1/* SPDX-License-Identifier: GPL-2.0 */
2#ifndef _ASM_X86_SEGMENT_H
3#define _ASM_X86_SEGMENT_H
4
5#include <linux/const.h>
6#include <asm/alternative.h>
7#include <asm/ibt.h>
8
9/*
10 * Constructor for a conventional segment GDT (or LDT) entry.
11 * This is a macro so it can be used in initializers.
12 */
13#define GDT_ENTRY(flags, base, limit)			\
14	((((base)  & _AC(0xff000000,ULL)) << (56-24)) |	\
15	 (((flags) & _AC(0x0000f0ff,ULL)) << 40) |	\
16	 (((limit) & _AC(0x000f0000,ULL)) << (48-16)) |	\
17	 (((base)  & _AC(0x00ffffff,ULL)) << 16) |	\
18	 (((limit) & _AC(0x0000ffff,ULL))))
19
20/* Simple and small GDT entries for booting only: */
21
22#define GDT_ENTRY_BOOT_CS	2
23#define GDT_ENTRY_BOOT_DS	3
24#define GDT_ENTRY_BOOT_TSS	4
25#define __BOOT_CS		(GDT_ENTRY_BOOT_CS*8)
26#define __BOOT_DS		(GDT_ENTRY_BOOT_DS*8)
27#define __BOOT_TSS		(GDT_ENTRY_BOOT_TSS*8)
28
29/*
30 * Bottom two bits of selector give the ring
31 * privilege level
32 */
33#define SEGMENT_RPL_MASK	0x3
34
35/*
36 * When running on Xen PV, the actual privilege level of the kernel is 1,
37 * not 0. Testing the Requested Privilege Level in a segment selector to
38 * determine whether the context is user mode or kernel mode with
39 * SEGMENT_RPL_MASK is wrong because the PV kernel's privilege level
40 * matches the 0x3 mask.
41 *
42 * Testing with USER_SEGMENT_RPL_MASK is valid for both native and Xen PV
43 * kernels because privilege level 2 is never used.
44 */
45#define USER_SEGMENT_RPL_MASK	0x2
46
47/* User mode is privilege level 3: */
48#define USER_RPL		0x3
49
50/* Bit 2 is Table Indicator (TI): selects between LDT or GDT */
51#define SEGMENT_TI_MASK		0x4
52/* LDT segment has TI set ... */
53#define SEGMENT_LDT		0x4
54/* ... GDT has it cleared */
55#define SEGMENT_GDT		0x0
56
57#define GDT_ENTRY_INVALID_SEG	0
58
59#if defined(CONFIG_X86_32) && !defined(BUILD_VDSO32_64)
60/*
61 * The layout of the per-CPU GDT under Linux:
62 *
63 *   0 - null								<=== cacheline #1
64 *   1 - reserved
65 *   2 - reserved
66 *   3 - reserved
67 *
68 *   4 - unused								<=== cacheline #2
69 *   5 - unused
70 *
71 *  ------- start of TLS (Thread-Local Storage) segments:
72 *
73 *   6 - TLS segment #1			[ glibc's TLS segment ]
74 *   7 - TLS segment #2			[ Wine's %fs Win32 segment ]
75 *   8 - TLS segment #3							<=== cacheline #3
76 *   9 - reserved
77 *  10 - reserved
78 *  11 - reserved
79 *
80 *  ------- start of kernel segments:
81 *
82 *  12 - kernel code segment						<=== cacheline #4
83 *  13 - kernel data segment
84 *  14 - default user CS
85 *  15 - default user DS
86 *  16 - TSS								<=== cacheline #5
87 *  17 - LDT
88 *  18 - PNPBIOS support (16->32 gate)
89 *  19 - PNPBIOS support
90 *  20 - PNPBIOS support						<=== cacheline #6
91 *  21 - PNPBIOS support
92 *  22 - PNPBIOS support
93 *  23 - APM BIOS support
94 *  24 - APM BIOS support						<=== cacheline #7
95 *  25 - APM BIOS support
96 *
97 *  26 - ESPFIX small SS
98 *  27 - per-cpu			[ offset to per-cpu data area ]
99 *  28 - VDSO getcpu
100 *  29 - unused
101 *  30 - unused
102 *  31 - TSS for double fault handler
103 */
104#define GDT_ENTRY_TLS_MIN		6
105#define GDT_ENTRY_TLS_MAX 		(GDT_ENTRY_TLS_MIN + GDT_ENTRY_TLS_ENTRIES - 1)
106
107#define GDT_ENTRY_KERNEL_CS		12
108#define GDT_ENTRY_KERNEL_DS		13
109#define GDT_ENTRY_DEFAULT_USER_CS	14
110#define GDT_ENTRY_DEFAULT_USER_DS	15
111#define GDT_ENTRY_TSS			16
112#define GDT_ENTRY_LDT			17
113#define GDT_ENTRY_PNPBIOS_CS32		18
114#define GDT_ENTRY_PNPBIOS_CS16		19
115#define GDT_ENTRY_PNPBIOS_DS		20
116#define GDT_ENTRY_PNPBIOS_TS1		21
117#define GDT_ENTRY_PNPBIOS_TS2		22
118#define GDT_ENTRY_APMBIOS_BASE		23
119
120#define GDT_ENTRY_ESPFIX_SS		26
121#define GDT_ENTRY_PERCPU		27
122#define GDT_ENTRY_CPUNODE		28
123
124#define GDT_ENTRY_DOUBLEFAULT_TSS	31
125
126/*
127 * Number of entries in the GDT table:
128 */
129#define GDT_ENTRIES			32
130
131/*
132 * Segment selector values corresponding to the above entries:
133 */
134
135#define __KERNEL_CS			(GDT_ENTRY_KERNEL_CS*8)
136#define __KERNEL_DS			(GDT_ENTRY_KERNEL_DS*8)
137#define __USER_DS			(GDT_ENTRY_DEFAULT_USER_DS*8 + 3)
138#define __USER_CS			(GDT_ENTRY_DEFAULT_USER_CS*8 + 3)
139#define __USER32_CS			__USER_CS
140#define __ESPFIX_SS			(GDT_ENTRY_ESPFIX_SS*8)
141
142/* segment for calling fn: */
143#define PNP_CS32			(GDT_ENTRY_PNPBIOS_CS32*8)
144/* code segment for BIOS: */
145#define PNP_CS16			(GDT_ENTRY_PNPBIOS_CS16*8)
146
147/* "Is this PNP code selector (PNP_CS32 or PNP_CS16)?" */
148#define SEGMENT_IS_PNP_CODE(x)		(((x) & 0xf4) == PNP_CS32)
149
150/* data segment for BIOS: */
151#define PNP_DS				(GDT_ENTRY_PNPBIOS_DS*8)
152/* transfer data segment: */
153#define PNP_TS1				(GDT_ENTRY_PNPBIOS_TS1*8)
154/* another data segment: */
155#define PNP_TS2				(GDT_ENTRY_PNPBIOS_TS2*8)
156
157#ifdef CONFIG_SMP
158# define __KERNEL_PERCPU		(GDT_ENTRY_PERCPU*8)
159#else
160# define __KERNEL_PERCPU		0
161#endif
162
163#define __CPUNODE_SEG			(GDT_ENTRY_CPUNODE*8 + 3)
164
165#else /* 64-bit: */
166
167#include <asm/cache.h>
168
169#define GDT_ENTRY_KERNEL32_CS		1
170#define GDT_ENTRY_KERNEL_CS		2
171#define GDT_ENTRY_KERNEL_DS		3
172
173/*
174 * We cannot use the same code segment descriptor for user and kernel mode,
175 * not even in long flat mode, because of different DPL.
176 *
177 * GDT layout to get 64-bit SYSCALL/SYSRET support right. SYSRET hardcodes
178 * selectors:
179 *
180 *   if returning to 32-bit userspace: cs = STAR.SYSRET_CS,
181 *   if returning to 64-bit userspace: cs = STAR.SYSRET_CS+16,
182 *
183 * ss = STAR.SYSRET_CS+8 (in either case)
184 *
185 * thus USER_DS should be between 32-bit and 64-bit code selectors:
186 */
187#define GDT_ENTRY_DEFAULT_USER32_CS	4
188#define GDT_ENTRY_DEFAULT_USER_DS	5
189#define GDT_ENTRY_DEFAULT_USER_CS	6
190
191/* Needs two entries */
192#define GDT_ENTRY_TSS			8
193/* Needs two entries */
194#define GDT_ENTRY_LDT			10
195
196#define GDT_ENTRY_TLS_MIN		12
197#define GDT_ENTRY_TLS_MAX		14
198
199#define GDT_ENTRY_CPUNODE		15
200
201/*
202 * Number of entries in the GDT table:
203 */
204#define GDT_ENTRIES			16
205
206/*
207 * Segment selector values corresponding to the above entries:
208 *
209 * Note, selectors also need to have a correct RPL,
210 * expressed with the +3 value for user-space selectors:
211 */
212#define __KERNEL32_CS			(GDT_ENTRY_KERNEL32_CS*8)
213#define __KERNEL_CS			(GDT_ENTRY_KERNEL_CS*8)
214#define __KERNEL_DS			(GDT_ENTRY_KERNEL_DS*8)
215#define __USER32_CS			(GDT_ENTRY_DEFAULT_USER32_CS*8 + 3)
216#define __USER_DS			(GDT_ENTRY_DEFAULT_USER_DS*8 + 3)
217#define __USER_CS			(GDT_ENTRY_DEFAULT_USER_CS*8 + 3)
218#define __CPUNODE_SEG			(GDT_ENTRY_CPUNODE*8 + 3)
219
220#endif
221
222#define IDT_ENTRIES			256
223#define NUM_EXCEPTION_VECTORS		32
224
225/* Bitmask of exception vectors which push an error code on the stack: */
226#define EXCEPTION_ERRCODE_MASK		0x20027d00
227
228#define GDT_SIZE			(GDT_ENTRIES*8)
229#define GDT_ENTRY_TLS_ENTRIES		3
230#define TLS_SIZE			(GDT_ENTRY_TLS_ENTRIES* 8)
231
232/* Bit size and mask of CPU number stored in the per CPU data (and TSC_AUX) */
233#define VDSO_CPUNODE_BITS		12
234#define VDSO_CPUNODE_MASK		0xfff
235
236#ifndef __ASSEMBLY__
237
238/* Helper functions to store/load CPU and node numbers */
239
240static inline unsigned long vdso_encode_cpunode(int cpu, unsigned long node)
241{
242	return (node << VDSO_CPUNODE_BITS) | cpu;
243}
244
245static inline void vdso_read_cpunode(unsigned *cpu, unsigned *node)
246{
247	unsigned int p;
248
249	/*
250	 * Load CPU and node number from the GDT.  LSL is faster than RDTSCP
251	 * and works on all CPUs.  This is volatile so that it orders
252	 * correctly with respect to barrier() and to keep GCC from cleverly
253	 * hoisting it out of the calling function.
254	 *
255	 * If RDPID is available, use it.
256	 */
257	alternative_io ("lsl %[seg],%[p]",
258			".byte 0xf3,0x0f,0xc7,0xf8", /* RDPID %eax/rax */
259			X86_FEATURE_RDPID,
260			[p] "=a" (p), [seg] "r" (__CPUNODE_SEG));
261
262	if (cpu)
263		*cpu = (p & VDSO_CPUNODE_MASK);
264	if (node)
265		*node = (p >> VDSO_CPUNODE_BITS);
266}
267
268#endif /* !__ASSEMBLY__ */
269
270#ifdef __KERNEL__
271
272/*
273 * early_idt_handler_array is an array of entry points referenced in the
274 * early IDT.  For simplicity, it's a real array with one entry point
275 * every nine bytes.  That leaves room for an optional 'push $0' if the
276 * vector has no error code (two bytes), a 'push $vector_number' (two
277 * bytes), and a jump to the common entry code (up to five bytes).
278 */
279#define EARLY_IDT_HANDLER_SIZE (9 + ENDBR_INSN_SIZE)
280
281/*
282 * xen_early_idt_handler_array is for Xen pv guests: for each entry in
283 * early_idt_handler_array it contains a prequel in the form of
284 * pop %rcx; pop %r11; jmp early_idt_handler_array[i]; summing up to
285 * max 8 bytes.
286 */
287#define XEN_EARLY_IDT_HANDLER_SIZE (8 + ENDBR_INSN_SIZE)
288
289#ifndef __ASSEMBLY__
290
291extern const char early_idt_handler_array[NUM_EXCEPTION_VECTORS][EARLY_IDT_HANDLER_SIZE];
292extern void early_ignore_irq(void);
293
294#ifdef CONFIG_XEN_PV
295extern const char xen_early_idt_handler_array[NUM_EXCEPTION_VECTORS][XEN_EARLY_IDT_HANDLER_SIZE];
296#endif
297
298/*
299 * Load a segment. Fall back on loading the zero segment if something goes
300 * wrong.  This variant assumes that loading zero fully clears the segment.
301 * This is always the case on Intel CPUs and, even on 64-bit AMD CPUs, any
302 * failure to fully clear the cached descriptor is only observable for
303 * FS and GS.
304 */
305#define __loadsegment_simple(seg, value)				\
306do {									\
307	unsigned short __val = (value);					\
308									\
309	asm volatile("						\n"	\
310		     "1:	movl %k0,%%" #seg "		\n"	\
311		     _ASM_EXTABLE_TYPE_REG(1b, 1b, EX_TYPE_ZERO_REG, %k0)\
312		     : "+r" (__val) : : "memory");			\
313} while (0)
314
315#define __loadsegment_ss(value) __loadsegment_simple(ss, (value))
316#define __loadsegment_ds(value) __loadsegment_simple(ds, (value))
317#define __loadsegment_es(value) __loadsegment_simple(es, (value))
318
319#ifdef CONFIG_X86_32
320
321/*
322 * On 32-bit systems, the hidden parts of FS and GS are unobservable if
323 * the selector is NULL, so there's no funny business here.
324 */
325#define __loadsegment_fs(value) __loadsegment_simple(fs, (value))
326#define __loadsegment_gs(value) __loadsegment_simple(gs, (value))
327
328#else
329
330static inline void __loadsegment_fs(unsigned short value)
331{
332	asm volatile("						\n"
333		     "1:	movw %0, %%fs			\n"
334		     "2:					\n"
335
336		     _ASM_EXTABLE_TYPE(1b, 2b, EX_TYPE_CLEAR_FS)
337
338		     : : "rm" (value) : "memory");
339}
340
341/* __loadsegment_gs is intentionally undefined.  Use load_gs_index instead. */
342
343#endif
344
345#define loadsegment(seg, value) __loadsegment_ ## seg (value)
346
347/*
348 * Save a segment register away:
349 */
350#define savesegment(seg, value)				\
351	asm("mov %%" #seg ",%0":"=r" (value) : : "memory")
352
353#endif /* !__ASSEMBLY__ */
354#endif /* __KERNEL__ */
355
356#endif /* _ASM_X86_SEGMENT_H */
357