1/* SPDX-License-Identifier: GPL-2.0-only */
2/*
3 * Kernel-based Virtual Machine driver for Linux
4 *
5 * This header defines architecture specific interfaces, x86 version
6 */
7
8#ifndef _ASM_X86_KVM_HOST_H
9#define _ASM_X86_KVM_HOST_H
10
11#include <linux/types.h>
12#include <linux/mm.h>
13#include <linux/mmu_notifier.h>
14#include <linux/tracepoint.h>
15#include <linux/cpumask.h>
16#include <linux/irq_work.h>
17#include <linux/irq.h>
18#include <linux/workqueue.h>
19
20#include <linux/kvm.h>
21#include <linux/kvm_para.h>
22#include <linux/kvm_types.h>
23#include <linux/perf_event.h>
24#include <linux/pvclock_gtod.h>
25#include <linux/clocksource.h>
26#include <linux/irqbypass.h>
27#include <linux/hyperv.h>
28#include <linux/kfifo.h>
29
30#include <asm/apic.h>
31#include <asm/pvclock-abi.h>
32#include <asm/desc.h>
33#include <asm/mtrr.h>
34#include <asm/msr-index.h>
35#include <asm/asm.h>
36#include <asm/kvm_page_track.h>
37#include <asm/kvm_vcpu_regs.h>
38#include <asm/hyperv-tlfs.h>
39
40#define __KVM_HAVE_ARCH_VCPU_DEBUGFS
41
42/*
43 * CONFIG_KVM_MAX_NR_VCPUS is defined iff CONFIG_KVM!=n, provide a dummy max if
44 * KVM is disabled (arbitrarily use the default from CONFIG_KVM_MAX_NR_VCPUS).
45 */
46#ifdef CONFIG_KVM_MAX_NR_VCPUS
47#define KVM_MAX_VCPUS CONFIG_KVM_MAX_NR_VCPUS
48#else
49#define KVM_MAX_VCPUS 1024
50#endif
51
52/*
53 * In x86, the VCPU ID corresponds to the APIC ID, and APIC IDs
54 * might be larger than the actual number of VCPUs because the
55 * APIC ID encodes CPU topology information.
56 *
57 * In the worst case, we'll need less than one extra bit for the
58 * Core ID, and less than one extra bit for the Package (Die) ID,
59 * so ratio of 4 should be enough.
60 */
61#define KVM_VCPU_ID_RATIO 4
62#define KVM_MAX_VCPU_IDS (KVM_MAX_VCPUS * KVM_VCPU_ID_RATIO)
63
64/* memory slots that are not exposed to userspace */
65#define KVM_INTERNAL_MEM_SLOTS 3
66
67#define KVM_HALT_POLL_NS_DEFAULT 200000
68
69#define KVM_IRQCHIP_NUM_PINS  KVM_IOAPIC_NUM_PINS
70
71#define KVM_DIRTY_LOG_MANUAL_CAPS   (KVM_DIRTY_LOG_MANUAL_PROTECT_ENABLE | \
72					KVM_DIRTY_LOG_INITIALLY_SET)
73
74#define KVM_BUS_LOCK_DETECTION_VALID_MODE	(KVM_BUS_LOCK_DETECTION_OFF | \
75						 KVM_BUS_LOCK_DETECTION_EXIT)
76
77#define KVM_X86_NOTIFY_VMEXIT_VALID_BITS	(KVM_X86_NOTIFY_VMEXIT_ENABLED | \
78						 KVM_X86_NOTIFY_VMEXIT_USER)
79
80/* x86-specific vcpu->requests bit members */
81#define KVM_REQ_MIGRATE_TIMER		KVM_ARCH_REQ(0)
82#define KVM_REQ_REPORT_TPR_ACCESS	KVM_ARCH_REQ(1)
83#define KVM_REQ_TRIPLE_FAULT		KVM_ARCH_REQ(2)
84#define KVM_REQ_MMU_SYNC		KVM_ARCH_REQ(3)
85#define KVM_REQ_CLOCK_UPDATE		KVM_ARCH_REQ(4)
86#define KVM_REQ_LOAD_MMU_PGD		KVM_ARCH_REQ(5)
87#define KVM_REQ_EVENT			KVM_ARCH_REQ(6)
88#define KVM_REQ_APF_HALT		KVM_ARCH_REQ(7)
89#define KVM_REQ_STEAL_UPDATE		KVM_ARCH_REQ(8)
90#define KVM_REQ_NMI			KVM_ARCH_REQ(9)
91#define KVM_REQ_PMU			KVM_ARCH_REQ(10)
92#define KVM_REQ_PMI			KVM_ARCH_REQ(11)
93#ifdef CONFIG_KVM_SMM
94#define KVM_REQ_SMI			KVM_ARCH_REQ(12)
95#endif
96#define KVM_REQ_MASTERCLOCK_UPDATE	KVM_ARCH_REQ(13)
97#define KVM_REQ_MCLOCK_INPROGRESS \
98	KVM_ARCH_REQ_FLAGS(14, KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP)
99#define KVM_REQ_SCAN_IOAPIC \
100	KVM_ARCH_REQ_FLAGS(15, KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP)
101#define KVM_REQ_GLOBAL_CLOCK_UPDATE	KVM_ARCH_REQ(16)
102#define KVM_REQ_APIC_PAGE_RELOAD \
103	KVM_ARCH_REQ_FLAGS(17, KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP)
104#define KVM_REQ_HV_CRASH		KVM_ARCH_REQ(18)
105#define KVM_REQ_IOAPIC_EOI_EXIT		KVM_ARCH_REQ(19)
106#define KVM_REQ_HV_RESET		KVM_ARCH_REQ(20)
107#define KVM_REQ_HV_EXIT			KVM_ARCH_REQ(21)
108#define KVM_REQ_HV_STIMER		KVM_ARCH_REQ(22)
109#define KVM_REQ_LOAD_EOI_EXITMAP	KVM_ARCH_REQ(23)
110#define KVM_REQ_GET_NESTED_STATE_PAGES	KVM_ARCH_REQ(24)
111#define KVM_REQ_APICV_UPDATE \
112	KVM_ARCH_REQ_FLAGS(25, KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP)
113#define KVM_REQ_TLB_FLUSH_CURRENT	KVM_ARCH_REQ(26)
114#define KVM_REQ_TLB_FLUSH_GUEST \
115	KVM_ARCH_REQ_FLAGS(27, KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP)
116#define KVM_REQ_APF_READY		KVM_ARCH_REQ(28)
117#define KVM_REQ_MSR_FILTER_CHANGED	KVM_ARCH_REQ(29)
118#define KVM_REQ_UPDATE_CPU_DIRTY_LOGGING \
119	KVM_ARCH_REQ_FLAGS(30, KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP)
120#define KVM_REQ_MMU_FREE_OBSOLETE_ROOTS \
121	KVM_ARCH_REQ_FLAGS(31, KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP)
122#define KVM_REQ_HV_TLB_FLUSH \
123	KVM_ARCH_REQ_FLAGS(32, KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP)
124
125#define CR0_RESERVED_BITS                                               \
126	(~(unsigned long)(X86_CR0_PE | X86_CR0_MP | X86_CR0_EM | X86_CR0_TS \
127			  | X86_CR0_ET | X86_CR0_NE | X86_CR0_WP | X86_CR0_AM \
128			  | X86_CR0_NW | X86_CR0_CD | X86_CR0_PG))
129
130#define CR4_RESERVED_BITS                                               \
131	(~(unsigned long)(X86_CR4_VME | X86_CR4_PVI | X86_CR4_TSD | X86_CR4_DE\
132			  | X86_CR4_PSE | X86_CR4_PAE | X86_CR4_MCE     \
133			  | X86_CR4_PGE | X86_CR4_PCE | X86_CR4_OSFXSR | X86_CR4_PCIDE \
134			  | X86_CR4_OSXSAVE | X86_CR4_SMEP | X86_CR4_FSGSBASE \
135			  | X86_CR4_OSXMMEXCPT | X86_CR4_LA57 | X86_CR4_VMXE \
136			  | X86_CR4_SMAP | X86_CR4_PKE | X86_CR4_UMIP \
137			  | X86_CR4_LAM_SUP))
138
139#define CR8_RESERVED_BITS (~(unsigned long)X86_CR8_TPR)
140
141
142
143#define INVALID_PAGE (~(hpa_t)0)
144#define VALID_PAGE(x) ((x) != INVALID_PAGE)
145
146/* KVM Hugepage definitions for x86 */
147#define KVM_MAX_HUGEPAGE_LEVEL	PG_LEVEL_1G
148#define KVM_NR_PAGE_SIZES	(KVM_MAX_HUGEPAGE_LEVEL - PG_LEVEL_4K + 1)
149#define KVM_HPAGE_GFN_SHIFT(x)	(((x) - 1) * 9)
150#define KVM_HPAGE_SHIFT(x)	(PAGE_SHIFT + KVM_HPAGE_GFN_SHIFT(x))
151#define KVM_HPAGE_SIZE(x)	(1UL << KVM_HPAGE_SHIFT(x))
152#define KVM_HPAGE_MASK(x)	(~(KVM_HPAGE_SIZE(x) - 1))
153#define KVM_PAGES_PER_HPAGE(x)	(KVM_HPAGE_SIZE(x) / PAGE_SIZE)
154
155#define KVM_MEMSLOT_PAGES_TO_MMU_PAGES_RATIO 50
156#define KVM_MIN_ALLOC_MMU_PAGES 64UL
157#define KVM_MMU_HASH_SHIFT 12
158#define KVM_NUM_MMU_PAGES (1 << KVM_MMU_HASH_SHIFT)
159#define KVM_MIN_FREE_MMU_PAGES 5
160#define KVM_REFILL_PAGES 25
161#define KVM_MAX_CPUID_ENTRIES 256
162#define KVM_NR_FIXED_MTRR_REGION 88
163#define KVM_NR_VAR_MTRR 8
164
165#define ASYNC_PF_PER_VCPU 64
166
167enum kvm_reg {
168	VCPU_REGS_RAX = __VCPU_REGS_RAX,
169	VCPU_REGS_RCX = __VCPU_REGS_RCX,
170	VCPU_REGS_RDX = __VCPU_REGS_RDX,
171	VCPU_REGS_RBX = __VCPU_REGS_RBX,
172	VCPU_REGS_RSP = __VCPU_REGS_RSP,
173	VCPU_REGS_RBP = __VCPU_REGS_RBP,
174	VCPU_REGS_RSI = __VCPU_REGS_RSI,
175	VCPU_REGS_RDI = __VCPU_REGS_RDI,
176#ifdef CONFIG_X86_64
177	VCPU_REGS_R8  = __VCPU_REGS_R8,
178	VCPU_REGS_R9  = __VCPU_REGS_R9,
179	VCPU_REGS_R10 = __VCPU_REGS_R10,
180	VCPU_REGS_R11 = __VCPU_REGS_R11,
181	VCPU_REGS_R12 = __VCPU_REGS_R12,
182	VCPU_REGS_R13 = __VCPU_REGS_R13,
183	VCPU_REGS_R14 = __VCPU_REGS_R14,
184	VCPU_REGS_R15 = __VCPU_REGS_R15,
185#endif
186	VCPU_REGS_RIP,
187	NR_VCPU_REGS,
188
189	VCPU_EXREG_PDPTR = NR_VCPU_REGS,
190	VCPU_EXREG_CR0,
191	VCPU_EXREG_CR3,
192	VCPU_EXREG_CR4,
193	VCPU_EXREG_RFLAGS,
194	VCPU_EXREG_SEGMENTS,
195	VCPU_EXREG_EXIT_INFO_1,
196	VCPU_EXREG_EXIT_INFO_2,
197};
198
199enum {
200	VCPU_SREG_ES,
201	VCPU_SREG_CS,
202	VCPU_SREG_SS,
203	VCPU_SREG_DS,
204	VCPU_SREG_FS,
205	VCPU_SREG_GS,
206	VCPU_SREG_TR,
207	VCPU_SREG_LDTR,
208};
209
210enum exit_fastpath_completion {
211	EXIT_FASTPATH_NONE,
212	EXIT_FASTPATH_REENTER_GUEST,
213	EXIT_FASTPATH_EXIT_HANDLED,
214};
215typedef enum exit_fastpath_completion fastpath_t;
216
217struct x86_emulate_ctxt;
218struct x86_exception;
219union kvm_smram;
220enum x86_intercept;
221enum x86_intercept_stage;
222
223#define KVM_NR_DB_REGS	4
224
225#define DR6_BUS_LOCK   (1 << 11)
226#define DR6_BD		(1 << 13)
227#define DR6_BS		(1 << 14)
228#define DR6_BT		(1 << 15)
229#define DR6_RTM		(1 << 16)
230/*
231 * DR6_ACTIVE_LOW combines fixed-1 and active-low bits.
232 * We can regard all the bits in DR6_FIXED_1 as active_low bits;
233 * they will never be 0 for now, but when they are defined
234 * in the future it will require no code change.
235 *
236 * DR6_ACTIVE_LOW is also used as the init/reset value for DR6.
237 */
238#define DR6_ACTIVE_LOW	0xffff0ff0
239#define DR6_VOLATILE	0x0001e80f
240#define DR6_FIXED_1	(DR6_ACTIVE_LOW & ~DR6_VOLATILE)
241
242#define DR7_BP_EN_MASK	0x000000ff
243#define DR7_GE		(1 << 9)
244#define DR7_GD		(1 << 13)
245#define DR7_FIXED_1	0x00000400
246#define DR7_VOLATILE	0xffff2bff
247
248#define KVM_GUESTDBG_VALID_MASK \
249	(KVM_GUESTDBG_ENABLE | \
250	KVM_GUESTDBG_SINGLESTEP | \
251	KVM_GUESTDBG_USE_HW_BP | \
252	KVM_GUESTDBG_USE_SW_BP | \
253	KVM_GUESTDBG_INJECT_BP | \
254	KVM_GUESTDBG_INJECT_DB | \
255	KVM_GUESTDBG_BLOCKIRQ)
256
257
258#define PFERR_PRESENT_BIT 0
259#define PFERR_WRITE_BIT 1
260#define PFERR_USER_BIT 2
261#define PFERR_RSVD_BIT 3
262#define PFERR_FETCH_BIT 4
263#define PFERR_PK_BIT 5
264#define PFERR_SGX_BIT 15
265#define PFERR_GUEST_FINAL_BIT 32
266#define PFERR_GUEST_PAGE_BIT 33
267#define PFERR_IMPLICIT_ACCESS_BIT 48
268
269#define PFERR_PRESENT_MASK	BIT(PFERR_PRESENT_BIT)
270#define PFERR_WRITE_MASK	BIT(PFERR_WRITE_BIT)
271#define PFERR_USER_MASK		BIT(PFERR_USER_BIT)
272#define PFERR_RSVD_MASK		BIT(PFERR_RSVD_BIT)
273#define PFERR_FETCH_MASK	BIT(PFERR_FETCH_BIT)
274#define PFERR_PK_MASK		BIT(PFERR_PK_BIT)
275#define PFERR_SGX_MASK		BIT(PFERR_SGX_BIT)
276#define PFERR_GUEST_FINAL_MASK	BIT_ULL(PFERR_GUEST_FINAL_BIT)
277#define PFERR_GUEST_PAGE_MASK	BIT_ULL(PFERR_GUEST_PAGE_BIT)
278#define PFERR_IMPLICIT_ACCESS	BIT_ULL(PFERR_IMPLICIT_ACCESS_BIT)
279
280#define PFERR_NESTED_GUEST_PAGE (PFERR_GUEST_PAGE_MASK |	\
281				 PFERR_WRITE_MASK |		\
282				 PFERR_PRESENT_MASK)
283
284/* apic attention bits */
285#define KVM_APIC_CHECK_VAPIC	0
286/*
287 * The following bit is set with PV-EOI, unset on EOI.
288 * We detect PV-EOI changes by guest by comparing
289 * this bit with PV-EOI in guest memory.
290 * See the implementation in apic_update_pv_eoi.
291 */
292#define KVM_APIC_PV_EOI_PENDING	1
293
294struct kvm_kernel_irq_routing_entry;
295
296/*
297 * kvm_mmu_page_role tracks the properties of a shadow page (where shadow page
298 * also includes TDP pages) to determine whether or not a page can be used in
299 * the given MMU context.  This is a subset of the overall kvm_cpu_role to
300 * minimize the size of kvm_memory_slot.arch.gfn_write_track, i.e. allows
301 * allocating 2 bytes per gfn instead of 4 bytes per gfn.
302 *
303 * Upper-level shadow pages having gptes are tracked for write-protection via
304 * gfn_write_track.  As above, gfn_write_track is a 16 bit counter, so KVM must
305 * not create more than 2^16-1 upper-level shadow pages at a single gfn,
306 * otherwise gfn_write_track will overflow and explosions will ensue.
307 *
308 * A unique shadow page (SP) for a gfn is created if and only if an existing SP
309 * cannot be reused.  The ability to reuse a SP is tracked by its role, which
310 * incorporates various mode bits and properties of the SP.  Roughly speaking,
311 * the number of unique SPs that can theoretically be created is 2^n, where n
312 * is the number of bits that are used to compute the role.
313 *
314 * But, even though there are 19 bits in the mask below, not all combinations
315 * of modes and flags are possible:
316 *
317 *   - invalid shadow pages are not accounted, so the bits are effectively 18
318 *
319 *   - quadrant will only be used if has_4_byte_gpte=1 (non-PAE paging);
320 *     execonly and ad_disabled are only used for nested EPT which has
321 *     has_4_byte_gpte=0.  Therefore, 2 bits are always unused.
322 *
323 *   - the 4 bits of level are effectively limited to the values 2/3/4/5,
324 *     as 4k SPs are not tracked (allowed to go unsync).  In addition non-PAE
325 *     paging has exactly one upper level, making level completely redundant
326 *     when has_4_byte_gpte=1.
327 *
328 *   - on top of this, smep_andnot_wp and smap_andnot_wp are only set if
329 *     cr0_wp=0, therefore these three bits only give rise to 5 possibilities.
330 *
331 * Therefore, the maximum number of possible upper-level shadow pages for a
332 * single gfn is a bit less than 2^13.
333 */
334union kvm_mmu_page_role {
335	u32 word;
336	struct {
337		unsigned level:4;
338		unsigned has_4_byte_gpte:1;
339		unsigned quadrant:2;
340		unsigned direct:1;
341		unsigned access:3;
342		unsigned invalid:1;
343		unsigned efer_nx:1;
344		unsigned cr0_wp:1;
345		unsigned smep_andnot_wp:1;
346		unsigned smap_andnot_wp:1;
347		unsigned ad_disabled:1;
348		unsigned guest_mode:1;
349		unsigned passthrough:1;
350		unsigned :5;
351
352		/*
353		 * This is left at the top of the word so that
354		 * kvm_memslots_for_spte_role can extract it with a
355		 * simple shift.  While there is room, give it a whole
356		 * byte so it is also faster to load it from memory.
357		 */
358		unsigned smm:8;
359	};
360};
361
362/*
363 * kvm_mmu_extended_role complements kvm_mmu_page_role, tracking properties
364 * relevant to the current MMU configuration.   When loading CR0, CR4, or EFER,
365 * including on nested transitions, if nothing in the full role changes then
366 * MMU re-configuration can be skipped. @valid bit is set on first usage so we
367 * don't treat all-zero structure as valid data.
368 *
369 * The properties that are tracked in the extended role but not the page role
370 * are for things that either (a) do not affect the validity of the shadow page
371 * or (b) are indirectly reflected in the shadow page's role.  For example,
372 * CR4.PKE only affects permission checks for software walks of the guest page
373 * tables (because KVM doesn't support Protection Keys with shadow paging), and
374 * CR0.PG, CR4.PAE, and CR4.PSE are indirectly reflected in role.level.
375 *
376 * Note, SMEP and SMAP are not redundant with sm*p_andnot_wp in the page role.
377 * If CR0.WP=1, KVM can reuse shadow pages for the guest regardless of SMEP and
378 * SMAP, but the MMU's permission checks for software walks need to be SMEP and
379 * SMAP aware regardless of CR0.WP.
380 */
381union kvm_mmu_extended_role {
382	u32 word;
383	struct {
384		unsigned int valid:1;
385		unsigned int execonly:1;
386		unsigned int cr4_pse:1;
387		unsigned int cr4_pke:1;
388		unsigned int cr4_smap:1;
389		unsigned int cr4_smep:1;
390		unsigned int cr4_la57:1;
391		unsigned int efer_lma:1;
392	};
393};
394
395union kvm_cpu_role {
396	u64 as_u64;
397	struct {
398		union kvm_mmu_page_role base;
399		union kvm_mmu_extended_role ext;
400	};
401};
402
403struct kvm_rmap_head {
404	unsigned long val;
405};
406
407struct kvm_pio_request {
408	unsigned long linear_rip;
409	unsigned long count;
410	int in;
411	int port;
412	int size;
413};
414
415#define PT64_ROOT_MAX_LEVEL 5
416
417struct rsvd_bits_validate {
418	u64 rsvd_bits_mask[2][PT64_ROOT_MAX_LEVEL];
419	u64 bad_mt_xwr;
420};
421
422struct kvm_mmu_root_info {
423	gpa_t pgd;
424	hpa_t hpa;
425};
426
427#define KVM_MMU_ROOT_INFO_INVALID \
428	((struct kvm_mmu_root_info) { .pgd = INVALID_PAGE, .hpa = INVALID_PAGE })
429
430#define KVM_MMU_NUM_PREV_ROOTS 3
431
432#define KVM_MMU_ROOT_CURRENT		BIT(0)
433#define KVM_MMU_ROOT_PREVIOUS(i)	BIT(1+i)
434#define KVM_MMU_ROOTS_ALL		(BIT(1 + KVM_MMU_NUM_PREV_ROOTS) - 1)
435
436#define KVM_HAVE_MMU_RWLOCK
437
438struct kvm_mmu_page;
439struct kvm_page_fault;
440
441/*
442 * x86 supports 4 paging modes (5-level 64-bit, 4-level 64-bit, 3-level 32-bit,
443 * and 2-level 32-bit).  The kvm_mmu structure abstracts the details of the
444 * current mmu mode.
445 */
446struct kvm_mmu {
447	unsigned long (*get_guest_pgd)(struct kvm_vcpu *vcpu);
448	u64 (*get_pdptr)(struct kvm_vcpu *vcpu, int index);
449	int (*page_fault)(struct kvm_vcpu *vcpu, struct kvm_page_fault *fault);
450	void (*inject_page_fault)(struct kvm_vcpu *vcpu,
451				  struct x86_exception *fault);
452	gpa_t (*gva_to_gpa)(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
453			    gpa_t gva_or_gpa, u64 access,
454			    struct x86_exception *exception);
455	int (*sync_spte)(struct kvm_vcpu *vcpu,
456			 struct kvm_mmu_page *sp, int i);
457	struct kvm_mmu_root_info root;
458	union kvm_cpu_role cpu_role;
459	union kvm_mmu_page_role root_role;
460
461	/*
462	* The pkru_mask indicates if protection key checks are needed.  It
463	* consists of 16 domains indexed by page fault error code bits [4:1],
464	* with PFEC.RSVD replaced by ACC_USER_MASK from the page tables.
465	* Each domain has 2 bits which are ANDed with AD and WD from PKRU.
466	*/
467	u32 pkru_mask;
468
469	struct kvm_mmu_root_info prev_roots[KVM_MMU_NUM_PREV_ROOTS];
470
471	/*
472	 * Bitmap; bit set = permission fault
473	 * Byte index: page fault error code [4:1]
474	 * Bit index: pte permissions in ACC_* format
475	 */
476	u8 permissions[16];
477
478	u64 *pae_root;
479	u64 *pml4_root;
480	u64 *pml5_root;
481
482	/*
483	 * check zero bits on shadow page table entries, these
484	 * bits include not only hardware reserved bits but also
485	 * the bits spte never used.
486	 */
487	struct rsvd_bits_validate shadow_zero_check;
488
489	struct rsvd_bits_validate guest_rsvd_check;
490
491	u64 pdptrs[4]; /* pae */
492};
493
494enum pmc_type {
495	KVM_PMC_GP = 0,
496	KVM_PMC_FIXED,
497};
498
499struct kvm_pmc {
500	enum pmc_type type;
501	u8 idx;
502	bool is_paused;
503	bool intr;
504	/*
505	 * Base value of the PMC counter, relative to the *consumed* count in
506	 * the associated perf_event.  This value includes counter updates from
507	 * the perf_event and emulated_count since the last time the counter
508	 * was reprogrammed, but it is *not* the current value as seen by the
509	 * guest or userspace.
510	 *
511	 * The count is relative to the associated perf_event so that KVM
512	 * doesn't need to reprogram the perf_event every time the guest writes
513	 * to the counter.
514	 */
515	u64 counter;
516	/*
517	 * PMC events triggered by KVM emulation that haven't been fully
518	 * processed, i.e. haven't undergone overflow detection.
519	 */
520	u64 emulated_counter;
521	u64 eventsel;
522	struct perf_event *perf_event;
523	struct kvm_vcpu *vcpu;
524	/*
525	 * only for creating or reusing perf_event,
526	 * eventsel value for general purpose counters,
527	 * ctrl value for fixed counters.
528	 */
529	u64 current_config;
530};
531
532/* More counters may conflict with other existing Architectural MSRs */
533#define KVM_INTEL_PMC_MAX_GENERIC	8
534#define MSR_ARCH_PERFMON_PERFCTR_MAX	(MSR_ARCH_PERFMON_PERFCTR0 + KVM_INTEL_PMC_MAX_GENERIC - 1)
535#define MSR_ARCH_PERFMON_EVENTSEL_MAX	(MSR_ARCH_PERFMON_EVENTSEL0 + KVM_INTEL_PMC_MAX_GENERIC - 1)
536#define KVM_PMC_MAX_FIXED	3
537#define MSR_ARCH_PERFMON_FIXED_CTR_MAX	(MSR_ARCH_PERFMON_FIXED_CTR0 + KVM_PMC_MAX_FIXED - 1)
538#define KVM_AMD_PMC_MAX_GENERIC	6
539
540struct kvm_pmu {
541	u8 version;
542	unsigned nr_arch_gp_counters;
543	unsigned nr_arch_fixed_counters;
544	unsigned available_event_types;
545	u64 fixed_ctr_ctrl;
546	u64 fixed_ctr_ctrl_mask;
547	u64 global_ctrl;
548	u64 global_status;
549	u64 counter_bitmask[2];
550	u64 global_ctrl_mask;
551	u64 global_status_mask;
552	u64 reserved_bits;
553	u64 raw_event_mask;
554	struct kvm_pmc gp_counters[KVM_INTEL_PMC_MAX_GENERIC];
555	struct kvm_pmc fixed_counters[KVM_PMC_MAX_FIXED];
556
557	/*
558	 * Overlay the bitmap with a 64-bit atomic so that all bits can be
559	 * set in a single access, e.g. to reprogram all counters when the PMU
560	 * filter changes.
561	 */
562	union {
563		DECLARE_BITMAP(reprogram_pmi, X86_PMC_IDX_MAX);
564		atomic64_t __reprogram_pmi;
565	};
566	DECLARE_BITMAP(all_valid_pmc_idx, X86_PMC_IDX_MAX);
567	DECLARE_BITMAP(pmc_in_use, X86_PMC_IDX_MAX);
568
569	u64 ds_area;
570	u64 pebs_enable;
571	u64 pebs_enable_mask;
572	u64 pebs_data_cfg;
573	u64 pebs_data_cfg_mask;
574
575	/*
576	 * If a guest counter is cross-mapped to host counter with different
577	 * index, its PEBS capability will be temporarily disabled.
578	 *
579	 * The user should make sure that this mask is updated
580	 * after disabling interrupts and before perf_guest_get_msrs();
581	 */
582	u64 host_cross_mapped_mask;
583
584	/*
585	 * The gate to release perf_events not marked in
586	 * pmc_in_use only once in a vcpu time slice.
587	 */
588	bool need_cleanup;
589
590	/*
591	 * The total number of programmed perf_events and it helps to avoid
592	 * redundant check before cleanup if guest don't use vPMU at all.
593	 */
594	u8 event_count;
595};
596
597struct kvm_pmu_ops;
598
599enum {
600	KVM_DEBUGREG_BP_ENABLED = 1,
601	KVM_DEBUGREG_WONT_EXIT = 2,
602};
603
604struct kvm_mtrr_range {
605	u64 base;
606	u64 mask;
607	struct list_head node;
608};
609
610struct kvm_mtrr {
611	struct kvm_mtrr_range var_ranges[KVM_NR_VAR_MTRR];
612	mtrr_type fixed_ranges[KVM_NR_FIXED_MTRR_REGION];
613	u64 deftype;
614
615	struct list_head head;
616};
617
618/* Hyper-V SynIC timer */
619struct kvm_vcpu_hv_stimer {
620	struct hrtimer timer;
621	int index;
622	union hv_stimer_config config;
623	u64 count;
624	u64 exp_time;
625	struct hv_message msg;
626	bool msg_pending;
627};
628
629/* Hyper-V synthetic interrupt controller (SynIC)*/
630struct kvm_vcpu_hv_synic {
631	u64 version;
632	u64 control;
633	u64 msg_page;
634	u64 evt_page;
635	atomic64_t sint[HV_SYNIC_SINT_COUNT];
636	atomic_t sint_to_gsi[HV_SYNIC_SINT_COUNT];
637	DECLARE_BITMAP(auto_eoi_bitmap, 256);
638	DECLARE_BITMAP(vec_bitmap, 256);
639	bool active;
640	bool dont_zero_synic_pages;
641};
642
643/* The maximum number of entries on the TLB flush fifo. */
644#define KVM_HV_TLB_FLUSH_FIFO_SIZE (16)
645/*
646 * Note: the following 'magic' entry is made up by KVM to avoid putting
647 * anything besides GVA on the TLB flush fifo. It is theoretically possible
648 * to observe a request to flush 4095 PFNs starting from 0xfffffffffffff000
649 * which will look identical. KVM's action to 'flush everything' instead of
650 * flushing these particular addresses is, however, fully legitimate as
651 * flushing more than requested is always OK.
652 */
653#define KVM_HV_TLB_FLUSHALL_ENTRY  ((u64)-1)
654
655enum hv_tlb_flush_fifos {
656	HV_L1_TLB_FLUSH_FIFO,
657	HV_L2_TLB_FLUSH_FIFO,
658	HV_NR_TLB_FLUSH_FIFOS,
659};
660
661struct kvm_vcpu_hv_tlb_flush_fifo {
662	spinlock_t write_lock;
663	DECLARE_KFIFO(entries, u64, KVM_HV_TLB_FLUSH_FIFO_SIZE);
664};
665
666/* Hyper-V per vcpu emulation context */
667struct kvm_vcpu_hv {
668	struct kvm_vcpu *vcpu;
669	u32 vp_index;
670	u64 hv_vapic;
671	s64 runtime_offset;
672	struct kvm_vcpu_hv_synic synic;
673	struct kvm_hyperv_exit exit;
674	struct kvm_vcpu_hv_stimer stimer[HV_SYNIC_STIMER_COUNT];
675	DECLARE_BITMAP(stimer_pending_bitmap, HV_SYNIC_STIMER_COUNT);
676	bool enforce_cpuid;
677	struct {
678		u32 features_eax; /* HYPERV_CPUID_FEATURES.EAX */
679		u32 features_ebx; /* HYPERV_CPUID_FEATURES.EBX */
680		u32 features_edx; /* HYPERV_CPUID_FEATURES.EDX */
681		u32 enlightenments_eax; /* HYPERV_CPUID_ENLIGHTMENT_INFO.EAX */
682		u32 enlightenments_ebx; /* HYPERV_CPUID_ENLIGHTMENT_INFO.EBX */
683		u32 syndbg_cap_eax; /* HYPERV_CPUID_SYNDBG_PLATFORM_CAPABILITIES.EAX */
684		u32 nested_eax; /* HYPERV_CPUID_NESTED_FEATURES.EAX */
685		u32 nested_ebx; /* HYPERV_CPUID_NESTED_FEATURES.EBX */
686	} cpuid_cache;
687
688	struct kvm_vcpu_hv_tlb_flush_fifo tlb_flush_fifo[HV_NR_TLB_FLUSH_FIFOS];
689
690	/* Preallocated buffer for handling hypercalls passing sparse vCPU set */
691	u64 sparse_banks[HV_MAX_SPARSE_VCPU_BANKS];
692
693	struct hv_vp_assist_page vp_assist_page;
694
695	struct {
696		u64 pa_page_gpa;
697		u64 vm_id;
698		u32 vp_id;
699	} nested;
700};
701
702struct kvm_hypervisor_cpuid {
703	u32 base;
704	u32 limit;
705};
706
707#ifdef CONFIG_KVM_XEN
708/* Xen HVM per vcpu emulation context */
709struct kvm_vcpu_xen {
710	u64 hypercall_rip;
711	u32 current_runstate;
712	u8 upcall_vector;
713	struct gfn_to_pfn_cache vcpu_info_cache;
714	struct gfn_to_pfn_cache vcpu_time_info_cache;
715	struct gfn_to_pfn_cache runstate_cache;
716	struct gfn_to_pfn_cache runstate2_cache;
717	u64 last_steal;
718	u64 runstate_entry_time;
719	u64 runstate_times[4];
720	unsigned long evtchn_pending_sel;
721	u32 vcpu_id; /* The Xen / ACPI vCPU ID */
722	u32 timer_virq;
723	u64 timer_expires; /* In guest epoch */
724	atomic_t timer_pending;
725	struct hrtimer timer;
726	int poll_evtchn;
727	struct timer_list poll_timer;
728	struct kvm_hypervisor_cpuid cpuid;
729};
730#endif
731
732struct kvm_queued_exception {
733	bool pending;
734	bool injected;
735	bool has_error_code;
736	u8 vector;
737	u32 error_code;
738	unsigned long payload;
739	bool has_payload;
740};
741
742struct kvm_vcpu_arch {
743	/*
744	 * rip and regs accesses must go through
745	 * kvm_{register,rip}_{read,write} functions.
746	 */
747	unsigned long regs[NR_VCPU_REGS];
748	u32 regs_avail;
749	u32 regs_dirty;
750
751	unsigned long cr0;
752	unsigned long cr0_guest_owned_bits;
753	unsigned long cr2;
754	unsigned long cr3;
755	unsigned long cr4;
756	unsigned long cr4_guest_owned_bits;
757	unsigned long cr4_guest_rsvd_bits;
758	unsigned long cr8;
759	u32 host_pkru;
760	u32 pkru;
761	u32 hflags;
762	u64 efer;
763	u64 apic_base;
764	struct kvm_lapic *apic;    /* kernel irqchip context */
765	bool load_eoi_exitmap_pending;
766	DECLARE_BITMAP(ioapic_handled_vectors, 256);
767	unsigned long apic_attention;
768	int32_t apic_arb_prio;
769	int mp_state;
770	u64 ia32_misc_enable_msr;
771	u64 smbase;
772	u64 smi_count;
773	bool at_instruction_boundary;
774	bool tpr_access_reporting;
775	bool xfd_no_write_intercept;
776	u64 ia32_xss;
777	u64 microcode_version;
778	u64 arch_capabilities;
779	u64 perf_capabilities;
780
781	/*
782	 * Paging state of the vcpu
783	 *
784	 * If the vcpu runs in guest mode with two level paging this still saves
785	 * the paging mode of the l1 guest. This context is always used to
786	 * handle faults.
787	 */
788	struct kvm_mmu *mmu;
789
790	/* Non-nested MMU for L1 */
791	struct kvm_mmu root_mmu;
792
793	/* L1 MMU when running nested */
794	struct kvm_mmu guest_mmu;
795
796	/*
797	 * Paging state of an L2 guest (used for nested npt)
798	 *
799	 * This context will save all necessary information to walk page tables
800	 * of an L2 guest. This context is only initialized for page table
801	 * walking and not for faulting since we never handle l2 page faults on
802	 * the host.
803	 */
804	struct kvm_mmu nested_mmu;
805
806	/*
807	 * Pointer to the mmu context currently used for
808	 * gva_to_gpa translations.
809	 */
810	struct kvm_mmu *walk_mmu;
811
812	struct kvm_mmu_memory_cache mmu_pte_list_desc_cache;
813	struct kvm_mmu_memory_cache mmu_shadow_page_cache;
814	struct kvm_mmu_memory_cache mmu_shadowed_info_cache;
815	struct kvm_mmu_memory_cache mmu_page_header_cache;
816
817	/*
818	 * QEMU userspace and the guest each have their own FPU state.
819	 * In vcpu_run, we switch between the user and guest FPU contexts.
820	 * While running a VCPU, the VCPU thread will have the guest FPU
821	 * context.
822	 *
823	 * Note that while the PKRU state lives inside the fpu registers,
824	 * it is switched out separately at VMENTER and VMEXIT time. The
825	 * "guest_fpstate" state here contains the guest FPU context, with the
826	 * host PRKU bits.
827	 */
828	struct fpu_guest guest_fpu;
829
830	u64 xcr0;
831	u64 guest_supported_xcr0;
832
833	struct kvm_pio_request pio;
834	void *pio_data;
835	void *sev_pio_data;
836	unsigned sev_pio_count;
837
838	u8 event_exit_inst_len;
839
840	bool exception_from_userspace;
841
842	/* Exceptions to be injected to the guest. */
843	struct kvm_queued_exception exception;
844	/* Exception VM-Exits to be synthesized to L1. */
845	struct kvm_queued_exception exception_vmexit;
846
847	struct kvm_queued_interrupt {
848		bool injected;
849		bool soft;
850		u8 nr;
851	} interrupt;
852
853	int halt_request; /* real mode on Intel only */
854
855	int cpuid_nent;
856	struct kvm_cpuid_entry2 *cpuid_entries;
857	struct kvm_hypervisor_cpuid kvm_cpuid;
858
859	/*
860	 * FIXME: Drop this macro and use KVM_NR_GOVERNED_FEATURES directly
861	 * when "struct kvm_vcpu_arch" is no longer defined in an
862	 * arch/x86/include/asm header.  The max is mostly arbitrary, i.e.
863	 * can be increased as necessary.
864	 */
865#define KVM_MAX_NR_GOVERNED_FEATURES BITS_PER_LONG
866
867	/*
868	 * Track whether or not the guest is allowed to use features that are
869	 * governed by KVM, where "governed" means KVM needs to manage state
870	 * and/or explicitly enable the feature in hardware.  Typically, but
871	 * not always, governed features can be used by the guest if and only
872	 * if both KVM and userspace want to expose the feature to the guest.
873	 */
874	struct {
875		DECLARE_BITMAP(enabled, KVM_MAX_NR_GOVERNED_FEATURES);
876	} governed_features;
877
878	u64 reserved_gpa_bits;
879	int maxphyaddr;
880
881	/* emulate context */
882
883	struct x86_emulate_ctxt *emulate_ctxt;
884	bool emulate_regs_need_sync_to_vcpu;
885	bool emulate_regs_need_sync_from_vcpu;
886	int (*complete_userspace_io)(struct kvm_vcpu *vcpu);
887
888	gpa_t time;
889	struct pvclock_vcpu_time_info hv_clock;
890	unsigned int hw_tsc_khz;
891	struct gfn_to_pfn_cache pv_time;
892	/* set guest stopped flag in pvclock flags field */
893	bool pvclock_set_guest_stopped_request;
894
895	struct {
896		u8 preempted;
897		u64 msr_val;
898		u64 last_steal;
899		struct gfn_to_hva_cache cache;
900	} st;
901
902	u64 l1_tsc_offset;
903	u64 tsc_offset; /* current tsc offset */
904	u64 last_guest_tsc;
905	u64 last_host_tsc;
906	u64 tsc_offset_adjustment;
907	u64 this_tsc_nsec;
908	u64 this_tsc_write;
909	u64 this_tsc_generation;
910	bool tsc_catchup;
911	bool tsc_always_catchup;
912	s8 virtual_tsc_shift;
913	u32 virtual_tsc_mult;
914	u32 virtual_tsc_khz;
915	s64 ia32_tsc_adjust_msr;
916	u64 msr_ia32_power_ctl;
917	u64 l1_tsc_scaling_ratio;
918	u64 tsc_scaling_ratio; /* current scaling ratio */
919
920	atomic_t nmi_queued;  /* unprocessed asynchronous NMIs */
921	/* Number of NMIs pending injection, not including hardware vNMIs. */
922	unsigned int nmi_pending;
923	bool nmi_injected;    /* Trying to inject an NMI this entry */
924	bool smi_pending;    /* SMI queued after currently running handler */
925	u8 handling_intr_from_guest;
926
927	struct kvm_mtrr mtrr_state;
928	u64 pat;
929
930	unsigned switch_db_regs;
931	unsigned long db[KVM_NR_DB_REGS];
932	unsigned long dr6;
933	unsigned long dr7;
934	unsigned long eff_db[KVM_NR_DB_REGS];
935	unsigned long guest_debug_dr7;
936	u64 msr_platform_info;
937	u64 msr_misc_features_enables;
938
939	u64 mcg_cap;
940	u64 mcg_status;
941	u64 mcg_ctl;
942	u64 mcg_ext_ctl;
943	u64 *mce_banks;
944	u64 *mci_ctl2_banks;
945
946	/* Cache MMIO info */
947	u64 mmio_gva;
948	unsigned mmio_access;
949	gfn_t mmio_gfn;
950	u64 mmio_gen;
951
952	struct kvm_pmu pmu;
953
954	/* used for guest single stepping over the given code position */
955	unsigned long singlestep_rip;
956
957#ifdef CONFIG_KVM_HYPERV
958	bool hyperv_enabled;
959	struct kvm_vcpu_hv *hyperv;
960#endif
961#ifdef CONFIG_KVM_XEN
962	struct kvm_vcpu_xen xen;
963#endif
964	cpumask_var_t wbinvd_dirty_mask;
965
966	unsigned long last_retry_eip;
967	unsigned long last_retry_addr;
968
969	struct {
970		bool halted;
971		gfn_t gfns[ASYNC_PF_PER_VCPU];
972		struct gfn_to_hva_cache data;
973		u64 msr_en_val; /* MSR_KVM_ASYNC_PF_EN */
974		u64 msr_int_val; /* MSR_KVM_ASYNC_PF_INT */
975		u16 vec;
976		u32 id;
977		bool send_user_only;
978		u32 host_apf_flags;
979		bool delivery_as_pf_vmexit;
980		bool pageready_pending;
981	} apf;
982
983	/* OSVW MSRs (AMD only) */
984	struct {
985		u64 length;
986		u64 status;
987	} osvw;
988
989	struct {
990		u64 msr_val;
991		struct gfn_to_hva_cache data;
992	} pv_eoi;
993
994	u64 msr_kvm_poll_control;
995
996	/* set at EPT violation at this point */
997	unsigned long exit_qualification;
998
999	/* pv related host specific info */
1000	struct {
1001		bool pv_unhalted;
1002	} pv;
1003
1004	int pending_ioapic_eoi;
1005	int pending_external_vector;
1006
1007	/* be preempted when it's in kernel-mode(cpl=0) */
1008	bool preempted_in_kernel;
1009
1010	/* Flush the L1 Data cache for L1TF mitigation on VMENTER */
1011	bool l1tf_flush_l1d;
1012
1013	/* Host CPU on which VM-entry was most recently attempted */
1014	int last_vmentry_cpu;
1015
1016	/* AMD MSRC001_0015 Hardware Configuration */
1017	u64 msr_hwcr;
1018
1019	/* pv related cpuid info */
1020	struct {
1021		/*
1022		 * value of the eax register in the KVM_CPUID_FEATURES CPUID
1023		 * leaf.
1024		 */
1025		u32 features;
1026
1027		/*
1028		 * indicates whether pv emulation should be disabled if features
1029		 * are not present in the guest's cpuid
1030		 */
1031		bool enforce;
1032	} pv_cpuid;
1033
1034	/* Protected Guests */
1035	bool guest_state_protected;
1036
1037	/*
1038	 * Set when PDPTS were loaded directly by the userspace without
1039	 * reading the guest memory
1040	 */
1041	bool pdptrs_from_userspace;
1042
1043#if IS_ENABLED(CONFIG_HYPERV)
1044	hpa_t hv_root_tdp;
1045#endif
1046};
1047
1048struct kvm_lpage_info {
1049	int disallow_lpage;
1050};
1051
1052struct kvm_arch_memory_slot {
1053	struct kvm_rmap_head *rmap[KVM_NR_PAGE_SIZES];
1054	struct kvm_lpage_info *lpage_info[KVM_NR_PAGE_SIZES - 1];
1055	unsigned short *gfn_write_track;
1056};
1057
1058/*
1059 * Track the mode of the optimized logical map, as the rules for decoding the
1060 * destination vary per mode.  Enabling the optimized logical map requires all
1061 * software-enabled local APIs to be in the same mode, each addressable APIC to
1062 * be mapped to only one MDA, and each MDA to map to at most one APIC.
1063 */
1064enum kvm_apic_logical_mode {
1065	/* All local APICs are software disabled. */
1066	KVM_APIC_MODE_SW_DISABLED,
1067	/* All software enabled local APICs in xAPIC cluster addressing mode. */
1068	KVM_APIC_MODE_XAPIC_CLUSTER,
1069	/* All software enabled local APICs in xAPIC flat addressing mode. */
1070	KVM_APIC_MODE_XAPIC_FLAT,
1071	/* All software enabled local APICs in x2APIC mode. */
1072	KVM_APIC_MODE_X2APIC,
1073	/*
1074	 * Optimized map disabled, e.g. not all local APICs in the same logical
1075	 * mode, same logical ID assigned to multiple APICs, etc.
1076	 */
1077	KVM_APIC_MODE_MAP_DISABLED,
1078};
1079
1080struct kvm_apic_map {
1081	struct rcu_head rcu;
1082	enum kvm_apic_logical_mode logical_mode;
1083	u32 max_apic_id;
1084	union {
1085		struct kvm_lapic *xapic_flat_map[8];
1086		struct kvm_lapic *xapic_cluster_map[16][4];
1087	};
1088	struct kvm_lapic *phys_map[];
1089};
1090
1091/* Hyper-V synthetic debugger (SynDbg)*/
1092struct kvm_hv_syndbg {
1093	struct {
1094		u64 control;
1095		u64 status;
1096		u64 send_page;
1097		u64 recv_page;
1098		u64 pending_page;
1099	} control;
1100	u64 options;
1101};
1102
1103/* Current state of Hyper-V TSC page clocksource */
1104enum hv_tsc_page_status {
1105	/* TSC page was not set up or disabled */
1106	HV_TSC_PAGE_UNSET = 0,
1107	/* TSC page MSR was written by the guest, update pending */
1108	HV_TSC_PAGE_GUEST_CHANGED,
1109	/* TSC page update was triggered from the host side */
1110	HV_TSC_PAGE_HOST_CHANGED,
1111	/* TSC page was properly set up and is currently active  */
1112	HV_TSC_PAGE_SET,
1113	/* TSC page was set up with an inaccessible GPA */
1114	HV_TSC_PAGE_BROKEN,
1115};
1116
1117#ifdef CONFIG_KVM_HYPERV
1118/* Hyper-V emulation context */
1119struct kvm_hv {
1120	struct mutex hv_lock;
1121	u64 hv_guest_os_id;
1122	u64 hv_hypercall;
1123	u64 hv_tsc_page;
1124	enum hv_tsc_page_status hv_tsc_page_status;
1125
1126	/* Hyper-v based guest crash (NT kernel bugcheck) parameters */
1127	u64 hv_crash_param[HV_X64_MSR_CRASH_PARAMS];
1128	u64 hv_crash_ctl;
1129
1130	struct ms_hyperv_tsc_page tsc_ref;
1131
1132	struct idr conn_to_evt;
1133
1134	u64 hv_reenlightenment_control;
1135	u64 hv_tsc_emulation_control;
1136	u64 hv_tsc_emulation_status;
1137	u64 hv_invtsc_control;
1138
1139	/* How many vCPUs have VP index != vCPU index */
1140	atomic_t num_mismatched_vp_indexes;
1141
1142	/*
1143	 * How many SynICs use 'AutoEOI' feature
1144	 * (protected by arch.apicv_update_lock)
1145	 */
1146	unsigned int synic_auto_eoi_used;
1147
1148	struct kvm_hv_syndbg hv_syndbg;
1149
1150	bool xsaves_xsavec_checked;
1151};
1152#endif
1153
1154struct msr_bitmap_range {
1155	u32 flags;
1156	u32 nmsrs;
1157	u32 base;
1158	unsigned long *bitmap;
1159};
1160
1161#ifdef CONFIG_KVM_XEN
1162/* Xen emulation context */
1163struct kvm_xen {
1164	struct mutex xen_lock;
1165	u32 xen_version;
1166	bool long_mode;
1167	bool runstate_update_flag;
1168	u8 upcall_vector;
1169	struct gfn_to_pfn_cache shinfo_cache;
1170	struct idr evtchn_ports;
1171	unsigned long poll_mask[BITS_TO_LONGS(KVM_MAX_VCPUS)];
1172};
1173#endif
1174
1175enum kvm_irqchip_mode {
1176	KVM_IRQCHIP_NONE,
1177	KVM_IRQCHIP_KERNEL,       /* created with KVM_CREATE_IRQCHIP */
1178	KVM_IRQCHIP_SPLIT,        /* created with KVM_CAP_SPLIT_IRQCHIP */
1179};
1180
1181struct kvm_x86_msr_filter {
1182	u8 count;
1183	bool default_allow:1;
1184	struct msr_bitmap_range ranges[16];
1185};
1186
1187struct kvm_x86_pmu_event_filter {
1188	__u32 action;
1189	__u32 nevents;
1190	__u32 fixed_counter_bitmap;
1191	__u32 flags;
1192	__u32 nr_includes;
1193	__u32 nr_excludes;
1194	__u64 *includes;
1195	__u64 *excludes;
1196	__u64 events[];
1197};
1198
1199enum kvm_apicv_inhibit {
1200
1201	/********************************************************************/
1202	/* INHIBITs that are relevant to both Intel's APICv and AMD's AVIC. */
1203	/********************************************************************/
1204
1205	/*
1206	 * APIC acceleration is disabled by a module parameter
1207	 * and/or not supported in hardware.
1208	 */
1209	APICV_INHIBIT_REASON_DISABLE,
1210
1211	/*
1212	 * APIC acceleration is inhibited because AutoEOI feature is
1213	 * being used by a HyperV guest.
1214	 */
1215	APICV_INHIBIT_REASON_HYPERV,
1216
1217	/*
1218	 * APIC acceleration is inhibited because the userspace didn't yet
1219	 * enable the kernel/split irqchip.
1220	 */
1221	APICV_INHIBIT_REASON_ABSENT,
1222
1223	/* APIC acceleration is inhibited because KVM_GUESTDBG_BLOCKIRQ
1224	 * (out of band, debug measure of blocking all interrupts on this vCPU)
1225	 * was enabled, to avoid AVIC/APICv bypassing it.
1226	 */
1227	APICV_INHIBIT_REASON_BLOCKIRQ,
1228
1229	/*
1230	 * APICv is disabled because not all vCPUs have a 1:1 mapping between
1231	 * APIC ID and vCPU, _and_ KVM is not applying its x2APIC hotplug hack.
1232	 */
1233	APICV_INHIBIT_REASON_PHYSICAL_ID_ALIASED,
1234
1235	/*
1236	 * For simplicity, the APIC acceleration is inhibited
1237	 * first time either APIC ID or APIC base are changed by the guest
1238	 * from their reset values.
1239	 */
1240	APICV_INHIBIT_REASON_APIC_ID_MODIFIED,
1241	APICV_INHIBIT_REASON_APIC_BASE_MODIFIED,
1242
1243	/******************************************************/
1244	/* INHIBITs that are relevant only to the AMD's AVIC. */
1245	/******************************************************/
1246
1247	/*
1248	 * AVIC is inhibited on a vCPU because it runs a nested guest.
1249	 *
1250	 * This is needed because unlike APICv, the peers of this vCPU
1251	 * cannot use the doorbell mechanism to signal interrupts via AVIC when
1252	 * a vCPU runs nested.
1253	 */
1254	APICV_INHIBIT_REASON_NESTED,
1255
1256	/*
1257	 * On SVM, the wait for the IRQ window is implemented with pending vIRQ,
1258	 * which cannot be injected when the AVIC is enabled, thus AVIC
1259	 * is inhibited while KVM waits for IRQ window.
1260	 */
1261	APICV_INHIBIT_REASON_IRQWIN,
1262
1263	/*
1264	 * PIT (i8254) 're-inject' mode, relies on EOI intercept,
1265	 * which AVIC doesn't support for edge triggered interrupts.
1266	 */
1267	APICV_INHIBIT_REASON_PIT_REINJ,
1268
1269	/*
1270	 * AVIC is disabled because SEV doesn't support it.
1271	 */
1272	APICV_INHIBIT_REASON_SEV,
1273
1274	/*
1275	 * AVIC is disabled because not all vCPUs with a valid LDR have a 1:1
1276	 * mapping between logical ID and vCPU.
1277	 */
1278	APICV_INHIBIT_REASON_LOGICAL_ID_ALIASED,
1279};
1280
1281struct kvm_arch {
1282	unsigned long vm_type;
1283	unsigned long n_used_mmu_pages;
1284	unsigned long n_requested_mmu_pages;
1285	unsigned long n_max_mmu_pages;
1286	unsigned int indirect_shadow_pages;
1287	u8 mmu_valid_gen;
1288	struct hlist_head mmu_page_hash[KVM_NUM_MMU_PAGES];
1289	struct list_head active_mmu_pages;
1290	struct list_head zapped_obsolete_pages;
1291	/*
1292	 * A list of kvm_mmu_page structs that, if zapped, could possibly be
1293	 * replaced by an NX huge page.  A shadow page is on this list if its
1294	 * existence disallows an NX huge page (nx_huge_page_disallowed is set)
1295	 * and there are no other conditions that prevent a huge page, e.g.
1296	 * the backing host page is huge, dirtly logging is not enabled for its
1297	 * memslot, etc...  Note, zapping shadow pages on this list doesn't
1298	 * guarantee an NX huge page will be created in its stead, e.g. if the
1299	 * guest attempts to execute from the region then KVM obviously can't
1300	 * create an NX huge page (without hanging the guest).
1301	 */
1302	struct list_head possible_nx_huge_pages;
1303#ifdef CONFIG_KVM_EXTERNAL_WRITE_TRACKING
1304	struct kvm_page_track_notifier_head track_notifier_head;
1305#endif
1306	/*
1307	 * Protects marking pages unsync during page faults, as TDP MMU page
1308	 * faults only take mmu_lock for read.  For simplicity, the unsync
1309	 * pages lock is always taken when marking pages unsync regardless of
1310	 * whether mmu_lock is held for read or write.
1311	 */
1312	spinlock_t mmu_unsync_pages_lock;
1313
1314	struct iommu_domain *iommu_domain;
1315	bool iommu_noncoherent;
1316#define __KVM_HAVE_ARCH_NONCOHERENT_DMA
1317	atomic_t noncoherent_dma_count;
1318#define __KVM_HAVE_ARCH_ASSIGNED_DEVICE
1319	atomic_t assigned_device_count;
1320	struct kvm_pic *vpic;
1321	struct kvm_ioapic *vioapic;
1322	struct kvm_pit *vpit;
1323	atomic_t vapics_in_nmi_mode;
1324	struct mutex apic_map_lock;
1325	struct kvm_apic_map __rcu *apic_map;
1326	atomic_t apic_map_dirty;
1327
1328	bool apic_access_memslot_enabled;
1329	bool apic_access_memslot_inhibited;
1330
1331	/* Protects apicv_inhibit_reasons */
1332	struct rw_semaphore apicv_update_lock;
1333	unsigned long apicv_inhibit_reasons;
1334
1335	gpa_t wall_clock;
1336
1337	bool mwait_in_guest;
1338	bool hlt_in_guest;
1339	bool pause_in_guest;
1340	bool cstate_in_guest;
1341
1342	unsigned long irq_sources_bitmap;
1343	s64 kvmclock_offset;
1344
1345	/*
1346	 * This also protects nr_vcpus_matched_tsc which is read from a
1347	 * preemption-disabled region, so it must be a raw spinlock.
1348	 */
1349	raw_spinlock_t tsc_write_lock;
1350	u64 last_tsc_nsec;
1351	u64 last_tsc_write;
1352	u32 last_tsc_khz;
1353	u64 last_tsc_offset;
1354	u64 cur_tsc_nsec;
1355	u64 cur_tsc_write;
1356	u64 cur_tsc_offset;
1357	u64 cur_tsc_generation;
1358	int nr_vcpus_matched_tsc;
1359
1360	u32 default_tsc_khz;
1361	bool user_set_tsc;
1362
1363	seqcount_raw_spinlock_t pvclock_sc;
1364	bool use_master_clock;
1365	u64 master_kernel_ns;
1366	u64 master_cycle_now;
1367	struct delayed_work kvmclock_update_work;
1368	struct delayed_work kvmclock_sync_work;
1369
1370	struct kvm_xen_hvm_config xen_hvm_config;
1371
1372	/* reads protected by irq_srcu, writes by irq_lock */
1373	struct hlist_head mask_notifier_list;
1374
1375#ifdef CONFIG_KVM_HYPERV
1376	struct kvm_hv hyperv;
1377#endif
1378
1379#ifdef CONFIG_KVM_XEN
1380	struct kvm_xen xen;
1381#endif
1382
1383	bool backwards_tsc_observed;
1384	bool boot_vcpu_runs_old_kvmclock;
1385	u32 bsp_vcpu_id;
1386
1387	u64 disabled_quirks;
1388
1389	enum kvm_irqchip_mode irqchip_mode;
1390	u8 nr_reserved_ioapic_pins;
1391
1392	bool disabled_lapic_found;
1393
1394	bool x2apic_format;
1395	bool x2apic_broadcast_quirk_disabled;
1396
1397	bool guest_can_read_msr_platform_info;
1398	bool exception_payload_enabled;
1399
1400	bool triple_fault_event;
1401
1402	bool bus_lock_detection_enabled;
1403	bool enable_pmu;
1404
1405	u32 notify_window;
1406	u32 notify_vmexit_flags;
1407	/*
1408	 * If exit_on_emulation_error is set, and the in-kernel instruction
1409	 * emulator fails to emulate an instruction, allow userspace
1410	 * the opportunity to look at it.
1411	 */
1412	bool exit_on_emulation_error;
1413
1414	/* Deflect RDMSR and WRMSR to user space when they trigger a #GP */
1415	u32 user_space_msr_mask;
1416	struct kvm_x86_msr_filter __rcu *msr_filter;
1417
1418	u32 hypercall_exit_enabled;
1419
1420	/* Guest can access the SGX PROVISIONKEY. */
1421	bool sgx_provisioning_allowed;
1422
1423	struct kvm_x86_pmu_event_filter __rcu *pmu_event_filter;
1424	struct task_struct *nx_huge_page_recovery_thread;
1425
1426#ifdef CONFIG_X86_64
1427	/* The number of TDP MMU pages across all roots. */
1428	atomic64_t tdp_mmu_pages;
1429
1430	/*
1431	 * List of struct kvm_mmu_pages being used as roots.
1432	 * All struct kvm_mmu_pages in the list should have
1433	 * tdp_mmu_page set.
1434	 *
1435	 * For reads, this list is protected by:
1436	 *	the MMU lock in read mode + RCU or
1437	 *	the MMU lock in write mode
1438	 *
1439	 * For writes, this list is protected by tdp_mmu_pages_lock; see
1440	 * below for the details.
1441	 *
1442	 * Roots will remain in the list until their tdp_mmu_root_count
1443	 * drops to zero, at which point the thread that decremented the
1444	 * count to zero should removed the root from the list and clean
1445	 * it up, freeing the root after an RCU grace period.
1446	 */
1447	struct list_head tdp_mmu_roots;
1448
1449	/*
1450	 * Protects accesses to the following fields when the MMU lock
1451	 * is held in read mode:
1452	 *  - tdp_mmu_roots (above)
1453	 *  - the link field of kvm_mmu_page structs used by the TDP MMU
1454	 *  - possible_nx_huge_pages;
1455	 *  - the possible_nx_huge_page_link field of kvm_mmu_page structs used
1456	 *    by the TDP MMU
1457	 * Because the lock is only taken within the MMU lock, strictly
1458	 * speaking it is redundant to acquire this lock when the thread
1459	 * holds the MMU lock in write mode.  However it often simplifies
1460	 * the code to do so.
1461	 */
1462	spinlock_t tdp_mmu_pages_lock;
1463#endif /* CONFIG_X86_64 */
1464
1465	/*
1466	 * If set, at least one shadow root has been allocated. This flag
1467	 * is used as one input when determining whether certain memslot
1468	 * related allocations are necessary.
1469	 */
1470	bool shadow_root_allocated;
1471
1472#ifdef CONFIG_KVM_EXTERNAL_WRITE_TRACKING
1473	/*
1474	 * If set, the VM has (or had) an external write tracking user, and
1475	 * thus all write tracking metadata has been allocated, even if KVM
1476	 * itself isn't using write tracking.
1477	 */
1478	bool external_write_tracking_enabled;
1479#endif
1480
1481#if IS_ENABLED(CONFIG_HYPERV)
1482	hpa_t	hv_root_tdp;
1483	spinlock_t hv_root_tdp_lock;
1484	struct hv_partition_assist_pg *hv_pa_pg;
1485#endif
1486	/*
1487	 * VM-scope maximum vCPU ID. Used to determine the size of structures
1488	 * that increase along with the maximum vCPU ID, in which case, using
1489	 * the global KVM_MAX_VCPU_IDS may lead to significant memory waste.
1490	 */
1491	u32 max_vcpu_ids;
1492
1493	bool disable_nx_huge_pages;
1494
1495	/*
1496	 * Memory caches used to allocate shadow pages when performing eager
1497	 * page splitting. No need for a shadowed_info_cache since eager page
1498	 * splitting only allocates direct shadow pages.
1499	 *
1500	 * Protected by kvm->slots_lock.
1501	 */
1502	struct kvm_mmu_memory_cache split_shadow_page_cache;
1503	struct kvm_mmu_memory_cache split_page_header_cache;
1504
1505	/*
1506	 * Memory cache used to allocate pte_list_desc structs while splitting
1507	 * huge pages. In the worst case, to split one huge page, 512
1508	 * pte_list_desc structs are needed to add each lower level leaf sptep
1509	 * to the rmap plus 1 to extend the parent_ptes rmap of the lower level
1510	 * page table.
1511	 *
1512	 * Protected by kvm->slots_lock.
1513	 */
1514#define SPLIT_DESC_CACHE_MIN_NR_OBJECTS (SPTE_ENT_PER_PAGE + 1)
1515	struct kvm_mmu_memory_cache split_desc_cache;
1516};
1517
1518struct kvm_vm_stat {
1519	struct kvm_vm_stat_generic generic;
1520	u64 mmu_shadow_zapped;
1521	u64 mmu_pte_write;
1522	u64 mmu_pde_zapped;
1523	u64 mmu_flooded;
1524	u64 mmu_recycled;
1525	u64 mmu_cache_miss;
1526	u64 mmu_unsync;
1527	union {
1528		struct {
1529			atomic64_t pages_4k;
1530			atomic64_t pages_2m;
1531			atomic64_t pages_1g;
1532		};
1533		atomic64_t pages[KVM_NR_PAGE_SIZES];
1534	};
1535	u64 nx_lpage_splits;
1536	u64 max_mmu_page_hash_collisions;
1537	u64 max_mmu_rmap_size;
1538};
1539
1540struct kvm_vcpu_stat {
1541	struct kvm_vcpu_stat_generic generic;
1542	u64 pf_taken;
1543	u64 pf_fixed;
1544	u64 pf_emulate;
1545	u64 pf_spurious;
1546	u64 pf_fast;
1547	u64 pf_mmio_spte_created;
1548	u64 pf_guest;
1549	u64 tlb_flush;
1550	u64 invlpg;
1551
1552	u64 exits;
1553	u64 io_exits;
1554	u64 mmio_exits;
1555	u64 signal_exits;
1556	u64 irq_window_exits;
1557	u64 nmi_window_exits;
1558	u64 l1d_flush;
1559	u64 halt_exits;
1560	u64 request_irq_exits;
1561	u64 irq_exits;
1562	u64 host_state_reload;
1563	u64 fpu_reload;
1564	u64 insn_emulation;
1565	u64 insn_emulation_fail;
1566	u64 hypercalls;
1567	u64 irq_injections;
1568	u64 nmi_injections;
1569	u64 req_event;
1570	u64 nested_run;
1571	u64 directed_yield_attempted;
1572	u64 directed_yield_successful;
1573	u64 preemption_reported;
1574	u64 preemption_other;
1575	u64 guest_mode;
1576	u64 notify_window_exits;
1577};
1578
1579struct x86_instruction_info;
1580
1581struct msr_data {
1582	bool host_initiated;
1583	u32 index;
1584	u64 data;
1585};
1586
1587struct kvm_lapic_irq {
1588	u32 vector;
1589	u16 delivery_mode;
1590	u16 dest_mode;
1591	bool level;
1592	u16 trig_mode;
1593	u32 shorthand;
1594	u32 dest_id;
1595	bool msi_redir_hint;
1596};
1597
1598static inline u16 kvm_lapic_irq_dest_mode(bool dest_mode_logical)
1599{
1600	return dest_mode_logical ? APIC_DEST_LOGICAL : APIC_DEST_PHYSICAL;
1601}
1602
1603struct kvm_x86_ops {
1604	const char *name;
1605
1606	int (*check_processor_compatibility)(void);
1607
1608	int (*hardware_enable)(void);
1609	void (*hardware_disable)(void);
1610	void (*hardware_unsetup)(void);
1611	bool (*has_emulated_msr)(struct kvm *kvm, u32 index);
1612	void (*vcpu_after_set_cpuid)(struct kvm_vcpu *vcpu);
1613
1614	unsigned int vm_size;
1615	int (*vm_init)(struct kvm *kvm);
1616	void (*vm_destroy)(struct kvm *kvm);
1617
1618	/* Create, but do not attach this VCPU */
1619	int (*vcpu_precreate)(struct kvm *kvm);
1620	int (*vcpu_create)(struct kvm_vcpu *vcpu);
1621	void (*vcpu_free)(struct kvm_vcpu *vcpu);
1622	void (*vcpu_reset)(struct kvm_vcpu *vcpu, bool init_event);
1623
1624	void (*prepare_switch_to_guest)(struct kvm_vcpu *vcpu);
1625	void (*vcpu_load)(struct kvm_vcpu *vcpu, int cpu);
1626	void (*vcpu_put)(struct kvm_vcpu *vcpu);
1627
1628	void (*update_exception_bitmap)(struct kvm_vcpu *vcpu);
1629	int (*get_msr)(struct kvm_vcpu *vcpu, struct msr_data *msr);
1630	int (*set_msr)(struct kvm_vcpu *vcpu, struct msr_data *msr);
1631	u64 (*get_segment_base)(struct kvm_vcpu *vcpu, int seg);
1632	void (*get_segment)(struct kvm_vcpu *vcpu,
1633			    struct kvm_segment *var, int seg);
1634	int (*get_cpl)(struct kvm_vcpu *vcpu);
1635	void (*set_segment)(struct kvm_vcpu *vcpu,
1636			    struct kvm_segment *var, int seg);
1637	void (*get_cs_db_l_bits)(struct kvm_vcpu *vcpu, int *db, int *l);
1638	bool (*is_valid_cr0)(struct kvm_vcpu *vcpu, unsigned long cr0);
1639	void (*set_cr0)(struct kvm_vcpu *vcpu, unsigned long cr0);
1640	void (*post_set_cr3)(struct kvm_vcpu *vcpu, unsigned long cr3);
1641	bool (*is_valid_cr4)(struct kvm_vcpu *vcpu, unsigned long cr4);
1642	void (*set_cr4)(struct kvm_vcpu *vcpu, unsigned long cr4);
1643	int (*set_efer)(struct kvm_vcpu *vcpu, u64 efer);
1644	void (*get_idt)(struct kvm_vcpu *vcpu, struct desc_ptr *dt);
1645	void (*set_idt)(struct kvm_vcpu *vcpu, struct desc_ptr *dt);
1646	void (*get_gdt)(struct kvm_vcpu *vcpu, struct desc_ptr *dt);
1647	void (*set_gdt)(struct kvm_vcpu *vcpu, struct desc_ptr *dt);
1648	void (*sync_dirty_debug_regs)(struct kvm_vcpu *vcpu);
1649	void (*set_dr7)(struct kvm_vcpu *vcpu, unsigned long value);
1650	void (*cache_reg)(struct kvm_vcpu *vcpu, enum kvm_reg reg);
1651	unsigned long (*get_rflags)(struct kvm_vcpu *vcpu);
1652	void (*set_rflags)(struct kvm_vcpu *vcpu, unsigned long rflags);
1653	bool (*get_if_flag)(struct kvm_vcpu *vcpu);
1654
1655	void (*flush_tlb_all)(struct kvm_vcpu *vcpu);
1656	void (*flush_tlb_current)(struct kvm_vcpu *vcpu);
1657#if IS_ENABLED(CONFIG_HYPERV)
1658	int  (*flush_remote_tlbs)(struct kvm *kvm);
1659	int  (*flush_remote_tlbs_range)(struct kvm *kvm, gfn_t gfn,
1660					gfn_t nr_pages);
1661#endif
1662
1663	/*
1664	 * Flush any TLB entries associated with the given GVA.
1665	 * Does not need to flush GPA->HPA mappings.
1666	 * Can potentially get non-canonical addresses through INVLPGs, which
1667	 * the implementation may choose to ignore if appropriate.
1668	 */
1669	void (*flush_tlb_gva)(struct kvm_vcpu *vcpu, gva_t addr);
1670
1671	/*
1672	 * Flush any TLB entries created by the guest.  Like tlb_flush_gva(),
1673	 * does not need to flush GPA->HPA mappings.
1674	 */
1675	void (*flush_tlb_guest)(struct kvm_vcpu *vcpu);
1676
1677	int (*vcpu_pre_run)(struct kvm_vcpu *vcpu);
1678	enum exit_fastpath_completion (*vcpu_run)(struct kvm_vcpu *vcpu,
1679						  bool force_immediate_exit);
1680	int (*handle_exit)(struct kvm_vcpu *vcpu,
1681		enum exit_fastpath_completion exit_fastpath);
1682	int (*skip_emulated_instruction)(struct kvm_vcpu *vcpu);
1683	void (*update_emulated_instruction)(struct kvm_vcpu *vcpu);
1684	void (*set_interrupt_shadow)(struct kvm_vcpu *vcpu, int mask);
1685	u32 (*get_interrupt_shadow)(struct kvm_vcpu *vcpu);
1686	void (*patch_hypercall)(struct kvm_vcpu *vcpu,
1687				unsigned char *hypercall_addr);
1688	void (*inject_irq)(struct kvm_vcpu *vcpu, bool reinjected);
1689	void (*inject_nmi)(struct kvm_vcpu *vcpu);
1690	void (*inject_exception)(struct kvm_vcpu *vcpu);
1691	void (*cancel_injection)(struct kvm_vcpu *vcpu);
1692	int (*interrupt_allowed)(struct kvm_vcpu *vcpu, bool for_injection);
1693	int (*nmi_allowed)(struct kvm_vcpu *vcpu, bool for_injection);
1694	bool (*get_nmi_mask)(struct kvm_vcpu *vcpu);
1695	void (*set_nmi_mask)(struct kvm_vcpu *vcpu, bool masked);
1696	/* Whether or not a virtual NMI is pending in hardware. */
1697	bool (*is_vnmi_pending)(struct kvm_vcpu *vcpu);
1698	/*
1699	 * Attempt to pend a virtual NMI in hardware.  Returns %true on success
1700	 * to allow using static_call_ret0 as the fallback.
1701	 */
1702	bool (*set_vnmi_pending)(struct kvm_vcpu *vcpu);
1703	void (*enable_nmi_window)(struct kvm_vcpu *vcpu);
1704	void (*enable_irq_window)(struct kvm_vcpu *vcpu);
1705	void (*update_cr8_intercept)(struct kvm_vcpu *vcpu, int tpr, int irr);
1706	bool (*check_apicv_inhibit_reasons)(enum kvm_apicv_inhibit reason);
1707	const unsigned long required_apicv_inhibits;
1708	bool allow_apicv_in_x2apic_without_x2apic_virtualization;
1709	void (*refresh_apicv_exec_ctrl)(struct kvm_vcpu *vcpu);
1710	void (*hwapic_irr_update)(struct kvm_vcpu *vcpu, int max_irr);
1711	void (*hwapic_isr_update)(int isr);
1712	bool (*guest_apic_has_interrupt)(struct kvm_vcpu *vcpu);
1713	void (*load_eoi_exitmap)(struct kvm_vcpu *vcpu, u64 *eoi_exit_bitmap);
1714	void (*set_virtual_apic_mode)(struct kvm_vcpu *vcpu);
1715	void (*set_apic_access_page_addr)(struct kvm_vcpu *vcpu);
1716	void (*deliver_interrupt)(struct kvm_lapic *apic, int delivery_mode,
1717				  int trig_mode, int vector);
1718	int (*sync_pir_to_irr)(struct kvm_vcpu *vcpu);
1719	int (*set_tss_addr)(struct kvm *kvm, unsigned int addr);
1720	int (*set_identity_map_addr)(struct kvm *kvm, u64 ident_addr);
1721	u8 (*get_mt_mask)(struct kvm_vcpu *vcpu, gfn_t gfn, bool is_mmio);
1722
1723	void (*load_mmu_pgd)(struct kvm_vcpu *vcpu, hpa_t root_hpa,
1724			     int root_level);
1725
1726	bool (*has_wbinvd_exit)(void);
1727
1728	u64 (*get_l2_tsc_offset)(struct kvm_vcpu *vcpu);
1729	u64 (*get_l2_tsc_multiplier)(struct kvm_vcpu *vcpu);
1730	void (*write_tsc_offset)(struct kvm_vcpu *vcpu);
1731	void (*write_tsc_multiplier)(struct kvm_vcpu *vcpu);
1732
1733	/*
1734	 * Retrieve somewhat arbitrary exit information.  Intended to
1735	 * be used only from within tracepoints or error paths.
1736	 */
1737	void (*get_exit_info)(struct kvm_vcpu *vcpu, u32 *reason,
1738			      u64 *info1, u64 *info2,
1739			      u32 *exit_int_info, u32 *exit_int_info_err_code);
1740
1741	int (*check_intercept)(struct kvm_vcpu *vcpu,
1742			       struct x86_instruction_info *info,
1743			       enum x86_intercept_stage stage,
1744			       struct x86_exception *exception);
1745	void (*handle_exit_irqoff)(struct kvm_vcpu *vcpu);
1746
1747	void (*sched_in)(struct kvm_vcpu *vcpu, int cpu);
1748
1749	/*
1750	 * Size of the CPU's dirty log buffer, i.e. VMX's PML buffer.  A zero
1751	 * value indicates CPU dirty logging is unsupported or disabled.
1752	 */
1753	int cpu_dirty_log_size;
1754	void (*update_cpu_dirty_logging)(struct kvm_vcpu *vcpu);
1755
1756	const struct kvm_x86_nested_ops *nested_ops;
1757
1758	void (*vcpu_blocking)(struct kvm_vcpu *vcpu);
1759	void (*vcpu_unblocking)(struct kvm_vcpu *vcpu);
1760
1761	int (*pi_update_irte)(struct kvm *kvm, unsigned int host_irq,
1762			      uint32_t guest_irq, bool set);
1763	void (*pi_start_assignment)(struct kvm *kvm);
1764	void (*apicv_pre_state_restore)(struct kvm_vcpu *vcpu);
1765	void (*apicv_post_state_restore)(struct kvm_vcpu *vcpu);
1766	bool (*dy_apicv_has_pending_interrupt)(struct kvm_vcpu *vcpu);
1767
1768	int (*set_hv_timer)(struct kvm_vcpu *vcpu, u64 guest_deadline_tsc,
1769			    bool *expired);
1770	void (*cancel_hv_timer)(struct kvm_vcpu *vcpu);
1771
1772	void (*setup_mce)(struct kvm_vcpu *vcpu);
1773
1774#ifdef CONFIG_KVM_SMM
1775	int (*smi_allowed)(struct kvm_vcpu *vcpu, bool for_injection);
1776	int (*enter_smm)(struct kvm_vcpu *vcpu, union kvm_smram *smram);
1777	int (*leave_smm)(struct kvm_vcpu *vcpu, const union kvm_smram *smram);
1778	void (*enable_smi_window)(struct kvm_vcpu *vcpu);
1779#endif
1780
1781	int (*mem_enc_ioctl)(struct kvm *kvm, void __user *argp);
1782	int (*mem_enc_register_region)(struct kvm *kvm, struct kvm_enc_region *argp);
1783	int (*mem_enc_unregister_region)(struct kvm *kvm, struct kvm_enc_region *argp);
1784	int (*vm_copy_enc_context_from)(struct kvm *kvm, unsigned int source_fd);
1785	int (*vm_move_enc_context_from)(struct kvm *kvm, unsigned int source_fd);
1786	void (*guest_memory_reclaimed)(struct kvm *kvm);
1787
1788	int (*get_msr_feature)(struct kvm_msr_entry *entry);
1789
1790	int (*check_emulate_instruction)(struct kvm_vcpu *vcpu, int emul_type,
1791					 void *insn, int insn_len);
1792
1793	bool (*apic_init_signal_blocked)(struct kvm_vcpu *vcpu);
1794	int (*enable_l2_tlb_flush)(struct kvm_vcpu *vcpu);
1795
1796	void (*migrate_timers)(struct kvm_vcpu *vcpu);
1797	void (*msr_filter_changed)(struct kvm_vcpu *vcpu);
1798	int (*complete_emulated_msr)(struct kvm_vcpu *vcpu, int err);
1799
1800	void (*vcpu_deliver_sipi_vector)(struct kvm_vcpu *vcpu, u8 vector);
1801
1802	/*
1803	 * Returns vCPU specific APICv inhibit reasons
1804	 */
1805	unsigned long (*vcpu_get_apicv_inhibit_reasons)(struct kvm_vcpu *vcpu);
1806
1807	gva_t (*get_untagged_addr)(struct kvm_vcpu *vcpu, gva_t gva, unsigned int flags);
1808	void *(*alloc_apic_backing_page)(struct kvm_vcpu *vcpu);
1809};
1810
1811struct kvm_x86_nested_ops {
1812	void (*leave_nested)(struct kvm_vcpu *vcpu);
1813	bool (*is_exception_vmexit)(struct kvm_vcpu *vcpu, u8 vector,
1814				    u32 error_code);
1815	int (*check_events)(struct kvm_vcpu *vcpu);
1816	bool (*has_events)(struct kvm_vcpu *vcpu);
1817	void (*triple_fault)(struct kvm_vcpu *vcpu);
1818	int (*get_state)(struct kvm_vcpu *vcpu,
1819			 struct kvm_nested_state __user *user_kvm_nested_state,
1820			 unsigned user_data_size);
1821	int (*set_state)(struct kvm_vcpu *vcpu,
1822			 struct kvm_nested_state __user *user_kvm_nested_state,
1823			 struct kvm_nested_state *kvm_state);
1824	bool (*get_nested_state_pages)(struct kvm_vcpu *vcpu);
1825	int (*write_log_dirty)(struct kvm_vcpu *vcpu, gpa_t l2_gpa);
1826
1827	int (*enable_evmcs)(struct kvm_vcpu *vcpu,
1828			    uint16_t *vmcs_version);
1829	uint16_t (*get_evmcs_version)(struct kvm_vcpu *vcpu);
1830	void (*hv_inject_synthetic_vmexit_post_tlb_flush)(struct kvm_vcpu *vcpu);
1831};
1832
1833struct kvm_x86_init_ops {
1834	int (*hardware_setup)(void);
1835	unsigned int (*handle_intel_pt_intr)(void);
1836
1837	struct kvm_x86_ops *runtime_ops;
1838	struct kvm_pmu_ops *pmu_ops;
1839};
1840
1841struct kvm_arch_async_pf {
1842	u32 token;
1843	gfn_t gfn;
1844	unsigned long cr3;
1845	bool direct_map;
1846};
1847
1848extern u32 __read_mostly kvm_nr_uret_msrs;
1849extern u64 __read_mostly host_efer;
1850extern bool __read_mostly allow_smaller_maxphyaddr;
1851extern bool __read_mostly enable_apicv;
1852extern struct kvm_x86_ops kvm_x86_ops;
1853
1854#define KVM_X86_OP(func) \
1855	DECLARE_STATIC_CALL(kvm_x86_##func, *(((struct kvm_x86_ops *)0)->func));
1856#define KVM_X86_OP_OPTIONAL KVM_X86_OP
1857#define KVM_X86_OP_OPTIONAL_RET0 KVM_X86_OP
1858#include <asm/kvm-x86-ops.h>
1859
1860int kvm_x86_vendor_init(struct kvm_x86_init_ops *ops);
1861void kvm_x86_vendor_exit(void);
1862
1863#define __KVM_HAVE_ARCH_VM_ALLOC
1864static inline struct kvm *kvm_arch_alloc_vm(void)
1865{
1866	return __vmalloc(kvm_x86_ops.vm_size, GFP_KERNEL_ACCOUNT | __GFP_ZERO);
1867}
1868
1869#define __KVM_HAVE_ARCH_VM_FREE
1870void kvm_arch_free_vm(struct kvm *kvm);
1871
1872#if IS_ENABLED(CONFIG_HYPERV)
1873#define __KVM_HAVE_ARCH_FLUSH_REMOTE_TLBS
1874static inline int kvm_arch_flush_remote_tlbs(struct kvm *kvm)
1875{
1876	if (kvm_x86_ops.flush_remote_tlbs &&
1877	    !static_call(kvm_x86_flush_remote_tlbs)(kvm))
1878		return 0;
1879	else
1880		return -ENOTSUPP;
1881}
1882
1883#define __KVM_HAVE_ARCH_FLUSH_REMOTE_TLBS_RANGE
1884static inline int kvm_arch_flush_remote_tlbs_range(struct kvm *kvm, gfn_t gfn,
1885						   u64 nr_pages)
1886{
1887	if (!kvm_x86_ops.flush_remote_tlbs_range)
1888		return -EOPNOTSUPP;
1889
1890	return static_call(kvm_x86_flush_remote_tlbs_range)(kvm, gfn, nr_pages);
1891}
1892#endif /* CONFIG_HYPERV */
1893
1894enum kvm_intr_type {
1895	/* Values are arbitrary, but must be non-zero. */
1896	KVM_HANDLING_IRQ = 1,
1897	KVM_HANDLING_NMI,
1898};
1899
1900/* Enable perf NMI and timer modes to work, and minimise false positives. */
1901#define kvm_arch_pmi_in_guest(vcpu) \
1902	((vcpu) && (vcpu)->arch.handling_intr_from_guest && \
1903	 (!!in_nmi() == ((vcpu)->arch.handling_intr_from_guest == KVM_HANDLING_NMI)))
1904
1905void __init kvm_mmu_x86_module_init(void);
1906int kvm_mmu_vendor_module_init(void);
1907void kvm_mmu_vendor_module_exit(void);
1908
1909void kvm_mmu_destroy(struct kvm_vcpu *vcpu);
1910int kvm_mmu_create(struct kvm_vcpu *vcpu);
1911void kvm_mmu_init_vm(struct kvm *kvm);
1912void kvm_mmu_uninit_vm(struct kvm *kvm);
1913
1914void kvm_mmu_init_memslot_memory_attributes(struct kvm *kvm,
1915					    struct kvm_memory_slot *slot);
1916
1917void kvm_mmu_after_set_cpuid(struct kvm_vcpu *vcpu);
1918void kvm_mmu_reset_context(struct kvm_vcpu *vcpu);
1919void kvm_mmu_slot_remove_write_access(struct kvm *kvm,
1920				      const struct kvm_memory_slot *memslot,
1921				      int start_level);
1922void kvm_mmu_slot_try_split_huge_pages(struct kvm *kvm,
1923				       const struct kvm_memory_slot *memslot,
1924				       int target_level);
1925void kvm_mmu_try_split_huge_pages(struct kvm *kvm,
1926				  const struct kvm_memory_slot *memslot,
1927				  u64 start, u64 end,
1928				  int target_level);
1929void kvm_mmu_zap_collapsible_sptes(struct kvm *kvm,
1930				   const struct kvm_memory_slot *memslot);
1931void kvm_mmu_slot_leaf_clear_dirty(struct kvm *kvm,
1932				   const struct kvm_memory_slot *memslot);
1933void kvm_mmu_invalidate_mmio_sptes(struct kvm *kvm, u64 gen);
1934void kvm_mmu_change_mmu_pages(struct kvm *kvm, unsigned long kvm_nr_mmu_pages);
1935
1936int load_pdptrs(struct kvm_vcpu *vcpu, unsigned long cr3);
1937
1938int emulator_write_phys(struct kvm_vcpu *vcpu, gpa_t gpa,
1939			  const void *val, int bytes);
1940
1941struct kvm_irq_mask_notifier {
1942	void (*func)(struct kvm_irq_mask_notifier *kimn, bool masked);
1943	int irq;
1944	struct hlist_node link;
1945};
1946
1947void kvm_register_irq_mask_notifier(struct kvm *kvm, int irq,
1948				    struct kvm_irq_mask_notifier *kimn);
1949void kvm_unregister_irq_mask_notifier(struct kvm *kvm, int irq,
1950				      struct kvm_irq_mask_notifier *kimn);
1951void kvm_fire_mask_notifiers(struct kvm *kvm, unsigned irqchip, unsigned pin,
1952			     bool mask);
1953
1954extern bool tdp_enabled;
1955
1956u64 vcpu_tsc_khz(struct kvm_vcpu *vcpu);
1957
1958/*
1959 * EMULTYPE_NO_DECODE - Set when re-emulating an instruction (after completing
1960 *			userspace I/O) to indicate that the emulation context
1961 *			should be reused as is, i.e. skip initialization of
1962 *			emulation context, instruction fetch and decode.
1963 *
1964 * EMULTYPE_TRAP_UD - Set when emulating an intercepted #UD from hardware.
1965 *		      Indicates that only select instructions (tagged with
1966 *		      EmulateOnUD) should be emulated (to minimize the emulator
1967 *		      attack surface).  See also EMULTYPE_TRAP_UD_FORCED.
1968 *
1969 * EMULTYPE_SKIP - Set when emulating solely to skip an instruction, i.e. to
1970 *		   decode the instruction length.  For use *only* by
1971 *		   kvm_x86_ops.skip_emulated_instruction() implementations if
1972 *		   EMULTYPE_COMPLETE_USER_EXIT is not set.
1973 *
1974 * EMULTYPE_ALLOW_RETRY_PF - Set when the emulator should resume the guest to
1975 *			     retry native execution under certain conditions,
1976 *			     Can only be set in conjunction with EMULTYPE_PF.
1977 *
1978 * EMULTYPE_TRAP_UD_FORCED - Set when emulating an intercepted #UD that was
1979 *			     triggered by KVM's magic "force emulation" prefix,
1980 *			     which is opt in via module param (off by default).
1981 *			     Bypasses EmulateOnUD restriction despite emulating
1982 *			     due to an intercepted #UD (see EMULTYPE_TRAP_UD).
1983 *			     Used to test the full emulator from userspace.
1984 *
1985 * EMULTYPE_VMWARE_GP - Set when emulating an intercepted #GP for VMware
1986 *			backdoor emulation, which is opt in via module param.
1987 *			VMware backdoor emulation handles select instructions
1988 *			and reinjects the #GP for all other cases.
1989 *
1990 * EMULTYPE_PF - Set when emulating MMIO by way of an intercepted #PF, in which
1991 *		 case the CR2/GPA value pass on the stack is valid.
1992 *
1993 * EMULTYPE_COMPLETE_USER_EXIT - Set when the emulator should update interruptibility
1994 *				 state and inject single-step #DBs after skipping
1995 *				 an instruction (after completing userspace I/O).
1996 *
1997 * EMULTYPE_WRITE_PF_TO_SP - Set when emulating an intercepted page fault that
1998 *			     is attempting to write a gfn that contains one or
1999 *			     more of the PTEs used to translate the write itself,
2000 *			     and the owning page table is being shadowed by KVM.
2001 *			     If emulation of the faulting instruction fails and
2002 *			     this flag is set, KVM will exit to userspace instead
2003 *			     of retrying emulation as KVM cannot make forward
2004 *			     progress.
2005 *
2006 *			     If emulation fails for a write to guest page tables,
2007 *			     KVM unprotects (zaps) the shadow page for the target
2008 *			     gfn and resumes the guest to retry the non-emulatable
2009 *			     instruction (on hardware).  Unprotecting the gfn
2010 *			     doesn't allow forward progress for a self-changing
2011 *			     access because doing so also zaps the translation for
2012 *			     the gfn, i.e. retrying the instruction will hit a
2013 *			     !PRESENT fault, which results in a new shadow page
2014 *			     and sends KVM back to square one.
2015 */
2016#define EMULTYPE_NO_DECODE	    (1 << 0)
2017#define EMULTYPE_TRAP_UD	    (1 << 1)
2018#define EMULTYPE_SKIP		    (1 << 2)
2019#define EMULTYPE_ALLOW_RETRY_PF	    (1 << 3)
2020#define EMULTYPE_TRAP_UD_FORCED	    (1 << 4)
2021#define EMULTYPE_VMWARE_GP	    (1 << 5)
2022#define EMULTYPE_PF		    (1 << 6)
2023#define EMULTYPE_COMPLETE_USER_EXIT (1 << 7)
2024#define EMULTYPE_WRITE_PF_TO_SP	    (1 << 8)
2025
2026int kvm_emulate_instruction(struct kvm_vcpu *vcpu, int emulation_type);
2027int kvm_emulate_instruction_from_buffer(struct kvm_vcpu *vcpu,
2028					void *insn, int insn_len);
2029void __kvm_prepare_emulation_failure_exit(struct kvm_vcpu *vcpu,
2030					  u64 *data, u8 ndata);
2031void kvm_prepare_emulation_failure_exit(struct kvm_vcpu *vcpu);
2032
2033void kvm_enable_efer_bits(u64);
2034bool kvm_valid_efer(struct kvm_vcpu *vcpu, u64 efer);
2035int __kvm_get_msr(struct kvm_vcpu *vcpu, u32 index, u64 *data, bool host_initiated);
2036int kvm_get_msr(struct kvm_vcpu *vcpu, u32 index, u64 *data);
2037int kvm_set_msr(struct kvm_vcpu *vcpu, u32 index, u64 data);
2038int kvm_emulate_rdmsr(struct kvm_vcpu *vcpu);
2039int kvm_emulate_wrmsr(struct kvm_vcpu *vcpu);
2040int kvm_emulate_as_nop(struct kvm_vcpu *vcpu);
2041int kvm_emulate_invd(struct kvm_vcpu *vcpu);
2042int kvm_emulate_mwait(struct kvm_vcpu *vcpu);
2043int kvm_handle_invalid_op(struct kvm_vcpu *vcpu);
2044int kvm_emulate_monitor(struct kvm_vcpu *vcpu);
2045
2046int kvm_fast_pio(struct kvm_vcpu *vcpu, int size, unsigned short port, int in);
2047int kvm_emulate_cpuid(struct kvm_vcpu *vcpu);
2048int kvm_emulate_halt(struct kvm_vcpu *vcpu);
2049int kvm_emulate_halt_noskip(struct kvm_vcpu *vcpu);
2050int kvm_emulate_ap_reset_hold(struct kvm_vcpu *vcpu);
2051int kvm_emulate_wbinvd(struct kvm_vcpu *vcpu);
2052
2053void kvm_get_segment(struct kvm_vcpu *vcpu, struct kvm_segment *var, int seg);
2054void kvm_set_segment(struct kvm_vcpu *vcpu, struct kvm_segment *var, int seg);
2055int kvm_load_segment_descriptor(struct kvm_vcpu *vcpu, u16 selector, int seg);
2056void kvm_vcpu_deliver_sipi_vector(struct kvm_vcpu *vcpu, u8 vector);
2057
2058int kvm_task_switch(struct kvm_vcpu *vcpu, u16 tss_selector, int idt_index,
2059		    int reason, bool has_error_code, u32 error_code);
2060
2061void kvm_post_set_cr0(struct kvm_vcpu *vcpu, unsigned long old_cr0, unsigned long cr0);
2062void kvm_post_set_cr4(struct kvm_vcpu *vcpu, unsigned long old_cr4, unsigned long cr4);
2063int kvm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0);
2064int kvm_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3);
2065int kvm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4);
2066int kvm_set_cr8(struct kvm_vcpu *vcpu, unsigned long cr8);
2067int kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val);
2068unsigned long kvm_get_dr(struct kvm_vcpu *vcpu, int dr);
2069unsigned long kvm_get_cr8(struct kvm_vcpu *vcpu);
2070void kvm_lmsw(struct kvm_vcpu *vcpu, unsigned long msw);
2071int kvm_emulate_xsetbv(struct kvm_vcpu *vcpu);
2072
2073int kvm_get_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr);
2074int kvm_set_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr);
2075
2076unsigned long kvm_get_rflags(struct kvm_vcpu *vcpu);
2077void kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags);
2078int kvm_emulate_rdpmc(struct kvm_vcpu *vcpu);
2079
2080void kvm_queue_exception(struct kvm_vcpu *vcpu, unsigned nr);
2081void kvm_queue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code);
2082void kvm_queue_exception_p(struct kvm_vcpu *vcpu, unsigned nr, unsigned long payload);
2083void kvm_requeue_exception(struct kvm_vcpu *vcpu, unsigned nr);
2084void kvm_requeue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code);
2085void kvm_inject_page_fault(struct kvm_vcpu *vcpu, struct x86_exception *fault);
2086void kvm_inject_emulated_page_fault(struct kvm_vcpu *vcpu,
2087				    struct x86_exception *fault);
2088bool kvm_require_cpl(struct kvm_vcpu *vcpu, int required_cpl);
2089bool kvm_require_dr(struct kvm_vcpu *vcpu, int dr);
2090
2091static inline int __kvm_irq_line_state(unsigned long *irq_state,
2092				       int irq_source_id, int level)
2093{
2094	/* Logical OR for level trig interrupt */
2095	if (level)
2096		__set_bit(irq_source_id, irq_state);
2097	else
2098		__clear_bit(irq_source_id, irq_state);
2099
2100	return !!(*irq_state);
2101}
2102
2103int kvm_pic_set_irq(struct kvm_pic *pic, int irq, int irq_source_id, int level);
2104void kvm_pic_clear_all(struct kvm_pic *pic, int irq_source_id);
2105
2106void kvm_inject_nmi(struct kvm_vcpu *vcpu);
2107int kvm_get_nr_pending_nmis(struct kvm_vcpu *vcpu);
2108
2109void kvm_update_dr7(struct kvm_vcpu *vcpu);
2110
2111int kvm_mmu_unprotect_page(struct kvm *kvm, gfn_t gfn);
2112void kvm_mmu_free_roots(struct kvm *kvm, struct kvm_mmu *mmu,
2113			ulong roots_to_free);
2114void kvm_mmu_free_guest_mode_roots(struct kvm *kvm, struct kvm_mmu *mmu);
2115gpa_t kvm_mmu_gva_to_gpa_read(struct kvm_vcpu *vcpu, gva_t gva,
2116			      struct x86_exception *exception);
2117gpa_t kvm_mmu_gva_to_gpa_write(struct kvm_vcpu *vcpu, gva_t gva,
2118			       struct x86_exception *exception);
2119gpa_t kvm_mmu_gva_to_gpa_system(struct kvm_vcpu *vcpu, gva_t gva,
2120				struct x86_exception *exception);
2121
2122bool kvm_apicv_activated(struct kvm *kvm);
2123bool kvm_vcpu_apicv_activated(struct kvm_vcpu *vcpu);
2124void __kvm_vcpu_update_apicv(struct kvm_vcpu *vcpu);
2125void __kvm_set_or_clear_apicv_inhibit(struct kvm *kvm,
2126				      enum kvm_apicv_inhibit reason, bool set);
2127void kvm_set_or_clear_apicv_inhibit(struct kvm *kvm,
2128				    enum kvm_apicv_inhibit reason, bool set);
2129
2130static inline void kvm_set_apicv_inhibit(struct kvm *kvm,
2131					 enum kvm_apicv_inhibit reason)
2132{
2133	kvm_set_or_clear_apicv_inhibit(kvm, reason, true);
2134}
2135
2136static inline void kvm_clear_apicv_inhibit(struct kvm *kvm,
2137					   enum kvm_apicv_inhibit reason)
2138{
2139	kvm_set_or_clear_apicv_inhibit(kvm, reason, false);
2140}
2141
2142int kvm_emulate_hypercall(struct kvm_vcpu *vcpu);
2143
2144int kvm_mmu_page_fault(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa, u64 error_code,
2145		       void *insn, int insn_len);
2146void kvm_mmu_invlpg(struct kvm_vcpu *vcpu, gva_t gva);
2147void kvm_mmu_invalidate_addr(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
2148			     u64 addr, unsigned long roots);
2149void kvm_mmu_invpcid_gva(struct kvm_vcpu *vcpu, gva_t gva, unsigned long pcid);
2150void kvm_mmu_new_pgd(struct kvm_vcpu *vcpu, gpa_t new_pgd);
2151
2152void kvm_configure_mmu(bool enable_tdp, int tdp_forced_root_level,
2153		       int tdp_max_root_level, int tdp_huge_page_level);
2154
2155#ifdef CONFIG_KVM_PRIVATE_MEM
2156#define kvm_arch_has_private_mem(kvm) ((kvm)->arch.vm_type != KVM_X86_DEFAULT_VM)
2157#else
2158#define kvm_arch_has_private_mem(kvm) false
2159#endif
2160
2161static inline u16 kvm_read_ldt(void)
2162{
2163	u16 ldt;
2164	asm("sldt %0" : "=g"(ldt));
2165	return ldt;
2166}
2167
2168static inline void kvm_load_ldt(u16 sel)
2169{
2170	asm("lldt %0" : : "rm"(sel));
2171}
2172
2173#ifdef CONFIG_X86_64
2174static inline unsigned long read_msr(unsigned long msr)
2175{
2176	u64 value;
2177
2178	rdmsrl(msr, value);
2179	return value;
2180}
2181#endif
2182
2183static inline void kvm_inject_gp(struct kvm_vcpu *vcpu, u32 error_code)
2184{
2185	kvm_queue_exception_e(vcpu, GP_VECTOR, error_code);
2186}
2187
2188#define TSS_IOPB_BASE_OFFSET 0x66
2189#define TSS_BASE_SIZE 0x68
2190#define TSS_IOPB_SIZE (65536 / 8)
2191#define TSS_REDIRECTION_SIZE (256 / 8)
2192#define RMODE_TSS_SIZE							\
2193	(TSS_BASE_SIZE + TSS_REDIRECTION_SIZE + TSS_IOPB_SIZE + 1)
2194
2195enum {
2196	TASK_SWITCH_CALL = 0,
2197	TASK_SWITCH_IRET = 1,
2198	TASK_SWITCH_JMP = 2,
2199	TASK_SWITCH_GATE = 3,
2200};
2201
2202#define HF_GUEST_MASK		(1 << 0) /* VCPU is in guest-mode */
2203
2204#ifdef CONFIG_KVM_SMM
2205#define HF_SMM_MASK		(1 << 1)
2206#define HF_SMM_INSIDE_NMI_MASK	(1 << 2)
2207
2208# define KVM_MAX_NR_ADDRESS_SPACES	2
2209/* SMM is currently unsupported for guests with private memory. */
2210# define kvm_arch_nr_memslot_as_ids(kvm) (kvm_arch_has_private_mem(kvm) ? 1 : 2)
2211# define kvm_arch_vcpu_memslots_id(vcpu) ((vcpu)->arch.hflags & HF_SMM_MASK ? 1 : 0)
2212# define kvm_memslots_for_spte_role(kvm, role) __kvm_memslots(kvm, (role).smm)
2213#else
2214# define kvm_memslots_for_spte_role(kvm, role) __kvm_memslots(kvm, 0)
2215#endif
2216
2217int kvm_cpu_has_injectable_intr(struct kvm_vcpu *v);
2218int kvm_cpu_has_interrupt(struct kvm_vcpu *vcpu);
2219int kvm_cpu_has_extint(struct kvm_vcpu *v);
2220int kvm_arch_interrupt_allowed(struct kvm_vcpu *vcpu);
2221int kvm_cpu_get_interrupt(struct kvm_vcpu *v);
2222void kvm_vcpu_reset(struct kvm_vcpu *vcpu, bool init_event);
2223
2224int kvm_pv_send_ipi(struct kvm *kvm, unsigned long ipi_bitmap_low,
2225		    unsigned long ipi_bitmap_high, u32 min,
2226		    unsigned long icr, int op_64_bit);
2227
2228int kvm_add_user_return_msr(u32 msr);
2229int kvm_find_user_return_msr(u32 msr);
2230int kvm_set_user_return_msr(unsigned index, u64 val, u64 mask);
2231
2232static inline bool kvm_is_supported_user_return_msr(u32 msr)
2233{
2234	return kvm_find_user_return_msr(msr) >= 0;
2235}
2236
2237u64 kvm_scale_tsc(u64 tsc, u64 ratio);
2238u64 kvm_read_l1_tsc(struct kvm_vcpu *vcpu, u64 host_tsc);
2239u64 kvm_calc_nested_tsc_offset(u64 l1_offset, u64 l2_offset, u64 l2_multiplier);
2240u64 kvm_calc_nested_tsc_multiplier(u64 l1_multiplier, u64 l2_multiplier);
2241
2242unsigned long kvm_get_linear_rip(struct kvm_vcpu *vcpu);
2243bool kvm_is_linear_rip(struct kvm_vcpu *vcpu, unsigned long linear_rip);
2244
2245void kvm_make_scan_ioapic_request(struct kvm *kvm);
2246void kvm_make_scan_ioapic_request_mask(struct kvm *kvm,
2247				       unsigned long *vcpu_bitmap);
2248
2249bool kvm_arch_async_page_not_present(struct kvm_vcpu *vcpu,
2250				     struct kvm_async_pf *work);
2251void kvm_arch_async_page_present(struct kvm_vcpu *vcpu,
2252				 struct kvm_async_pf *work);
2253void kvm_arch_async_page_ready(struct kvm_vcpu *vcpu,
2254			       struct kvm_async_pf *work);
2255void kvm_arch_async_page_present_queued(struct kvm_vcpu *vcpu);
2256bool kvm_arch_can_dequeue_async_page_present(struct kvm_vcpu *vcpu);
2257extern bool kvm_find_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn);
2258
2259int kvm_skip_emulated_instruction(struct kvm_vcpu *vcpu);
2260int kvm_complete_insn_gp(struct kvm_vcpu *vcpu, int err);
2261
2262void __user *__x86_set_memory_region(struct kvm *kvm, int id, gpa_t gpa,
2263				     u32 size);
2264bool kvm_vcpu_is_reset_bsp(struct kvm_vcpu *vcpu);
2265bool kvm_vcpu_is_bsp(struct kvm_vcpu *vcpu);
2266
2267bool kvm_intr_is_single_vcpu(struct kvm *kvm, struct kvm_lapic_irq *irq,
2268			     struct kvm_vcpu **dest_vcpu);
2269
2270void kvm_set_msi_irq(struct kvm *kvm, struct kvm_kernel_irq_routing_entry *e,
2271		     struct kvm_lapic_irq *irq);
2272
2273static inline bool kvm_irq_is_postable(struct kvm_lapic_irq *irq)
2274{
2275	/* We can only post Fixed and LowPrio IRQs */
2276	return (irq->delivery_mode == APIC_DM_FIXED ||
2277		irq->delivery_mode == APIC_DM_LOWEST);
2278}
2279
2280static inline void kvm_arch_vcpu_blocking(struct kvm_vcpu *vcpu)
2281{
2282	static_call_cond(kvm_x86_vcpu_blocking)(vcpu);
2283}
2284
2285static inline void kvm_arch_vcpu_unblocking(struct kvm_vcpu *vcpu)
2286{
2287	static_call_cond(kvm_x86_vcpu_unblocking)(vcpu);
2288}
2289
2290static inline int kvm_cpu_get_apicid(int mps_cpu)
2291{
2292#ifdef CONFIG_X86_LOCAL_APIC
2293	return default_cpu_present_to_apicid(mps_cpu);
2294#else
2295	WARN_ON_ONCE(1);
2296	return BAD_APICID;
2297#endif
2298}
2299
2300int memslot_rmap_alloc(struct kvm_memory_slot *slot, unsigned long npages);
2301
2302#define KVM_CLOCK_VALID_FLAGS						\
2303	(KVM_CLOCK_TSC_STABLE | KVM_CLOCK_REALTIME | KVM_CLOCK_HOST_TSC)
2304
2305#define KVM_X86_VALID_QUIRKS			\
2306	(KVM_X86_QUIRK_LINT0_REENABLED |	\
2307	 KVM_X86_QUIRK_CD_NW_CLEARED |		\
2308	 KVM_X86_QUIRK_LAPIC_MMIO_HOLE |	\
2309	 KVM_X86_QUIRK_OUT_7E_INC_RIP |		\
2310	 KVM_X86_QUIRK_MISC_ENABLE_NO_MWAIT |	\
2311	 KVM_X86_QUIRK_FIX_HYPERCALL_INSN |	\
2312	 KVM_X86_QUIRK_MWAIT_NEVER_UD_FAULTS)
2313
2314/*
2315 * KVM previously used a u32 field in kvm_run to indicate the hypercall was
2316 * initiated from long mode. KVM now sets bit 0 to indicate long mode, but the
2317 * remaining 31 lower bits must be 0 to preserve ABI.
2318 */
2319#define KVM_EXIT_HYPERCALL_MBZ		GENMASK_ULL(31, 1)
2320
2321#endif /* _ASM_X86_KVM_HOST_H */
2322