1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * Local APIC related interfaces to support IOAPIC, MSI, etc.
4 *
5 * Copyright (C) 1997, 1998, 1999, 2000, 2009 Ingo Molnar, Hajnalka Szabo
6 *	Moved from arch/x86/kernel/apic/io_apic.c.
7 * Jiang Liu <jiang.liu@linux.intel.com>
8 *	Enable support of hierarchical irqdomains
9 */
10#include <linux/interrupt.h>
11#include <linux/irq.h>
12#include <linux/seq_file.h>
13#include <linux/init.h>
14#include <linux/compiler.h>
15#include <linux/slab.h>
16#include <asm/irqdomain.h>
17#include <asm/hw_irq.h>
18#include <asm/traps.h>
19#include <asm/apic.h>
20#include <asm/i8259.h>
21#include <asm/desc.h>
22#include <asm/irq_remapping.h>
23
24#include <asm/trace/irq_vectors.h>
25
26struct apic_chip_data {
27	struct irq_cfg		hw_irq_cfg;
28	unsigned int		vector;
29	unsigned int		prev_vector;
30	unsigned int		cpu;
31	unsigned int		prev_cpu;
32	unsigned int		irq;
33	struct hlist_node	clist;
34	unsigned int		move_in_progress	: 1,
35				is_managed		: 1,
36				can_reserve		: 1,
37				has_reserved		: 1;
38};
39
40struct irq_domain *x86_vector_domain;
41EXPORT_SYMBOL_GPL(x86_vector_domain);
42static DEFINE_RAW_SPINLOCK(vector_lock);
43static cpumask_var_t vector_searchmask;
44static struct irq_chip lapic_controller;
45static struct irq_matrix *vector_matrix;
46#ifdef CONFIG_SMP
47
48static void vector_cleanup_callback(struct timer_list *tmr);
49
50struct vector_cleanup {
51	struct hlist_head	head;
52	struct timer_list	timer;
53};
54
55static DEFINE_PER_CPU(struct vector_cleanup, vector_cleanup) = {
56	.head	= HLIST_HEAD_INIT,
57	.timer	= __TIMER_INITIALIZER(vector_cleanup_callback, TIMER_PINNED),
58};
59#endif
60
61void lock_vector_lock(void)
62{
63	/* Used to the online set of cpus does not change
64	 * during assign_irq_vector.
65	 */
66	raw_spin_lock(&vector_lock);
67}
68
69void unlock_vector_lock(void)
70{
71	raw_spin_unlock(&vector_lock);
72}
73
74void init_irq_alloc_info(struct irq_alloc_info *info,
75			 const struct cpumask *mask)
76{
77	memset(info, 0, sizeof(*info));
78	info->mask = mask;
79}
80
81void copy_irq_alloc_info(struct irq_alloc_info *dst, struct irq_alloc_info *src)
82{
83	if (src)
84		*dst = *src;
85	else
86		memset(dst, 0, sizeof(*dst));
87}
88
89static struct apic_chip_data *apic_chip_data(struct irq_data *irqd)
90{
91	if (!irqd)
92		return NULL;
93
94	while (irqd->parent_data)
95		irqd = irqd->parent_data;
96
97	return irqd->chip_data;
98}
99
100struct irq_cfg *irqd_cfg(struct irq_data *irqd)
101{
102	struct apic_chip_data *apicd = apic_chip_data(irqd);
103
104	return apicd ? &apicd->hw_irq_cfg : NULL;
105}
106EXPORT_SYMBOL_GPL(irqd_cfg);
107
108struct irq_cfg *irq_cfg(unsigned int irq)
109{
110	return irqd_cfg(irq_get_irq_data(irq));
111}
112
113static struct apic_chip_data *alloc_apic_chip_data(int node)
114{
115	struct apic_chip_data *apicd;
116
117	apicd = kzalloc_node(sizeof(*apicd), GFP_KERNEL, node);
118	if (apicd)
119		INIT_HLIST_NODE(&apicd->clist);
120	return apicd;
121}
122
123static void free_apic_chip_data(struct apic_chip_data *apicd)
124{
125	kfree(apicd);
126}
127
128static void apic_update_irq_cfg(struct irq_data *irqd, unsigned int vector,
129				unsigned int cpu)
130{
131	struct apic_chip_data *apicd = apic_chip_data(irqd);
132
133	lockdep_assert_held(&vector_lock);
134
135	apicd->hw_irq_cfg.vector = vector;
136	apicd->hw_irq_cfg.dest_apicid = apic->calc_dest_apicid(cpu);
137	irq_data_update_effective_affinity(irqd, cpumask_of(cpu));
138	trace_vector_config(irqd->irq, vector, cpu,
139			    apicd->hw_irq_cfg.dest_apicid);
140}
141
142static void apic_update_vector(struct irq_data *irqd, unsigned int newvec,
143			       unsigned int newcpu)
144{
145	struct apic_chip_data *apicd = apic_chip_data(irqd);
146	struct irq_desc *desc = irq_data_to_desc(irqd);
147	bool managed = irqd_affinity_is_managed(irqd);
148
149	lockdep_assert_held(&vector_lock);
150
151	trace_vector_update(irqd->irq, newvec, newcpu, apicd->vector,
152			    apicd->cpu);
153
154	/*
155	 * If there is no vector associated or if the associated vector is
156	 * the shutdown vector, which is associated to make PCI/MSI
157	 * shutdown mode work, then there is nothing to release. Clear out
158	 * prev_vector for this and the offlined target case.
159	 */
160	apicd->prev_vector = 0;
161	if (!apicd->vector || apicd->vector == MANAGED_IRQ_SHUTDOWN_VECTOR)
162		goto setnew;
163	/*
164	 * If the target CPU of the previous vector is online, then mark
165	 * the vector as move in progress and store it for cleanup when the
166	 * first interrupt on the new vector arrives. If the target CPU is
167	 * offline then the regular release mechanism via the cleanup
168	 * vector is not possible and the vector can be immediately freed
169	 * in the underlying matrix allocator.
170	 */
171	if (cpu_online(apicd->cpu)) {
172		apicd->move_in_progress = true;
173		apicd->prev_vector = apicd->vector;
174		apicd->prev_cpu = apicd->cpu;
175		WARN_ON_ONCE(apicd->cpu == newcpu);
176	} else {
177		irq_matrix_free(vector_matrix, apicd->cpu, apicd->vector,
178				managed);
179	}
180
181setnew:
182	apicd->vector = newvec;
183	apicd->cpu = newcpu;
184	BUG_ON(!IS_ERR_OR_NULL(per_cpu(vector_irq, newcpu)[newvec]));
185	per_cpu(vector_irq, newcpu)[newvec] = desc;
186}
187
188static void vector_assign_managed_shutdown(struct irq_data *irqd)
189{
190	unsigned int cpu = cpumask_first(cpu_online_mask);
191
192	apic_update_irq_cfg(irqd, MANAGED_IRQ_SHUTDOWN_VECTOR, cpu);
193}
194
195static int reserve_managed_vector(struct irq_data *irqd)
196{
197	const struct cpumask *affmsk = irq_data_get_affinity_mask(irqd);
198	struct apic_chip_data *apicd = apic_chip_data(irqd);
199	unsigned long flags;
200	int ret;
201
202	raw_spin_lock_irqsave(&vector_lock, flags);
203	apicd->is_managed = true;
204	ret = irq_matrix_reserve_managed(vector_matrix, affmsk);
205	raw_spin_unlock_irqrestore(&vector_lock, flags);
206	trace_vector_reserve_managed(irqd->irq, ret);
207	return ret;
208}
209
210static void reserve_irq_vector_locked(struct irq_data *irqd)
211{
212	struct apic_chip_data *apicd = apic_chip_data(irqd);
213
214	irq_matrix_reserve(vector_matrix);
215	apicd->can_reserve = true;
216	apicd->has_reserved = true;
217	irqd_set_can_reserve(irqd);
218	trace_vector_reserve(irqd->irq, 0);
219	vector_assign_managed_shutdown(irqd);
220}
221
222static int reserve_irq_vector(struct irq_data *irqd)
223{
224	unsigned long flags;
225
226	raw_spin_lock_irqsave(&vector_lock, flags);
227	reserve_irq_vector_locked(irqd);
228	raw_spin_unlock_irqrestore(&vector_lock, flags);
229	return 0;
230}
231
232static int
233assign_vector_locked(struct irq_data *irqd, const struct cpumask *dest)
234{
235	struct apic_chip_data *apicd = apic_chip_data(irqd);
236	bool resvd = apicd->has_reserved;
237	unsigned int cpu = apicd->cpu;
238	int vector = apicd->vector;
239
240	lockdep_assert_held(&vector_lock);
241
242	/*
243	 * If the current target CPU is online and in the new requested
244	 * affinity mask, there is no point in moving the interrupt from
245	 * one CPU to another.
246	 */
247	if (vector && cpu_online(cpu) && cpumask_test_cpu(cpu, dest))
248		return 0;
249
250	/*
251	 * Careful here. @apicd might either have move_in_progress set or
252	 * be enqueued for cleanup. Assigning a new vector would either
253	 * leave a stale vector on some CPU around or in case of a pending
254	 * cleanup corrupt the hlist.
255	 */
256	if (apicd->move_in_progress || !hlist_unhashed(&apicd->clist))
257		return -EBUSY;
258
259	vector = irq_matrix_alloc(vector_matrix, dest, resvd, &cpu);
260	trace_vector_alloc(irqd->irq, vector, resvd, vector);
261	if (vector < 0)
262		return vector;
263	apic_update_vector(irqd, vector, cpu);
264	apic_update_irq_cfg(irqd, vector, cpu);
265
266	return 0;
267}
268
269static int assign_irq_vector(struct irq_data *irqd, const struct cpumask *dest)
270{
271	unsigned long flags;
272	int ret;
273
274	raw_spin_lock_irqsave(&vector_lock, flags);
275	cpumask_and(vector_searchmask, dest, cpu_online_mask);
276	ret = assign_vector_locked(irqd, vector_searchmask);
277	raw_spin_unlock_irqrestore(&vector_lock, flags);
278	return ret;
279}
280
281static int assign_irq_vector_any_locked(struct irq_data *irqd)
282{
283	/* Get the affinity mask - either irq_default_affinity or (user) set */
284	const struct cpumask *affmsk = irq_data_get_affinity_mask(irqd);
285	int node = irq_data_get_node(irqd);
286
287	if (node != NUMA_NO_NODE) {
288		/* Try the intersection of @affmsk and node mask */
289		cpumask_and(vector_searchmask, cpumask_of_node(node), affmsk);
290		if (!assign_vector_locked(irqd, vector_searchmask))
291			return 0;
292	}
293
294	/* Try the full affinity mask */
295	cpumask_and(vector_searchmask, affmsk, cpu_online_mask);
296	if (!assign_vector_locked(irqd, vector_searchmask))
297		return 0;
298
299	if (node != NUMA_NO_NODE) {
300		/* Try the node mask */
301		if (!assign_vector_locked(irqd, cpumask_of_node(node)))
302			return 0;
303	}
304
305	/* Try the full online mask */
306	return assign_vector_locked(irqd, cpu_online_mask);
307}
308
309static int
310assign_irq_vector_policy(struct irq_data *irqd, struct irq_alloc_info *info)
311{
312	if (irqd_affinity_is_managed(irqd))
313		return reserve_managed_vector(irqd);
314	if (info->mask)
315		return assign_irq_vector(irqd, info->mask);
316	/*
317	 * Make only a global reservation with no guarantee. A real vector
318	 * is associated at activation time.
319	 */
320	return reserve_irq_vector(irqd);
321}
322
323static int
324assign_managed_vector(struct irq_data *irqd, const struct cpumask *dest)
325{
326	const struct cpumask *affmsk = irq_data_get_affinity_mask(irqd);
327	struct apic_chip_data *apicd = apic_chip_data(irqd);
328	int vector, cpu;
329
330	cpumask_and(vector_searchmask, dest, affmsk);
331
332	/* set_affinity might call here for nothing */
333	if (apicd->vector && cpumask_test_cpu(apicd->cpu, vector_searchmask))
334		return 0;
335	vector = irq_matrix_alloc_managed(vector_matrix, vector_searchmask,
336					  &cpu);
337	trace_vector_alloc_managed(irqd->irq, vector, vector);
338	if (vector < 0)
339		return vector;
340	apic_update_vector(irqd, vector, cpu);
341	apic_update_irq_cfg(irqd, vector, cpu);
342	return 0;
343}
344
345static void clear_irq_vector(struct irq_data *irqd)
346{
347	struct apic_chip_data *apicd = apic_chip_data(irqd);
348	bool managed = irqd_affinity_is_managed(irqd);
349	unsigned int vector = apicd->vector;
350
351	lockdep_assert_held(&vector_lock);
352
353	if (!vector)
354		return;
355
356	trace_vector_clear(irqd->irq, vector, apicd->cpu, apicd->prev_vector,
357			   apicd->prev_cpu);
358
359	per_cpu(vector_irq, apicd->cpu)[vector] = VECTOR_SHUTDOWN;
360	irq_matrix_free(vector_matrix, apicd->cpu, vector, managed);
361	apicd->vector = 0;
362
363	/* Clean up move in progress */
364	vector = apicd->prev_vector;
365	if (!vector)
366		return;
367
368	per_cpu(vector_irq, apicd->prev_cpu)[vector] = VECTOR_SHUTDOWN;
369	irq_matrix_free(vector_matrix, apicd->prev_cpu, vector, managed);
370	apicd->prev_vector = 0;
371	apicd->move_in_progress = 0;
372	hlist_del_init(&apicd->clist);
373}
374
375static void x86_vector_deactivate(struct irq_domain *dom, struct irq_data *irqd)
376{
377	struct apic_chip_data *apicd = apic_chip_data(irqd);
378	unsigned long flags;
379
380	trace_vector_deactivate(irqd->irq, apicd->is_managed,
381				apicd->can_reserve, false);
382
383	/* Regular fixed assigned interrupt */
384	if (!apicd->is_managed && !apicd->can_reserve)
385		return;
386	/* If the interrupt has a global reservation, nothing to do */
387	if (apicd->has_reserved)
388		return;
389
390	raw_spin_lock_irqsave(&vector_lock, flags);
391	clear_irq_vector(irqd);
392	if (apicd->can_reserve)
393		reserve_irq_vector_locked(irqd);
394	else
395		vector_assign_managed_shutdown(irqd);
396	raw_spin_unlock_irqrestore(&vector_lock, flags);
397}
398
399static int activate_reserved(struct irq_data *irqd)
400{
401	struct apic_chip_data *apicd = apic_chip_data(irqd);
402	int ret;
403
404	ret = assign_irq_vector_any_locked(irqd);
405	if (!ret) {
406		apicd->has_reserved = false;
407		/*
408		 * Core might have disabled reservation mode after
409		 * allocating the irq descriptor. Ideally this should
410		 * happen before allocation time, but that would require
411		 * completely convoluted ways of transporting that
412		 * information.
413		 */
414		if (!irqd_can_reserve(irqd))
415			apicd->can_reserve = false;
416	}
417
418	/*
419	 * Check to ensure that the effective affinity mask is a subset
420	 * the user supplied affinity mask, and warn the user if it is not
421	 */
422	if (!cpumask_subset(irq_data_get_effective_affinity_mask(irqd),
423			    irq_data_get_affinity_mask(irqd))) {
424		pr_warn("irq %u: Affinity broken due to vector space exhaustion.\n",
425			irqd->irq);
426	}
427
428	return ret;
429}
430
431static int activate_managed(struct irq_data *irqd)
432{
433	const struct cpumask *dest = irq_data_get_affinity_mask(irqd);
434	int ret;
435
436	cpumask_and(vector_searchmask, dest, cpu_online_mask);
437	if (WARN_ON_ONCE(cpumask_empty(vector_searchmask))) {
438		/* Something in the core code broke! Survive gracefully */
439		pr_err("Managed startup for irq %u, but no CPU\n", irqd->irq);
440		return -EINVAL;
441	}
442
443	ret = assign_managed_vector(irqd, vector_searchmask);
444	/*
445	 * This should not happen. The vector reservation got buggered.  Handle
446	 * it gracefully.
447	 */
448	if (WARN_ON_ONCE(ret < 0)) {
449		pr_err("Managed startup irq %u, no vector available\n",
450		       irqd->irq);
451	}
452	return ret;
453}
454
455static int x86_vector_activate(struct irq_domain *dom, struct irq_data *irqd,
456			       bool reserve)
457{
458	struct apic_chip_data *apicd = apic_chip_data(irqd);
459	unsigned long flags;
460	int ret = 0;
461
462	trace_vector_activate(irqd->irq, apicd->is_managed,
463			      apicd->can_reserve, reserve);
464
465	raw_spin_lock_irqsave(&vector_lock, flags);
466	if (!apicd->can_reserve && !apicd->is_managed)
467		assign_irq_vector_any_locked(irqd);
468	else if (reserve || irqd_is_managed_and_shutdown(irqd))
469		vector_assign_managed_shutdown(irqd);
470	else if (apicd->is_managed)
471		ret = activate_managed(irqd);
472	else if (apicd->has_reserved)
473		ret = activate_reserved(irqd);
474	raw_spin_unlock_irqrestore(&vector_lock, flags);
475	return ret;
476}
477
478static void vector_free_reserved_and_managed(struct irq_data *irqd)
479{
480	const struct cpumask *dest = irq_data_get_affinity_mask(irqd);
481	struct apic_chip_data *apicd = apic_chip_data(irqd);
482
483	trace_vector_teardown(irqd->irq, apicd->is_managed,
484			      apicd->has_reserved);
485
486	if (apicd->has_reserved)
487		irq_matrix_remove_reserved(vector_matrix);
488	if (apicd->is_managed)
489		irq_matrix_remove_managed(vector_matrix, dest);
490}
491
492static void x86_vector_free_irqs(struct irq_domain *domain,
493				 unsigned int virq, unsigned int nr_irqs)
494{
495	struct apic_chip_data *apicd;
496	struct irq_data *irqd;
497	unsigned long flags;
498	int i;
499
500	for (i = 0; i < nr_irqs; i++) {
501		irqd = irq_domain_get_irq_data(x86_vector_domain, virq + i);
502		if (irqd && irqd->chip_data) {
503			raw_spin_lock_irqsave(&vector_lock, flags);
504			clear_irq_vector(irqd);
505			vector_free_reserved_and_managed(irqd);
506			apicd = irqd->chip_data;
507			irq_domain_reset_irq_data(irqd);
508			raw_spin_unlock_irqrestore(&vector_lock, flags);
509			free_apic_chip_data(apicd);
510		}
511	}
512}
513
514static bool vector_configure_legacy(unsigned int virq, struct irq_data *irqd,
515				    struct apic_chip_data *apicd)
516{
517	unsigned long flags;
518	bool realloc = false;
519
520	apicd->vector = ISA_IRQ_VECTOR(virq);
521	apicd->cpu = 0;
522
523	raw_spin_lock_irqsave(&vector_lock, flags);
524	/*
525	 * If the interrupt is activated, then it must stay at this vector
526	 * position. That's usually the timer interrupt (0).
527	 */
528	if (irqd_is_activated(irqd)) {
529		trace_vector_setup(virq, true, 0);
530		apic_update_irq_cfg(irqd, apicd->vector, apicd->cpu);
531	} else {
532		/* Release the vector */
533		apicd->can_reserve = true;
534		irqd_set_can_reserve(irqd);
535		clear_irq_vector(irqd);
536		realloc = true;
537	}
538	raw_spin_unlock_irqrestore(&vector_lock, flags);
539	return realloc;
540}
541
542static int x86_vector_alloc_irqs(struct irq_domain *domain, unsigned int virq,
543				 unsigned int nr_irqs, void *arg)
544{
545	struct irq_alloc_info *info = arg;
546	struct apic_chip_data *apicd;
547	struct irq_data *irqd;
548	int i, err, node;
549
550	if (apic_is_disabled)
551		return -ENXIO;
552
553	/*
554	 * Catch any attempt to touch the cascade interrupt on a PIC
555	 * equipped system.
556	 */
557	if (WARN_ON_ONCE(info->flags & X86_IRQ_ALLOC_LEGACY &&
558			 virq == PIC_CASCADE_IR))
559		return -EINVAL;
560
561	for (i = 0; i < nr_irqs; i++) {
562		irqd = irq_domain_get_irq_data(domain, virq + i);
563		BUG_ON(!irqd);
564		node = irq_data_get_node(irqd);
565		WARN_ON_ONCE(irqd->chip_data);
566		apicd = alloc_apic_chip_data(node);
567		if (!apicd) {
568			err = -ENOMEM;
569			goto error;
570		}
571
572		apicd->irq = virq + i;
573		irqd->chip = &lapic_controller;
574		irqd->chip_data = apicd;
575		irqd->hwirq = virq + i;
576		irqd_set_single_target(irqd);
577		/*
578		 * Prevent that any of these interrupts is invoked in
579		 * non interrupt context via e.g. generic_handle_irq()
580		 * as that can corrupt the affinity move state.
581		 */
582		irqd_set_handle_enforce_irqctx(irqd);
583
584		/* Don't invoke affinity setter on deactivated interrupts */
585		irqd_set_affinity_on_activate(irqd);
586
587		/*
588		 * Legacy vectors are already assigned when the IOAPIC
589		 * takes them over. They stay on the same vector. This is
590		 * required for check_timer() to work correctly as it might
591		 * switch back to legacy mode. Only update the hardware
592		 * config.
593		 */
594		if (info->flags & X86_IRQ_ALLOC_LEGACY) {
595			if (!vector_configure_legacy(virq + i, irqd, apicd))
596				continue;
597		}
598
599		err = assign_irq_vector_policy(irqd, info);
600		trace_vector_setup(virq + i, false, err);
601		if (err) {
602			irqd->chip_data = NULL;
603			free_apic_chip_data(apicd);
604			goto error;
605		}
606	}
607
608	return 0;
609
610error:
611	x86_vector_free_irqs(domain, virq, i);
612	return err;
613}
614
615#ifdef CONFIG_GENERIC_IRQ_DEBUGFS
616static void x86_vector_debug_show(struct seq_file *m, struct irq_domain *d,
617				  struct irq_data *irqd, int ind)
618{
619	struct apic_chip_data apicd;
620	unsigned long flags;
621	int irq;
622
623	if (!irqd) {
624		irq_matrix_debug_show(m, vector_matrix, ind);
625		return;
626	}
627
628	irq = irqd->irq;
629	if (irq < nr_legacy_irqs() && !test_bit(irq, &io_apic_irqs)) {
630		seq_printf(m, "%*sVector: %5d\n", ind, "", ISA_IRQ_VECTOR(irq));
631		seq_printf(m, "%*sTarget: Legacy PIC all CPUs\n", ind, "");
632		return;
633	}
634
635	if (!irqd->chip_data) {
636		seq_printf(m, "%*sVector: Not assigned\n", ind, "");
637		return;
638	}
639
640	raw_spin_lock_irqsave(&vector_lock, flags);
641	memcpy(&apicd, irqd->chip_data, sizeof(apicd));
642	raw_spin_unlock_irqrestore(&vector_lock, flags);
643
644	seq_printf(m, "%*sVector: %5u\n", ind, "", apicd.vector);
645	seq_printf(m, "%*sTarget: %5u\n", ind, "", apicd.cpu);
646	if (apicd.prev_vector) {
647		seq_printf(m, "%*sPrevious vector: %5u\n", ind, "", apicd.prev_vector);
648		seq_printf(m, "%*sPrevious target: %5u\n", ind, "", apicd.prev_cpu);
649	}
650	seq_printf(m, "%*smove_in_progress: %u\n", ind, "", apicd.move_in_progress ? 1 : 0);
651	seq_printf(m, "%*sis_managed:       %u\n", ind, "", apicd.is_managed ? 1 : 0);
652	seq_printf(m, "%*scan_reserve:      %u\n", ind, "", apicd.can_reserve ? 1 : 0);
653	seq_printf(m, "%*shas_reserved:     %u\n", ind, "", apicd.has_reserved ? 1 : 0);
654	seq_printf(m, "%*scleanup_pending:  %u\n", ind, "", !hlist_unhashed(&apicd.clist));
655}
656#endif
657
658int x86_fwspec_is_ioapic(struct irq_fwspec *fwspec)
659{
660	if (fwspec->param_count != 1)
661		return 0;
662
663	if (is_fwnode_irqchip(fwspec->fwnode)) {
664		const char *fwname = fwnode_get_name(fwspec->fwnode);
665		return fwname && !strncmp(fwname, "IO-APIC-", 8) &&
666			simple_strtol(fwname+8, NULL, 10) == fwspec->param[0];
667	}
668	return to_of_node(fwspec->fwnode) &&
669		of_device_is_compatible(to_of_node(fwspec->fwnode),
670					"intel,ce4100-ioapic");
671}
672
673int x86_fwspec_is_hpet(struct irq_fwspec *fwspec)
674{
675	if (fwspec->param_count != 1)
676		return 0;
677
678	if (is_fwnode_irqchip(fwspec->fwnode)) {
679		const char *fwname = fwnode_get_name(fwspec->fwnode);
680		return fwname && !strncmp(fwname, "HPET-MSI-", 9) &&
681			simple_strtol(fwname+9, NULL, 10) == fwspec->param[0];
682	}
683	return 0;
684}
685
686static int x86_vector_select(struct irq_domain *d, struct irq_fwspec *fwspec,
687			     enum irq_domain_bus_token bus_token)
688{
689	/*
690	 * HPET and I/OAPIC cannot be parented in the vector domain
691	 * if IRQ remapping is enabled. APIC IDs above 15 bits are
692	 * only permitted if IRQ remapping is enabled, so check that.
693	 */
694	if (apic_id_valid(32768))
695		return 0;
696
697	return x86_fwspec_is_ioapic(fwspec) || x86_fwspec_is_hpet(fwspec);
698}
699
700static const struct irq_domain_ops x86_vector_domain_ops = {
701	.select		= x86_vector_select,
702	.alloc		= x86_vector_alloc_irqs,
703	.free		= x86_vector_free_irqs,
704	.activate	= x86_vector_activate,
705	.deactivate	= x86_vector_deactivate,
706#ifdef CONFIG_GENERIC_IRQ_DEBUGFS
707	.debug_show	= x86_vector_debug_show,
708#endif
709};
710
711int __init arch_probe_nr_irqs(void)
712{
713	int nr;
714
715	if (nr_irqs > (NR_VECTORS * nr_cpu_ids))
716		nr_irqs = NR_VECTORS * nr_cpu_ids;
717
718	nr = (gsi_top + nr_legacy_irqs()) + 8 * nr_cpu_ids;
719#if defined(CONFIG_PCI_MSI)
720	/*
721	 * for MSI and HT dyn irq
722	 */
723	if (gsi_top <= NR_IRQS_LEGACY)
724		nr +=  8 * nr_cpu_ids;
725	else
726		nr += gsi_top * 16;
727#endif
728	if (nr < nr_irqs)
729		nr_irqs = nr;
730
731	/*
732	 * We don't know if PIC is present at this point so we need to do
733	 * probe() to get the right number of legacy IRQs.
734	 */
735	return legacy_pic->probe();
736}
737
738void lapic_assign_legacy_vector(unsigned int irq, bool replace)
739{
740	/*
741	 * Use assign system here so it won't get accounted as allocated
742	 * and movable in the cpu hotplug check and it prevents managed
743	 * irq reservation from touching it.
744	 */
745	irq_matrix_assign_system(vector_matrix, ISA_IRQ_VECTOR(irq), replace);
746}
747
748void __init lapic_update_legacy_vectors(void)
749{
750	unsigned int i;
751
752	if (IS_ENABLED(CONFIG_X86_IO_APIC) && nr_ioapics > 0)
753		return;
754
755	/*
756	 * If the IO/APIC is disabled via config, kernel command line or
757	 * lack of enumeration then all legacy interrupts are routed
758	 * through the PIC. Make sure that they are marked as legacy
759	 * vectors. PIC_CASCADE_IRQ has already been marked in
760	 * lapic_assign_system_vectors().
761	 */
762	for (i = 0; i < nr_legacy_irqs(); i++) {
763		if (i != PIC_CASCADE_IR)
764			lapic_assign_legacy_vector(i, true);
765	}
766}
767
768void __init lapic_assign_system_vectors(void)
769{
770	unsigned int i, vector;
771
772	for_each_set_bit(vector, system_vectors, NR_VECTORS)
773		irq_matrix_assign_system(vector_matrix, vector, false);
774
775	if (nr_legacy_irqs() > 1)
776		lapic_assign_legacy_vector(PIC_CASCADE_IR, false);
777
778	/* System vectors are reserved, online it */
779	irq_matrix_online(vector_matrix);
780
781	/* Mark the preallocated legacy interrupts */
782	for (i = 0; i < nr_legacy_irqs(); i++) {
783		/*
784		 * Don't touch the cascade interrupt. It's unusable
785		 * on PIC equipped machines. See the large comment
786		 * in the IO/APIC code.
787		 */
788		if (i != PIC_CASCADE_IR)
789			irq_matrix_assign(vector_matrix, ISA_IRQ_VECTOR(i));
790	}
791}
792
793int __init arch_early_irq_init(void)
794{
795	struct fwnode_handle *fn;
796
797	fn = irq_domain_alloc_named_fwnode("VECTOR");
798	BUG_ON(!fn);
799	x86_vector_domain = irq_domain_create_tree(fn, &x86_vector_domain_ops,
800						   NULL);
801	BUG_ON(x86_vector_domain == NULL);
802	irq_set_default_host(x86_vector_domain);
803
804	BUG_ON(!alloc_cpumask_var(&vector_searchmask, GFP_KERNEL));
805
806	/*
807	 * Allocate the vector matrix allocator data structure and limit the
808	 * search area.
809	 */
810	vector_matrix = irq_alloc_matrix(NR_VECTORS, FIRST_EXTERNAL_VECTOR,
811					 FIRST_SYSTEM_VECTOR);
812	BUG_ON(!vector_matrix);
813
814	return arch_early_ioapic_init();
815}
816
817#ifdef CONFIG_SMP
818
819static struct irq_desc *__setup_vector_irq(int vector)
820{
821	int isairq = vector - ISA_IRQ_VECTOR(0);
822
823	/* Check whether the irq is in the legacy space */
824	if (isairq < 0 || isairq >= nr_legacy_irqs())
825		return VECTOR_UNUSED;
826	/* Check whether the irq is handled by the IOAPIC */
827	if (test_bit(isairq, &io_apic_irqs))
828		return VECTOR_UNUSED;
829	return irq_to_desc(isairq);
830}
831
832/* Online the local APIC infrastructure and initialize the vectors */
833void lapic_online(void)
834{
835	unsigned int vector;
836
837	lockdep_assert_held(&vector_lock);
838
839	/* Online the vector matrix array for this CPU */
840	irq_matrix_online(vector_matrix);
841
842	/*
843	 * The interrupt affinity logic never targets interrupts to offline
844	 * CPUs. The exception are the legacy PIC interrupts. In general
845	 * they are only targeted to CPU0, but depending on the platform
846	 * they can be distributed to any online CPU in hardware. The
847	 * kernel has no influence on that. So all active legacy vectors
848	 * must be installed on all CPUs. All non legacy interrupts can be
849	 * cleared.
850	 */
851	for (vector = 0; vector < NR_VECTORS; vector++)
852		this_cpu_write(vector_irq[vector], __setup_vector_irq(vector));
853}
854
855static void __vector_cleanup(struct vector_cleanup *cl, bool check_irr);
856
857void lapic_offline(void)
858{
859	struct vector_cleanup *cl = this_cpu_ptr(&vector_cleanup);
860
861	lock_vector_lock();
862
863	/* In case the vector cleanup timer has not expired */
864	__vector_cleanup(cl, false);
865
866	irq_matrix_offline(vector_matrix);
867	WARN_ON_ONCE(try_to_del_timer_sync(&cl->timer) < 0);
868	WARN_ON_ONCE(!hlist_empty(&cl->head));
869
870	unlock_vector_lock();
871}
872
873static int apic_set_affinity(struct irq_data *irqd,
874			     const struct cpumask *dest, bool force)
875{
876	int err;
877
878	if (WARN_ON_ONCE(!irqd_is_activated(irqd)))
879		return -EIO;
880
881	raw_spin_lock(&vector_lock);
882	cpumask_and(vector_searchmask, dest, cpu_online_mask);
883	if (irqd_affinity_is_managed(irqd))
884		err = assign_managed_vector(irqd, vector_searchmask);
885	else
886		err = assign_vector_locked(irqd, vector_searchmask);
887	raw_spin_unlock(&vector_lock);
888	return err ? err : IRQ_SET_MASK_OK;
889}
890
891#else
892# define apic_set_affinity	NULL
893#endif
894
895static int apic_retrigger_irq(struct irq_data *irqd)
896{
897	struct apic_chip_data *apicd = apic_chip_data(irqd);
898	unsigned long flags;
899
900	raw_spin_lock_irqsave(&vector_lock, flags);
901	__apic_send_IPI(apicd->cpu, apicd->vector);
902	raw_spin_unlock_irqrestore(&vector_lock, flags);
903
904	return 1;
905}
906
907void apic_ack_irq(struct irq_data *irqd)
908{
909	irq_move_irq(irqd);
910	apic_eoi();
911}
912
913void apic_ack_edge(struct irq_data *irqd)
914{
915	irq_complete_move(irqd_cfg(irqd));
916	apic_ack_irq(irqd);
917}
918
919static void x86_vector_msi_compose_msg(struct irq_data *data,
920				       struct msi_msg *msg)
921{
922       __irq_msi_compose_msg(irqd_cfg(data), msg, false);
923}
924
925static struct irq_chip lapic_controller = {
926	.name			= "APIC",
927	.irq_ack		= apic_ack_edge,
928	.irq_set_affinity	= apic_set_affinity,
929	.irq_compose_msi_msg	= x86_vector_msi_compose_msg,
930	.irq_retrigger		= apic_retrigger_irq,
931};
932
933#ifdef CONFIG_SMP
934
935static void free_moved_vector(struct apic_chip_data *apicd)
936{
937	unsigned int vector = apicd->prev_vector;
938	unsigned int cpu = apicd->prev_cpu;
939	bool managed = apicd->is_managed;
940
941	/*
942	 * Managed interrupts are usually not migrated away
943	 * from an online CPU, but CPU isolation 'managed_irq'
944	 * can make that happen.
945	 * 1) Activation does not take the isolation into account
946	 *    to keep the code simple
947	 * 2) Migration away from an isolated CPU can happen when
948	 *    a non-isolated CPU which is in the calculated
949	 *    affinity mask comes online.
950	 */
951	trace_vector_free_moved(apicd->irq, cpu, vector, managed);
952	irq_matrix_free(vector_matrix, cpu, vector, managed);
953	per_cpu(vector_irq, cpu)[vector] = VECTOR_UNUSED;
954	hlist_del_init(&apicd->clist);
955	apicd->prev_vector = 0;
956	apicd->move_in_progress = 0;
957}
958
959static void __vector_cleanup(struct vector_cleanup *cl, bool check_irr)
960{
961	struct apic_chip_data *apicd;
962	struct hlist_node *tmp;
963	bool rearm = false;
964
965	lockdep_assert_held(&vector_lock);
966
967	hlist_for_each_entry_safe(apicd, tmp, &cl->head, clist) {
968		unsigned int irr, vector = apicd->prev_vector;
969
970		/*
971		 * Paranoia: Check if the vector that needs to be cleaned
972		 * up is registered at the APICs IRR. That's clearly a
973		 * hardware issue if the vector arrived on the old target
974		 * _after_ interrupts were disabled above. Keep @apicd
975		 * on the list and schedule the timer again to give the CPU
976		 * a chance to handle the pending interrupt.
977		 *
978		 * Do not check IRR when called from lapic_offline(), because
979		 * fixup_irqs() was just called to scan IRR for set bits and
980		 * forward them to new destination CPUs via IPIs.
981		 */
982		irr = check_irr ? apic_read(APIC_IRR + (vector / 32 * 0x10)) : 0;
983		if (irr & (1U << (vector % 32))) {
984			pr_warn_once("Moved interrupt pending in old target APIC %u\n", apicd->irq);
985			rearm = true;
986			continue;
987		}
988		free_moved_vector(apicd);
989	}
990
991	/*
992	 * Must happen under vector_lock to make the timer_pending() check
993	 * in __vector_schedule_cleanup() race free against the rearm here.
994	 */
995	if (rearm)
996		mod_timer(&cl->timer, jiffies + 1);
997}
998
999static void vector_cleanup_callback(struct timer_list *tmr)
1000{
1001	struct vector_cleanup *cl = container_of(tmr, typeof(*cl), timer);
1002
1003	/* Prevent vectors vanishing under us */
1004	raw_spin_lock_irq(&vector_lock);
1005	__vector_cleanup(cl, true);
1006	raw_spin_unlock_irq(&vector_lock);
1007}
1008
1009static void __vector_schedule_cleanup(struct apic_chip_data *apicd)
1010{
1011	unsigned int cpu = apicd->prev_cpu;
1012
1013	raw_spin_lock(&vector_lock);
1014	apicd->move_in_progress = 0;
1015	if (cpu_online(cpu)) {
1016		struct vector_cleanup *cl = per_cpu_ptr(&vector_cleanup, cpu);
1017
1018		hlist_add_head(&apicd->clist, &cl->head);
1019
1020		/*
1021		 * The lockless timer_pending() check is safe here. If it
1022		 * returns true, then the callback will observe this new
1023		 * apic data in the hlist as everything is serialized by
1024		 * vector lock.
1025		 *
1026		 * If it returns false then the timer is either not armed
1027		 * or the other CPU executes the callback, which again
1028		 * would be blocked on vector lock. Rearming it in the
1029		 * latter case makes it fire for nothing.
1030		 *
1031		 * This is also safe against the callback rearming the timer
1032		 * because that's serialized via vector lock too.
1033		 */
1034		if (!timer_pending(&cl->timer)) {
1035			cl->timer.expires = jiffies + 1;
1036			add_timer_on(&cl->timer, cpu);
1037		}
1038	} else {
1039		apicd->prev_vector = 0;
1040	}
1041	raw_spin_unlock(&vector_lock);
1042}
1043
1044void vector_schedule_cleanup(struct irq_cfg *cfg)
1045{
1046	struct apic_chip_data *apicd;
1047
1048	apicd = container_of(cfg, struct apic_chip_data, hw_irq_cfg);
1049	if (apicd->move_in_progress)
1050		__vector_schedule_cleanup(apicd);
1051}
1052
1053void irq_complete_move(struct irq_cfg *cfg)
1054{
1055	struct apic_chip_data *apicd;
1056
1057	apicd = container_of(cfg, struct apic_chip_data, hw_irq_cfg);
1058	if (likely(!apicd->move_in_progress))
1059		return;
1060
1061	/*
1062	 * If the interrupt arrived on the new target CPU, cleanup the
1063	 * vector on the old target CPU. A vector check is not required
1064	 * because an interrupt can never move from one vector to another
1065	 * on the same CPU.
1066	 */
1067	if (apicd->cpu == smp_processor_id())
1068		__vector_schedule_cleanup(apicd);
1069}
1070
1071/*
1072 * Called from fixup_irqs() with @desc->lock held and interrupts disabled.
1073 */
1074void irq_force_complete_move(struct irq_desc *desc)
1075{
1076	struct apic_chip_data *apicd;
1077	struct irq_data *irqd;
1078	unsigned int vector;
1079
1080	/*
1081	 * The function is called for all descriptors regardless of which
1082	 * irqdomain they belong to. For example if an IRQ is provided by
1083	 * an irq_chip as part of a GPIO driver, the chip data for that
1084	 * descriptor is specific to the irq_chip in question.
1085	 *
1086	 * Check first that the chip_data is what we expect
1087	 * (apic_chip_data) before touching it any further.
1088	 */
1089	irqd = irq_domain_get_irq_data(x86_vector_domain,
1090				       irq_desc_get_irq(desc));
1091	if (!irqd)
1092		return;
1093
1094	raw_spin_lock(&vector_lock);
1095	apicd = apic_chip_data(irqd);
1096	if (!apicd)
1097		goto unlock;
1098
1099	/*
1100	 * If prev_vector is empty, no action required.
1101	 */
1102	vector = apicd->prev_vector;
1103	if (!vector)
1104		goto unlock;
1105
1106	/*
1107	 * This is tricky. If the cleanup of the old vector has not been
1108	 * done yet, then the following setaffinity call will fail with
1109	 * -EBUSY. This can leave the interrupt in a stale state.
1110	 *
1111	 * All CPUs are stuck in stop machine with interrupts disabled so
1112	 * calling __irq_complete_move() would be completely pointless.
1113	 *
1114	 * 1) The interrupt is in move_in_progress state. That means that we
1115	 *    have not seen an interrupt since the io_apic was reprogrammed to
1116	 *    the new vector.
1117	 *
1118	 * 2) The interrupt has fired on the new vector, but the cleanup IPIs
1119	 *    have not been processed yet.
1120	 */
1121	if (apicd->move_in_progress) {
1122		/*
1123		 * In theory there is a race:
1124		 *
1125		 * set_ioapic(new_vector) <-- Interrupt is raised before update
1126		 *			      is effective, i.e. it's raised on
1127		 *			      the old vector.
1128		 *
1129		 * So if the target cpu cannot handle that interrupt before
1130		 * the old vector is cleaned up, we get a spurious interrupt
1131		 * and in the worst case the ioapic irq line becomes stale.
1132		 *
1133		 * But in case of cpu hotplug this should be a non issue
1134		 * because if the affinity update happens right before all
1135		 * cpus rendezvous in stop machine, there is no way that the
1136		 * interrupt can be blocked on the target cpu because all cpus
1137		 * loops first with interrupts enabled in stop machine, so the
1138		 * old vector is not yet cleaned up when the interrupt fires.
1139		 *
1140		 * So the only way to run into this issue is if the delivery
1141		 * of the interrupt on the apic/system bus would be delayed
1142		 * beyond the point where the target cpu disables interrupts
1143		 * in stop machine. I doubt that it can happen, but at least
1144		 * there is a theoretical chance. Virtualization might be
1145		 * able to expose this, but AFAICT the IOAPIC emulation is not
1146		 * as stupid as the real hardware.
1147		 *
1148		 * Anyway, there is nothing we can do about that at this point
1149		 * w/o refactoring the whole fixup_irq() business completely.
1150		 * We print at least the irq number and the old vector number,
1151		 * so we have the necessary information when a problem in that
1152		 * area arises.
1153		 */
1154		pr_warn("IRQ fixup: irq %d move in progress, old vector %d\n",
1155			irqd->irq, vector);
1156	}
1157	free_moved_vector(apicd);
1158unlock:
1159	raw_spin_unlock(&vector_lock);
1160}
1161
1162#ifdef CONFIG_HOTPLUG_CPU
1163/*
1164 * Note, this is not accurate accounting, but at least good enough to
1165 * prevent that the actual interrupt move will run out of vectors.
1166 */
1167int lapic_can_unplug_cpu(void)
1168{
1169	unsigned int rsvd, avl, tomove, cpu = smp_processor_id();
1170	int ret = 0;
1171
1172	raw_spin_lock(&vector_lock);
1173	tomove = irq_matrix_allocated(vector_matrix);
1174	avl = irq_matrix_available(vector_matrix, true);
1175	if (avl < tomove) {
1176		pr_warn("CPU %u has %u vectors, %u available. Cannot disable CPU\n",
1177			cpu, tomove, avl);
1178		ret = -ENOSPC;
1179		goto out;
1180	}
1181	rsvd = irq_matrix_reserved(vector_matrix);
1182	if (avl < rsvd) {
1183		pr_warn("Reserved vectors %u > available %u. IRQ request may fail\n",
1184			rsvd, avl);
1185	}
1186out:
1187	raw_spin_unlock(&vector_lock);
1188	return ret;
1189}
1190#endif /* HOTPLUG_CPU */
1191#endif /* SMP */
1192
1193static void __init print_APIC_field(int base)
1194{
1195	int i;
1196
1197	printk(KERN_DEBUG);
1198
1199	for (i = 0; i < 8; i++)
1200		pr_cont("%08x", apic_read(base + i*0x10));
1201
1202	pr_cont("\n");
1203}
1204
1205static void __init print_local_APIC(void *dummy)
1206{
1207	unsigned int i, v, ver, maxlvt;
1208	u64 icr;
1209
1210	pr_debug("printing local APIC contents on CPU#%d/%d:\n",
1211		 smp_processor_id(), read_apic_id());
1212	v = apic_read(APIC_ID);
1213	pr_info("... APIC ID:      %08x (%01x)\n", v, read_apic_id());
1214	v = apic_read(APIC_LVR);
1215	pr_info("... APIC VERSION: %08x\n", v);
1216	ver = GET_APIC_VERSION(v);
1217	maxlvt = lapic_get_maxlvt();
1218
1219	v = apic_read(APIC_TASKPRI);
1220	pr_debug("... APIC TASKPRI: %08x (%02x)\n", v, v & APIC_TPRI_MASK);
1221
1222	/* !82489DX */
1223	if (APIC_INTEGRATED(ver)) {
1224		if (!APIC_XAPIC(ver)) {
1225			v = apic_read(APIC_ARBPRI);
1226			pr_debug("... APIC ARBPRI: %08x (%02x)\n",
1227				 v, v & APIC_ARBPRI_MASK);
1228		}
1229		v = apic_read(APIC_PROCPRI);
1230		pr_debug("... APIC PROCPRI: %08x\n", v);
1231	}
1232
1233	/*
1234	 * Remote read supported only in the 82489DX and local APIC for
1235	 * Pentium processors.
1236	 */
1237	if (!APIC_INTEGRATED(ver) || maxlvt == 3) {
1238		v = apic_read(APIC_RRR);
1239		pr_debug("... APIC RRR: %08x\n", v);
1240	}
1241
1242	v = apic_read(APIC_LDR);
1243	pr_debug("... APIC LDR: %08x\n", v);
1244	if (!x2apic_enabled()) {
1245		v = apic_read(APIC_DFR);
1246		pr_debug("... APIC DFR: %08x\n", v);
1247	}
1248	v = apic_read(APIC_SPIV);
1249	pr_debug("... APIC SPIV: %08x\n", v);
1250
1251	pr_debug("... APIC ISR field:\n");
1252	print_APIC_field(APIC_ISR);
1253	pr_debug("... APIC TMR field:\n");
1254	print_APIC_field(APIC_TMR);
1255	pr_debug("... APIC IRR field:\n");
1256	print_APIC_field(APIC_IRR);
1257
1258	/* !82489DX */
1259	if (APIC_INTEGRATED(ver)) {
1260		/* Due to the Pentium erratum 3AP. */
1261		if (maxlvt > 3)
1262			apic_write(APIC_ESR, 0);
1263
1264		v = apic_read(APIC_ESR);
1265		pr_debug("... APIC ESR: %08x\n", v);
1266	}
1267
1268	icr = apic_icr_read();
1269	pr_debug("... APIC ICR: %08x\n", (u32)icr);
1270	pr_debug("... APIC ICR2: %08x\n", (u32)(icr >> 32));
1271
1272	v = apic_read(APIC_LVTT);
1273	pr_debug("... APIC LVTT: %08x\n", v);
1274
1275	if (maxlvt > 3) {
1276		/* PC is LVT#4. */
1277		v = apic_read(APIC_LVTPC);
1278		pr_debug("... APIC LVTPC: %08x\n", v);
1279	}
1280	v = apic_read(APIC_LVT0);
1281	pr_debug("... APIC LVT0: %08x\n", v);
1282	v = apic_read(APIC_LVT1);
1283	pr_debug("... APIC LVT1: %08x\n", v);
1284
1285	if (maxlvt > 2) {
1286		/* ERR is LVT#3. */
1287		v = apic_read(APIC_LVTERR);
1288		pr_debug("... APIC LVTERR: %08x\n", v);
1289	}
1290
1291	v = apic_read(APIC_TMICT);
1292	pr_debug("... APIC TMICT: %08x\n", v);
1293	v = apic_read(APIC_TMCCT);
1294	pr_debug("... APIC TMCCT: %08x\n", v);
1295	v = apic_read(APIC_TDCR);
1296	pr_debug("... APIC TDCR: %08x\n", v);
1297
1298	if (boot_cpu_has(X86_FEATURE_EXTAPIC)) {
1299		v = apic_read(APIC_EFEAT);
1300		maxlvt = (v >> 16) & 0xff;
1301		pr_debug("... APIC EFEAT: %08x\n", v);
1302		v = apic_read(APIC_ECTRL);
1303		pr_debug("... APIC ECTRL: %08x\n", v);
1304		for (i = 0; i < maxlvt; i++) {
1305			v = apic_read(APIC_EILVTn(i));
1306			pr_debug("... APIC EILVT%d: %08x\n", i, v);
1307		}
1308	}
1309	pr_cont("\n");
1310}
1311
1312static void __init print_local_APICs(int maxcpu)
1313{
1314	int cpu;
1315
1316	if (!maxcpu)
1317		return;
1318
1319	preempt_disable();
1320	for_each_online_cpu(cpu) {
1321		if (cpu >= maxcpu)
1322			break;
1323		smp_call_function_single(cpu, print_local_APIC, NULL, 1);
1324	}
1325	preempt_enable();
1326}
1327
1328static void __init print_PIC(void)
1329{
1330	unsigned int v;
1331	unsigned long flags;
1332
1333	if (!nr_legacy_irqs())
1334		return;
1335
1336	pr_debug("\nprinting PIC contents\n");
1337
1338	raw_spin_lock_irqsave(&i8259A_lock, flags);
1339
1340	v = inb(0xa1) << 8 | inb(0x21);
1341	pr_debug("... PIC  IMR: %04x\n", v);
1342
1343	v = inb(0xa0) << 8 | inb(0x20);
1344	pr_debug("... PIC  IRR: %04x\n", v);
1345
1346	outb(0x0b, 0xa0);
1347	outb(0x0b, 0x20);
1348	v = inb(0xa0) << 8 | inb(0x20);
1349	outb(0x0a, 0xa0);
1350	outb(0x0a, 0x20);
1351
1352	raw_spin_unlock_irqrestore(&i8259A_lock, flags);
1353
1354	pr_debug("... PIC  ISR: %04x\n", v);
1355
1356	v = inb(PIC_ELCR2) << 8 | inb(PIC_ELCR1);
1357	pr_debug("... PIC ELCR: %04x\n", v);
1358}
1359
1360static int show_lapic __initdata = 1;
1361static __init int setup_show_lapic(char *arg)
1362{
1363	int num = -1;
1364
1365	if (strcmp(arg, "all") == 0) {
1366		show_lapic = CONFIG_NR_CPUS;
1367	} else {
1368		get_option(&arg, &num);
1369		if (num >= 0)
1370			show_lapic = num;
1371	}
1372
1373	return 1;
1374}
1375__setup("show_lapic=", setup_show_lapic);
1376
1377static int __init print_ICs(void)
1378{
1379	if (apic_verbosity == APIC_QUIET)
1380		return 0;
1381
1382	print_PIC();
1383
1384	/* don't print out if apic is not there */
1385	if (!boot_cpu_has(X86_FEATURE_APIC) && !apic_from_smp_config())
1386		return 0;
1387
1388	print_local_APICs(show_lapic);
1389	print_IO_APICs();
1390
1391	return 0;
1392}
1393
1394late_initcall(print_ICs);
1395