				retbleed_mitigation = RETBLEED_MITIGATION_UNRET;
1086			else if (IS_ENABLED(CONFIG_MITIGATION_IBPB_ENTRY) &&
1087				 boot_cpu_has(X86_FEATURE_IBPB))
1088				retbleed_mitigation = RETBLEED_MITIGATION_IBPB;
1089		}
1090
1091		/*
1092		 * The Intel mitigation (IBRS or eIBRS) was already selected in
1093		 * spectre_v2_select_mitigation().  'retbleed_mitigation' will
1094		 * be set accordingly below.
1095		 */
1096
1097		break;
1098	}
1099
1100	switch (retbleed_mitigation) {
1101	case RETBLEED_MITIGATION_UNRET:
1102		setup_force_cpu_cap(X86_FEATURE_RETHUNK);
1103		setup_force_cpu_cap(X86_FEATURE_UNRET);
1104
1105		x86_return_thunk = retbleed_return_thunk;
1106
1107		if (boot_cpu_data.x86_vendor != X86_VENDOR_AMD &&
1108		    boot_cpu_data.x86_vendor != X86_VENDOR_HYGON)
1109			pr_err(RETBLEED_UNTRAIN_MSG);
1110
1111		mitigate_smt = true;
1112		break;
1113
1114	case RETBLEED_MITIGATION_IBPB:
1115		setup_force_cpu_cap(X86_FEATURE_ENTRY_IBPB);
1116		setup_force_cpu_cap(X86_FEATURE_IBPB_ON_VMEXIT);
1117		mitigate_smt = true;
1118		break;
1119
1120	case RETBLEED_MITIGATION_STUFF:
1121		setup_force_cpu_cap(X86_FEATURE_RETHUNK);
1122		setup_force_cpu_cap(X86_FEATURE_CALL_DEPTH);
1123
1124		x86_return_thunk = call_depth_return_thunk;
1125		break;
1126
1127	default:
1128		break;
1129	}
1130
1131	if (mitigate_smt && !boot_cpu_has(X86_FEATURE_STIBP) &&
1132	    (retbleed_nosmt || cpu_mitigations_auto_nosmt()))
1133		cpu_smt_disable(false);
1134
1135	/*
1136	 * Let IBRS trump all on Intel without affecting the effects of the
1137	 * retbleed= cmdline option except for call depth based stuffing
1138	 */
1139	if (boot_cpu_data.x86_vendor == X86_VENDOR_INTEL) {
1140		switch (spectre_v2_enabled) {
1141		case SPECTRE_V2_IBRS:
1142			retbleed_mitigation = RETBLEED_MITIGATION_IBRS;
1143			break;
1144		case SPECTRE_V2_EIBRS:
1145		case SPECTRE_V2_EIBRS_RETPOLINE:
1146		case SPECTRE_V2_EIBRS_LFENCE:
1147			retbleed_mitigation = RETBLEED_MITIGATION_EIBRS;
1148			break;
1149		default:
1150			if (retbleed_mitigation != RETBLEED_MITIGATION_STUFF)
1151				pr_err(RETBLEED_INTEL_MSG);
1152		}
1153	}
1154
1155	pr_info("%s\n", retbleed_strings[retbleed_mitigation]);
1156}
1157
1158#undef pr_fmt
1159#define pr_fmt(fmt)     "Spectre V2 : " fmt
1160
1161static enum spectre_v2_user_mitigation spectre_v2_user_stibp __ro_after_init =
1162	SPECTRE_V2_USER_NONE;
1163static enum spectre_v2_user_mitigation spectre_v2_user_ibpb __ro_after_init =
1164	SPECTRE_V2_USER_NONE;
1165
1166#ifdef CONFIG_MITIGATION_RETPOLINE
1167static bool spectre_v2_bad_module;
1168
1169bool retpoline_module_ok(bool has_retpoline)
1170{
1171	if (spectre_v2_enabled == SPECTRE_V2_NONE || has_retpoline)
1172		return true;
1173
1174	pr_err("System may be vulnerable to spectre v2\n");
1175	spectre_v2_bad_module = true;
1176	return false;
1177}
1178
1179static inline const char *spectre_v2_module_string(void)
1180{
1181	return spectre_v2_bad_module ? " - vulnerable module loaded" : "";
1182}
1183#else
1184static inline const char *spectre_v2_module_string(void) { return ""; }
1185#endif
1186
1187#define SPECTRE_V2_LFENCE_MSG "WARNING: LFENCE mitigation is not recommended for this CPU, data leaks possible!\n"
1188#define SPECTRE_V2_EIBRS_EBPF_MSG "WARNING: Unprivileged eBPF is enabled with eIBRS on, data leaks possible via Spectre v2 BHB attacks!\n"
1189#define SPECTRE_V2_EIBRS_LFENCE_EBPF_SMT_MSG "WARNING: Unprivileged eBPF is enabled with eIBRS+LFENCE mitigation and SMT, data leaks possible via Spectre v2 BHB attacks!\n"
1190#define SPECTRE_V2_IBRS_PERF_MSG "WARNING: IBRS mitigation selected on Enhanced IBRS CPU, this may cause unnecessary performance loss\n"
1191
1192#ifdef CONFIG_BPF_SYSCALL
1193void unpriv_ebpf_notify(int new_state)
1194{
1195	if (new_state)
1196		return;
1197
1198	/* Unprivileged eBPF is enabled */
1199
1200	switch (spectre_v2_enabled) {
1201	case SPECTRE_V2_EIBRS:
1202		pr_err(SPECTRE_V2_EIBRS_EBPF_MSG);
1203		break;
1204	case SPECTRE_V2_EIBRS_LFENCE:
1205		if (sched_smt_active())
1206			pr_err(SPECTRE_V2_EIBRS_LFENCE_EBPF_SMT_MSG);
1207		break;
1208	default:
1209		break;
1210	}
1211}
1212#endif
1213
1214static inline bool match_option(const char *arg, int arglen, const char *opt)
1215{
1216	int len = strlen(opt);
1217
1218	return len == arglen && !strncmp(arg, opt, len);
1219}
1220
1221/* The kernel command line selection for spectre v2 */
1222enum spectre_v2_mitigation_cmd {
1223	SPECTRE_V2_CMD_NONE,
1224	SPECTRE_V2_CMD_AUTO,
1225	SPECTRE_V2_CMD_FORCE,
1226	SPECTRE_V2_CMD_RETPOLINE,
1227	SPECTRE_V2_CMD_RETPOLINE_GENERIC,
1228	SPECTRE_V2_CMD_RETPOLINE_LFENCE,
1229	SPECTRE_V2_CMD_EIBRS,
1230	SPECTRE_V2_CMD_EIBRS_RETPOLINE,
1231	SPECTRE_V2_CMD_EIBRS_LFENCE,
1232	SPECTRE_V2_CMD_IBRS,
1233};
1234
1235enum spectre_v2_user_cmd {
1236	SPECTRE_V2_USER_CMD_NONE,
1237	SPECTRE_V2_USER_CMD_AUTO,
1238	SPECTRE_V2_USER_CMD_FORCE,
1239	SPECTRE_V2_USER_CMD_PRCTL,
1240	SPECTRE_V2_USER_CMD_PRCTL_IBPB,
1241	SPECTRE_V2_USER_CMD_SECCOMP,
1242	SPECTRE_V2_USER_CMD_SECCOMP_IBPB,
1243};
1244
1245static const char * const spectre_v2_user_strings[] = {
1246	[SPECTRE_V2_USER_NONE]			= "User space: Vulnerable",
1247	[SPECTRE_V2_USER_STRICT]		= "User space: Mitigation: STIBP protection",
1248	[SPECTRE_V2_USER_STRICT_PREFERRED]	= "User space: Mitigation: STIBP always-on protection",
1249	[SPECTRE_V2_USER_PRCTL]			= "User space: Mitigation: STIBP via prctl",
1250	[SPECTRE_V2_USER_SECCOMP]		= "User space: Mitigation: STIBP via seccomp and prctl",
1251};
1252
1253static const struct {
1254	const char			*option;
1255	enum spectre_v2_user_cmd	cmd;
1256	bool				secure;
1257} v2_user_options[] __initconst = {
1258	{ "auto",		SPECTRE_V2_USER_CMD_AUTO,		false },
1259	{ "off",		SPECTRE_V2_USER_CMD_NONE,		false },
1260	{ "on",			SPECTRE_V2_USER_CMD_FORCE,		true  },
1261	{ "prctl",		SPECTRE_V2_USER_CMD_PRCTL,		false },
1262	{ "prctl,ibpb",		SPECTRE_V2_USER_CMD_PRCTL_IBPB,		false },
1263	{ "seccomp",		SPECTRE_V2_USER_CMD_SECCOMP,		false },
1264	{ "seccomp,ibpb",	SPECTRE_V2_USER_CMD_SECCOMP_IBPB,	false },
1265};
1266
1267static void __init spec_v2_user_print_cond(const char *reason, bool secure)
1268{
1269	if (boot_cpu_has_bug(X86_BUG_SPECTRE_V2) != secure)
1270		pr_info("spectre_v2_user=%s forced on command line.\n", reason);
1271}
1272
1273static __ro_after_init enum spectre_v2_mitigation_cmd spectre_v2_cmd;
1274
1275static enum spectre_v2_user_cmd __init
1276spectre_v2_parse_user_cmdline(void)
1277{
1278	char arg[20];
1279	int ret, i;
1280
1281	switch (spectre_v2_cmd) {
1282	case SPECTRE_V2_CMD_NONE:
1283		return SPECTRE_V2_USER_CMD_NONE;
1284	case SPECTRE_V2_CMD_FORCE:
1285		return SPECTRE_V2_USER_CMD_FORCE;
1286	default:
1287		break;
1288	}
1289
1290	ret = cmdline_find_option(boot_command_line, "spectre_v2_user",
1291				  arg, sizeof(arg));
1292	if (ret < 0)
1293		return SPECTRE_V2_USER_CMD_AUTO;
1294
1295	for (i = 0; i < ARRAY_SIZE(v2_user_options); i++) {
1296		if (match_option(arg, ret, v2_user_options[i].option)) {
1297			spec_v2_user_print_cond(v2_user_options[i].option,
1298						v2_user_options[i].secure);
1299			return v2_user_options[i].cmd;
1300		}
1301	}
1302
1303	pr_err("Unknown user space protection option (%s). Switching to AUTO select\n", arg);
1304	return SPECTRE_V2_USER_CMD_AUTO;
1305}
1306
1307static inline bool spectre_v2_in_ibrs_mode(enum spectre_v2_mitigation mode)
1308{
1309	return spectre_v2_in_eibrs_mode(mode) || mode == SPECTRE_V2_IBRS;
1310}
1311
1312static void __init
1313spectre_v2_user_select_mitigation(void)
1314{
1315	enum spectre_v2_user_mitigation mode = SPECTRE_V2_USER_NONE;
1316	bool smt_possible = IS_ENABLED(CONFIG_SMP);
1317	enum spectre_v2_user_cmd cmd;
1318
1319	if (!boot_cpu_has(X86_FEATURE_IBPB) && !boot_cpu_has(X86_FEATURE_STIBP))
1320		return;
1321
1322	if (cpu_smt_control == CPU_SMT_FORCE_DISABLED ||
1323	    cpu_smt_control == CPU_SMT_NOT_SUPPORTED)
1324		smt_possible = false;
1325
1326	cmd = spectre_v2_parse_user_cmdline();
1327	switch (cmd) {
1328	case SPECTRE_V2_USER_CMD_NONE:
1329		goto set_mode;
1330	case SPECTRE_V2_USER_CMD_FORCE:
1331		mode = SPECTRE_V2_USER_STRICT;
1332		break;
1333	case SPECTRE_V2_USER_CMD_AUTO:
1334	case SPECTRE_V2_USER_CMD_PRCTL:
1335	case SPECTRE_V2_USER_CMD_PRCTL_IBPB:
1336		mode = SPECTRE_V2_USER_PRCTL;
1337		break;
1338	case SPECTRE_V2_USER_CMD_SECCOMP:
1339	case SPECTRE_V2_USER_CMD_SECCOMP_IBPB:
1340		if (IS_ENABLED(CONFIG_SECCOMP))
1341			mode = SPECTRE_V2_USER_SECCOMP;
1342		else
1343			mode = SPECTRE_V2_USER_PRCTL;
1344		break;
1345	}
1346
1347	/* Initialize Indirect Branch Prediction Barrier */
1348	if (boot_cpu_has(X86_FEATURE_IBPB)) {
1349		setup_force_cpu_cap(X86_FEATURE_USE_IBPB);
1350
1351		spectre_v2_user_ibpb = mode;
1352		switch (cmd) {
1353		case SPECTRE_V2_USER_CMD_NONE:
1354			break;
1355		case SPECTRE_V2_USER_CMD_FORCE:
1356		case SPECTRE_V2_USER_CMD_PRCTL_IBPB:
1357		case SPECTRE_V2_USER_CMD_SECCOMP_IBPB:
1358			static_branch_enable(&switch_mm_always_ibpb);
1359			spectre_v2_user_ibpb = SPECTRE_V2_USER_STRICT;
1360			break;
1361		case SPECTRE_V2_USER_CMD_PRCTL:
1362		case SPECTRE_V2_USER_CMD_AUTO:
1363		case SPECTRE_V2_USER_CMD_SECCOMP:
1364			static_branch_enable(&switch_mm_cond_ibpb);
1365			break;
1366		}
1367
1368		pr_info("mitigation: Enabling %s Indirect Branch Prediction Barrier\n",
1369			static_key_enabled(&switch_mm_always_ibpb) ?
1370			"always-on" : "conditional");
1371	}
1372
1373	/*
1374	 * If no STIBP, Intel enhanced IBRS is enabled, or SMT impossible, STIBP
1375	 * is not required.
1376	 *
1377	 * Intel's Enhanced IBRS also protects against cross-thread branch target
1378	 * injection in user-mode as the IBRS bit remains always set which
1379	 * implicitly enables cross-thread protections.  However, in legacy IBRS
1380	 * mode, the IBRS bit is set only on kernel entry and cleared on return
1381	 * to userspace.  AMD Automatic IBRS also does not protect userspace.
1382	 * These modes therefore disable the implicit cross-thread protection,
1383	 * so allow for STIBP to be selected in those cases.
1384	 */
1385	if (!boot_cpu_has(X86_FEATURE_STIBP) ||
1386	    !smt_possible ||
1387	    (spectre_v2_in_eibrs_mode(spectre_v2_enabled) &&
1388	     !boot_cpu_has(X86_FEATURE_AUTOIBRS)))
1389		return;
1390
1391	/*
1392	 * At this point, an STIBP mode other than "off" has been set.
1393	 * If STIBP support is not being forced, check if STIBP always-on
1394	 * is preferred.
1395	 */
1396	if (mode != SPECTRE_V2_USER_STRICT &&
1397	    boot_cpu_has(X86_FEATURE_AMD_STIBP_ALWAYS_ON))
1398		mode = SPECTRE_V2_USER_STRICT_PREFERRED;
1399
1400	if (retbleed_mitigation == RETBLEED_MITIGATION_UNRET ||
1401	    retbleed_mitigation == RETBLEED_MITIGATION_IBPB) {
1402		if (mode != SPECTRE_V2_USER_STRICT &&
1403		    mode != SPECTRE_V2_USER_STRICT_PREFERRED)
1404			pr_info("Selecting STIBP always-on mode to complement retbleed mitigation\n");
1405		mode = SPECTRE_V2_USER_STRICT_PREFERRED;
1406	}
1407
1408	spectre_v2_user_stibp = mode;
1409
1410set_mode:
1411	pr_info("%s\n", spectre_v2_user_strings[mode]);
1412}
1413
1414static const char * const spectre_v2_strings[] = {
1415	[SPECTRE_V2_NONE]			= "Vulnerable",
1416	[SPECTRE_V2_RETPOLINE]			= "Mitigation: Retpolines",
1417	[SPECTRE_V2_LFENCE]			= "Mitigation: LFENCE",
1418	[SPECTRE_V2_EIBRS]			= "Mitigation: Enhanced / Automatic IBRS",
1419	[SPECTRE_V2_EIBRS_LFENCE]		= "Mitigation: Enhanced / Automatic IBRS + LFENCE",
1420	[SPECTRE_V2_EIBRS_RETPOLINE]		= "Mitigation: Enhanced / Automatic IBRS + Retpolines",
1421	[SPECTRE_V2_IBRS]			= "Mitigation: IBRS",
1422};
1423
1424static const struct {
1425	const char *option;
1426	enum spectre_v2_mitigation_cmd cmd;
1427	bool secure;
1428} mitigation_options[] __initconst = {
1429	{ "off",		SPECTRE_V2_CMD_NONE,		  false },
1430	{ "on",			SPECTRE_V2_CMD_FORCE,		  true  },
1431	{ "retpoline",		SPECTRE_V2_CMD_RETPOLINE,	  false },
1432	{ "retpoline,amd",	SPECTRE_V2_CMD_RETPOLINE_LFENCE,  false },
1433	{ "retpoline,lfence",	SPECTRE_V2_CMD_RETPOLINE_LFENCE,  false },
1434	{ "retpoline,generic",	SPECTRE_V2_CMD_RETPOLINE_GENERIC, false },
1435	{ "eibrs",		SPECTRE_V2_CMD_EIBRS,		  false },
1436	{ "eibrs,lfence",	SPECTRE_V2_CMD_EIBRS_LFENCE,	  false },
1437	{ "eibrs,retpoline",	SPECTRE_V2_CMD_EIBRS_RETPOLINE,	  false },
1438	{ "auto",		SPECTRE_V2_CMD_AUTO,		  false },
1439	{ "ibrs",		SPECTRE_V2_CMD_IBRS,              false },
1440};
1441
1442static void __init spec_v2_print_cond(const char *reason, bool secure)
1443{
1444	if (boot_cpu_has_bug(X86_BUG_SPECTRE_V2) != secure)
1445		pr_info("%s selected on command line.\n", reason);
1446}
1447
1448static enum spectre_v2_mitigation_cmd __init spectre_v2_parse_cmdline(void)
1449{
1450	enum spectre_v2_mitigation_cmd cmd = SPECTRE_V2_CMD_AUTO;
1451	char arg[20];
1452	int ret, i;
1453
1454	if (cmdline_find_option_bool(boot_command_line, "nospectre_v2") ||
1455	    cpu_mitigations_off())
1456		return SPECTRE_V2_CMD_NONE;
1457
1458	ret = cmdline_find_option(boot_command_line, "spectre_v2", arg, sizeof(arg));
1459	if (ret < 0)
1460		return SPECTRE_V2_CMD_AUTO;
1461
1462	for (i = 0; i < ARRAY_SIZE(mitigation_options); i++) {
1463		if (!match_option(arg, ret, mitigation_options[i].option))
1464			continue;
1465		cmd = mitigation_options[i].cmd;
1466		break;
1467	}
1468
1469	if (i >= ARRAY_SIZE(mitigation_options)) {
1470		pr_err("unknown option (%s). Switching to AUTO select\n", arg);
1471		return SPECTRE_V2_CMD_AUTO;
1472	}
1473
1474	if ((cmd == SPECTRE_V2_CMD_RETPOLINE ||
1475	     cmd == SPECTRE_V2_CMD_RETPOLINE_LFENCE ||
1476	     cmd == SPECTRE_V2_CMD_RETPOLINE_GENERIC ||
1477	     cmd == SPECTRE_V2_CMD_EIBRS_LFENCE ||
1478	     cmd == SPECTRE_V2_CMD_EIBRS_RETPOLINE) &&
1479	    !IS_ENABLED(CONFIG_MITIGATION_RETPOLINE)) {
1480		pr_err("%s selected but not compiled in. Switching to AUTO select\n",
1481		       mitigation_options[i].option);
1482		return SPECTRE_V2_CMD_AUTO;
1483	}
1484
1485	if ((cmd == SPECTRE_V2_CMD_EIBRS ||
1486	     cmd == SPECTRE_V2_CMD_EIBRS_LFENCE ||
1487	     cmd == SPECTRE_V2_CMD_EIBRS_RETPOLINE) &&
1488	    !boot_cpu_has(X86_FEATURE_IBRS_ENHANCED)) {
1489		pr_err("%s selected but CPU doesn't have Enhanced or Automatic IBRS. Switching to AUTO select\n",
1490		       mitigation_options[i].option);
1491		return SPECTRE_V2_CMD_AUTO;
1492	}
1493
1494	if ((cmd == SPECTRE_V2_CMD_RETPOLINE_LFENCE ||
1495	     cmd == SPECTRE_V2_CMD_EIBRS_LFENCE) &&
1496	    !boot_cpu_has(X86_FEATURE_LFENCE_RDTSC)) {
1497		pr_err("%s selected, but CPU doesn't have a serializing LFENCE. Switching to AUTO select\n",
1498		       mitigation_options[i].option);
1499		return SPECTRE_V2_CMD_AUTO;
1500	}
1501
1502	if (cmd == SPECTRE_V2_CMD_IBRS && !IS_ENABLED(CONFIG_MITIGATION_IBRS_ENTRY)) {
1503		pr_err("%s selected but not compiled in. Switching to AUTO select\n",
1504		       mitigation_options[i].option);
1505		return SPECTRE_V2_CMD_AUTO;
1506	}
1507
1508	if (cmd == SPECTRE_V2_CMD_IBRS && boot_cpu_data.x86_vendor != X86_VENDOR_INTEL) {
1509		pr_err("%s selected but not Intel CPU. Switching to AUTO select\n",
1510		       mitigation_options[i].option);
1511		return SPECTRE_V2_CMD_AUTO;
1512	}
1513
1514	if (cmd == SPECTRE_V2_CMD_IBRS && !boot_cpu_has(X86_FEATURE_IBRS)) {
1515		pr_err("%s selected but CPU doesn't have IBRS. Switching to AUTO select\n",
1516		       mitigation_options[i].option);
1517		return SPECTRE_V2_CMD_AUTO;
1518	}
1519
1520	if (cmd == SPECTRE_V2_CMD_IBRS && cpu_feature_enabled(X86_FEATURE_XENPV)) {
1521		pr_err("%s selected but running as XenPV guest. Switching to AUTO select\n",
1522		       mitigation_options[i].option);
1523		return SPECTRE_V2_CMD_AUTO;
1524	}
1525
1526	spec_v2_print_cond(mitigation_options[i].option,
1527			   mitigation_options[i].secure);
1528	return cmd;
1529}
1530
1531static enum spectre_v2_mitigation __init spectre_v2_select_retpoline(void)
1532{
1533	if (!IS_ENABLED(CONFIG_MITIGATION_RETPOLINE)) {
1534		pr_err("Kernel not compiled with retpoline; no mitigation available!");
1535		return SPECTRE_V2_NONE;
1536	}
1537
1538	return SPECTRE_V2_RETPOLINE;
1539}
1540
1541static bool __ro_after_init rrsba_disabled;
1542
1543/* Disable in-kernel use of non-RSB RET predictors */
1544static void __init spec_ctrl_disable_kernel_rrsba(void)
1545{
1546	if (rrsba_disabled)
1547		return;
1548
1549	if (!(x86_arch_cap_msr & ARCH_CAP_RRSBA)) {
1550		rrsba_disabled = true;
1551		return;
1552	}
1553
1554	if (!boot_cpu_has(X86_FEATURE_RRSBA_CTRL))
1555		return;
1556
1557	x86_spec_ctrl_base |= SPEC_CTRL_RRSBA_DIS_S;
1558	update_spec_ctrl(x86_spec_ctrl_base);
1559	rrsba_disabled = true;
1560}
1561
1562static void __init spectre_v2_determine_rsb_fill_type_at_vmexit(enum spectre_v2_mitigation mode)
1563{
1564	/*
1565	 * Similar to context switches, there are two types of RSB attacks
1566	 * after VM exit:
1567	 *
1568	 * 1) RSB underflow
1569	 *
1570	 * 2) Poisoned RSB entry
1571	 *
1572	 * When retpoline is enabled, both are mitigated by filling/clearing
1573	 * the RSB.
1574	 *
1575	 * When IBRS is enabled, while #1 would be mitigated by the IBRS branch
1576	 * prediction isolation protections, RSB still needs to be cleared
1577	 * because of #2.  Note that SMEP provides no protection here, unlike
1578	 * user-space-poisoned RSB entries.
1579	 *
1580	 * eIBRS should protect against RSB poisoning, but if the EIBRS_PBRSB
1581	 * bug is present then a LITE version of RSB protection is required,
1582	 * just a single call needs to retire before a RET is executed.
1583	 */
1584	switch (mode) {
1585	case SPECTRE_V2_NONE:
1586		return;
1587
1588	case SPECTRE_V2_EIBRS_LFENCE:
1589	case SPECTRE_V2_EIBRS:
1590		if (boot_cpu_has_bug(X86_BUG_EIBRS_PBRSB)) {
1591			setup_force_cpu_cap(X86_FEATURE_RSB_VMEXIT_LITE);
1592			pr_info("Spectre v2 / PBRSB-eIBRS: Retire a single CALL on VMEXIT\n");
1593		}
1594		return;
1595
1596	case SPECTRE_V2_EIBRS_RETPOLINE:
1597	case SPECTRE_V2_RETPOLINE:
1598	case SPECTRE_V2_LFENCE:
1599	case SPECTRE_V2_IBRS:
1600		setup_force_cpu_cap(X86_FEATURE_RSB_VMEXIT);
1601		pr_info("Spectre v2 / SpectreRSB : Filling RSB on VMEXIT\n");
1602		return;
1603	}
1604
1605	pr_warn_once("Unknown Spectre v2 mode, disabling RSB mitigation at VM exit");
1606	dump_stack();
1607}
1608
1609/*
1610 * Set BHI_DIS_S to prevent indirect branches in kernel to be influenced by
1611 * branch history in userspace. Not needed if BHI_NO is set.
1612 */
1613static bool __init spec_ctrl_bhi_dis(void)
1614{
1615	if (!boot_cpu_has(X86_FEATURE_BHI_CTRL))
1616		return false;
1617
1618	x86_spec_ctrl_base |= SPEC_CTRL_BHI_DIS_S;
1619	update_spec_ctrl(x86_spec_ctrl_base);
1620	setup_force_cpu_cap(X86_FEATURE_CLEAR_BHB_HW);
1621
1622	return true;
1623}
1624
1625enum bhi_mitigations {
1626	BHI_MITIGATION_OFF,
1627	BHI_MITIGATION_ON,
1628};
1629
1630static enum bhi_mitigations bhi_mitigation __ro_after_init =
1631	IS_ENABLED(CONFIG_MITIGATION_SPECTRE_BHI) ? BHI_MITIGATION_ON : BHI_MITIGATION_OFF;
1632
1633static int __init spectre_bhi_parse_cmdline(char *str)
1634{
1635	if (!str)
1636		return -EINVAL;
1637
1638	if (!strcmp(str, "off"))
1639		bhi_mitigation = BHI_MITIGATION_OFF;
1640	else if (!strcmp(str, "on"))
1641		bhi_mitigation = BHI_MITIGATION_ON;
1642	else
1643		pr_err("Ignoring unknown spectre_bhi option (%s)", str);
1644
1645	return 0;
1646}
1647early_param("spectre_bhi", spectre_bhi_parse_cmdline);
1648
1649static void __init bhi_select_mitigation(void)
1650{
1651	if (bhi_mitigation == BHI_MITIGATION_OFF)
1652		return;
1653
1654	/* Retpoline mitigates against BHI unless the CPU has RRSBA behavior */
1655	if (boot_cpu_has(X86_FEATURE_RETPOLINE) &&
1656	    !boot_cpu_has(X86_FEATURE_RETPOLINE_LFENCE)) {
1657		spec_ctrl_disable_kernel_rrsba();
1658		if (rrsba_disabled)
1659			return;
1660	}
1661
1662	if (spec_ctrl_bhi_dis())
1663		return;
1664
1665	if (!IS_ENABLED(CONFIG_X86_64))
1666		return;
1667
1668	/* Mitigate KVM by default */
1669	setup_force_cpu_cap(X86_FEATURE_CLEAR_BHB_LOOP_ON_VMEXIT);
1670	pr_info("Spectre BHI mitigation: SW BHB clearing on vm exit\n");
1671
1672	/* Mitigate syscalls when the mitigation is forced =on */
1673	setup_force_cpu_cap(X86_FEATURE_CLEAR_BHB_LOOP);
1674	pr_info("Spectre BHI mitigation: SW BHB clearing on syscall\n");
1675}
1676
1677static void __init spectre_v2_select_mitigation(void)
1678{
1679	enum spectre_v2_mitigation_cmd cmd = spectre_v2_parse_cmdline();
1680	enum spectre_v2_mitigation mode = SPECTRE_V2_NONE;
1681
1682	/*
1683	 * If the CPU is not affected and the command line mode is NONE or AUTO
1684	 * then nothing to do.
1685	 */
1686	if (!boot_cpu_has_bug(X86_BUG_SPECTRE_V2) &&
1687	    (cmd == SPECTRE_V2_CMD_NONE || cmd == SPECTRE_V2_CMD_AUTO))
1688		return;
1689
1690	switch (cmd) {
1691	case SPECTRE_V2_CMD_NONE:
1692		return;
1693
1694	case SPECTRE_V2_CMD_FORCE:
1695	case SPECTRE_V2_CMD_AUTO:
1696		if (boot_cpu_has(X86_FEATURE_IBRS_ENHANCED)) {
1697			mode = SPECTRE_V2_EIBRS;
1698			break;
1699		}
1700
1701		if (IS_ENABLED(CONFIG_MITIGATION_IBRS_ENTRY) &&
1702		    boot_cpu_has_bug(X86_BUG_RETBLEED) &&
1703		    retbleed_cmd != RETBLEED_CMD_OFF &&
1704		    retbleed_cmd != RETBLEED_CMD_STUFF &&
1705		    boot_cpu_has(X86_FEATURE_IBRS) &&
1706		    boot_cpu_data.x86_vendor == X86_VENDOR_INTEL) {
1707			mode = SPECTRE_V2_IBRS;
1708			break;
1709		}
1710
1711		mode = spectre_v2_select_retpoline();
1712		break;
1713
1714	case SPECTRE_V2_CMD_RETPOLINE_LFENCE:
1715		pr_err(SPECTRE_V2_LFENCE_MSG);
1716		mode = SPECTRE_V2_LFENCE;
1717		break;
1718
1719	case SPECTRE_V2_CMD_RETPOLINE_GENERIC:
1720		mode = SPECTRE_V2_RETPOLINE;
1721		break;
1722
1723	case SPECTRE_V2_CMD_RETPOLINE:
1724		mode = spectre_v2_select_retpoline();
1725		break;
1726
1727	case SPECTRE_V2_CMD_IBRS:
1728		mode = SPECTRE_V2_IBRS;
1729		break;
1730
1731	case SPECTRE_V2_CMD_EIBRS:
1732		mode = SPECTRE_V2_EIBRS;
1733		break;
1734
1735	case SPECTRE_V2_CMD_EIBRS_LFENCE:
1736		mode = SPECTRE_V2_EIBRS_LFENCE;
1737		break;
1738
1739	case SPECTRE_V2_CMD_EIBRS_RETPOLINE:
1740		mode = SPECTRE_V2_EIBRS_RETPOLINE;
1741		break;
1742	}
1743
1744	if (mode == SPECTRE_V2_EIBRS && unprivileged_ebpf_enabled())
1745		pr_err(SPECTRE_V2_EIBRS_EBPF_MSG);
1746
1747	if (spectre_v2_in_ibrs_mode(mode)) {
1748		if (boot_cpu_has(X86_FEATURE_AUTOIBRS)) {
1749			msr_set_bit(MSR_EFER, _EFER_AUTOIBRS);
1750		} else {
1751			x86_spec_ctrl_base |= SPEC_CTRL_IBRS;
1752			update_spec_ctrl(x86_spec_ctrl_base);
1753		}
1754	}
1755
1756	switch (mode) {
1757	case SPECTRE_V2_NONE:
1758	case SPECTRE_V2_EIBRS:
1759		break;
1760
1761	case SPECTRE_V2_IBRS:
1762		setup_force_cpu_cap(X86_FEATURE_KERNEL_IBRS);
1763		if (boot_cpu_has(X86_FEATURE_IBRS_ENHANCED))
1764			pr_warn(SPECTRE_V2_IBRS_PERF_MSG);
1765		break;
1766
1767	case SPECTRE_V2_LFENCE:
1768	case SPECTRE_V2_EIBRS_LFENCE:
1769		setup_force_cpu_cap(X86_FEATURE_RETPOLINE_LFENCE);
1770		fallthrough;
1771
1772	case SPECTRE_V2_RETPOLINE:
1773	case SPECTRE_V2_EIBRS_RETPOLINE:
1774		setup_force_cpu_cap(X86_FEATURE_RETPOLINE);
1775		break;
1776	}
1777
1778	/*
1779	 * Disable alternate RSB predictions in kernel when indirect CALLs and
1780	 * JMPs gets protection against BHI and Intramode-BTI, but RET
1781	 * prediction from a non-RSB predictor is still a risk.
1782	 */
1783	if (mode == SPECTRE_V2_EIBRS_LFENCE ||
1784	    mode == SPECTRE_V2_EIBRS_RETPOLINE ||
1785	    mode == SPECTRE_V2_RETPOLINE)
1786		spec_ctrl_disable_kernel_rrsba();
1787
1788	if (boot_cpu_has(X86_BUG_BHI))
1789		bhi_select_mitigation();
1790
1791	spectre_v2_enabled = mode;
1792	pr_info("%s\n", spectre_v2_strings[mode]);
1793
1794	/*
1795	 * If Spectre v2 protection has been enabled, fill the RSB during a
1796	 * context switch.  In general there are two types of RSB attacks
1797	 * across context switches, for which the CALLs/RETs may be unbalanced.
1798	 *
1799	 * 1) RSB underflow
1800	 *
1801	 *    Some Intel parts have "bottomless RSB".  When the RSB is empty,
1802	 *    speculated return targets may come from the branch predictor,
1803	 *    which could have a user-poisoned BTB or BHB entry.
1804	 *
1805	 *    AMD has it even worse: *all* returns are speculated from the BTB,
1806	 *    regardless of the state of the RSB.
1807	 *
1808	 *    When IBRS or eIBRS is enabled, the "user -> kernel" attack
1809	 *    scenario is mitigated by the IBRS branch prediction isolation
1810	 *    properties, so the RSB buffer filling wouldn't be necessary to
1811	 *    protect against this type of attack.
1812	 *
1813	 *    The "user -> user" attack scenario is mitigated by RSB filling.
1814	 *
1815	 * 2) Poisoned RSB entry
1816	 *
1817	 *    If the 'next' in-kernel return stack is shorter than 'prev',
1818	 *    'next' could be tricked into speculating with a user-poisoned RSB
1819	 *    entry.
1820	 *
1821	 *    The "user -> kernel" attack scenario is mitigated by SMEP and
1822	 *    eIBRS.
1823	 *
1824	 *    The "user -> user" scenario, also known as SpectreBHB, requires
1825	 *    RSB clearing.
1826	 *
1827	 * So to mitigate all cases, unconditionally fill RSB on context
1828	 * switches.
1829	 *
1830	 * FIXME: Is this pointless for retbleed-affected AMD?
1831	 */
1832	setup_force_cpu_cap(X86_FEATURE_RSB_CTXSW);
1833	pr_info("Spectre v2 / SpectreRSB mitigation: Filling RSB on context switch\n");
1834
1835	spectre_v2_determine_rsb_fill_type_at_vmexit(mode);
1836
1837	/*
1838	 * Retpoline protects the kernel, but doesn't protect firmware.  IBRS
1839	 * and Enhanced IBRS protect firmware too, so enable IBRS around
1840	 * firmware calls only when IBRS / Enhanced / Automatic IBRS aren't
1841	 * otherwise enabled.
1842	 *
1843	 * Use "mode" to check Enhanced IBRS instead of boot_cpu_has(), because
1844	 * the user might select retpoline on the kernel command line and if
1845	 * the CPU supports Enhanced IBRS, kernel might un-intentionally not
1846	 * enable IBRS around firmware calls.
1847	 */
1848	if (boot_cpu_has_bug(X86_BUG_RETBLEED) &&
1849	    boot_cpu_has(X86_FEATURE_IBPB) &&
1850	    (boot_cpu_data.x86_vendor == X86_VENDOR_AMD ||
1851	     boot_cpu_data.x86_vendor == X86_VENDOR_HYGON)) {
1852
1853		if (retbleed_cmd != RETBLEED_CMD_IBPB) {
1854			setup_force_cpu_cap(X86_FEATURE_USE_IBPB_FW);
1855			pr_info("Enabling Speculation Barrier for firmware calls\n");
1856		}
1857
1858	} else if (boot_cpu_has(X86_FEATURE_IBRS) && !spectre_v2_in_ibrs_mode(mode)) {
1859		setup_force_cpu_cap(X86_FEATURE_USE_IBRS_FW);
1860		pr_info("Enabling Restricted Speculation for firmware calls\n");
1861	}
1862
1863	/* Set up IBPB and STIBP depending on the general spectre V2 command */
1864	spectre_v2_cmd = cmd;
1865}
1866
1867static void update_stibp_msr(void * __unused)
1868{
1869	u64 val = spec_ctrl_current() | (x86_spec_ctrl_base & SPEC_CTRL_STIBP);
1870	update_spec_ctrl(val);
1871}
1872
1873/* Update x86_spec_ctrl_base in case SMT state changed. */
1874static void update_stibp_strict(void)
1875{
1876	u64 mask = x86_spec_ctrl_base & ~SPEC_CTRL_STIBP;
1877
1878	if (sched_smt_active())
1879		mask |= SPEC_CTRL_STIBP;
1880
1881	if (mask == x86_spec_ctrl_base)
1882		return;
1883
1884	pr_info("Update user space SMT mitigation: STIBP %s\n",
1885		mask & SPEC_CTRL_STIBP ? "always-on" : "off");
1886	x86_spec_ctrl_base = mask;
1887	on_each_cpu(update_stibp_msr, NULL, 1);
1888}
1889
1890/* Update the static key controlling the evaluation of TIF_SPEC_IB */
1891static void update_indir_branch_cond(void)
1892{
1893	if (sched_smt_active())
1894		static_branch_enable(&switch_to_cond_stibp);
1895	else
1896		static_branch_disable(&switch_to_cond_stibp);
1897}
1898
1899#undef pr_fmt
1900#define pr_fmt(fmt) fmt
1901
1902/* Update the static key controlling the MDS CPU buffer clear in idle */
1903static void update_mds_branch_idle(void)
1904{
1905	/*
1906	 * Enable the idle clearing if SMT is active on CPUs which are
1907	 * affected only by MSBDS and not any other MDS variant.
1908	 *
1909	 * The other variants cannot be mitigated when SMT is enabled, so
1910	 * clearing the buffers on idle just to prevent the Store Buffer
1911	 * repartitioning leak would be a window dressing exercise.
1912	 */
1913	if (!boot_cpu_has_bug(X86_BUG_MSBDS_ONLY))
1914		return;
1915
1916	if (sched_smt_active()) {
1917		static_branch_enable(&mds_idle_clear);
1918	} else if (mmio_mitigation == MMIO_MITIGATION_OFF ||
1919		   (x86_arch_cap_msr & ARCH_CAP_FBSDP_NO)) {
1920		static_branch_disable(&mds_idle_clear);
1921	}
1922}
1923
1924#define MDS_MSG_SMT "MDS CPU bug present and SMT on, data leak possible. See https://www.kernel.org/doc/html/latest/admin-guide/hw-vuln/mds.html for more details.\n"
1925#define TAA_MSG_SMT "TAA CPU bug present and SMT on, data leak possible. See https://www.kernel.org/doc/html/latest/admin-guide/hw-vuln/tsx_async_abort.html for more details.\n"
1926#define MMIO_MSG_SMT "MMIO Stale Data CPU bug present and SMT on, data leak possible. See https://www.kernel.org/doc/html/latest/admin-guide/hw-vuln/processor_mmio_stale_data.html for more details.\n"
1927
1928void cpu_bugs_smt_update(void)
1929{
1930	mutex_lock(&spec_ctrl_mutex);
1931
1932	if (sched_smt_active() && unprivileged_ebpf_enabled() &&
1933	    spectre_v2_enabled == SPECTRE_V2_EIBRS_LFENCE)
1934		pr_warn_once(SPECTRE_V2_EIBRS_LFENCE_EBPF_SMT_MSG);
1935
1936	switch (spectre_v2_user_stibp) {
1937	case SPECTRE_V2_USER_NONE:
1938		break;
1939	case SPECTRE_V2_USER_STRICT:
1940	case SPECTRE_V2_USER_STRICT_PREFERRED:
1941		update_stibp_strict();
1942		break;
1943	case SPECTRE_V2_USER_PRCTL:
1944	case SPECTRE_V2_USER_SECCOMP:
1945		update_indir_branch_cond();
1946		break;
1947	}
1948
1949	switch (mds_mitigation) {
1950	case MDS_MITIGATION_FULL:
1951	case MDS_MITIGATION_VMWERV:
1952		if (sched_smt_active() && !boot_cpu_has(X86_BUG_MSBDS_ONLY))
1953			pr_warn_once(MDS_MSG_SMT);
1954		update_mds_branch_idle();
1955		break;
1956	case MDS_MITIGATION_OFF:
1957		break;
1958	}
1959
1960	switch (taa_mitigation) {
1961	case TAA_MITIGATION_VERW:
1962	case TAA_MITIGATION_UCODE_NEEDED:
1963		if (sched_smt_active())
1964			pr_warn_once(TAA_MSG_SMT);
1965		break;
1966	case TAA_MITIGATION_TSX_DISABLED:
1967	case TAA_MITIGATION_OFF:
1968		break;
1969	}
1970
1971	switch (mmio_mitigation) {
1972	case MMIO_MITIGATION_VERW:
1973	case MMIO_MITIGATION_UCODE_NEEDED:
1974		if (sched_smt_active())
1975			pr_warn_once(MMIO_MSG_SMT);
1976		break;
1977	case MMIO_MITIGATION_OFF:
1978		break;
1979	}
1980
1981	mutex_unlock(&spec_ctrl_mutex);
1982}
1983
1984#undef pr_fmt
1985#define pr_fmt(fmt)	"Speculative Store Bypass: " fmt
1986
1987static enum ssb_mitigation ssb_mode __ro_after_init = SPEC_STORE_BYPASS_NONE;
1988
1989/* The kernel command line selection */
1990enum ssb_mitigation_cmd {
1991	SPEC_STORE_BYPASS_CMD_NONE,
1992	SPEC_STORE_BYPASS_CMD_AUTO,
1993	SPEC_STORE_BYPASS_CMD_ON,
1994	SPEC_STORE_BYPASS_CMD_PRCTL,
1995	SPEC_STORE_BYPASS_CMD_SECCOMP,
1996};
1997
1998static const char * const ssb_strings[] = {
1999	[SPEC_STORE_BYPASS_NONE]	= "Vulnerable",
2000	[SPEC_STORE_BYPASS_DISABLE]	= "Mitigation: Speculative Store Bypass disabled",
2001	[SPEC_STORE_BYPASS_PRCTL]	= "Mitigation: Speculative Store Bypass disabled via prctl",
2002	[SPEC_STORE_BYPASS_SECCOMP]	= "Mitigation: Speculative Store Bypass disabled via prctl and seccomp",
2003};
2004
2005static const struct {
2006	const char *option;
2007	enum ssb_mitigation_cmd cmd;
2008} ssb_mitigation_options[]  __initconst = {
2009	{ "auto",	SPEC_STORE_BYPASS_CMD_AUTO },    /* Platform decides */
2010	{ "on",		SPEC_STORE_BYPASS_CMD_ON },      /* Disable Speculative Store Bypass */
2011	{ "off",	SPEC_STORE_BYPASS_CMD_NONE },    /* Don't touch Speculative Store Bypass */
2012	{ "prctl",	SPEC_STORE_BYPASS_CMD_PRCTL },   /* Disable Speculative Store Bypass via prctl */
2013	{ "seccomp",	SPEC_STORE_BYPASS_CMD_SECCOMP }, /* Disable Speculative Store Bypass via prctl and seccomp */
2014};
2015
2016static enum ssb_mitigation_cmd __init ssb_parse_cmdline(void)
2017{
2018	enum ssb_mitigation_cmd cmd = SPEC_STORE_BYPASS_CMD_AUTO;
2019	char arg[20];
2020	int ret, i;
2021
2022	if (cmdline_find_option_bool(boot_command_line, "nospec_store_bypass_disable") ||
2023	    cpu_mitigations_off()) {
2024		return SPEC_STORE_BYPASS_CMD_NONE;
2025	} else {
2026		ret = cmdline_find_option(boot_command_line, "spec_store_bypass_disable",
2027					  arg, sizeof(arg));
2028		if (ret < 0)
2029			return SPEC_STORE_BYPASS_CMD_AUTO;
2030
2031		for (i = 0; i < ARRAY_SIZE(ssb_mitigation_options); i++) {
2032			if (!match_option(arg, ret, ssb_mitigation_options[i].option))
2033				continue;
2034
2035			cmd = ssb_mitigation_options[i].cmd;
2036			break;
2037		}
2038
2039		if (i >= ARRAY_SIZE(ssb_mitigation_options)) {
2040			pr_err("unknown option (%s). Switching to AUTO select\n", arg);
2041			return SPEC_STORE_BYPASS_CMD_AUTO;
2042		}
2043	}
2044
2045	return cmd;
2046}
2047
2048static enum ssb_mitigation __init __ssb_select_mitigation(void)
2049{
2050	enum ssb_mitigation mode = SPEC_STORE_BYPASS_NONE;
2051	enum ssb_mitigation_cmd cmd;
2052
2053	if (!boot_cpu_has(X86_FEATURE_SSBD))
2054		return mode;
2055
2056	cmd = ssb_parse_cmdline();
2057	if (!boot_cpu_has_bug(X86_BUG_SPEC_STORE_BYPASS) &&
2058	    (cmd == SPEC_STORE_BYPASS_CMD_NONE ||
2059	     cmd == SPEC_STORE_BYPASS_CMD_AUTO))
2060		return mode;
2061
2062	switch (cmd) {
2063	case SPEC_STORE_BYPASS_CMD_SECCOMP:
2064		/*
2065		 * Choose prctl+seccomp as the default mode if seccomp is
2066		 * enabled.
2067		 */
2068		if (IS_ENABLED(CONFIG_SECCOMP))
2069			mode = SPEC_STORE_BYPASS_SECCOMP;
2070		else
2071			mode = SPEC_STORE_BYPASS_PRCTL;
2072		break;
2073	case SPEC_STORE_BYPASS_CMD_ON:
2074		mode = SPEC_STORE_BYPASS_DISABLE;
2075		break;
2076	case SPEC_STORE_BYPASS_CMD_AUTO:
2077	case SPEC_STORE_BYPASS_CMD_PRCTL:
2078		mode = SPEC_STORE_BYPASS_PRCTL;
2079		break;
2080	case SPEC_STORE_BYPASS_CMD_NONE:
2081		break;
2082	}
2083
2084	/*
2085	 * We have three CPU feature flags that are in play here:
2086	 *  - X86_BUG_SPEC_STORE_BYPASS - CPU is susceptible.
2087	 *  - X86_FEATURE_SSBD - CPU is able to turn off speculative store bypass
2088	 *  - X86_FEATURE_SPEC_STORE_BYPASS_DISABLE - engage the mitigation
2089	 */
2090	if (mode == SPEC_STORE_BYPASS_DISABLE) {
2091		setup_force_cpu_cap(X86_FEATURE_SPEC_STORE_BYPASS_DISABLE);
2092		/*
2093		 * Intel uses the SPEC CTRL MSR Bit(2) for this, while AMD may
2094		 * use a completely different MSR and bit dependent on family.
2095		 */
2096		if (!static_cpu_has(X86_FEATURE_SPEC_CTRL_SSBD) &&
2097		    !static_cpu_has(X86_FEATURE_AMD_SSBD)) {
2098			x86_amd_ssb_disable();
2099		} else {
2100			x86_spec_ctrl_base |= SPEC_CTRL_SSBD;
2101			update_spec_ctrl(x86_spec_ctrl_base);
2102		}
2103	}
2104
2105	return mode;
2106}
2107
2108static void ssb_select_mitigation(void)
2109{
2110	ssb_mode = __ssb_select_mitigation();
2111
2112	if (boot_cpu_has_bug(X86_BUG_SPEC_STORE_BYPASS))
2113		pr_info("%s\n", ssb_strings[ssb_mode]);
2114}
2115
2116#undef pr_fmt
2117#define pr_fmt(fmt)     "Speculation prctl: " fmt
2118
2119static void task_update_spec_tif(struct task_struct *tsk)
2120{
2121	/* Force the update of the real TIF bits */
2122	set_tsk_thread_flag(tsk, TIF_SPEC_FORCE_UPDATE);
2123
2124	/*
2125	 * Immediately update the speculation control MSRs for the current
2126	 * task, but for a non-current task delay setting the CPU
2127	 * mitigation until it is scheduled next.
2128	 *
2129	 * This can only happen for SECCOMP mitigation. For PRCTL it's
2130	 * always the current task.
2131	 */
2132	if (tsk == current)
2133		speculation_ctrl_update_current();
2134}
2135
2136static int l1d_flush_prctl_set(struct task_struct *task, unsigned long ctrl)
2137{
2138
2139	if (!static_branch_unlikely(&switch_mm_cond_l1d_flush))
2140		return -EPERM;
2141
2142	switch (ctrl) {
2143	case PR_SPEC_ENABLE:
2144		set_ti_thread_flag(&task->thread_info, TIF_SPEC_L1D_FLUSH);
2145		return 0;
2146	case PR_SPEC_DISABLE:
2147		clear_ti_thread_flag(&task->thread_info, TIF_SPEC_L1D_FLUSH);
2148		return 0;
2149	default:
2150		return -ERANGE;
2151	}
2152}
2153
2154static int ssb_prctl_set(struct task_struct *task, unsigned long ctrl)
2155{
2156	if (ssb_mode != SPEC_STORE_BYPASS_PRCTL &&
2157	    ssb_mode != SPEC_STORE_BYPASS_SECCOMP)
2158		return -ENXIO;
2159
2160	switch (ctrl) {
2161	case PR_SPEC_ENABLE:
2162		/* If speculation is force disabled, enable is not allowed */
2163		if (task_spec_ssb_force_disable(task))
2164			return -EPERM;
2165		task_clear_spec_ssb_disable(task);
2166		task_clear_spec_ssb_noexec(task);
2167		task_update_spec_tif(task);
2168		break;
2169	case PR_SPEC_DISABLE:
2170		task_set_spec_ssb_disable(task);
2171		task_clear_spec_ssb_noexec(task);
2172		task_update_spec_tif(task);
2173		break;
2174	case PR_SPEC_FORCE_DISABLE:
2175		task_set_spec_ssb_disable(task);
2176		task_set_spec_ssb_force_disable(task);
2177		task_clear_spec_ssb_noexec(task);
2178		task_update_spec_tif(task);
2179		break;
2180	case PR_SPEC_DISABLE_NOEXEC:
2181		if (task_spec_ssb_force_disable(task))
2182			return -EPERM;
2183		task_set_spec_ssb_disable(task);
2184		task_set_spec_ssb_noexec(task);
2185		task_update_spec_tif(task);
2186		break;
2187	default:
2188		return -ERANGE;
2189	}
2190	return 0;
2191}
2192
2193static bool is_spec_ib_user_controlled(void)
2194{
2195	return spectre_v2_user_ibpb == SPECTRE_V2_USER_PRCTL ||
2196		spectre_v2_user_ibpb == SPECTRE_V2_USER_SECCOMP ||
2197		spectre_v2_user_stibp == SPECTRE_V2_USER_PRCTL ||
2198		spectre_v2_user_stibp == SPECTRE_V2_USER_SECCOMP;
2199}
2200
2201static int ib_prctl_set(struct task_struct *task, unsigned long ctrl)
2202{
2203	switch (ctrl) {
2204	case PR_SPEC_ENABLE:
2205		if (spectre_v2_user_ibpb == SPECTRE_V2_USER_NONE &&
2206		    spectre_v2_user_stibp == SPECTRE_V2_USER_NONE)
2207			return 0;
2208
2209		/*
2210		 * With strict mode for both IBPB and STIBP, the instruction
2211		 * code paths avoid checking this task flag and instead,
2212		 * unconditionally run the instruction. However, STIBP and IBPB
2213		 * are independent and either can be set to conditionally
2214		 * enabled regardless of the mode of the other.
2215		 *
2216		 * If either is set to conditional, allow the task flag to be
2217		 * updated, unless it was force-disabled by a previous prctl
2218		 * call. Currently, this is possible on an AMD CPU which has the
2219		 * feature X86_FEATURE_AMD_STIBP_ALWAYS_ON. In this case, if the
2220		 * kernel is booted with 'spectre_v2_user=seccomp', then
2221		 * spectre_v2_user_ibpb == SPECTRE_V2_USER_SECCOMP and
2222		 * spectre_v2_user_stibp == SPECTRE_V2_USER_STRICT_PREFERRED.
2223		 */
2224		if (!is_spec_ib_user_controlled() ||
2225		    task_spec_ib_force_disable(task))
2226			return -EPERM;
2227
2228		task_clear_spec_ib_disable(task);
2229		task_update_spec_tif(task);
2230		break;
2231	case PR_SPEC_DISABLE:
2232	case PR_SPEC_FORCE_DISABLE:
2233		/*
2234		 * Indirect branch speculation is always allowed when
2235		 * mitigation is force disabled.
2236		 */
2237		if (spectre_v2_user_ibpb == SPECTRE_V2_USER_NONE &&
2238		    spectre_v2_user_stibp == SPECTRE_V2_USER_NONE)
2239			return -EPERM;
2240
2241		if (!is_spec_ib_user_controlled())
2242			return 0;
2243
2244		task_set_spec_ib_disable(task);
2245		if (ctrl == PR_SPEC_FORCE_DISABLE)
2246			task_set_spec_ib_force_disable(task);
2247		task_update_spec_tif(task);
2248		if (task == current)
2249			indirect_branch_prediction_barrier();
2250		break;
2251	default:
2252		return -ERANGE;
2253	}
2254	return 0;
2255}
2256
2257int arch_prctl_spec_ctrl_set(struct task_struct *task, unsigned long which,
2258			     unsigned long ctrl)
2259{
2260	switch (which) {
2261	case PR_SPEC_STORE_BYPASS:
2262		return ssb_prctl_set(task, ctrl);
2263	case PR_SPEC_INDIRECT_BRANCH:
2264		return ib_prctl_set(task, ctrl);
2265	case PR_SPEC_L1D_FLUSH:
2266		return l1d_flush_prctl_set(task, ctrl);
2267	default:
2268		return -ENODEV;
2269	}
2270}
2271
2272#ifdef CONFIG_SECCOMP
2273void arch_seccomp_spec_mitigate(struct task_struct *task)
2274{
2275	if (ssb_mode == SPEC_STORE_BYPASS_SECCOMP)
2276		ssb_prctl_set(task, PR_SPEC_FORCE_DISABLE);
2277	if (spectre_v2_user_ibpb == SPECTRE_V2_USER_SECCOMP ||
2278	    spectre_v2_user_stibp == SPECTRE_V2_USER_SECCOMP)
2279		ib_prctl_set(task, PR_SPEC_FORCE_DISABLE);
2280}
2281#endif
2282
2283static int l1d_flush_prctl_get(struct task_struct *task)
2284{
2285	if (!static_branch_unlikely(&switch_mm_cond_l1d_flush))
2286		return PR_SPEC_FORCE_DISABLE;
2287
2288	if (test_ti_thread_flag(&task->thread_info, TIF_SPEC_L1D_FLUSH))
2289		return PR_SPEC_PRCTL | PR_SPEC_ENABLE;
2290	else
2291		return PR_SPEC_PRCTL | PR_SPEC_DISABLE;
2292}
2293
2294static int ssb_prctl_get(struct task_struct *task)
2295{
2296	switch (ssb_mode) {
2297	case SPEC_STORE_BYPASS_NONE:
2298		if (boot_cpu_has_bug(X86_BUG_SPEC_STORE_BYPASS))
2299			return PR_SPEC_ENABLE;
2300		return PR_SPEC_NOT_AFFECTED;
2301	case SPEC_STORE_BYPASS_DISABLE:
2302		return PR_SPEC_DISABLE;
2303	case SPEC_STORE_BYPASS_SECCOMP:
2304	case SPEC_STORE_BYPASS_PRCTL:
2305		if (task_spec_ssb_force_disable(task))
2306			return PR_SPEC_PRCTL | PR_SPEC_FORCE_DISABLE;
2307		if (task_spec_ssb_noexec(task))
2308			return PR_SPEC_PRCTL | PR_SPEC_DISABLE_NOEXEC;
2309		if (task_spec_ssb_disable(task))
2310			return PR_SPEC_PRCTL | PR_SPEC_DISABLE;
2311		return PR_SPEC_PRCTL | PR_SPEC_ENABLE;
2312	}
2313	BUG();
2314}
2315
2316static int ib_prctl_get(struct task_struct *task)
2317{
2318	if (!boot_cpu_has_bug(X86_BUG_SPECTRE_V2))
2319		return PR_SPEC_NOT_AFFECTED;
2320
2321	if (spectre_v2_user_ibpb == SPECTRE_V2_USER_NONE &&
2322	    spectre_v2_user_stibp == SPECTRE_V2_USER_NONE)
2323		return PR_SPEC_ENABLE;
2324	else if (is_spec_ib_user_controlled()) {
2325		if (task_spec_ib_force_disable(task))
2326			return PR_SPEC_PRCTL | PR_SPEC_FORCE_DISABLE;
2327		if (task_spec_ib_disable(task))
2328			return PR_SPEC_PRCTL | PR_SPEC_DISABLE;
2329		return PR_SPEC_PRCTL | PR_SPEC_ENABLE;
2330	} else if (spectre_v2_user_ibpb == SPECTRE_V2_USER_STRICT ||
2331	    spectre_v2_user_stibp == SPECTRE_V2_USER_STRICT ||
2332	    spectre_v2_user_stibp == SPECTRE_V2_USER_STRICT_PREFERRED)
2333		return PR_SPEC_DISABLE;
2334	else
2335		return PR_SPEC_NOT_AFFECTED;
2336}
2337
2338int arch_prctl_spec_ctrl_get(struct task_struct *task, unsigned long which)
2339{
2340	switch (which) {
2341	case PR_SPEC_STORE_BYPASS:
2342		return ssb_prctl_get(task);
2343	case PR_SPEC_INDIRECT_BRANCH:
2344		return ib_prctl_get(task);
2345	case PR_SPEC_L1D_FLUSH:
2346		return l1d_flush_prctl_get(task);
2347	default:
2348		return -ENODEV;
2349	}
2350}
2351
2352void x86_spec_ctrl_setup_ap(void)
2353{
2354	if (boot_cpu_has(X86_FEATURE_MSR_SPEC_CTRL))
2355		update_spec_ctrl(x86_spec_ctrl_base);
2356
2357	if (ssb_mode == SPEC_STORE_BYPASS_DISABLE)
2358		x86_amd_ssb_disable();
2359}
2360
2361bool itlb_multihit_kvm_mitigation;
2362EXPORT_SYMBOL_GPL(itlb_multihit_kvm_mitigation);
2363
2364#undef pr_fmt
2365#define pr_fmt(fmt)	"L1TF: " fmt
2366
2367/* Default mitigation for L1TF-affected CPUs */
2368enum l1tf_mitigations l1tf_mitigation __ro_after_init = L1TF_MITIGATION_FLUSH;
2369#if IS_ENABLED(CONFIG_KVM_INTEL)
2370EXPORT_SYMBOL_GPL(l1tf_mitigation);
2371#endif
2372enum vmx_l1d_flush_state l1tf_vmx_mitigation = VMENTER_L1D_FLUSH_AUTO;
2373EXPORT_SYMBOL_GPL(l1tf_vmx_mitigation);
2374
2375/*
2376 * These CPUs all support 44bits physical address space internally in the
2377 * cache but CPUID can report a smaller number of physical address bits.
2378 *
2379 * The L1TF mitigation uses the top most address bit for the inversion of
2380 * non present PTEs. When the installed memory reaches into the top most
2381 * address bit due to memory holes, which has been observed on machines
2382 * which report 36bits physical address bits and have 32G RAM installed,
2383 * then the mitigation range check in l1tf_select_mitigation() triggers.
2384 * This is a false positive because the mitigation is still possible due to
2385 * the fact that the cache uses 44bit internally. Use the cache bits
2386 * instead of the reported physical bits and adjust them on the affected
2387 * machines to 44bit if the reported bits are less than 44.
2388 */
2389static void override_cache_bits(struct cpuinfo_x86 *c)
2390{
2391	if (c->x86 != 6)
2392		return;
2393
2394	switch (c->x86_model) {
2395	case INTEL_FAM6_NEHALEM:
2396	case INTEL_FAM6_WESTMERE:
2397	case INTEL_FAM6_SANDYBRIDGE:
2398	case INTEL_FAM6_IVYBRIDGE:
2399	case INTEL_FAM6_HASWELL:
2400	case INTEL_FAM6_HASWELL_L:
2401	case INTEL_FAM6_HASWELL_G:
2402	case INTEL_FAM6_BROADWELL:
2403	case INTEL_FAM6_BROADWELL_G:
2404	case INTEL_FAM6_SKYLAKE_L:
2405	case INTEL_FAM6_SKYLAKE:
2406	case INTEL_FAM6_KABYLAKE_L:
2407	case INTEL_FAM6_KABYLAKE:
2408		if (c->x86_cache_bits < 44)
2409			c->x86_cache_bits = 44;
2410		break;
2411	}
2412}
2413
2414static void __init l1tf_select_mitigation(void)
2415{
2416	u64 half_pa;
2417
2418	if (!boot_cpu_has_bug(X86_BUG_L1TF))
2419		return;
2420
2421	if (cpu_mitigations_off())
2422		l1tf_mitigation = L1TF_MITIGATION_OFF;
2423	else if (cpu_mitigations_auto_nosmt())
2424		l1tf_mitigation = L1TF_MITIGATION_FLUSH_NOSMT;
2425
2426	override_cache_bits(&boot_cpu_data);
2427
2428	switch (l1tf_mitigation) {
2429	case L1TF_MITIGATION_OFF:
2430	case L1TF_MITIGATION_FLUSH_NOWARN:
2431	case L1TF_MITIGATION_FLUSH:
2432		break;
2433	case L1TF_MITIGATION_FLUSH_NOSMT:
2434	case L1TF_MITIGATION_FULL:
2435		cpu_smt_disable(false);
2436		break;
2437	case L1TF_MITIGATION_FULL_FORCE:
2438		cpu_smt_disable(true);
2439		break;
2440	}
2441
2442#if CONFIG_PGTABLE_LEVELS == 2
2443	pr_warn("Kernel not compiled for PAE. No mitigation for L1TF\n");
2444	return;
2445#endif
2446
2447	half_pa = (u64)l1tf_pfn_limit() << PAGE_SHIFT;
2448	if (l1tf_mitigation != L1TF_MITIGATION_OFF &&
2449			e820__mapped_any(half_pa, ULLONG_MAX - half_pa, E820_TYPE_RAM)) {
2450		pr_warn("System has more than MAX_PA/2 memory. L1TF mitigation not effective.\n");
2451		pr_info("You may make it effective by booting the kernel with mem=%llu parameter.\n",
2452				half_pa);
2453		pr_info("However, doing so will make a part of your RAM unusable.\n");
2454		pr_info("Reading https://www.kernel.org/doc/html/latest/admin-guide/hw-vuln/l1tf.html might help you decide.\n");
2455		return;
2456	}
2457
2458	setup_force_cpu_cap(X86_FEATURE_L1TF_PTEINV);
2459}
2460
2461static int __init l1tf_cmdline(char *str)
2462{
2463	if (!boot_cpu_has_bug(X86_BUG_L1TF))
2464		return 0;
2465
2466	if (!str)
2467		return -EINVAL;
2468
2469	if (!strcmp(str, "off"))
2470		l1tf_mitigation = L1TF_MITIGATION_OFF;
2471	else if (!strcmp(str, "flush,nowarn"))
2472		l1tf_mitigation = L1TF_MITIGATION_FLUSH_NOWARN;
2473	else if (!strcmp(str, "flush"))
2474		l1tf_mitigation = L1TF_MITIGATION_FLUSH;
2475	else if (!strcmp(str, "flush,nosmt"))
2476		l1tf_mitigation = L1TF_MITIGATION_FLUSH_NOSMT;
2477	else if (!strcmp(str, "full"))
2478		l1tf_mitigation = L1TF_MITIGATION_FULL;
2479	else if (!strcmp(str, "full,force"))
2480		l1tf_mitigation = L1TF_MITIGATION_FULL_FORCE;
2481
2482	return 0;
2483}
2484early_param("l1tf", l1tf_cmdline);
2485
2486#undef pr_fmt
2487#define pr_fmt(fmt)	"Speculative Return Stack Overflow: " fmt
2488
2489enum srso_mitigation {
2490	SRSO_MITIGATION_NONE,
2491	SRSO_MITIGATION_UCODE_NEEDED,
2492	SRSO_MITIGATION_SAFE_RET_UCODE_NEEDED,
2493	SRSO_MITIGATION_MICROCODE,
2494	SRSO_MITIGATION_SAFE_RET,
2495	SRSO_MITIGATION_IBPB,
2496	SRSO_MITIGATION_IBPB_ON_VMEXIT,
2497};
2498
2499enum srso_mitigation_cmd {
2500	SRSO_CMD_OFF,
2501	SRSO_CMD_MICROCODE,
2502	SRSO_CMD_SAFE_RET,
2503	SRSO_CMD_IBPB,
2504	SRSO_CMD_IBPB_ON_VMEXIT,
2505};
2506
2507static const char * const srso_strings[] = {
2508	[SRSO_MITIGATION_NONE]			= "Vulnerable",
2509	[SRSO_MITIGATION_UCODE_NEEDED]		= "Vulnerable: No microcode",
2510	[SRSO_MITIGATION_SAFE_RET_UCODE_NEEDED]	= "Vulnerable: Safe RET, no microcode",
2511	[SRSO_MITIGATION_MICROCODE]		= "Vulnerable: Microcode, no safe RET",
2512	[SRSO_MITIGATION_SAFE_RET]		= "Mitigation: Safe RET",
2513	[SRSO_MITIGATION_IBPB]			= "Mitigation: IBPB",
2514	[SRSO_MITIGATION_IBPB_ON_VMEXIT]	= "Mitigation: IBPB on VMEXIT only"
2515};
2516
2517static enum srso_mitigation srso_mitigation __ro_after_init = SRSO_MITIGATION_NONE;
2518static enum srso_mitigation_cmd srso_cmd __ro_after_init = SRSO_CMD_SAFE_RET;
2519
2520static int __init srso_parse_cmdline(char *str)
2521{
2522	if (!str)
2523		return -EINVAL;
2524
2525	if (!strcmp(str, "off"))
2526		srso_cmd = SRSO_CMD_OFF;
2527	else if (!strcmp(str, "microcode"))
2528		srso_cmd = SRSO_CMD_MICROCODE;
2529	else if (!strcmp(str, "safe-ret"))
2530		srso_cmd = SRSO_CMD_SAFE_RET;
2531	else if (!strcmp(str, "ibpb"))
2532		srso_cmd = SRSO_CMD_IBPB;
2533	else if (!strcmp(str, "ibpb-vmexit"))
2534		srso_cmd = SRSO_CMD_IBPB_ON_VMEXIT;
2535	else
2536		pr_err("Ignoring unknown SRSO option (%s).", str);
2537
2538	return 0;
2539}
2540early_param("spec_rstack_overflow", srso_parse_cmdline);
2541
2542#define SRSO_NOTICE "WARNING: See https://kernel.org/doc/html/latest/admin-guide/hw-vuln/srso.html for mitigation options."
2543
2544static void __init srso_select_mitigation(void)
2545{
2546	bool has_microcode = boot_cpu_has(X86_FEATURE_IBPB_BRTYPE);
2547
2548	if (cpu_mitigations_off())
2549		return;
2550
2551	if (!boot_cpu_has_bug(X86_BUG_SRSO)) {
2552		if (boot_cpu_has(X86_FEATURE_SBPB))
2553			x86_pred_cmd = PRED_CMD_SBPB;
2554		return;
2555	}
2556
2557	if (has_microcode) {
2558		/*
2559		 * Zen1/2 with SMT off aren't vulnerable after the right
2560		 * IBPB microcode has been applied.
2561		 *
2562		 * Zen1/2 don't have SBPB, no need to try to enable it here.
2563		 */
2564		if (boot_cpu_data.x86 < 0x19 && !cpu_smt_possible()) {
2565			setup_force_cpu_cap(X86_FEATURE_SRSO_NO);
2566			return;
2567		}
2568
2569		if (retbleed_mitigation == RETBLEED_MITIGATION_IBPB) {
2570			srso_mitigation = SRSO_MITIGATION_IBPB;
2571			goto out;
2572		}
2573	} else {
2574		pr_warn("IBPB-extending microcode not applied!\n");
2575		pr_warn(SRSO_NOTICE);
2576
2577		/* may be overwritten by SRSO_CMD_SAFE_RET below */
2578		srso_mitigation = SRSO_MITIGATION_UCODE_NEEDED;
2579	}
2580
2581	switch (srso_cmd) {
2582	case SRSO_CMD_OFF:
2583		if (boot_cpu_has(X86_FEATURE_SBPB))
2584			x86_pred_cmd = PRED_CMD_SBPB;
2585		return;
2586
2587	case SRSO_CMD_MICROCODE:
2588		if (has_microcode) {
2589			srso_mitigation = SRSO_MITIGATION_MICROCODE;
2590			pr_warn(SRSO_NOTICE);
2591		}
2592		break;
2593
2594	case SRSO_CMD_SAFE_RET:
2595		if (IS_ENABLED(CONFIG_MITIGATION_SRSO)) {
2596			/*
2597			 * Enable the return thunk for generated code
2598			 * like ftrace, static_call, etc.
2599			 */
2600			setup_force_cpu_cap(X86_FEATURE_RETHUNK);
2601			setup_force_cpu_cap(X86_FEATURE_UNRET);
2602
2603			if (boot_cpu_data.x86 == 0x19) {
2604				setup_force_cpu_cap(X86_FEATURE_SRSO_ALIAS);
2605				x86_return_thunk = srso_alias_return_thunk;
2606			} else {
2607				setup_force_cpu_cap(X86_FEATURE_SRSO);
2608				x86_return_thunk = srso_return_thunk;
2609			}
2610			if (has_microcode)
2611				srso_mitigation = SRSO_MITIGATION_SAFE_RET;
2612			else
2613				srso_mitigation = SRSO_MITIGATION_SAFE_RET_UCODE_NEEDED;
2614		} else {
2615			pr_err("WARNING: kernel not compiled with MITIGATION_SRSO.\n");
2616		}
2617		break;
2618
2619	case SRSO_CMD_IBPB:
2620		if (IS_ENABLED(CONFIG_MITIGATION_IBPB_ENTRY)) {
2621			if (has_microcode) {
2622				setup_force_cpu_cap(X86_FEATURE_ENTRY_IBPB);
2623				srso_mitigation = SRSO_MITIGATION_IBPB;
2624			}
2625		} else {
2626			pr_err("WARNING: kernel not compiled with MITIGATION_IBPB_ENTRY.\n");
2627		}
2628		break;
2629
2630	case SRSO_CMD_IBPB_ON_VMEXIT:
2631		if (IS_ENABLED(CONFIG_MITIGATION_SRSO)) {
2632			if (!boot_cpu_has(X86_FEATURE_ENTRY_IBPB) && has_microcode) {
2633				setup_force_cpu_cap(X86_FEATURE_IBPB_ON_VMEXIT);
2634				srso_mitigation = SRSO_MITIGATION_IBPB_ON_VMEXIT;
2635			}
2636		} else {
2637			pr_err("WARNING: kernel not compiled with MITIGATION_SRSO.\n");
2638                }
2639		break;
2640	}
2641
2642out:
2643	pr_info("%s\n", srso_strings[srso_mitigation]);
2644}
2645
2646#undef pr_fmt
2647#define pr_fmt(fmt) fmt
2648
2649#ifdef CONFIG_SYSFS
2650
2651#define L1TF_DEFAULT_MSG "Mitigation: PTE Inversion"
2652
2653#if IS_ENABLED(CONFIG_KVM_INTEL)
2654static const char * const l1tf_vmx_states[] = {
2655	[VMENTER_L1D_FLUSH_AUTO]		= "auto",
2656	[VMENTER_L1D_FLUSH_NEVER]		= "vulnerable",
2657	[VMENTER_L1D_FLUSH_COND]		= "conditional cache flushes",
2658	[VMENTER_L1D_FLUSH_ALWAYS]		= "cache flushes",
2659	[VMENTER_L1D_FLUSH_EPT_DISABLED]	= "EPT disabled",
2660	[VMENTER_L1D_FLUSH_NOT_REQUIRED]	= "flush not necessary"
2661};
2662
2663static ssize_t l1tf_show_state(char *buf)
2664{
2665	if (l1tf_vmx_mitigation == VMENTER_L1D_FLUSH_AUTO)
2666		return sysfs_emit(buf, "%s\n", L1TF_DEFAULT_MSG);
2667
2668	if (l1tf_vmx_mitigation == VMENTER_L1D_FLUSH_EPT_DISABLED ||
2669	    (l1tf_vmx_mitigation == VMENTER_L1D_FLUSH_NEVER &&
2670	     sched_smt_active())) {
2671		return sysfs_emit(buf, "%s; VMX: %s\n", L1TF_DEFAULT_MSG,
2672				  l1tf_vmx_states[l1tf_vmx_mitigation]);
2673	}
2674
2675	return sysfs_emit(buf, "%s; VMX: %s, SMT %s\n", L1TF_DEFAULT_MSG,
2676			  l1tf_vmx_states[l1tf_vmx_mitigation],
2677			  sched_smt_active() ? "vulnerable" : "disabled");
2678}
2679
2680static ssize_t itlb_multihit_show_state(char *buf)
2681{
2682	if (!boot_cpu_has(X86_FEATURE_MSR_IA32_FEAT_CTL) ||
2683	    !boot_cpu_has(X86_FEATURE_VMX))
2684		return sysfs_emit(buf, "KVM: Mitigation: VMX unsupported\n");
2685	else if (!(cr4_read_shadow() & X86_CR4_VMXE))
2686		return sysfs_emit(buf, "KVM: Mitigation: VMX disabled\n");
2687	else if (itlb_multihit_kvm_mitigation)
2688		return sysfs_emit(buf, "KVM: Mitigation: Split huge pages\n");
2689	else
2690		return sysfs_emit(buf, "KVM: Vulnerable\n");
2691}
2692#else
2693static ssize_t l1tf_show_state(char *buf)
2694{
2695	return sysfs_emit(buf, "%s\n", L1TF_DEFAULT_MSG);
2696}
2697
2698static ssize_t itlb_multihit_show_state(char *buf)
2699{
2700	return sysfs_emit(buf, "Processor vulnerable\n");
2701}
2702#endif
2703
2704static ssize_t mds_show_state(char *buf)
2705{
2706	if (boot_cpu_has(X86_FEATURE_HYPERVISOR)) {
2707		return sysfs_emit(buf, "%s; SMT Host state unknown\n",
2708				  mds_strings[mds_mitigation]);
2709	}
2710
2711	if (boot_cpu_has(X86_BUG_MSBDS_ONLY)) {
2712		return sysfs_emit(buf, "%s; SMT %s\n", mds_strings[mds_mitigation],
2713				  (mds_mitigation == MDS_MITIGATION_OFF ? "vulnerable" :
2714				   sched_smt_active() ? "mitigated" : "disabled"));
2715	}
2716
2717	return sysfs_emit(buf, "%s; SMT %s\n", mds_strings[mds_mitigation],
2718			  sched_smt_active() ? "vulnerable" : "disabled");
2719}
2720
2721static ssize_t tsx_async_abort_show_state(char *buf)
2722{
2723	if ((taa_mitigation == TAA_MITIGATION_TSX_DISABLED) ||
2724	    (taa_mitigation == TAA_MITIGATION_OFF))
2725		return sysfs_emit(buf, "%s\n", taa_strings[taa_mitigation]);
2726
2727	if (boot_cpu_has(X86_FEATURE_HYPERVISOR)) {
2728		return sysfs_emit(buf, "%s; SMT Host state unknown\n",
2729				  taa_strings[taa_mitigation]);
2730	}
2731
2732	return sysfs_emit(buf, "%s; SMT %s\n", taa_strings[taa_mitigation],
2733			  sched_smt_active() ? "vulnerable" : "disabled");
2734}
2735
2736static ssize_t mmio_stale_data_show_state(char *buf)
2737{
2738	if (boot_cpu_has_bug(X86_BUG_MMIO_UNKNOWN))
2739		return sysfs_emit(buf, "Unknown: No mitigations\n");
2740
2741	if (mmio_mitigation == MMIO_MITIGATION_OFF)
2742		return sysfs_emit(buf, "%s\n", mmio_strings[mmio_mitigation]);
2743
2744	if (boot_cpu_has(X86_FEATURE_HYPERVISOR)) {
2745		return sysfs_emit(buf, "%s; SMT Host state unknown\n",
2746				  mmio_strings[mmio_mitigation]);
2747	}
2748
2749	return sysfs_emit(buf, "%s; SMT %s\n", mmio_strings[mmio_mitigation],
2750			  sched_smt_active() ? "vulnerable" : "disabled");
2751}
2752
2753static ssize_t rfds_show_state(char *buf)
2754{
2755	return sysfs_emit(buf, "%s\n", rfds_strings[rfds_mitigation]);
2756}
2757
2758static char *stibp_state(void)
2759{
2760	if (spectre_v2_in_eibrs_mode(spectre_v2_enabled) &&
2761	    !boot_cpu_has(X86_FEATURE_AUTOIBRS))
2762		return "";
2763
2764	switch (spectre_v2_user_stibp) {
2765	case SPECTRE_V2_USER_NONE:
2766		return "; STIBP: disabled";
2767	case SPECTRE_V2_USER_STRICT:
2768		return "; STIBP: forced";
2769	case SPECTRE_V2_USER_STRICT_PREFERRED:
2770		return "; STIBP: always-on";
2771	case SPECTRE_V2_USER_PRCTL:
2772	case SPECTRE_V2_USER_SECCOMP:
2773		if (static_key_enabled(&switch_to_cond_stibp))
2774			return "; STIBP: conditional";
2775	}
2776	return "";
2777}
2778
2779static char *ibpb_state(void)
2780{
2781	if (boot_cpu_has(X86_FEATURE_IBPB)) {
2782		if (static_key_enabled(&switch_mm_always_ibpb))
2783			return "; IBPB: always-on";
2784		if (static_key_enabled(&switch_mm_cond_ibpb))
2785			return "; IBPB: conditional";
2786		return "; IBPB: disabled";
2787	}
2788	return "";
2789}
2790
2791static char *pbrsb_eibrs_state(void)
2792{
2793	if (boot_cpu_has_bug(X86_BUG_EIBRS_PBRSB)) {
2794		if (boot_cpu_has(X86_FEATURE_RSB_VMEXIT_LITE) ||
2795		    boot_cpu_has(X86_FEATURE_RSB_VMEXIT))
2796			return "; PBRSB-eIBRS: SW sequence";
2797		else
2798			return "; PBRSB-eIBRS: Vulnerable";
2799	} else {
2800		return "; PBRSB-eIBRS: Not affected";
2801	}
2802}
2803
2804static const char *spectre_bhi_state(void)
2805{
2806	if (!boot_cpu_has_bug(X86_BUG_BHI))
2807		return "; BHI: Not affected";
2808	else if (boot_cpu_has(X86_FEATURE_CLEAR_BHB_HW))
2809		return "; BHI: BHI_DIS_S";
2810	else if (boot_cpu_has(X86_FEATURE_CLEAR_BHB_LOOP))
2811		return "; BHI: SW loop, KVM: SW loop";
2812	else if (boot_cpu_has(X86_FEATURE_RETPOLINE) &&
2813		 !boot_cpu_has(X86_FEATURE_RETPOLINE_LFENCE) &&
2814		 rrsba_disabled)
2815		return "; BHI: Retpoline";
2816	else if (boot_cpu_has(X86_FEATURE_CLEAR_BHB_LOOP_ON_VMEXIT))
2817		return "; BHI: Vulnerable, KVM: SW loop";
2818
2819	return "; BHI: Vulnerable";
2820}
2821
2822static ssize_t spectre_v2_show_state(char *buf)
2823{
2824	if (spectre_v2_enabled == SPECTRE_V2_LFENCE)
2825		return sysfs_emit(buf, "Vulnerable: LFENCE\n");
2826
2827	if (spectre_v2_enabled == SPECTRE_V2_EIBRS && unprivileged_ebpf_enabled())
2828		return sysfs_emit(buf, "Vulnerable: eIBRS with unprivileged eBPF\n");
2829
2830	if (sched_smt_active() && unprivileged_ebpf_enabled() &&
2831	    spectre_v2_enabled == SPECTRE_V2_EIBRS_LFENCE)
2832		return sysfs_emit(buf, "Vulnerable: eIBRS+LFENCE with unprivileged eBPF and SMT\n");
2833
2834	return sysfs_emit(buf, "%s%s%s%s%s%s%s%s\n",
2835			  spectre_v2_strings[spectre_v2_enabled],
2836			  ibpb_state(),
2837			  boot_cpu_has(X86_FEATURE_USE_IBRS_FW) ? "; IBRS_FW" : "",
2838			  stibp_state(),
2839			  boot_cpu_has(X86_FEATURE_RSB_CTXSW) ? "; RSB filling" : "",
2840			  pbrsb_eibrs_state(),
2841			  spectre_bhi_state(),
2842			  /* this should always be at the end */
2843			  spectre_v2_module_string());
2844}
2845
2846static ssize_t srbds_show_state(char *buf)
2847{
2848	return sysfs_emit(buf, "%s\n", srbds_strings[srbds_mitigation]);
2849}
2850
2851static ssize_t retbleed_show_state(char *buf)
2852{
2853	if (retbleed_mitigation == RETBLEED_MITIGATION_UNRET ||
2854	    retbleed_mitigation == RETBLEED_MITIGATION_IBPB) {
2855		if (boot_cpu_data.x86_vendor != X86_VENDOR_AMD &&
2856		    boot_cpu_data.x86_vendor != X86_VENDOR_HYGON)
2857			return sysfs_emit(buf, "Vulnerable: untrained return thunk / IBPB on non-AMD based uarch\n");
2858
2859		return sysfs_emit(buf, "%s; SMT %s\n", retbleed_strings[retbleed_mitigation],
2860				  !sched_smt_active() ? "disabled" :
2861				  spectre_v2_user_stibp == SPECTRE_V2_USER_STRICT ||
2862				  spectre_v2_user_stibp == SPECTRE_V2_USER_STRICT_PREFERRED ?
2863				  "enabled with STIBP protection" : "vulnerable");
2864	}
2865
2866	return sysfs_emit(buf, "%s\n", retbleed_strings[retbleed_mitigation]);
2867}
2868
2869static ssize_t srso_show_state(char *buf)
2870{
2871	if (boot_cpu_has(X86_FEATURE_SRSO_NO))
2872		return sysfs_emit(buf, "Mitigation: SMT disabled\n");
2873
2874	return sysfs_emit(buf, "%s\n", srso_strings[srso_mitigation]);
2875}
2876
2877static ssize_t gds_show_state(char *buf)
2878{
2879	return sysfs_emit(buf, "%s\n", gds_strings[gds_mitigation]);
2880}
2881
2882static ssize_t cpu_show_common(struct device *dev, struct device_attribute *attr,
2883			       char *buf, unsigned int bug)
2884{
2885	if (!boot_cpu_has_bug(bug))
2886		return sysfs_emit(buf, "Not affected\n");
2887
2888	switch (bug) {
2889	case X86_BUG_CPU_MELTDOWN:
2890		if (boot_cpu_has(X86_FEATURE_PTI))
2891			return sysfs_emit(buf, "Mitigation: PTI\n");
2892
2893		if (hypervisor_is_type(X86_HYPER_XEN_PV))
2894			return sysfs_emit(buf, "Unknown (XEN PV detected, hypervisor mitigation required)\n");
2895
2896		break;
2897
2898	case X86_BUG_SPECTRE_V1:
2899		return sysfs_emit(buf, "%s\n", spectre_v1_strings[spectre_v1_mitigation]);
2900
2901	case X86_BUG_SPECTRE_V2:
2902		return spectre_v2_show_state(buf);
2903
2904	case X86_BUG_SPEC_STORE_BYPASS:
2905		return sysfs_emit(buf, "%s\n", ssb_strings[ssb_mode]);
2906
2907	case X86_BUG_L1TF:
2908		if (boot_cpu_has(X86_FEATURE_L1TF_PTEINV))
2909			return l1tf_show_state(buf);
2910		break;
2911
2912	case X86_BUG_MDS:
2913		return mds_show_state(buf);
2914
2915	case X86_BUG_TAA:
2916		return tsx_async_abort_show_state(buf);
2917
2918	case X86_BUG_ITLB_MULTIHIT:
2919		return itlb_multihit_show_state(buf);
2920
2921	case X86_BUG_SRBDS:
2922		return srbds_show_state(buf);
2923
2924	case X86_BUG_MMIO_STALE_DATA:
2925	case X86_BUG_MMIO_UNKNOWN:
2926		return mmio_stale_data_show_state(buf);
2927
2928	case X86_BUG_RETBLEED:
2929		return retbleed_show_state(buf);
2930
2931	case X86_BUG_SRSO:
2932		return srso_show_state(buf);
2933
2934	case X86_BUG_GDS:
2935		return gds_show_state(buf);
2936
2937	case X86_BUG_RFDS:
2938		return rfds_show_state(buf);
2939
2940	default:
2941		break;
2942	}
2943
2944	return sysfs_emit(buf, "Vulnerable\n");
2945}
2946
2947ssize_t cpu_show_meltdown(struct device *dev, struct device_attribute *attr, char *buf)
2948{
2949	return cpu_show_common(dev, attr, buf, X86_BUG_CPU_MELTDOWN);
2950}
2951
2952ssize_t cpu_show_spectre_v1(struct device *dev, struct device_attribute *attr, char *buf)
2953{
2954	return cpu_show_common(dev, attr, buf, X86_BUG_SPECTRE_V1);
2955}
2956
2957ssize_t cpu_show_spectre_v2(struct device *dev, struct device_attribute *attr, char *buf)
2958{
2959	return cpu_show_common(dev, attr, buf, X86_BUG_SPECTRE_V2);
2960}
2961
2962ssize_t cpu_show_spec_store_bypass(struct device *dev, struct device_attribute *attr, char *buf)
2963{
2964	return cpu_show_common(dev, attr, buf, X86_BUG_SPEC_STORE_BYPASS);
2965}
2966
2967ssize_t cpu_show_l1tf(struct device *dev, struct device_attribute *attr, char *buf)
2968{
2969	return cpu_show_common(dev, attr, buf, X86_BUG_L1TF);
2970}
2971
2972ssize_t cpu_show_mds(struct device *dev, struct device_attribute *attr, char *buf)
2973{
2974	return cpu_show_common(dev, attr, buf, X86_BUG_MDS);
2975}
2976
2977ssize_t cpu_show_tsx_async_abort(struct device *dev, struct device_attribute *attr, char *buf)
2978{
2979	return cpu_show_common(dev, attr, buf, X86_BUG_TAA);
2980}
2981
2982ssize_t cpu_show_itlb_multihit(struct device *dev, struct device_attribute *attr, char *buf)
2983{
2984	return cpu_show_common(dev, attr, buf, X86_BUG_ITLB_MULTIHIT);
2985}
2986
2987ssize_t cpu_show_srbds(struct device *dev, struct device_attribute *attr, char *buf)
2988{
2989	return cpu_show_common(dev, attr, buf, X86_BUG_SRBDS);
2990}
2991
2992ssize_t cpu_show_mmio_stale_data(struct device *dev, struct device_attribute *attr, char *buf)
2993{
2994	if (boot_cpu_has_bug(X86_BUG_MMIO_UNKNOWN))
2995		return cpu_show_common(dev, attr, buf, X86_BUG_MMIO_UNKNOWN);
2996	else
2997		return cpu_show_common(dev, attr, buf, X86_BUG_MMIO_STALE_DATA);
2998}
2999
3000ssize_t cpu_show_retbleed(struct device *dev, struct device_attribute *attr, char *buf)
3001{
3002	return cpu_show_common(dev, attr, buf, X86_BUG_RETBLEED);
3003}
3004
3005ssize_t cpu_show_spec_rstack_overflow(struct device *dev, struct device_attribute *attr, char *buf)
3006{
3007	return cpu_show_common(dev, attr, buf, X86_BUG_SRSO);
3008}
3009
3010ssize_t cpu_show_gds(struct device *dev, struct device_attribute *attr, char *buf)
3011{
3012	return cpu_show_common(dev, attr, buf, X86_BUG_GDS);
3013}
3014
3015ssize_t cpu_show_reg_file_data_sampling(struct device *dev, struct device_attribute *attr, char *buf)
3016{
3017	return cpu_show_common(dev, attr, buf, X86_BUG_RFDS);
3018}
3019#endif
3020
3021void __warn_thunk(void)
3022{
3023	WARN_ONCE(1, "Unpatched return thunk in use. This should not happen!\n");
3024}
3025