1/*
2 * Performance events x86 architecture header
3 *
4 *  Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
5 *  Copyright (C) 2008-2009 Red Hat, Inc., Ingo Molnar
6 *  Copyright (C) 2009 Jaswinder Singh Rajput
7 *  Copyright (C) 2009 Advanced Micro Devices, Inc., Robert Richter
8 *  Copyright (C) 2008-2009 Red Hat, Inc., Peter Zijlstra
9 *  Copyright (C) 2009 Intel Corporation, <markus.t.metzger@intel.com>
10 *  Copyright (C) 2009 Google, Inc., Stephane Eranian
11 *
12 *  For licencing details see kernel-base/COPYING
13 */
14
15#include <linux/perf_event.h>
16
17#include <asm/fpu/xstate.h>
18#include <asm/intel_ds.h>
19#include <asm/cpu.h>
20
21/* To enable MSR tracing please use the generic trace points. */
22
23/*
24 *          |   NHM/WSM    |      SNB     |
25 * register -------------------------------
26 *          |  HT  | no HT |  HT  | no HT |
27 *-----------------------------------------
28 * offcore  | core | core  | cpu  | core  |
29 * lbr_sel  | core | core  | cpu  | core  |
30 * ld_lat   | cpu  | core  | cpu  | core  |
31 *-----------------------------------------
32 *
33 * Given that there is a small number of shared regs,
34 * we can pre-allocate their slot in the per-cpu
35 * per-core reg tables.
36 */
37enum extra_reg_type {
38	EXTRA_REG_NONE		= -1, /* not used */
39
40	EXTRA_REG_RSP_0		= 0,  /* offcore_response_0 */
41	EXTRA_REG_RSP_1		= 1,  /* offcore_response_1 */
42	EXTRA_REG_LBR		= 2,  /* lbr_select */
43	EXTRA_REG_LDLAT		= 3,  /* ld_lat_threshold */
44	EXTRA_REG_FE		= 4,  /* fe_* */
45	EXTRA_REG_SNOOP_0	= 5,  /* snoop response 0 */
46	EXTRA_REG_SNOOP_1	= 6,  /* snoop response 1 */
47
48	EXTRA_REG_MAX		      /* number of entries needed */
49};
50
51struct event_constraint {
52	union {
53		unsigned long	idxmsk[BITS_TO_LONGS(X86_PMC_IDX_MAX)];
54		u64		idxmsk64;
55	};
56	u64		code;
57	u64		cmask;
58	int		weight;
59	int		overlap;
60	int		flags;
61	unsigned int	size;
62};
63
64static inline bool constraint_match(struct event_constraint *c, u64 ecode)
65{
66	return ((ecode & c->cmask) - c->code) <= (u64)c->size;
67}
68
69#define PERF_ARCH(name, val)	\
70	PERF_X86_EVENT_##name = val,
71
72/*
73 * struct hw_perf_event.flags flags
74 */
75enum {
76#include "perf_event_flags.h"
77};
78
79#undef PERF_ARCH
80
81#define PERF_ARCH(name, val)						\
82	static_assert((PERF_X86_EVENT_##name & PERF_EVENT_FLAG_ARCH) ==	\
83		      PERF_X86_EVENT_##name);
84
85#include "perf_event_flags.h"
86
87#undef PERF_ARCH
88
89static inline bool is_topdown_count(struct perf_event *event)
90{
91	return event->hw.flags & PERF_X86_EVENT_TOPDOWN;
92}
93
94static inline bool is_metric_event(struct perf_event *event)
95{
96	u64 config = event->attr.config;
97
98	return ((config & ARCH_PERFMON_EVENTSEL_EVENT) == 0) &&
99		((config & INTEL_ARCH_EVENT_MASK) >= INTEL_TD_METRIC_RETIRING)  &&
100		((config & INTEL_ARCH_EVENT_MASK) <= INTEL_TD_METRIC_MAX);
101}
102
103static inline bool is_slots_event(struct perf_event *event)
104{
105	return (event->attr.config & INTEL_ARCH_EVENT_MASK) == INTEL_TD_SLOTS;
106}
107
108static inline bool is_topdown_event(struct perf_event *event)
109{
110	return is_metric_event(event) || is_slots_event(event);
111}
112
113static inline bool is_branch_counters_group(struct perf_event *event)
114{
115	return event->group_leader->hw.flags & PERF_X86_EVENT_BRANCH_COUNTERS;
116}
117
118struct amd_nb {
119	int nb_id;  /* NorthBridge id */
120	int refcnt; /* reference count */
121	struct perf_event *owners[X86_PMC_IDX_MAX];
122	struct event_constraint event_constraints[X86_PMC_IDX_MAX];
123};
124
125#define PEBS_COUNTER_MASK	((1ULL << MAX_PEBS_EVENTS) - 1)
126#define PEBS_PMI_AFTER_EACH_RECORD BIT_ULL(60)
127#define PEBS_OUTPUT_OFFSET	61
128#define PEBS_OUTPUT_MASK	(3ull << PEBS_OUTPUT_OFFSET)
129#define PEBS_OUTPUT_PT		(1ull << PEBS_OUTPUT_OFFSET)
130#define PEBS_VIA_PT_MASK	(PEBS_OUTPUT_PT | PEBS_PMI_AFTER_EACH_RECORD)
131
132/*
133 * Flags PEBS can handle without an PMI.
134 *
135 * TID can only be handled by flushing at context switch.
136 * REGS_USER can be handled for events limited to ring 3.
137 *
138 */
139#define LARGE_PEBS_FLAGS \
140	(PERF_SAMPLE_IP | PERF_SAMPLE_TID | PERF_SAMPLE_ADDR | \
141	PERF_SAMPLE_ID | PERF_SAMPLE_CPU | PERF_SAMPLE_STREAM_ID | \
142	PERF_SAMPLE_DATA_SRC | PERF_SAMPLE_IDENTIFIER | \
143	PERF_SAMPLE_TRANSACTION | PERF_SAMPLE_PHYS_ADDR | \
144	PERF_SAMPLE_REGS_INTR | PERF_SAMPLE_REGS_USER | \
145	PERF_SAMPLE_PERIOD | PERF_SAMPLE_CODE_PAGE_SIZE | \
146	PERF_SAMPLE_WEIGHT_TYPE)
147
148#define PEBS_GP_REGS			\
149	((1ULL << PERF_REG_X86_AX)    | \
150	 (1ULL << PERF_REG_X86_BX)    | \
151	 (1ULL << PERF_REG_X86_CX)    | \
152	 (1ULL << PERF_REG_X86_DX)    | \
153	 (1ULL << PERF_REG_X86_DI)    | \
154	 (1ULL << PERF_REG_X86_SI)    | \
155	 (1ULL << PERF_REG_X86_SP)    | \
156	 (1ULL << PERF_REG_X86_BP)    | \
157	 (1ULL << PERF_REG_X86_IP)    | \
158	 (1ULL << PERF_REG_X86_FLAGS) | \
159	 (1ULL << PERF_REG_X86_R8)    | \
160	 (1ULL << PERF_REG_X86_R9)    | \
161	 (1ULL << PERF_REG_X86_R10)   | \
162	 (1ULL << PERF_REG_X86_R11)   | \
163	 (1ULL << PERF_REG_X86_R12)   | \
164	 (1ULL << PERF_REG_X86_R13)   | \
165	 (1ULL << PERF_REG_X86_R14)   | \
166	 (1ULL << PERF_REG_X86_R15))
167
168/*
169 * Per register state.
170 */
171struct er_account {
172	raw_spinlock_t      lock;	/* per-core: protect structure */
173	u64                 config;	/* extra MSR config */
174	u64                 reg;	/* extra MSR number */
175	atomic_t            ref;	/* reference count */
176};
177
178/*
179 * Per core/cpu state
180 *
181 * Used to coordinate shared registers between HT threads or
182 * among events on a single PMU.
183 */
184struct intel_shared_regs {
185	struct er_account       regs[EXTRA_REG_MAX];
186	int                     refcnt;		/* per-core: #HT threads */
187	unsigned                core_id;	/* per-core: core id */
188};
189
190enum intel_excl_state_type {
191	INTEL_EXCL_UNUSED    = 0, /* counter is unused */
192	INTEL_EXCL_SHARED    = 1, /* counter can be used by both threads */
193	INTEL_EXCL_EXCLUSIVE = 2, /* counter can be used by one thread only */
194};
195
196struct intel_excl_states {
197	enum intel_excl_state_type state[X86_PMC_IDX_MAX];
198	bool sched_started; /* true if scheduling has started */
199};
200
201struct intel_excl_cntrs {
202	raw_spinlock_t	lock;
203
204	struct intel_excl_states states[2];
205
206	union {
207		u16	has_exclusive[2];
208		u32	exclusive_present;
209	};
210
211	int		refcnt;		/* per-core: #HT threads */
212	unsigned	core_id;	/* per-core: core id */
213};
214
215struct x86_perf_task_context;
216#define MAX_LBR_ENTRIES		32
217
218enum {
219	LBR_FORMAT_32		= 0x00,
220	LBR_FORMAT_LIP		= 0x01,
221	LBR_FORMAT_EIP		= 0x02,
222	LBR_FORMAT_EIP_FLAGS	= 0x03,
223	LBR_FORMAT_EIP_FLAGS2	= 0x04,
224	LBR_FORMAT_INFO		= 0x05,
225	LBR_FORMAT_TIME		= 0x06,
226	LBR_FORMAT_INFO2	= 0x07,
227	LBR_FORMAT_MAX_KNOWN    = LBR_FORMAT_INFO2,
228};
229
230enum {
231	X86_PERF_KFREE_SHARED = 0,
232	X86_PERF_KFREE_EXCL   = 1,
233	X86_PERF_KFREE_MAX
234};
235
236struct cpu_hw_events {
237	/*
238	 * Generic x86 PMC bits
239	 */
240	struct perf_event	*events[X86_PMC_IDX_MAX]; /* in counter order */
241	unsigned long		active_mask[BITS_TO_LONGS(X86_PMC_IDX_MAX)];
242	unsigned long		dirty[BITS_TO_LONGS(X86_PMC_IDX_MAX)];
243	int			enabled;
244
245	int			n_events; /* the # of events in the below arrays */
246	int			n_added;  /* the # last events in the below arrays;
247					     they've never been enabled yet */
248	int			n_txn;    /* the # last events in the below arrays;
249					     added in the current transaction */
250	int			n_txn_pair;
251	int			n_txn_metric;
252	int			assign[X86_PMC_IDX_MAX]; /* event to counter assignment */
253	u64			tags[X86_PMC_IDX_MAX];
254
255	struct perf_event	*event_list[X86_PMC_IDX_MAX]; /* in enabled order */
256	struct event_constraint	*event_constraint[X86_PMC_IDX_MAX];
257
258	int			n_excl; /* the number of exclusive events */
259
260	unsigned int		txn_flags;
261	int			is_fake;
262
263	/*
264	 * Intel DebugStore bits
265	 */
266	struct debug_store	*ds;
267	void			*ds_pebs_vaddr;
268	void			*ds_bts_vaddr;
269	u64			pebs_enabled;
270	int			n_pebs;
271	int			n_large_pebs;
272	int			n_pebs_via_pt;
273	int			pebs_output;
274
275	/* Current super set of events hardware configuration */
276	u64			pebs_data_cfg;
277	u64			active_pebs_data_cfg;
278	int			pebs_record_size;
279
280	/* Intel Fixed counter configuration */
281	u64			fixed_ctrl_val;
282	u64			active_fixed_ctrl_val;
283
284	/*
285	 * Intel LBR bits
286	 */
287	int				lbr_users;
288	int				lbr_pebs_users;
289	struct perf_branch_stack	lbr_stack;
290	struct perf_branch_entry	lbr_entries[MAX_LBR_ENTRIES];
291	u64				lbr_counters[MAX_LBR_ENTRIES]; /* branch stack extra */
292	union {
293		struct er_account		*lbr_sel;
294		struct er_account		*lbr_ctl;
295	};
296	u64				br_sel;
297	void				*last_task_ctx;
298	int				last_log_id;
299	int				lbr_select;
300	void				*lbr_xsave;
301
302	/*
303	 * Intel host/guest exclude bits
304	 */
305	u64				intel_ctrl_guest_mask;
306	u64				intel_ctrl_host_mask;
307	struct perf_guest_switch_msr	guest_switch_msrs[X86_PMC_IDX_MAX];
308
309	/*
310	 * Intel checkpoint mask
311	 */
312	u64				intel_cp_status;
313
314	/*
315	 * manage shared (per-core, per-cpu) registers
316	 * used on Intel NHM/WSM/SNB
317	 */
318	struct intel_shared_regs	*shared_regs;
319	/*
320	 * manage exclusive counter access between hyperthread
321	 */
322	struct event_constraint *constraint_list; /* in enable order */
323	struct intel_excl_cntrs		*excl_cntrs;
324	int excl_thread_id; /* 0 or 1 */
325
326	/*
327	 * SKL TSX_FORCE_ABORT shadow
328	 */
329	u64				tfa_shadow;
330
331	/*
332	 * Perf Metrics
333	 */
334	/* number of accepted metrics events */
335	int				n_metric;
336
337	/*
338	 * AMD specific bits
339	 */
340	struct amd_nb			*amd_nb;
341	int				brs_active; /* BRS is enabled */
342
343	/* Inverted mask of bits to clear in the perf_ctr ctrl registers */
344	u64				perf_ctr_virt_mask;
345	int				n_pair; /* Large increment events */
346
347	void				*kfree_on_online[X86_PERF_KFREE_MAX];
348
349	struct pmu			*pmu;
350};
351
352#define __EVENT_CONSTRAINT_RANGE(c, e, n, m, w, o, f) {	\
353	{ .idxmsk64 = (n) },		\
354	.code = (c),			\
355	.size = (e) - (c),		\
356	.cmask = (m),			\
357	.weight = (w),			\
358	.overlap = (o),			\
359	.flags = f,			\
360}
361
362#define __EVENT_CONSTRAINT(c, n, m, w, o, f) \
363	__EVENT_CONSTRAINT_RANGE(c, c, n, m, w, o, f)
364
365#define EVENT_CONSTRAINT(c, n, m)	\
366	__EVENT_CONSTRAINT(c, n, m, HWEIGHT(n), 0, 0)
367
368/*
369 * The constraint_match() function only works for 'simple' event codes
370 * and not for extended (AMD64_EVENTSEL_EVENT) events codes.
371 */
372#define EVENT_CONSTRAINT_RANGE(c, e, n, m) \
373	__EVENT_CONSTRAINT_RANGE(c, e, n, m, HWEIGHT(n), 0, 0)
374
375#define INTEL_EXCLEVT_CONSTRAINT(c, n)	\
376	__EVENT_CONSTRAINT(c, n, ARCH_PERFMON_EVENTSEL_EVENT, HWEIGHT(n),\
377			   0, PERF_X86_EVENT_EXCL)
378
379/*
380 * The overlap flag marks event constraints with overlapping counter
381 * masks. This is the case if the counter mask of such an event is not
382 * a subset of any other counter mask of a constraint with an equal or
383 * higher weight, e.g.:
384 *
385 *  c_overlaps = EVENT_CONSTRAINT_OVERLAP(0, 0x09, 0);
386 *  c_another1 = EVENT_CONSTRAINT(0, 0x07, 0);
387 *  c_another2 = EVENT_CONSTRAINT(0, 0x38, 0);
388 *
389 * The event scheduler may not select the correct counter in the first
390 * cycle because it needs to know which subsequent events will be
391 * scheduled. It may fail to schedule the events then. So we set the
392 * overlap flag for such constraints to give the scheduler a hint which
393 * events to select for counter rescheduling.
394 *
395 * Care must be taken as the rescheduling algorithm is O(n!) which
396 * will increase scheduling cycles for an over-committed system
397 * dramatically.  The number of such EVENT_CONSTRAINT_OVERLAP() macros
398 * and its counter masks must be kept at a minimum.
399 */
400#define EVENT_CONSTRAINT_OVERLAP(c, n, m)	\
401	__EVENT_CONSTRAINT(c, n, m, HWEIGHT(n), 1, 0)
402
403/*
404 * Constraint on the Event code.
405 */
406#define INTEL_EVENT_CONSTRAINT(c, n)	\
407	EVENT_CONSTRAINT(c, n, ARCH_PERFMON_EVENTSEL_EVENT)
408
409/*
410 * Constraint on a range of Event codes
411 */
412#define INTEL_EVENT_CONSTRAINT_RANGE(c, e, n)			\
413	EVENT_CONSTRAINT_RANGE(c, e, n, ARCH_PERFMON_EVENTSEL_EVENT)
414
415/*
416 * Constraint on the Event code + UMask + fixed-mask
417 *
418 * filter mask to validate fixed counter events.
419 * the following filters disqualify for fixed counters:
420 *  - inv
421 *  - edge
422 *  - cnt-mask
423 *  - in_tx
424 *  - in_tx_checkpointed
425 *  The other filters are supported by fixed counters.
426 *  The any-thread option is supported starting with v3.
427 */
428#define FIXED_EVENT_FLAGS (X86_RAW_EVENT_MASK|HSW_IN_TX|HSW_IN_TX_CHECKPOINTED)
429#define FIXED_EVENT_CONSTRAINT(c, n)	\
430	EVENT_CONSTRAINT(c, (1ULL << (32+n)), FIXED_EVENT_FLAGS)
431
432/*
433 * The special metric counters do not actually exist. They are calculated from
434 * the combination of the FxCtr3 + MSR_PERF_METRICS.
435 *
436 * The special metric counters are mapped to a dummy offset for the scheduler.
437 * The sharing between multiple users of the same metric without multiplexing
438 * is not allowed, even though the hardware supports that in principle.
439 */
440
441#define METRIC_EVENT_CONSTRAINT(c, n)					\
442	EVENT_CONSTRAINT(c, (1ULL << (INTEL_PMC_IDX_METRIC_BASE + n)),	\
443			 INTEL_ARCH_EVENT_MASK)
444
445/*
446 * Constraint on the Event code + UMask
447 */
448#define INTEL_UEVENT_CONSTRAINT(c, n)	\
449	EVENT_CONSTRAINT(c, n, INTEL_ARCH_EVENT_MASK)
450
451/* Constraint on specific umask bit only + event */
452#define INTEL_UBIT_EVENT_CONSTRAINT(c, n)	\
453	EVENT_CONSTRAINT(c, n, ARCH_PERFMON_EVENTSEL_EVENT|(c))
454
455/* Like UEVENT_CONSTRAINT, but match flags too */
456#define INTEL_FLAGS_UEVENT_CONSTRAINT(c, n)	\
457	EVENT_CONSTRAINT(c, n, INTEL_ARCH_EVENT_MASK|X86_ALL_EVENT_FLAGS)
458
459#define INTEL_EXCLUEVT_CONSTRAINT(c, n)	\
460	__EVENT_CONSTRAINT(c, n, INTEL_ARCH_EVENT_MASK, \
461			   HWEIGHT(n), 0, PERF_X86_EVENT_EXCL)
462
463#define INTEL_PLD_CONSTRAINT(c, n)	\
464	__EVENT_CONSTRAINT(c, n, INTEL_ARCH_EVENT_MASK|X86_ALL_EVENT_FLAGS, \
465			   HWEIGHT(n), 0, PERF_X86_EVENT_PEBS_LDLAT)
466
467#define INTEL_PSD_CONSTRAINT(c, n)	\
468	__EVENT_CONSTRAINT(c, n, INTEL_ARCH_EVENT_MASK|X86_ALL_EVENT_FLAGS, \
469			   HWEIGHT(n), 0, PERF_X86_EVENT_PEBS_STLAT)
470
471#define INTEL_PST_CONSTRAINT(c, n)	\
472	__EVENT_CONSTRAINT(c, n, INTEL_ARCH_EVENT_MASK|X86_ALL_EVENT_FLAGS, \
473			  HWEIGHT(n), 0, PERF_X86_EVENT_PEBS_ST)
474
475#define INTEL_HYBRID_LAT_CONSTRAINT(c, n)	\
476	__EVENT_CONSTRAINT(c, n, INTEL_ARCH_EVENT_MASK|X86_ALL_EVENT_FLAGS, \
477			  HWEIGHT(n), 0, PERF_X86_EVENT_PEBS_LAT_HYBRID)
478
479/* Event constraint, but match on all event flags too. */
480#define INTEL_FLAGS_EVENT_CONSTRAINT(c, n) \
481	EVENT_CONSTRAINT(c, n, ARCH_PERFMON_EVENTSEL_EVENT|X86_ALL_EVENT_FLAGS)
482
483#define INTEL_FLAGS_EVENT_CONSTRAINT_RANGE(c, e, n)			\
484	EVENT_CONSTRAINT_RANGE(c, e, n, ARCH_PERFMON_EVENTSEL_EVENT|X86_ALL_EVENT_FLAGS)
485
486/* Check only flags, but allow all event/umask */
487#define INTEL_ALL_EVENT_CONSTRAINT(code, n)	\
488	EVENT_CONSTRAINT(code, n, X86_ALL_EVENT_FLAGS)
489
490/* Check flags and event code, and set the HSW store flag */
491#define INTEL_FLAGS_EVENT_CONSTRAINT_DATALA_ST(code, n) \
492	__EVENT_CONSTRAINT(code, n, 			\
493			  ARCH_PERFMON_EVENTSEL_EVENT|X86_ALL_EVENT_FLAGS, \
494			  HWEIGHT(n), 0, PERF_X86_EVENT_PEBS_ST_HSW)
495
496/* Check flags and event code, and set the HSW load flag */
497#define INTEL_FLAGS_EVENT_CONSTRAINT_DATALA_LD(code, n) \
498	__EVENT_CONSTRAINT(code, n,			\
499			  ARCH_PERFMON_EVENTSEL_EVENT|X86_ALL_EVENT_FLAGS, \
500			  HWEIGHT(n), 0, PERF_X86_EVENT_PEBS_LD_HSW)
501
502#define INTEL_FLAGS_EVENT_CONSTRAINT_DATALA_LD_RANGE(code, end, n) \
503	__EVENT_CONSTRAINT_RANGE(code, end, n,				\
504			  ARCH_PERFMON_EVENTSEL_EVENT|X86_ALL_EVENT_FLAGS, \
505			  HWEIGHT(n), 0, PERF_X86_EVENT_PEBS_LD_HSW)
506
507#define INTEL_FLAGS_EVENT_CONSTRAINT_DATALA_XLD(code, n) \
508	__EVENT_CONSTRAINT(code, n,			\
509			  ARCH_PERFMON_EVENTSEL_EVENT|X86_ALL_EVENT_FLAGS, \
510			  HWEIGHT(n), 0, \
511			  PERF_X86_EVENT_PEBS_LD_HSW|PERF_X86_EVENT_EXCL)
512
513/* Check flags and event code/umask, and set the HSW store flag */
514#define INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_ST(code, n) \
515	__EVENT_CONSTRAINT(code, n, 			\
516			  INTEL_ARCH_EVENT_MASK|X86_ALL_EVENT_FLAGS, \
517			  HWEIGHT(n), 0, PERF_X86_EVENT_PEBS_ST_HSW)
518
519#define INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_XST(code, n) \
520	__EVENT_CONSTRAINT(code, n,			\
521			  INTEL_ARCH_EVENT_MASK|X86_ALL_EVENT_FLAGS, \
522			  HWEIGHT(n), 0, \
523			  PERF_X86_EVENT_PEBS_ST_HSW|PERF_X86_EVENT_EXCL)
524
525/* Check flags and event code/umask, and set the HSW load flag */
526#define INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_LD(code, n) \
527	__EVENT_CONSTRAINT(code, n, 			\
528			  INTEL_ARCH_EVENT_MASK|X86_ALL_EVENT_FLAGS, \
529			  HWEIGHT(n), 0, PERF_X86_EVENT_PEBS_LD_HSW)
530
531#define INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_XLD(code, n) \
532	__EVENT_CONSTRAINT(code, n,			\
533			  INTEL_ARCH_EVENT_MASK|X86_ALL_EVENT_FLAGS, \
534			  HWEIGHT(n), 0, \
535			  PERF_X86_EVENT_PEBS_LD_HSW|PERF_X86_EVENT_EXCL)
536
537/* Check flags and event code/umask, and set the HSW N/A flag */
538#define INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_NA(code, n) \
539	__EVENT_CONSTRAINT(code, n, 			\
540			  INTEL_ARCH_EVENT_MASK|X86_ALL_EVENT_FLAGS, \
541			  HWEIGHT(n), 0, PERF_X86_EVENT_PEBS_NA_HSW)
542
543
544/*
545 * We define the end marker as having a weight of -1
546 * to enable blacklisting of events using a counter bitmask
547 * of zero and thus a weight of zero.
548 * The end marker has a weight that cannot possibly be
549 * obtained from counting the bits in the bitmask.
550 */
551#define EVENT_CONSTRAINT_END { .weight = -1 }
552
553/*
554 * Check for end marker with weight == -1
555 */
556#define for_each_event_constraint(e, c)	\
557	for ((e) = (c); (e)->weight != -1; (e)++)
558
559/*
560 * Extra registers for specific events.
561 *
562 * Some events need large masks and require external MSRs.
563 * Those extra MSRs end up being shared for all events on
564 * a PMU and sometimes between PMU of sibling HT threads.
565 * In either case, the kernel needs to handle conflicting
566 * accesses to those extra, shared, regs. The data structure
567 * to manage those registers is stored in cpu_hw_event.
568 */
569struct extra_reg {
570	unsigned int		event;
571	unsigned int		msr;
572	u64			config_mask;
573	u64			valid_mask;
574	int			idx;  /* per_xxx->regs[] reg index */
575	bool			extra_msr_access;
576};
577
578#define EVENT_EXTRA_REG(e, ms, m, vm, i) {	\
579	.event = (e),			\
580	.msr = (ms),			\
581	.config_mask = (m),		\
582	.valid_mask = (vm),		\
583	.idx = EXTRA_REG_##i,		\
584	.extra_msr_access = true,	\
585	}
586
587#define INTEL_EVENT_EXTRA_REG(event, msr, vm, idx)	\
588	EVENT_EXTRA_REG(event, msr, ARCH_PERFMON_EVENTSEL_EVENT, vm, idx)
589
590#define INTEL_UEVENT_EXTRA_REG(event, msr, vm, idx) \
591	EVENT_EXTRA_REG(event, msr, ARCH_PERFMON_EVENTSEL_EVENT | \
592			ARCH_PERFMON_EVENTSEL_UMASK, vm, idx)
593
594#define INTEL_UEVENT_PEBS_LDLAT_EXTRA_REG(c) \
595	INTEL_UEVENT_EXTRA_REG(c, \
596			       MSR_PEBS_LD_LAT_THRESHOLD, \
597			       0xffff, \
598			       LDLAT)
599
600#define EVENT_EXTRA_END EVENT_EXTRA_REG(0, 0, 0, 0, RSP_0)
601
602union perf_capabilities {
603	struct {
604		u64	lbr_format:6;
605		u64	pebs_trap:1;
606		u64	pebs_arch_reg:1;
607		u64	pebs_format:4;
608		u64	smm_freeze:1;
609		/*
610		 * PMU supports separate counter range for writing
611		 * values > 32bit.
612		 */
613		u64	full_width_write:1;
614		u64     pebs_baseline:1;
615		u64	perf_metrics:1;
616		u64	pebs_output_pt_available:1;
617		u64	pebs_timing_info:1;
618		u64	anythread_deprecated:1;
619	};
620	u64	capabilities;
621};
622
623struct x86_pmu_quirk {
624	struct x86_pmu_quirk *next;
625	void (*func)(void);
626};
627
628union x86_pmu_config {
629	struct {
630		u64 event:8,
631		    umask:8,
632		    usr:1,
633		    os:1,
634		    edge:1,
635		    pc:1,
636		    interrupt:1,
637		    __reserved1:1,
638		    en:1,
639		    inv:1,
640		    cmask:8,
641		    event2:4,
642		    __reserved2:4,
643		    go:1,
644		    ho:1;
645	} bits;
646	u64 value;
647};
648
649#define X86_CONFIG(args...) ((union x86_pmu_config){.bits = {args}}).value
650
651enum {
652	x86_lbr_exclusive_lbr,
653	x86_lbr_exclusive_bts,
654	x86_lbr_exclusive_pt,
655	x86_lbr_exclusive_max,
656};
657
658#define PERF_PEBS_DATA_SOURCE_MAX	0x10
659#define PERF_PEBS_DATA_SOURCE_MASK	(PERF_PEBS_DATA_SOURCE_MAX - 1)
660
661enum hybrid_cpu_type {
662	HYBRID_INTEL_NONE,
663	HYBRID_INTEL_ATOM	= 0x20,
664	HYBRID_INTEL_CORE	= 0x40,
665};
666
667enum hybrid_pmu_type {
668	not_hybrid,
669	hybrid_small		= BIT(0),
670	hybrid_big		= BIT(1),
671
672	hybrid_big_small	= hybrid_big | hybrid_small, /* only used for matching */
673};
674
675#define X86_HYBRID_PMU_ATOM_IDX		0
676#define X86_HYBRID_PMU_CORE_IDX		1
677
678#define X86_HYBRID_NUM_PMUS		2
679
680struct x86_hybrid_pmu {
681	struct pmu			pmu;
682	const char			*name;
683	enum hybrid_pmu_type		pmu_type;
684	cpumask_t			supported_cpus;
685	union perf_capabilities		intel_cap;
686	u64				intel_ctrl;
687	int				max_pebs_events;
688	int				num_counters;
689	int				num_counters_fixed;
690	struct event_constraint		unconstrained;
691
692	u64				hw_cache_event_ids
693					[PERF_COUNT_HW_CACHE_MAX]
694					[PERF_COUNT_HW_CACHE_OP_MAX]
695					[PERF_COUNT_HW_CACHE_RESULT_MAX];
696	u64				hw_cache_extra_regs
697					[PERF_COUNT_HW_CACHE_MAX]
698					[PERF_COUNT_HW_CACHE_OP_MAX]
699					[PERF_COUNT_HW_CACHE_RESULT_MAX];
700	struct event_constraint		*event_constraints;
701	struct event_constraint		*pebs_constraints;
702	struct extra_reg		*extra_regs;
703
704	unsigned int			late_ack	:1,
705					mid_ack		:1,
706					enabled_ack	:1;
707
708	u64				pebs_data_source[PERF_PEBS_DATA_SOURCE_MAX];
709};
710
711static __always_inline struct x86_hybrid_pmu *hybrid_pmu(struct pmu *pmu)
712{
713	return container_of(pmu, struct x86_hybrid_pmu, pmu);
714}
715
716extern struct static_key_false perf_is_hybrid;
717#define is_hybrid()		static_branch_unlikely(&perf_is_hybrid)
718
719#define hybrid(_pmu, _field)				\
720(*({							\
721	typeof(&x86_pmu._field) __Fp = &x86_pmu._field;	\
722							\
723	if (is_hybrid() && (_pmu))			\
724		__Fp = &hybrid_pmu(_pmu)->_field;	\
725							\
726	__Fp;						\
727}))
728
729#define hybrid_var(_pmu, _var)				\
730(*({							\
731	typeof(&_var) __Fp = &_var;			\
732							\
733	if (is_hybrid() && (_pmu))			\
734		__Fp = &hybrid_pmu(_pmu)->_var;		\
735							\
736	__Fp;						\
737}))
738
739#define hybrid_bit(_pmu, _field)			\
740({							\
741	bool __Fp = x86_pmu._field;			\
742							\
743	if (is_hybrid() && (_pmu))			\
744		__Fp = hybrid_pmu(_pmu)->_field;	\
745							\
746	__Fp;						\
747})
748
749/*
750 * struct x86_pmu - generic x86 pmu
751 */
752struct x86_pmu {
753	/*
754	 * Generic x86 PMC bits
755	 */
756	const char	*name;
757	int		version;
758	int		(*handle_irq)(struct pt_regs *);
759	void		(*disable_all)(void);
760	void		(*enable_all)(int added);
761	void		(*enable)(struct perf_event *);
762	void		(*disable)(struct perf_event *);
763	void		(*assign)(struct perf_event *event, int idx);
764	void		(*add)(struct perf_event *);
765	void		(*del)(struct perf_event *);
766	void		(*read)(struct perf_event *event);
767	int		(*set_period)(struct perf_event *event);
768	u64		(*update)(struct perf_event *event);
769	int		(*hw_config)(struct perf_event *event);
770	int		(*schedule_events)(struct cpu_hw_events *cpuc, int n, int *assign);
771	unsigned	eventsel;
772	unsigned	perfctr;
773	int		(*addr_offset)(int index, bool eventsel);
774	int		(*rdpmc_index)(int index);
775	u64		(*event_map)(int);
776	int		max_events;
777	int		num_counters;
778	int		num_counters_fixed;
779	int		cntval_bits;
780	u64		cntval_mask;
781	union {
782			unsigned long events_maskl;
783			unsigned long events_mask[BITS_TO_LONGS(ARCH_PERFMON_EVENTS_COUNT)];
784	};
785	int		events_mask_len;
786	int		apic;
787	u64		max_period;
788	struct event_constraint *
789			(*get_event_constraints)(struct cpu_hw_events *cpuc,
790						 int idx,
791						 struct perf_event *event);
792
793	void		(*put_event_constraints)(struct cpu_hw_events *cpuc,
794						 struct perf_event *event);
795
796	void		(*start_scheduling)(struct cpu_hw_events *cpuc);
797
798	void		(*commit_scheduling)(struct cpu_hw_events *cpuc, int idx, int cntr);
799
800	void		(*stop_scheduling)(struct cpu_hw_events *cpuc);
801
802	struct event_constraint *event_constraints;
803	struct x86_pmu_quirk *quirks;
804	void		(*limit_period)(struct perf_event *event, s64 *l);
805
806	/* PMI handler bits */
807	unsigned int	late_ack		:1,
808			mid_ack			:1,
809			enabled_ack		:1;
810	/*
811	 * sysfs attrs
812	 */
813	int		attr_rdpmc_broken;
814	int		attr_rdpmc;
815	struct attribute **format_attrs;
816
817	ssize_t		(*events_sysfs_show)(char *page, u64 config);
818	const struct attribute_group **attr_update;
819
820	unsigned long	attr_freeze_on_smi;
821
822	/*
823	 * CPU Hotplug hooks
824	 */
825	int		(*cpu_prepare)(int cpu);
826	void		(*cpu_starting)(int cpu);
827	void		(*cpu_dying)(int cpu);
828	void		(*cpu_dead)(int cpu);
829
830	void		(*check_microcode)(void);
831	void		(*sched_task)(struct perf_event_pmu_context *pmu_ctx,
832				      bool sched_in);
833
834	/*
835	 * Intel Arch Perfmon v2+
836	 */
837	u64			intel_ctrl;
838	union perf_capabilities intel_cap;
839
840	/*
841	 * Intel DebugStore bits
842	 */
843	unsigned int	bts			:1,
844			bts_active		:1,
845			pebs			:1,
846			pebs_active		:1,
847			pebs_broken		:1,
848			pebs_prec_dist		:1,
849			pebs_no_tlb		:1,
850			pebs_no_isolation	:1,
851			pebs_block		:1,
852			pebs_ept		:1;
853	int		pebs_record_size;
854	int		pebs_buffer_size;
855	int		max_pebs_events;
856	void		(*drain_pebs)(struct pt_regs *regs, struct perf_sample_data *data);
857	struct event_constraint *pebs_constraints;
858	void		(*pebs_aliases)(struct perf_event *event);
859	u64		(*pebs_latency_data)(struct perf_event *event, u64 status);
860	unsigned long	large_pebs_flags;
861	u64		rtm_abort_event;
862	u64		pebs_capable;
863
864	/*
865	 * Intel LBR
866	 */
867	unsigned int	lbr_tos, lbr_from, lbr_to,
868			lbr_info, lbr_nr;	   /* LBR base regs and size */
869	union {
870		u64	lbr_sel_mask;		   /* LBR_SELECT valid bits */
871		u64	lbr_ctl_mask;		   /* LBR_CTL valid bits */
872	};
873	union {
874		const int	*lbr_sel_map;	   /* lbr_select mappings */
875		int		*lbr_ctl_map;	   /* LBR_CTL mappings */
876	};
877	bool		lbr_double_abort;	   /* duplicated lbr aborts */
878	bool		lbr_pt_coexist;		   /* (LBR|BTS) may coexist with PT */
879
880	unsigned int	lbr_has_info:1;
881	unsigned int	lbr_has_tsx:1;
882	unsigned int	lbr_from_flags:1;
883	unsigned int	lbr_to_cycles:1;
884
885	/*
886	 * Intel Architectural LBR CPUID Enumeration
887	 */
888	unsigned int	lbr_depth_mask:8;
889	unsigned int	lbr_deep_c_reset:1;
890	unsigned int	lbr_lip:1;
891	unsigned int	lbr_cpl:1;
892	unsigned int	lbr_filter:1;
893	unsigned int	lbr_call_stack:1;
894	unsigned int	lbr_mispred:1;
895	unsigned int	lbr_timed_lbr:1;
896	unsigned int	lbr_br_type:1;
897	unsigned int	lbr_counters:4;
898
899	void		(*lbr_reset)(void);
900	void		(*lbr_read)(struct cpu_hw_events *cpuc);
901	void		(*lbr_save)(void *ctx);
902	void		(*lbr_restore)(void *ctx);
903
904	/*
905	 * Intel PT/LBR/BTS are exclusive
906	 */
907	atomic_t	lbr_exclusive[x86_lbr_exclusive_max];
908
909	/*
910	 * Intel perf metrics
911	 */
912	int		num_topdown_events;
913
914	/*
915	 * perf task context (i.e. struct perf_event_pmu_context::task_ctx_data)
916	 * switch helper to bridge calls from perf/core to perf/x86.
917	 * See struct pmu::swap_task_ctx() usage for examples;
918	 */
919	void		(*swap_task_ctx)(struct perf_event_pmu_context *prev_epc,
920					 struct perf_event_pmu_context *next_epc);
921
922	/*
923	 * AMD bits
924	 */
925	unsigned int	amd_nb_constraints : 1;
926	u64		perf_ctr_pair_en;
927
928	/*
929	 * Extra registers for events
930	 */
931	struct extra_reg *extra_regs;
932	unsigned int flags;
933
934	/*
935	 * Intel host/guest support (KVM)
936	 */
937	struct perf_guest_switch_msr *(*guest_get_msrs)(int *nr, void *data);
938
939	/*
940	 * Check period value for PERF_EVENT_IOC_PERIOD ioctl.
941	 */
942	int (*check_period) (struct perf_event *event, u64 period);
943
944	int (*aux_output_match) (struct perf_event *event);
945
946	void (*filter)(struct pmu *pmu, int cpu, bool *ret);
947	/*
948	 * Hybrid support
949	 *
950	 * Most PMU capabilities are the same among different hybrid PMUs.
951	 * The global x86_pmu saves the architecture capabilities, which
952	 * are available for all PMUs. The hybrid_pmu only includes the
953	 * unique capabilities.
954	 */
955	int				num_hybrid_pmus;
956	struct x86_hybrid_pmu		*hybrid_pmu;
957	enum hybrid_cpu_type (*get_hybrid_cpu_type)	(void);
958};
959
960struct x86_perf_task_context_opt {
961	int lbr_callstack_users;
962	int lbr_stack_state;
963	int log_id;
964};
965
966struct x86_perf_task_context {
967	u64 lbr_sel;
968	int tos;
969	int valid_lbrs;
970	struct x86_perf_task_context_opt opt;
971	struct lbr_entry lbr[MAX_LBR_ENTRIES];
972};
973
974struct x86_perf_task_context_arch_lbr {
975	struct x86_perf_task_context_opt opt;
976	struct lbr_entry entries[];
977};
978
979/*
980 * Add padding to guarantee the 64-byte alignment of the state buffer.
981 *
982 * The structure is dynamically allocated. The size of the LBR state may vary
983 * based on the number of LBR registers.
984 *
985 * Do not put anything after the LBR state.
986 */
987struct x86_perf_task_context_arch_lbr_xsave {
988	struct x86_perf_task_context_opt		opt;
989
990	union {
991		struct xregs_state			xsave;
992		struct {
993			struct fxregs_state		i387;
994			struct xstate_header		header;
995			struct arch_lbr_state		lbr;
996		} __attribute__ ((packed, aligned (XSAVE_ALIGNMENT)));
997	};
998};
999
1000#define x86_add_quirk(func_)						\
1001do {									\
1002	static struct x86_pmu_quirk __quirk __initdata = {		\
1003		.func = func_,						\
1004	};								\
1005	__quirk.next = x86_pmu.quirks;					\
1006	x86_pmu.quirks = &__quirk;					\
1007} while (0)
1008
1009/*
1010 * x86_pmu flags
1011 */
1012#define PMU_FL_NO_HT_SHARING	0x1 /* no hyper-threading resource sharing */
1013#define PMU_FL_HAS_RSP_1	0x2 /* has 2 equivalent offcore_rsp regs   */
1014#define PMU_FL_EXCL_CNTRS	0x4 /* has exclusive counter requirements  */
1015#define PMU_FL_EXCL_ENABLED	0x8 /* exclusive counter active */
1016#define PMU_FL_PEBS_ALL		0x10 /* all events are valid PEBS events */
1017#define PMU_FL_TFA		0x20 /* deal with TSX force abort */
1018#define PMU_FL_PAIR		0x40 /* merge counters for large incr. events */
1019#define PMU_FL_INSTR_LATENCY	0x80 /* Support Instruction Latency in PEBS Memory Info Record */
1020#define PMU_FL_MEM_LOADS_AUX	0x100 /* Require an auxiliary event for the complete memory info */
1021#define PMU_FL_RETIRE_LATENCY	0x200 /* Support Retire Latency in PEBS */
1022#define PMU_FL_BR_CNTR		0x400 /* Support branch counter logging */
1023
1024#define EVENT_VAR(_id)  event_attr_##_id
1025#define EVENT_PTR(_id) &event_attr_##_id.attr.attr
1026
1027#define EVENT_ATTR(_name, _id)						\
1028static struct perf_pmu_events_attr EVENT_VAR(_id) = {			\
1029	.attr		= __ATTR(_name, 0444, events_sysfs_show, NULL),	\
1030	.id		= PERF_COUNT_HW_##_id,				\
1031	.event_str	= NULL,						\
1032};
1033
1034#define EVENT_ATTR_STR(_name, v, str)					\
1035static struct perf_pmu_events_attr event_attr_##v = {			\
1036	.attr		= __ATTR(_name, 0444, events_sysfs_show, NULL),	\
1037	.id		= 0,						\
1038	.event_str	= str,						\
1039};
1040
1041#define EVENT_ATTR_STR_HT(_name, v, noht, ht)				\
1042static struct perf_pmu_events_ht_attr event_attr_##v = {		\
1043	.attr		= __ATTR(_name, 0444, events_ht_sysfs_show, NULL),\
1044	.id		= 0,						\
1045	.event_str_noht	= noht,						\
1046	.event_str_ht	= ht,						\
1047}
1048
1049#define EVENT_ATTR_STR_HYBRID(_name, v, str, _pmu)			\
1050static struct perf_pmu_events_hybrid_attr event_attr_##v = {		\
1051	.attr		= __ATTR(_name, 0444, events_hybrid_sysfs_show, NULL),\
1052	.id		= 0,						\
1053	.event_str	= str,						\
1054	.pmu_type	= _pmu,						\
1055}
1056
1057#define FORMAT_HYBRID_PTR(_id) (&format_attr_hybrid_##_id.attr.attr)
1058
1059#define FORMAT_ATTR_HYBRID(_name, _pmu)					\
1060static struct perf_pmu_format_hybrid_attr format_attr_hybrid_##_name = {\
1061	.attr		= __ATTR_RO(_name),				\
1062	.pmu_type	= _pmu,						\
1063}
1064
1065struct pmu *x86_get_pmu(unsigned int cpu);
1066extern struct x86_pmu x86_pmu __read_mostly;
1067
1068DECLARE_STATIC_CALL(x86_pmu_set_period, *x86_pmu.set_period);
1069DECLARE_STATIC_CALL(x86_pmu_update,     *x86_pmu.update);
1070
1071static __always_inline struct x86_perf_task_context_opt *task_context_opt(void *ctx)
1072{
1073	if (static_cpu_has(X86_FEATURE_ARCH_LBR))
1074		return &((struct x86_perf_task_context_arch_lbr *)ctx)->opt;
1075
1076	return &((struct x86_perf_task_context *)ctx)->opt;
1077}
1078
1079static inline bool x86_pmu_has_lbr_callstack(void)
1080{
1081	return  x86_pmu.lbr_sel_map &&
1082		x86_pmu.lbr_sel_map[PERF_SAMPLE_BRANCH_CALL_STACK_SHIFT] > 0;
1083}
1084
1085DECLARE_PER_CPU(struct cpu_hw_events, cpu_hw_events);
1086DECLARE_PER_CPU(u64 [X86_PMC_IDX_MAX], pmc_prev_left);
1087
1088int x86_perf_event_set_period(struct perf_event *event);
1089
1090/*
1091 * Generalized hw caching related hw_event table, filled
1092 * in on a per model basis. A value of 0 means
1093 * 'not supported', -1 means 'hw_event makes no sense on
1094 * this CPU', any other value means the raw hw_event
1095 * ID.
1096 */
1097
1098#define C(x) PERF_COUNT_HW_CACHE_##x
1099
1100extern u64 __read_mostly hw_cache_event_ids
1101				[PERF_COUNT_HW_CACHE_MAX]
1102				[PERF_COUNT_HW_CACHE_OP_MAX]
1103				[PERF_COUNT_HW_CACHE_RESULT_MAX];
1104extern u64 __read_mostly hw_cache_extra_regs
1105				[PERF_COUNT_HW_CACHE_MAX]
1106				[PERF_COUNT_HW_CACHE_OP_MAX]
1107				[PERF_COUNT_HW_CACHE_RESULT_MAX];
1108
1109u64 x86_perf_event_update(struct perf_event *event);
1110
1111static inline unsigned int x86_pmu_config_addr(int index)
1112{
1113	return x86_pmu.eventsel + (x86_pmu.addr_offset ?
1114				   x86_pmu.addr_offset(index, true) : index);
1115}
1116
1117static inline unsigned int x86_pmu_event_addr(int index)
1118{
1119	return x86_pmu.perfctr + (x86_pmu.addr_offset ?
1120				  x86_pmu.addr_offset(index, false) : index);
1121}
1122
1123static inline int x86_pmu_rdpmc_index(int index)
1124{
1125	return x86_pmu.rdpmc_index ? x86_pmu.rdpmc_index(index) : index;
1126}
1127
1128bool check_hw_exists(struct pmu *pmu, int num_counters,
1129		     int num_counters_fixed);
1130
1131int x86_add_exclusive(unsigned int what);
1132
1133void x86_del_exclusive(unsigned int what);
1134
1135int x86_reserve_hardware(void);
1136
1137void x86_release_hardware(void);
1138
1139int x86_pmu_max_precise(void);
1140
1141void hw_perf_lbr_event_destroy(struct perf_event *event);
1142
1143int x86_setup_perfctr(struct perf_event *event);
1144
1145int x86_pmu_hw_config(struct perf_event *event);
1146
1147void x86_pmu_disable_all(void);
1148
1149static inline bool has_amd_brs(struct hw_perf_event *hwc)
1150{
1151	return hwc->flags & PERF_X86_EVENT_AMD_BRS;
1152}
1153
1154static inline bool is_counter_pair(struct hw_perf_event *hwc)
1155{
1156	return hwc->flags & PERF_X86_EVENT_PAIR;
1157}
1158
1159static inline void __x86_pmu_enable_event(struct hw_perf_event *hwc,
1160					  u64 enable_mask)
1161{
1162	u64 disable_mask = __this_cpu_read(cpu_hw_events.perf_ctr_virt_mask);
1163
1164	if (hwc->extra_reg.reg)
1165		wrmsrl(hwc->extra_reg.reg, hwc->extra_reg.config);
1166
1167	/*
1168	 * Add enabled Merge event on next counter
1169	 * if large increment event being enabled on this counter
1170	 */
1171	if (is_counter_pair(hwc))
1172		wrmsrl(x86_pmu_config_addr(hwc->idx + 1), x86_pmu.perf_ctr_pair_en);
1173
1174	wrmsrl(hwc->config_base, (hwc->config | enable_mask) & ~disable_mask);
1175}
1176
1177void x86_pmu_enable_all(int added);
1178
1179int perf_assign_events(struct event_constraint **constraints, int n,
1180			int wmin, int wmax, int gpmax, int *assign);
1181int x86_schedule_events(struct cpu_hw_events *cpuc, int n, int *assign);
1182
1183void x86_pmu_stop(struct perf_event *event, int flags);
1184
1185static inline void x86_pmu_disable_event(struct perf_event *event)
1186{
1187	u64 disable_mask = __this_cpu_read(cpu_hw_events.perf_ctr_virt_mask);
1188	struct hw_perf_event *hwc = &event->hw;
1189
1190	wrmsrl(hwc->config_base, hwc->config & ~disable_mask);
1191
1192	if (is_counter_pair(hwc))
1193		wrmsrl(x86_pmu_config_addr(hwc->idx + 1), 0);
1194}
1195
1196void x86_pmu_enable_event(struct perf_event *event);
1197
1198int x86_pmu_handle_irq(struct pt_regs *regs);
1199
1200void x86_pmu_show_pmu_cap(int num_counters, int num_counters_fixed,
1201			  u64 intel_ctrl);
1202
1203extern struct event_constraint emptyconstraint;
1204
1205extern struct event_constraint unconstrained;
1206
1207static inline bool kernel_ip(unsigned long ip)
1208{
1209#ifdef CONFIG_X86_32
1210	return ip > PAGE_OFFSET;
1211#else
1212	return (long)ip < 0;
1213#endif
1214}
1215
1216/*
1217 * Not all PMUs provide the right context information to place the reported IP
1218 * into full context. Specifically segment registers are typically not
1219 * supplied.
1220 *
1221 * Assuming the address is a linear address (it is for IBS), we fake the CS and
1222 * vm86 mode using the known zero-based code segment and 'fix up' the registers
1223 * to reflect this.
1224 *
1225 * Intel PEBS/LBR appear to typically provide the effective address, nothing
1226 * much we can do about that but pray and treat it like a linear address.
1227 */
1228static inline void set_linear_ip(struct pt_regs *regs, unsigned long ip)
1229{
1230	regs->cs = kernel_ip(ip) ? __KERNEL_CS : __USER_CS;
1231	if (regs->flags & X86_VM_MASK)
1232		regs->flags ^= (PERF_EFLAGS_VM | X86_VM_MASK);
1233	regs->ip = ip;
1234}
1235
1236/*
1237 * x86control flow change classification
1238 * x86control flow changes include branches, interrupts, traps, faults
1239 */
1240enum {
1241	X86_BR_NONE		= 0,      /* unknown */
1242
1243	X86_BR_USER		= 1 << 0, /* branch target is user */
1244	X86_BR_KERNEL		= 1 << 1, /* branch target is kernel */
1245
1246	X86_BR_CALL		= 1 << 2, /* call */
1247	X86_BR_RET		= 1 << 3, /* return */
1248	X86_BR_SYSCALL		= 1 << 4, /* syscall */
1249	X86_BR_SYSRET		= 1 << 5, /* syscall return */
1250	X86_BR_INT		= 1 << 6, /* sw interrupt */
1251	X86_BR_IRET		= 1 << 7, /* return from interrupt */
1252	X86_BR_JCC		= 1 << 8, /* conditional */
1253	X86_BR_JMP		= 1 << 9, /* jump */
1254	X86_BR_IRQ		= 1 << 10,/* hw interrupt or trap or fault */
1255	X86_BR_IND_CALL		= 1 << 11,/* indirect calls */
1256	X86_BR_ABORT		= 1 << 12,/* transaction abort */
1257	X86_BR_IN_TX		= 1 << 13,/* in transaction */
1258	X86_BR_NO_TX		= 1 << 14,/* not in transaction */
1259	X86_BR_ZERO_CALL	= 1 << 15,/* zero length call */
1260	X86_BR_CALL_STACK	= 1 << 16,/* call stack */
1261	X86_BR_IND_JMP		= 1 << 17,/* indirect jump */
1262
1263	X86_BR_TYPE_SAVE	= 1 << 18,/* indicate to save branch type */
1264
1265};
1266
1267#define X86_BR_PLM (X86_BR_USER | X86_BR_KERNEL)
1268#define X86_BR_ANYTX (X86_BR_NO_TX | X86_BR_IN_TX)
1269
1270#define X86_BR_ANY       \
1271	(X86_BR_CALL    |\
1272	 X86_BR_RET     |\
1273	 X86_BR_SYSCALL |\
1274	 X86_BR_SYSRET  |\
1275	 X86_BR_INT     |\
1276	 X86_BR_IRET    |\
1277	 X86_BR_JCC     |\
1278	 X86_BR_JMP	 |\
1279	 X86_BR_IRQ	 |\
1280	 X86_BR_ABORT	 |\
1281	 X86_BR_IND_CALL |\
1282	 X86_BR_IND_JMP  |\
1283	 X86_BR_ZERO_CALL)
1284
1285#define X86_BR_ALL (X86_BR_PLM | X86_BR_ANY)
1286
1287#define X86_BR_ANY_CALL		 \
1288	(X86_BR_CALL		|\
1289	 X86_BR_IND_CALL	|\
1290	 X86_BR_ZERO_CALL	|\
1291	 X86_BR_SYSCALL		|\
1292	 X86_BR_IRQ		|\
1293	 X86_BR_INT)
1294
1295int common_branch_type(int type);
1296int branch_type(unsigned long from, unsigned long to, int abort);
1297int branch_type_fused(unsigned long from, unsigned long to, int abort,
1298		      int *offset);
1299
1300ssize_t x86_event_sysfs_show(char *page, u64 config, u64 event);
1301ssize_t intel_event_sysfs_show(char *page, u64 config);
1302
1303ssize_t events_sysfs_show(struct device *dev, struct device_attribute *attr,
1304			  char *page);
1305ssize_t events_ht_sysfs_show(struct device *dev, struct device_attribute *attr,
1306			  char *page);
1307ssize_t events_hybrid_sysfs_show(struct device *dev,
1308				 struct device_attribute *attr,
1309				 char *page);
1310
1311static inline bool fixed_counter_disabled(int i, struct pmu *pmu)
1312{
1313	u64 intel_ctrl = hybrid(pmu, intel_ctrl);
1314
1315	return !(intel_ctrl >> (i + INTEL_PMC_IDX_FIXED));
1316}
1317
1318#ifdef CONFIG_CPU_SUP_AMD
1319
1320int amd_pmu_init(void);
1321
1322int amd_pmu_lbr_init(void);
1323void amd_pmu_lbr_reset(void);
1324void amd_pmu_lbr_read(void);
1325void amd_pmu_lbr_add(struct perf_event *event);
1326void amd_pmu_lbr_del(struct perf_event *event);
1327void amd_pmu_lbr_sched_task(struct perf_event_pmu_context *pmu_ctx, bool sched_in);
1328void amd_pmu_lbr_enable_all(void);
1329void amd_pmu_lbr_disable_all(void);
1330int amd_pmu_lbr_hw_config(struct perf_event *event);
1331
1332#ifdef CONFIG_PERF_EVENTS_AMD_BRS
1333
1334#define AMD_FAM19H_BRS_EVENT 0xc4 /* RETIRED_TAKEN_BRANCH_INSTRUCTIONS */
1335
1336int amd_brs_init(void);
1337void amd_brs_disable(void);
1338void amd_brs_enable(void);
1339void amd_brs_enable_all(void);
1340void amd_brs_disable_all(void);
1341void amd_brs_drain(void);
1342void amd_brs_lopwr_init(void);
1343int amd_brs_hw_config(struct perf_event *event);
1344void amd_brs_reset(void);
1345
1346static inline void amd_pmu_brs_add(struct perf_event *event)
1347{
1348	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1349
1350	perf_sched_cb_inc(event->pmu);
1351	cpuc->lbr_users++;
1352	/*
1353	 * No need to reset BRS because it is reset
1354	 * on brs_enable() and it is saturating
1355	 */
1356}
1357
1358static inline void amd_pmu_brs_del(struct perf_event *event)
1359{
1360	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1361
1362	cpuc->lbr_users--;
1363	WARN_ON_ONCE(cpuc->lbr_users < 0);
1364
1365	perf_sched_cb_dec(event->pmu);
1366}
1367
1368void amd_pmu_brs_sched_task(struct perf_event_pmu_context *pmu_ctx, bool sched_in);
1369#else
1370static inline int amd_brs_init(void)
1371{
1372	return 0;
1373}
1374static inline void amd_brs_disable(void) {}
1375static inline void amd_brs_enable(void) {}
1376static inline void amd_brs_drain(void) {}
1377static inline void amd_brs_lopwr_init(void) {}
1378static inline void amd_brs_disable_all(void) {}
1379static inline int amd_brs_hw_config(struct perf_event *event)
1380{
1381	return 0;
1382}
1383static inline void amd_brs_reset(void) {}
1384
1385static inline void amd_pmu_brs_add(struct perf_event *event)
1386{
1387}
1388
1389static inline void amd_pmu_brs_del(struct perf_event *event)
1390{
1391}
1392
1393static inline void amd_pmu_brs_sched_task(struct perf_event_pmu_context *pmu_ctx, bool sched_in)
1394{
1395}
1396
1397static inline void amd_brs_enable_all(void)
1398{
1399}
1400
1401#endif
1402
1403#else /* CONFIG_CPU_SUP_AMD */
1404
1405static inline int amd_pmu_init(void)
1406{
1407	return 0;
1408}
1409
1410static inline int amd_brs_init(void)
1411{
1412	return -EOPNOTSUPP;
1413}
1414
1415static inline void amd_brs_drain(void)
1416{
1417}
1418
1419static inline void amd_brs_enable_all(void)
1420{
1421}
1422
1423static inline void amd_brs_disable_all(void)
1424{
1425}
1426#endif /* CONFIG_CPU_SUP_AMD */
1427
1428static inline int is_pebs_pt(struct perf_event *event)
1429{
1430	return !!(event->hw.flags & PERF_X86_EVENT_PEBS_VIA_PT);
1431}
1432
1433#ifdef CONFIG_CPU_SUP_INTEL
1434
1435static inline bool intel_pmu_has_bts_period(struct perf_event *event, u64 period)
1436{
1437	struct hw_perf_event *hwc = &event->hw;
1438	unsigned int hw_event, bts_event;
1439
1440	if (event->attr.freq)
1441		return false;
1442
1443	hw_event = hwc->config & INTEL_ARCH_EVENT_MASK;
1444	bts_event = x86_pmu.event_map(PERF_COUNT_HW_BRANCH_INSTRUCTIONS);
1445
1446	return hw_event == bts_event && period == 1;
1447}
1448
1449static inline bool intel_pmu_has_bts(struct perf_event *event)
1450{
1451	struct hw_perf_event *hwc = &event->hw;
1452
1453	return intel_pmu_has_bts_period(event, hwc->sample_period);
1454}
1455
1456static __always_inline void __intel_pmu_pebs_disable_all(void)
1457{
1458	wrmsrl(MSR_IA32_PEBS_ENABLE, 0);
1459}
1460
1461static __always_inline void __intel_pmu_arch_lbr_disable(void)
1462{
1463	wrmsrl(MSR_ARCH_LBR_CTL, 0);
1464}
1465
1466static __always_inline void __intel_pmu_lbr_disable(void)
1467{
1468	u64 debugctl;
1469
1470	rdmsrl(MSR_IA32_DEBUGCTLMSR, debugctl);
1471	debugctl &= ~(DEBUGCTLMSR_LBR | DEBUGCTLMSR_FREEZE_LBRS_ON_PMI);
1472	wrmsrl(MSR_IA32_DEBUGCTLMSR, debugctl);
1473}
1474
1475int intel_pmu_save_and_restart(struct perf_event *event);
1476
1477struct event_constraint *
1478x86_get_event_constraints(struct cpu_hw_events *cpuc, int idx,
1479			  struct perf_event *event);
1480
1481extern int intel_cpuc_prepare(struct cpu_hw_events *cpuc, int cpu);
1482extern void intel_cpuc_finish(struct cpu_hw_events *cpuc);
1483
1484int intel_pmu_init(void);
1485
1486void init_debug_store_on_cpu(int cpu);
1487
1488void fini_debug_store_on_cpu(int cpu);
1489
1490void release_ds_buffers(void);
1491
1492void reserve_ds_buffers(void);
1493
1494void release_lbr_buffers(void);
1495
1496void reserve_lbr_buffers(void);
1497
1498extern struct event_constraint bts_constraint;
1499extern struct event_constraint vlbr_constraint;
1500
1501void intel_pmu_enable_bts(u64 config);
1502
1503void intel_pmu_disable_bts(void);
1504
1505int intel_pmu_drain_bts_buffer(void);
1506
1507u64 adl_latency_data_small(struct perf_event *event, u64 status);
1508
1509u64 mtl_latency_data_small(struct perf_event *event, u64 status);
1510
1511extern struct event_constraint intel_core2_pebs_event_constraints[];
1512
1513extern struct event_constraint intel_atom_pebs_event_constraints[];
1514
1515extern struct event_constraint intel_slm_pebs_event_constraints[];
1516
1517extern struct event_constraint intel_glm_pebs_event_constraints[];
1518
1519extern struct event_constraint intel_glp_pebs_event_constraints[];
1520
1521extern struct event_constraint intel_grt_pebs_event_constraints[];
1522
1523extern struct event_constraint intel_nehalem_pebs_event_constraints[];
1524
1525extern struct event_constraint intel_westmere_pebs_event_constraints[];
1526
1527extern struct event_constraint intel_snb_pebs_event_constraints[];
1528
1529extern struct event_constraint intel_ivb_pebs_event_constraints[];
1530
1531extern struct event_constraint intel_hsw_pebs_event_constraints[];
1532
1533extern struct event_constraint intel_bdw_pebs_event_constraints[];
1534
1535extern struct event_constraint intel_skl_pebs_event_constraints[];
1536
1537extern struct event_constraint intel_icl_pebs_event_constraints[];
1538
1539extern struct event_constraint intel_glc_pebs_event_constraints[];
1540
1541struct event_constraint *intel_pebs_constraints(struct perf_event *event);
1542
1543void intel_pmu_pebs_add(struct perf_event *event);
1544
1545void intel_pmu_pebs_del(struct perf_event *event);
1546
1547void intel_pmu_pebs_enable(struct perf_event *event);
1548
1549void intel_pmu_pebs_disable(struct perf_event *event);
1550
1551void intel_pmu_pebs_enable_all(void);
1552
1553void intel_pmu_pebs_disable_all(void);
1554
1555void intel_pmu_pebs_sched_task(struct perf_event_pmu_context *pmu_ctx, bool sched_in);
1556
1557void intel_pmu_auto_reload_read(struct perf_event *event);
1558
1559void intel_pmu_store_pebs_lbrs(struct lbr_entry *lbr);
1560
1561void intel_ds_init(void);
1562
1563void intel_pmu_lbr_save_brstack(struct perf_sample_data *data,
1564				struct cpu_hw_events *cpuc,
1565				struct perf_event *event);
1566
1567void intel_pmu_lbr_swap_task_ctx(struct perf_event_pmu_context *prev_epc,
1568				 struct perf_event_pmu_context *next_epc);
1569
1570void intel_pmu_lbr_sched_task(struct perf_event_pmu_context *pmu_ctx, bool sched_in);
1571
1572u64 lbr_from_signext_quirk_wr(u64 val);
1573
1574void intel_pmu_lbr_reset(void);
1575
1576void intel_pmu_lbr_reset_32(void);
1577
1578void intel_pmu_lbr_reset_64(void);
1579
1580void intel_pmu_lbr_add(struct perf_event *event);
1581
1582void intel_pmu_lbr_del(struct perf_event *event);
1583
1584void intel_pmu_lbr_enable_all(bool pmi);
1585
1586void intel_pmu_lbr_disable_all(void);
1587
1588void intel_pmu_lbr_read(void);
1589
1590void intel_pmu_lbr_read_32(struct cpu_hw_events *cpuc);
1591
1592void intel_pmu_lbr_read_64(struct cpu_hw_events *cpuc);
1593
1594void intel_pmu_lbr_save(void *ctx);
1595
1596void intel_pmu_lbr_restore(void *ctx);
1597
1598void intel_pmu_lbr_init_core(void);
1599
1600void intel_pmu_lbr_init_nhm(void);
1601
1602void intel_pmu_lbr_init_atom(void);
1603
1604void intel_pmu_lbr_init_slm(void);
1605
1606void intel_pmu_lbr_init_snb(void);
1607
1608void intel_pmu_lbr_init_hsw(void);
1609
1610void intel_pmu_lbr_init_skl(void);
1611
1612void intel_pmu_lbr_init_knl(void);
1613
1614void intel_pmu_lbr_init(void);
1615
1616void intel_pmu_arch_lbr_init(void);
1617
1618void intel_pmu_pebs_data_source_nhm(void);
1619
1620void intel_pmu_pebs_data_source_skl(bool pmem);
1621
1622void intel_pmu_pebs_data_source_adl(void);
1623
1624void intel_pmu_pebs_data_source_grt(void);
1625
1626void intel_pmu_pebs_data_source_mtl(void);
1627
1628void intel_pmu_pebs_data_source_cmt(void);
1629
1630int intel_pmu_setup_lbr_filter(struct perf_event *event);
1631
1632void intel_pt_interrupt(void);
1633
1634int intel_bts_interrupt(void);
1635
1636void intel_bts_enable_local(void);
1637
1638void intel_bts_disable_local(void);
1639
1640int p4_pmu_init(void);
1641
1642int p6_pmu_init(void);
1643
1644int knc_pmu_init(void);
1645
1646static inline int is_ht_workaround_enabled(void)
1647{
1648	return !!(x86_pmu.flags & PMU_FL_EXCL_ENABLED);
1649}
1650
1651#else /* CONFIG_CPU_SUP_INTEL */
1652
1653static inline void reserve_ds_buffers(void)
1654{
1655}
1656
1657static inline void release_ds_buffers(void)
1658{
1659}
1660
1661static inline void release_lbr_buffers(void)
1662{
1663}
1664
1665static inline void reserve_lbr_buffers(void)
1666{
1667}
1668
1669static inline int intel_pmu_init(void)
1670{
1671	return 0;
1672}
1673
1674static inline int intel_cpuc_prepare(struct cpu_hw_events *cpuc, int cpu)
1675{
1676	return 0;
1677}
1678
1679static inline void intel_cpuc_finish(struct cpu_hw_events *cpuc)
1680{
1681}
1682
1683static inline int is_ht_workaround_enabled(void)
1684{
1685	return 0;
1686}
1687#endif /* CONFIG_CPU_SUP_INTEL */
1688
1689#if ((defined CONFIG_CPU_SUP_CENTAUR) || (defined CONFIG_CPU_SUP_ZHAOXIN))
1690int zhaoxin_pmu_init(void);
1691#else
1692static inline int zhaoxin_pmu_init(void)
1693{
1694	return 0;
1695}
1696#endif /*CONFIG_CPU_SUP_CENTAUR or CONFIG_CPU_SUP_ZHAOXIN*/
1697