1// SPDX-License-Identifier: GPL-2.0
2#include <linux/bitops.h>
3#include <linux/types.h>
4#include <linux/slab.h>
5#include <linux/sched/clock.h>
6
7#include <asm/cpu_entry_area.h>
8#include <asm/debugreg.h>
9#include <asm/perf_event.h>
10#include <asm/tlbflush.h>
11#include <asm/insn.h>
12#include <asm/io.h>
13#include <asm/timer.h>
14
15#include "../perf_event.h"
16
17/* Waste a full page so it can be mapped into the cpu_entry_area */
18DEFINE_PER_CPU_PAGE_ALIGNED(struct debug_store, cpu_debug_store);
19
20/* The size of a BTS record in bytes: */
21#define BTS_RECORD_SIZE		24
22
23#define PEBS_FIXUP_SIZE		PAGE_SIZE
24
25/*
26 * pebs_record_32 for p4 and core not supported
27
28struct pebs_record_32 {
29	u32 flags, ip;
30	u32 ax, bc, cx, dx;
31	u32 si, di, bp, sp;
32};
33
34 */
35
36union intel_x86_pebs_dse {
37	u64 val;
38	struct {
39		unsigned int ld_dse:4;
40		unsigned int ld_stlb_miss:1;
41		unsigned int ld_locked:1;
42		unsigned int ld_data_blk:1;
43		unsigned int ld_addr_blk:1;
44		unsigned int ld_reserved:24;
45	};
46	struct {
47		unsigned int st_l1d_hit:1;
48		unsigned int st_reserved1:3;
49		unsigned int st_stlb_miss:1;
50		unsigned int st_locked:1;
51		unsigned int st_reserved2:26;
52	};
53	struct {
54		unsigned int st_lat_dse:4;
55		unsigned int st_lat_stlb_miss:1;
56		unsigned int st_lat_locked:1;
57		unsigned int ld_reserved3:26;
58	};
59	struct {
60		unsigned int mtl_dse:5;
61		unsigned int mtl_locked:1;
62		unsigned int mtl_stlb_miss:1;
63		unsigned int mtl_fwd_blk:1;
64		unsigned int ld_reserved4:24;
65	};
66};
67
68
69/*
70 * Map PEBS Load Latency Data Source encodings to generic
71 * memory data source information
72 */
73#define P(a, b) PERF_MEM_S(a, b)
74#define OP_LH (P(OP, LOAD) | P(LVL, HIT))
75#define LEVEL(x) P(LVLNUM, x)
76#define REM P(REMOTE, REMOTE)
77#define SNOOP_NONE_MISS (P(SNOOP, NONE) | P(SNOOP, MISS))
78
79/* Version for Sandy Bridge and later */
80static u64 pebs_data_source[] = {
81	P(OP, LOAD) | P(LVL, MISS) | LEVEL(L3) | P(SNOOP, NA),/* 0x00:ukn L3 */
82	OP_LH | P(LVL, L1)  | LEVEL(L1) | P(SNOOP, NONE),  /* 0x01: L1 local */
83	OP_LH | P(LVL, LFB) | LEVEL(LFB) | P(SNOOP, NONE), /* 0x02: LFB hit */
84	OP_LH | P(LVL, L2)  | LEVEL(L2) | P(SNOOP, NONE),  /* 0x03: L2 hit */
85	OP_LH | P(LVL, L3)  | LEVEL(L3) | P(SNOOP, NONE),  /* 0x04: L3 hit */
86	OP_LH | P(LVL, L3)  | LEVEL(L3) | P(SNOOP, MISS),  /* 0x05: L3 hit, snoop miss */
87	OP_LH | P(LVL, L3)  | LEVEL(L3) | P(SNOOP, HIT),   /* 0x06: L3 hit, snoop hit */
88	OP_LH | P(LVL, L3)  | LEVEL(L3) | P(SNOOP, HITM),  /* 0x07: L3 hit, snoop hitm */
89	OP_LH | P(LVL, REM_CCE1) | REM | LEVEL(L3) | P(SNOOP, HIT),  /* 0x08: L3 miss snoop hit */
90	OP_LH | P(LVL, REM_CCE1) | REM | LEVEL(L3) | P(SNOOP, HITM), /* 0x09: L3 miss snoop hitm*/
91	OP_LH | P(LVL, LOC_RAM)  | LEVEL(RAM) | P(SNOOP, HIT),       /* 0x0a: L3 miss, shared */
92	OP_LH | P(LVL, REM_RAM1) | REM | LEVEL(L3) | P(SNOOP, HIT),  /* 0x0b: L3 miss, shared */
93	OP_LH | P(LVL, LOC_RAM)  | LEVEL(RAM) | SNOOP_NONE_MISS,     /* 0x0c: L3 miss, excl */
94	OP_LH | P(LVL, REM_RAM1) | LEVEL(RAM) | REM | SNOOP_NONE_MISS, /* 0x0d: L3 miss, excl */
95	OP_LH | P(LVL, IO)  | LEVEL(NA) | P(SNOOP, NONE), /* 0x0e: I/O */
96	OP_LH | P(LVL, UNC) | LEVEL(NA) | P(SNOOP, NONE), /* 0x0f: uncached */
97};
98
99/* Patch up minor differences in the bits */
100void __init intel_pmu_pebs_data_source_nhm(void)
101{
102	pebs_data_source[0x05] = OP_LH | P(LVL, L3) | LEVEL(L3) | P(SNOOP, HIT);
103	pebs_data_source[0x06] = OP_LH | P(LVL, L3) | LEVEL(L3) | P(SNOOP, HITM);
104	pebs_data_source[0x07] = OP_LH | P(LVL, L3) | LEVEL(L3) | P(SNOOP, HITM);
105}
106
107static void __init __intel_pmu_pebs_data_source_skl(bool pmem, u64 *data_source)
108{
109	u64 pmem_or_l4 = pmem ? LEVEL(PMEM) : LEVEL(L4);
110
111	data_source[0x08] = OP_LH | pmem_or_l4 | P(SNOOP, HIT);
112	data_source[0x09] = OP_LH | pmem_or_l4 | REM | P(SNOOP, HIT);
113	data_source[0x0b] = OP_LH | LEVEL(RAM) | REM | P(SNOOP, NONE);
114	data_source[0x0c] = OP_LH | LEVEL(ANY_CACHE) | REM | P(SNOOPX, FWD);
115	data_source[0x0d] = OP_LH | LEVEL(ANY_CACHE) | REM | P(SNOOP, HITM);
116}
117
118void __init intel_pmu_pebs_data_source_skl(bool pmem)
119{
120	__intel_pmu_pebs_data_source_skl(pmem, pebs_data_source);
121}
122
123static void __init __intel_pmu_pebs_data_source_grt(u64 *data_source)
124{
125	data_source[0x05] = OP_LH | P(LVL, L3) | LEVEL(L3) | P(SNOOP, HIT);
126	data_source[0x06] = OP_LH | P(LVL, L3) | LEVEL(L3) | P(SNOOP, HITM);
127	data_source[0x08] = OP_LH | P(LVL, L3) | LEVEL(L3) | P(SNOOPX, FWD);
128}
129
130void __init intel_pmu_pebs_data_source_grt(void)
131{
132	__intel_pmu_pebs_data_source_grt(pebs_data_source);
133}
134
135void __init intel_pmu_pebs_data_source_adl(void)
136{
137	u64 *data_source;
138
139	data_source = x86_pmu.hybrid_pmu[X86_HYBRID_PMU_CORE_IDX].pebs_data_source;
140	memcpy(data_source, pebs_data_source, sizeof(pebs_data_source));
141	__intel_pmu_pebs_data_source_skl(false, data_source);
142
143	data_source = x86_pmu.hybrid_pmu[X86_HYBRID_PMU_ATOM_IDX].pebs_data_source;
144	memcpy(data_source, pebs_data_source, sizeof(pebs_data_source));
145	__intel_pmu_pebs_data_source_grt(data_source);
146}
147
148static void __init __intel_pmu_pebs_data_source_cmt(u64 *data_source)
149{
150	data_source[0x07] = OP_LH | P(LVL, L3) | LEVEL(L3) | P(SNOOPX, FWD);
151	data_source[0x08] = OP_LH | P(LVL, L3) | LEVEL(L3) | P(SNOOP, HITM);
152	data_source[0x0a] = OP_LH | P(LVL, LOC_RAM)  | LEVEL(RAM) | P(SNOOP, NONE);
153	data_source[0x0b] = OP_LH | LEVEL(RAM) | REM | P(SNOOP, NONE);
154	data_source[0x0c] = OP_LH | LEVEL(RAM) | REM | P(SNOOPX, FWD);
155	data_source[0x0d] = OP_LH | LEVEL(RAM) | REM | P(SNOOP, HITM);
156}
157
158void __init intel_pmu_pebs_data_source_mtl(void)
159{
160	u64 *data_source;
161
162	data_source = x86_pmu.hybrid_pmu[X86_HYBRID_PMU_CORE_IDX].pebs_data_source;
163	memcpy(data_source, pebs_data_source, sizeof(pebs_data_source));
164	__intel_pmu_pebs_data_source_skl(false, data_source);
165
166	data_source = x86_pmu.hybrid_pmu[X86_HYBRID_PMU_ATOM_IDX].pebs_data_source;
167	memcpy(data_source, pebs_data_source, sizeof(pebs_data_source));
168	__intel_pmu_pebs_data_source_cmt(data_source);
169}
170
171void __init intel_pmu_pebs_data_source_cmt(void)
172{
173	__intel_pmu_pebs_data_source_cmt(pebs_data_source);
174}
175
176static u64 precise_store_data(u64 status)
177{
178	union intel_x86_pebs_dse dse;
179	u64 val = P(OP, STORE) | P(SNOOP, NA) | P(LVL, L1) | P(TLB, L2);
180
181	dse.val = status;
182
183	/*
184	 * bit 4: TLB access
185	 * 1 = stored missed 2nd level TLB
186	 *
187	 * so it either hit the walker or the OS
188	 * otherwise hit 2nd level TLB
189	 */
190	if (dse.st_stlb_miss)
191		val |= P(TLB, MISS);
192	else
193		val |= P(TLB, HIT);
194
195	/*
196	 * bit 0: hit L1 data cache
197	 * if not set, then all we know is that
198	 * it missed L1D
199	 */
200	if (dse.st_l1d_hit)
201		val |= P(LVL, HIT);
202	else
203		val |= P(LVL, MISS);
204
205	/*
206	 * bit 5: Locked prefix
207	 */
208	if (dse.st_locked)
209		val |= P(LOCK, LOCKED);
210
211	return val;
212}
213
214static u64 precise_datala_hsw(struct perf_event *event, u64 status)
215{
216	union perf_mem_data_src dse;
217
218	dse.val = PERF_MEM_NA;
219
220	if (event->hw.flags & PERF_X86_EVENT_PEBS_ST_HSW)
221		dse.mem_op = PERF_MEM_OP_STORE;
222	else if (event->hw.flags & PERF_X86_EVENT_PEBS_LD_HSW)
223		dse.mem_op = PERF_MEM_OP_LOAD;
224
225	/*
226	 * L1 info only valid for following events:
227	 *
228	 * MEM_UOPS_RETIRED.STLB_MISS_STORES
229	 * MEM_UOPS_RETIRED.LOCK_STORES
230	 * MEM_UOPS_RETIRED.SPLIT_STORES
231	 * MEM_UOPS_RETIRED.ALL_STORES
232	 */
233	if (event->hw.flags & PERF_X86_EVENT_PEBS_ST_HSW) {
234		if (status & 1)
235			dse.mem_lvl = PERF_MEM_LVL_L1 | PERF_MEM_LVL_HIT;
236		else
237			dse.mem_lvl = PERF_MEM_LVL_L1 | PERF_MEM_LVL_MISS;
238	}
239	return dse.val;
240}
241
242static inline void pebs_set_tlb_lock(u64 *val, bool tlb, bool lock)
243{
244	/*
245	 * TLB access
246	 * 0 = did not miss 2nd level TLB
247	 * 1 = missed 2nd level TLB
248	 */
249	if (tlb)
250		*val |= P(TLB, MISS) | P(TLB, L2);
251	else
252		*val |= P(TLB, HIT) | P(TLB, L1) | P(TLB, L2);
253
254	/* locked prefix */
255	if (lock)
256		*val |= P(LOCK, LOCKED);
257}
258
259/* Retrieve the latency data for e-core of ADL */
260static u64 __adl_latency_data_small(struct perf_event *event, u64 status,
261				     u8 dse, bool tlb, bool lock, bool blk)
262{
263	u64 val;
264
265	WARN_ON_ONCE(hybrid_pmu(event->pmu)->pmu_type == hybrid_big);
266
267	dse &= PERF_PEBS_DATA_SOURCE_MASK;
268	val = hybrid_var(event->pmu, pebs_data_source)[dse];
269
270	pebs_set_tlb_lock(&val, tlb, lock);
271
272	if (blk)
273		val |= P(BLK, DATA);
274	else
275		val |= P(BLK, NA);
276
277	return val;
278}
279
280u64 adl_latency_data_small(struct perf_event *event, u64 status)
281{
282	union intel_x86_pebs_dse dse;
283
284	dse.val = status;
285
286	return __adl_latency_data_small(event, status, dse.ld_dse,
287					dse.ld_locked, dse.ld_stlb_miss,
288					dse.ld_data_blk);
289}
290
291/* Retrieve the latency data for e-core of MTL */
292u64 mtl_latency_data_small(struct perf_event *event, u64 status)
293{
294	union intel_x86_pebs_dse dse;
295
296	dse.val = status;
297
298	return __adl_latency_data_small(event, status, dse.mtl_dse,
299					dse.mtl_stlb_miss, dse.mtl_locked,
300					dse.mtl_fwd_blk);
301}
302
303static u64 load_latency_data(struct perf_event *event, u64 status)
304{
305	union intel_x86_pebs_dse dse;
306	u64 val;
307
308	dse.val = status;
309
310	/*
311	 * use the mapping table for bit 0-3
312	 */
313	val = hybrid_var(event->pmu, pebs_data_source)[dse.ld_dse];
314
315	/*
316	 * Nehalem models do not support TLB, Lock infos
317	 */
318	if (x86_pmu.pebs_no_tlb) {
319		val |= P(TLB, NA) | P(LOCK, NA);
320		return val;
321	}
322
323	pebs_set_tlb_lock(&val, dse.ld_stlb_miss, dse.ld_locked);
324
325	/*
326	 * Ice Lake and earlier models do not support block infos.
327	 */
328	if (!x86_pmu.pebs_block) {
329		val |= P(BLK, NA);
330		return val;
331	}
332	/*
333	 * bit 6: load was blocked since its data could not be forwarded
334	 *        from a preceding store
335	 */
336	if (dse.ld_data_blk)
337		val |= P(BLK, DATA);
338
339	/*
340	 * bit 7: load was blocked due to potential address conflict with
341	 *        a preceding store
342	 */
343	if (dse.ld_addr_blk)
344		val |= P(BLK, ADDR);
345
346	if (!dse.ld_data_blk && !dse.ld_addr_blk)
347		val |= P(BLK, NA);
348
349	return val;
350}
351
352static u64 store_latency_data(struct perf_event *event, u64 status)
353{
354	union intel_x86_pebs_dse dse;
355	union perf_mem_data_src src;
356	u64 val;
357
358	dse.val = status;
359
360	/*
361	 * use the mapping table for bit 0-3
362	 */
363	val = hybrid_var(event->pmu, pebs_data_source)[dse.st_lat_dse];
364
365	pebs_set_tlb_lock(&val, dse.st_lat_stlb_miss, dse.st_lat_locked);
366
367	val |= P(BLK, NA);
368
369	/*
370	 * the pebs_data_source table is only for loads
371	 * so override the mem_op to say STORE instead
372	 */
373	src.val = val;
374	src.mem_op = P(OP,STORE);
375
376	return src.val;
377}
378
379struct pebs_record_core {
380	u64 flags, ip;
381	u64 ax, bx, cx, dx;
382	u64 si, di, bp, sp;
383	u64 r8,  r9,  r10, r11;
384	u64 r12, r13, r14, r15;
385};
386
387struct pebs_record_nhm {
388	u64 flags, ip;
389	u64 ax, bx, cx, dx;
390	u64 si, di, bp, sp;
391	u64 r8,  r9,  r10, r11;
392	u64 r12, r13, r14, r15;
393	u64 status, dla, dse, lat;
394};
395
396/*
397 * Same as pebs_record_nhm, with two additional fields.
398 */
399struct pebs_record_hsw {
400	u64 flags, ip;
401	u64 ax, bx, cx, dx;
402	u64 si, di, bp, sp;
403	u64 r8,  r9,  r10, r11;
404	u64 r12, r13, r14, r15;
405	u64 status, dla, dse, lat;
406	u64 real_ip, tsx_tuning;
407};
408
409union hsw_tsx_tuning {
410	struct {
411		u32 cycles_last_block     : 32,
412		    hle_abort		  : 1,
413		    rtm_abort		  : 1,
414		    instruction_abort     : 1,
415		    non_instruction_abort : 1,
416		    retry		  : 1,
417		    data_conflict	  : 1,
418		    capacity_writes	  : 1,
419		    capacity_reads	  : 1;
420	};
421	u64	    value;
422};
423
424#define PEBS_HSW_TSX_FLAGS	0xff00000000ULL
425
426/* Same as HSW, plus TSC */
427
428struct pebs_record_skl {
429	u64 flags, ip;
430	u64 ax, bx, cx, dx;
431	u64 si, di, bp, sp;
432	u64 r8,  r9,  r10, r11;
433	u64 r12, r13, r14, r15;
434	u64 status, dla, dse, lat;
435	u64 real_ip, tsx_tuning;
436	u64 tsc;
437};
438
439void init_debug_store_on_cpu(int cpu)
440{
441	struct debug_store *ds = per_cpu(cpu_hw_events, cpu).ds;
442
443	if (!ds)
444		return;
445
446	wrmsr_on_cpu(cpu, MSR_IA32_DS_AREA,
447		     (u32)((u64)(unsigned long)ds),
448		     (u32)((u64)(unsigned long)ds >> 32));
449}
450
451void fini_debug_store_on_cpu(int cpu)
452{
453	if (!per_cpu(cpu_hw_events, cpu).ds)
454		return;
455
456	wrmsr_on_cpu(cpu, MSR_IA32_DS_AREA, 0, 0);
457}
458
459static DEFINE_PER_CPU(void *, insn_buffer);
460
461static void ds_update_cea(void *cea, void *addr, size_t size, pgprot_t prot)
462{
463	unsigned long start = (unsigned long)cea;
464	phys_addr_t pa;
465	size_t msz = 0;
466
467	pa = virt_to_phys(addr);
468
469	preempt_disable();
470	for (; msz < size; msz += PAGE_SIZE, pa += PAGE_SIZE, cea += PAGE_SIZE)
471		cea_set_pte(cea, pa, prot);
472
473	/*
474	 * This is a cross-CPU update of the cpu_entry_area, we must shoot down
475	 * all TLB entries for it.
476	 */
477	flush_tlb_kernel_range(start, start + size);
478	preempt_enable();
479}
480
481static void ds_clear_cea(void *cea, size_t size)
482{
483	unsigned long start = (unsigned long)cea;
484	size_t msz = 0;
485
486	preempt_disable();
487	for (; msz < size; msz += PAGE_SIZE, cea += PAGE_SIZE)
488		cea_set_pte(cea, 0, PAGE_NONE);
489
490	flush_tlb_kernel_range(start, start + size);
491	preempt_enable();
492}
493
494static void *dsalloc_pages(size_t size, gfp_t flags, int cpu)
495{
496	unsigned int order = get_order(size);
497	int node = cpu_to_node(cpu);
498	struct page *page;
499
500	page = __alloc_pages_node(node, flags | __GFP_ZERO, order);
501	return page ? page_address(page) : NULL;
502}
503
504static void dsfree_pages(const void *buffer, size_t size)
505{
506	if (buffer)
507		free_pages((unsigned long)buffer, get_order(size));
508}
509
510static int alloc_pebs_buffer(int cpu)
511{
512	struct cpu_hw_events *hwev = per_cpu_ptr(&cpu_hw_events, cpu);
513	struct debug_store *ds = hwev->ds;
514	size_t bsiz = x86_pmu.pebs_buffer_size;
515	int max, node = cpu_to_node(cpu);
516	void *buffer, *insn_buff, *cea;
517
518	if (!x86_pmu.pebs)
519		return 0;
520
521	buffer = dsalloc_pages(bsiz, GFP_KERNEL, cpu);
522	if (unlikely(!buffer))
523		return -ENOMEM;
524
525	/*
526	 * HSW+ already provides us the eventing ip; no need to allocate this
527	 * buffer then.
528	 */
529	if (x86_pmu.intel_cap.pebs_format < 2) {
530		insn_buff = kzalloc_node(PEBS_FIXUP_SIZE, GFP_KERNEL, node);
531		if (!insn_buff) {
532			dsfree_pages(buffer, bsiz);
533			return -ENOMEM;
534		}
535		per_cpu(insn_buffer, cpu) = insn_buff;
536	}
537	hwev->ds_pebs_vaddr = buffer;
538	/* Update the cpu entry area mapping */
539	cea = &get_cpu_entry_area(cpu)->cpu_debug_buffers.pebs_buffer;
540	ds->pebs_buffer_base = (unsigned long) cea;
541	ds_update_cea(cea, buffer, bsiz, PAGE_KERNEL);
542	ds->pebs_index = ds->pebs_buffer_base;
543	max = x86_pmu.pebs_record_size * (bsiz / x86_pmu.pebs_record_size);
544	ds->pebs_absolute_maximum = ds->pebs_buffer_base + max;
545	return 0;
546}
547
548static void release_pebs_buffer(int cpu)
549{
550	struct cpu_hw_events *hwev = per_cpu_ptr(&cpu_hw_events, cpu);
551	void *cea;
552
553	if (!x86_pmu.pebs)
554		return;
555
556	kfree(per_cpu(insn_buffer, cpu));
557	per_cpu(insn_buffer, cpu) = NULL;
558
559	/* Clear the fixmap */
560	cea = &get_cpu_entry_area(cpu)->cpu_debug_buffers.pebs_buffer;
561	ds_clear_cea(cea, x86_pmu.pebs_buffer_size);
562	dsfree_pages(hwev->ds_pebs_vaddr, x86_pmu.pebs_buffer_size);
563	hwev->ds_pebs_vaddr = NULL;
564}
565
566static int alloc_bts_buffer(int cpu)
567{
568	struct cpu_hw_events *hwev = per_cpu_ptr(&cpu_hw_events, cpu);
569	struct debug_store *ds = hwev->ds;
570	void *buffer, *cea;
571	int max;
572
573	if (!x86_pmu.bts)
574		return 0;
575
576	buffer = dsalloc_pages(BTS_BUFFER_SIZE, GFP_KERNEL | __GFP_NOWARN, cpu);
577	if (unlikely(!buffer)) {
578		WARN_ONCE(1, "%s: BTS buffer allocation failure\n", __func__);
579		return -ENOMEM;
580	}
581	hwev->ds_bts_vaddr = buffer;
582	/* Update the fixmap */
583	cea = &get_cpu_entry_area(cpu)->cpu_debug_buffers.bts_buffer;
584	ds->bts_buffer_base = (unsigned long) cea;
585	ds_update_cea(cea, buffer, BTS_BUFFER_SIZE, PAGE_KERNEL);
586	ds->bts_index = ds->bts_buffer_base;
587	max = BTS_BUFFER_SIZE / BTS_RECORD_SIZE;
588	ds->bts_absolute_maximum = ds->bts_buffer_base +
589					max * BTS_RECORD_SIZE;
590	ds->bts_interrupt_threshold = ds->bts_absolute_maximum -
591					(max / 16) * BTS_RECORD_SIZE;
592	return 0;
593}
594
595static void release_bts_buffer(int cpu)
596{
597	struct cpu_hw_events *hwev = per_cpu_ptr(&cpu_hw_events, cpu);
598	void *cea;
599
600	if (!x86_pmu.bts)
601		return;
602
603	/* Clear the fixmap */
604	cea = &get_cpu_entry_area(cpu)->cpu_debug_buffers.bts_buffer;
605	ds_clear_cea(cea, BTS_BUFFER_SIZE);
606	dsfree_pages(hwev->ds_bts_vaddr, BTS_BUFFER_SIZE);
607	hwev->ds_bts_vaddr = NULL;
608}
609
610static int alloc_ds_buffer(int cpu)
611{
612	struct debug_store *ds = &get_cpu_entry_area(cpu)->cpu_debug_store;
613
614	memset(ds, 0, sizeof(*ds));
615	per_cpu(cpu_hw_events, cpu).ds = ds;
616	return 0;
617}
618
619static void release_ds_buffer(int cpu)
620{
621	per_cpu(cpu_hw_events, cpu).ds = NULL;
622}
623
624void release_ds_buffers(void)
625{
626	int cpu;
627
628	if (!x86_pmu.bts && !x86_pmu.pebs)
629		return;
630
631	for_each_possible_cpu(cpu)
632		release_ds_buffer(cpu);
633
634	for_each_possible_cpu(cpu) {
635		/*
636		 * Again, ignore errors from offline CPUs, they will no longer
637		 * observe cpu_hw_events.ds and not program the DS_AREA when
638		 * they come up.
639		 */
640		fini_debug_store_on_cpu(cpu);
641	}
642
643	for_each_possible_cpu(cpu) {
644		release_pebs_buffer(cpu);
645		release_bts_buffer(cpu);
646	}
647}
648
649void reserve_ds_buffers(void)
650{
651	int bts_err = 0, pebs_err = 0;
652	int cpu;
653
654	x86_pmu.bts_active = 0;
655	x86_pmu.pebs_active = 0;
656
657	if (!x86_pmu.bts && !x86_pmu.pebs)
658		return;
659
660	if (!x86_pmu.bts)
661		bts_err = 1;
662
663	if (!x86_pmu.pebs)
664		pebs_err = 1;
665
666	for_each_possible_cpu(cpu) {
667		if (alloc_ds_buffer(cpu)) {
668			bts_err = 1;
669			pebs_err = 1;
670		}
671
672		if (!bts_err && alloc_bts_buffer(cpu))
673			bts_err = 1;
674
675		if (!pebs_err && alloc_pebs_buffer(cpu))
676			pebs_err = 1;
677
678		if (bts_err && pebs_err)
679			break;
680	}
681
682	if (bts_err) {
683		for_each_possible_cpu(cpu)
684			release_bts_buffer(cpu);
685	}
686
687	if (pebs_err) {
688		for_each_possible_cpu(cpu)
689			release_pebs_buffer(cpu);
690	}
691
692	if (bts_err && pebs_err) {
693		for_each_possible_cpu(cpu)
694			release_ds_buffer(cpu);
695	} else {
696		if (x86_pmu.bts && !bts_err)
697			x86_pmu.bts_active = 1;
698
699		if (x86_pmu.pebs && !pebs_err)
700			x86_pmu.pebs_active = 1;
701
702		for_each_possible_cpu(cpu) {
703			/*
704			 * Ignores wrmsr_on_cpu() errors for offline CPUs they
705			 * will get this call through intel_pmu_cpu_starting().
706			 */
707			init_debug_store_on_cpu(cpu);
708		}
709	}
710}
711
712/*
713 * BTS
714 */
715
716struct event_constraint bts_constraint =
717	EVENT_CONSTRAINT(0, 1ULL << INTEL_PMC_IDX_FIXED_BTS, 0);
718
719void intel_pmu_enable_bts(u64 config)
720{
721	unsigned long debugctlmsr;
722
723	debugctlmsr = get_debugctlmsr();
724
725	debugctlmsr |= DEBUGCTLMSR_TR;
726	debugctlmsr |= DEBUGCTLMSR_BTS;
727	if (config & ARCH_PERFMON_EVENTSEL_INT)
728		debugctlmsr |= DEBUGCTLMSR_BTINT;
729
730	if (!(config & ARCH_PERFMON_EVENTSEL_OS))
731		debugctlmsr |= DEBUGCTLMSR_BTS_OFF_OS;
732
733	if (!(config & ARCH_PERFMON_EVENTSEL_USR))
734		debugctlmsr |= DEBUGCTLMSR_BTS_OFF_USR;
735
736	update_debugctlmsr(debugctlmsr);
737}
738
739void intel_pmu_disable_bts(void)
740{
741	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
742	unsigned long debugctlmsr;
743
744	if (!cpuc->ds)
745		return;
746
747	debugctlmsr = get_debugctlmsr();
748
749	debugctlmsr &=
750		~(DEBUGCTLMSR_TR | DEBUGCTLMSR_BTS | DEBUGCTLMSR_BTINT |
751		  DEBUGCTLMSR_BTS_OFF_OS | DEBUGCTLMSR_BTS_OFF_USR);
752
753	update_debugctlmsr(debugctlmsr);
754}
755
756int intel_pmu_drain_bts_buffer(void)
757{
758	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
759	struct debug_store *ds = cpuc->ds;
760	struct bts_record {
761		u64	from;
762		u64	to;
763		u64	flags;
764	};
765	struct perf_event *event = cpuc->events[INTEL_PMC_IDX_FIXED_BTS];
766	struct bts_record *at, *base, *top;
767	struct perf_output_handle handle;
768	struct perf_event_header header;
769	struct perf_sample_data data;
770	unsigned long skip = 0;
771	struct pt_regs regs;
772
773	if (!event)
774		return 0;
775
776	if (!x86_pmu.bts_active)
777		return 0;
778
779	base = (struct bts_record *)(unsigned long)ds->bts_buffer_base;
780	top  = (struct bts_record *)(unsigned long)ds->bts_index;
781
782	if (top <= base)
783		return 0;
784
785	memset(&regs, 0, sizeof(regs));
786
787	ds->bts_index = ds->bts_buffer_base;
788
789	perf_sample_data_init(&data, 0, event->hw.last_period);
790
791	/*
792	 * BTS leaks kernel addresses in branches across the cpl boundary,
793	 * such as traps or system calls, so unless the user is asking for
794	 * kernel tracing (and right now it's not possible), we'd need to
795	 * filter them out. But first we need to count how many of those we
796	 * have in the current batch. This is an extra O(n) pass, however,
797	 * it's much faster than the other one especially considering that
798	 * n <= 2560 (BTS_BUFFER_SIZE / BTS_RECORD_SIZE * 15/16; see the
799	 * alloc_bts_buffer()).
800	 */
801	for (at = base; at < top; at++) {
802		/*
803		 * Note that right now *this* BTS code only works if
804		 * attr::exclude_kernel is set, but let's keep this extra
805		 * check here in case that changes.
806		 */
807		if (event->attr.exclude_kernel &&
808		    (kernel_ip(at->from) || kernel_ip(at->to)))
809			skip++;
810	}
811
812	/*
813	 * Prepare a generic sample, i.e. fill in the invariant fields.
814	 * We will overwrite the from and to address before we output
815	 * the sample.
816	 */
817	rcu_read_lock();
818	perf_prepare_sample(&data, event, &regs);
819	perf_prepare_header(&header, &data, event, &regs);
820
821	if (perf_output_begin(&handle, &data, event,
822			      header.size * (top - base - skip)))
823		goto unlock;
824
825	for (at = base; at < top; at++) {
826		/* Filter out any records that contain kernel addresses. */
827		if (event->attr.exclude_kernel &&
828		    (kernel_ip(at->from) || kernel_ip(at->to)))
829			continue;
830
831		data.ip		= at->from;
832		data.addr	= at->to;
833
834		perf_output_sample(&handle, &header, &data, event);
835	}
836
837	perf_output_end(&handle);
838
839	/* There's new data available. */
840	event->hw.interrupts++;
841	event->pending_kill = POLL_IN;
842unlock:
843	rcu_read_unlock();
844	return 1;
845}
846
847static inline void intel_pmu_drain_pebs_buffer(void)
848{
849	struct perf_sample_data data;
850
851	x86_pmu.drain_pebs(NULL, &data);
852}
853
854/*
855 * PEBS
856 */
857struct event_constraint intel_core2_pebs_event_constraints[] = {
858	INTEL_FLAGS_UEVENT_CONSTRAINT(0x00c0, 0x1), /* INST_RETIRED.ANY */
859	INTEL_FLAGS_UEVENT_CONSTRAINT(0xfec1, 0x1), /* X87_OPS_RETIRED.ANY */
860	INTEL_FLAGS_UEVENT_CONSTRAINT(0x00c5, 0x1), /* BR_INST_RETIRED.MISPRED */
861	INTEL_FLAGS_UEVENT_CONSTRAINT(0x1fc7, 0x1), /* SIMD_INST_RETURED.ANY */
862	INTEL_FLAGS_EVENT_CONSTRAINT(0xcb, 0x1),    /* MEM_LOAD_RETIRED.* */
863	/* INST_RETIRED.ANY_P, inv=1, cmask=16 (cycles:p). */
864	INTEL_FLAGS_UEVENT_CONSTRAINT(0x108000c0, 0x01),
865	EVENT_CONSTRAINT_END
866};
867
868struct event_constraint intel_atom_pebs_event_constraints[] = {
869	INTEL_FLAGS_UEVENT_CONSTRAINT(0x00c0, 0x1), /* INST_RETIRED.ANY */
870	INTEL_FLAGS_UEVENT_CONSTRAINT(0x00c5, 0x1), /* MISPREDICTED_BRANCH_RETIRED */
871	INTEL_FLAGS_EVENT_CONSTRAINT(0xcb, 0x1),    /* MEM_LOAD_RETIRED.* */
872	/* INST_RETIRED.ANY_P, inv=1, cmask=16 (cycles:p). */
873	INTEL_FLAGS_UEVENT_CONSTRAINT(0x108000c0, 0x01),
874	/* Allow all events as PEBS with no flags */
875	INTEL_ALL_EVENT_CONSTRAINT(0, 0x1),
876	EVENT_CONSTRAINT_END
877};
878
879struct event_constraint intel_slm_pebs_event_constraints[] = {
880	/* INST_RETIRED.ANY_P, inv=1, cmask=16 (cycles:p). */
881	INTEL_FLAGS_UEVENT_CONSTRAINT(0x108000c0, 0x1),
882	/* Allow all events as PEBS with no flags */
883	INTEL_ALL_EVENT_CONSTRAINT(0, 0x1),
884	EVENT_CONSTRAINT_END
885};
886
887struct event_constraint intel_glm_pebs_event_constraints[] = {
888	/* Allow all events as PEBS with no flags */
889	INTEL_ALL_EVENT_CONSTRAINT(0, 0x1),
890	EVENT_CONSTRAINT_END
891};
892
893struct event_constraint intel_grt_pebs_event_constraints[] = {
894	/* Allow all events as PEBS with no flags */
895	INTEL_HYBRID_LAT_CONSTRAINT(0x5d0, 0x3),
896	INTEL_HYBRID_LAT_CONSTRAINT(0x6d0, 0xf),
897	EVENT_CONSTRAINT_END
898};
899
900struct event_constraint intel_nehalem_pebs_event_constraints[] = {
901	INTEL_PLD_CONSTRAINT(0x100b, 0xf),      /* MEM_INST_RETIRED.* */
902	INTEL_FLAGS_EVENT_CONSTRAINT(0x0f, 0xf),    /* MEM_UNCORE_RETIRED.* */
903	INTEL_FLAGS_UEVENT_CONSTRAINT(0x010c, 0xf), /* MEM_STORE_RETIRED.DTLB_MISS */
904	INTEL_FLAGS_EVENT_CONSTRAINT(0xc0, 0xf),    /* INST_RETIRED.ANY */
905	INTEL_EVENT_CONSTRAINT(0xc2, 0xf),    /* UOPS_RETIRED.* */
906	INTEL_FLAGS_EVENT_CONSTRAINT(0xc4, 0xf),    /* BR_INST_RETIRED.* */
907	INTEL_FLAGS_UEVENT_CONSTRAINT(0x02c5, 0xf), /* BR_MISP_RETIRED.NEAR_CALL */
908	INTEL_FLAGS_EVENT_CONSTRAINT(0xc7, 0xf),    /* SSEX_UOPS_RETIRED.* */
909	INTEL_FLAGS_UEVENT_CONSTRAINT(0x20c8, 0xf), /* ITLB_MISS_RETIRED */
910	INTEL_FLAGS_EVENT_CONSTRAINT(0xcb, 0xf),    /* MEM_LOAD_RETIRED.* */
911	INTEL_FLAGS_EVENT_CONSTRAINT(0xf7, 0xf),    /* FP_ASSIST.* */
912	/* INST_RETIRED.ANY_P, inv=1, cmask=16 (cycles:p). */
913	INTEL_FLAGS_UEVENT_CONSTRAINT(0x108000c0, 0x0f),
914	EVENT_CONSTRAINT_END
915};
916
917struct event_constraint intel_westmere_pebs_event_constraints[] = {
918	INTEL_PLD_CONSTRAINT(0x100b, 0xf),      /* MEM_INST_RETIRED.* */
919	INTEL_FLAGS_EVENT_CONSTRAINT(0x0f, 0xf),    /* MEM_UNCORE_RETIRED.* */
920	INTEL_FLAGS_UEVENT_CONSTRAINT(0x010c, 0xf), /* MEM_STORE_RETIRED.DTLB_MISS */
921	INTEL_FLAGS_EVENT_CONSTRAINT(0xc0, 0xf),    /* INSTR_RETIRED.* */
922	INTEL_EVENT_CONSTRAINT(0xc2, 0xf),    /* UOPS_RETIRED.* */
923	INTEL_FLAGS_EVENT_CONSTRAINT(0xc4, 0xf),    /* BR_INST_RETIRED.* */
924	INTEL_FLAGS_EVENT_CONSTRAINT(0xc5, 0xf),    /* BR_MISP_RETIRED.* */
925	INTEL_FLAGS_EVENT_CONSTRAINT(0xc7, 0xf),    /* SSEX_UOPS_RETIRED.* */
926	INTEL_FLAGS_UEVENT_CONSTRAINT(0x20c8, 0xf), /* ITLB_MISS_RETIRED */
927	INTEL_FLAGS_EVENT_CONSTRAINT(0xcb, 0xf),    /* MEM_LOAD_RETIRED.* */
928	INTEL_FLAGS_EVENT_CONSTRAINT(0xf7, 0xf),    /* FP_ASSIST.* */
929	/* INST_RETIRED.ANY_P, inv=1, cmask=16 (cycles:p). */
930	INTEL_FLAGS_UEVENT_CONSTRAINT(0x108000c0, 0x0f),
931	EVENT_CONSTRAINT_END
932};
933
934struct event_constraint intel_snb_pebs_event_constraints[] = {
935	INTEL_FLAGS_UEVENT_CONSTRAINT(0x01c0, 0x2), /* INST_RETIRED.PRECDIST */
936	INTEL_PLD_CONSTRAINT(0x01cd, 0x8),    /* MEM_TRANS_RETIRED.LAT_ABOVE_THR */
937	INTEL_PST_CONSTRAINT(0x02cd, 0x8),    /* MEM_TRANS_RETIRED.PRECISE_STORES */
938	/* UOPS_RETIRED.ALL, inv=1, cmask=16 (cycles:p). */
939	INTEL_FLAGS_UEVENT_CONSTRAINT(0x108001c2, 0xf),
940        INTEL_EXCLEVT_CONSTRAINT(0xd0, 0xf),    /* MEM_UOP_RETIRED.* */
941        INTEL_EXCLEVT_CONSTRAINT(0xd1, 0xf),    /* MEM_LOAD_UOPS_RETIRED.* */
942        INTEL_EXCLEVT_CONSTRAINT(0xd2, 0xf),    /* MEM_LOAD_UOPS_LLC_HIT_RETIRED.* */
943        INTEL_EXCLEVT_CONSTRAINT(0xd3, 0xf),    /* MEM_LOAD_UOPS_LLC_MISS_RETIRED.* */
944	/* Allow all events as PEBS with no flags */
945	INTEL_ALL_EVENT_CONSTRAINT(0, 0xf),
946	EVENT_CONSTRAINT_END
947};
948
949struct event_constraint intel_ivb_pebs_event_constraints[] = {
950        INTEL_FLAGS_UEVENT_CONSTRAINT(0x01c0, 0x2), /* INST_RETIRED.PRECDIST */
951        INTEL_PLD_CONSTRAINT(0x01cd, 0x8),    /* MEM_TRANS_RETIRED.LAT_ABOVE_THR */
952	INTEL_PST_CONSTRAINT(0x02cd, 0x8),    /* MEM_TRANS_RETIRED.PRECISE_STORES */
953	/* UOPS_RETIRED.ALL, inv=1, cmask=16 (cycles:p). */
954	INTEL_FLAGS_UEVENT_CONSTRAINT(0x108001c2, 0xf),
955	/* INST_RETIRED.PREC_DIST, inv=1, cmask=16 (cycles:ppp). */
956	INTEL_FLAGS_UEVENT_CONSTRAINT(0x108001c0, 0x2),
957	INTEL_EXCLEVT_CONSTRAINT(0xd0, 0xf),    /* MEM_UOP_RETIRED.* */
958	INTEL_EXCLEVT_CONSTRAINT(0xd1, 0xf),    /* MEM_LOAD_UOPS_RETIRED.* */
959	INTEL_EXCLEVT_CONSTRAINT(0xd2, 0xf),    /* MEM_LOAD_UOPS_LLC_HIT_RETIRED.* */
960	INTEL_EXCLEVT_CONSTRAINT(0xd3, 0xf),    /* MEM_LOAD_UOPS_LLC_MISS_RETIRED.* */
961	/* Allow all events as PEBS with no flags */
962	INTEL_ALL_EVENT_CONSTRAINT(0, 0xf),
963        EVENT_CONSTRAINT_END
964};
965
966struct event_constraint intel_hsw_pebs_event_constraints[] = {
967	INTEL_FLAGS_UEVENT_CONSTRAINT(0x01c0, 0x2), /* INST_RETIRED.PRECDIST */
968	INTEL_PLD_CONSTRAINT(0x01cd, 0xf),    /* MEM_TRANS_RETIRED.* */
969	/* UOPS_RETIRED.ALL, inv=1, cmask=16 (cycles:p). */
970	INTEL_FLAGS_UEVENT_CONSTRAINT(0x108001c2, 0xf),
971	/* INST_RETIRED.PREC_DIST, inv=1, cmask=16 (cycles:ppp). */
972	INTEL_FLAGS_UEVENT_CONSTRAINT(0x108001c0, 0x2),
973	INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_NA(0x01c2, 0xf), /* UOPS_RETIRED.ALL */
974	INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_XLD(0x11d0, 0xf), /* MEM_UOPS_RETIRED.STLB_MISS_LOADS */
975	INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_XLD(0x21d0, 0xf), /* MEM_UOPS_RETIRED.LOCK_LOADS */
976	INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_XLD(0x41d0, 0xf), /* MEM_UOPS_RETIRED.SPLIT_LOADS */
977	INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_XLD(0x81d0, 0xf), /* MEM_UOPS_RETIRED.ALL_LOADS */
978	INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_XST(0x12d0, 0xf), /* MEM_UOPS_RETIRED.STLB_MISS_STORES */
979	INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_XST(0x42d0, 0xf), /* MEM_UOPS_RETIRED.SPLIT_STORES */
980	INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_XST(0x82d0, 0xf), /* MEM_UOPS_RETIRED.ALL_STORES */
981	INTEL_FLAGS_EVENT_CONSTRAINT_DATALA_XLD(0xd1, 0xf),    /* MEM_LOAD_UOPS_RETIRED.* */
982	INTEL_FLAGS_EVENT_CONSTRAINT_DATALA_XLD(0xd2, 0xf),    /* MEM_LOAD_UOPS_L3_HIT_RETIRED.* */
983	INTEL_FLAGS_EVENT_CONSTRAINT_DATALA_XLD(0xd3, 0xf),    /* MEM_LOAD_UOPS_L3_MISS_RETIRED.* */
984	/* Allow all events as PEBS with no flags */
985	INTEL_ALL_EVENT_CONSTRAINT(0, 0xf),
986	EVENT_CONSTRAINT_END
987};
988
989struct event_constraint intel_bdw_pebs_event_constraints[] = {
990	INTEL_FLAGS_UEVENT_CONSTRAINT(0x01c0, 0x2), /* INST_RETIRED.PRECDIST */
991	INTEL_PLD_CONSTRAINT(0x01cd, 0xf),    /* MEM_TRANS_RETIRED.* */
992	/* UOPS_RETIRED.ALL, inv=1, cmask=16 (cycles:p). */
993	INTEL_FLAGS_UEVENT_CONSTRAINT(0x108001c2, 0xf),
994	/* INST_RETIRED.PREC_DIST, inv=1, cmask=16 (cycles:ppp). */
995	INTEL_FLAGS_UEVENT_CONSTRAINT(0x108001c0, 0x2),
996	INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_NA(0x01c2, 0xf), /* UOPS_RETIRED.ALL */
997	INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_LD(0x11d0, 0xf), /* MEM_UOPS_RETIRED.STLB_MISS_LOADS */
998	INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_LD(0x21d0, 0xf), /* MEM_UOPS_RETIRED.LOCK_LOADS */
999	INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_LD(0x41d0, 0xf), /* MEM_UOPS_RETIRED.SPLIT_LOADS */
1000	INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_LD(0x81d0, 0xf), /* MEM_UOPS_RETIRED.ALL_LOADS */
1001	INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_ST(0x12d0, 0xf), /* MEM_UOPS_RETIRED.STLB_MISS_STORES */
1002	INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_ST(0x42d0, 0xf), /* MEM_UOPS_RETIRED.SPLIT_STORES */
1003	INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_ST(0x82d0, 0xf), /* MEM_UOPS_RETIRED.ALL_STORES */
1004	INTEL_FLAGS_EVENT_CONSTRAINT_DATALA_LD(0xd1, 0xf),    /* MEM_LOAD_UOPS_RETIRED.* */
1005	INTEL_FLAGS_EVENT_CONSTRAINT_DATALA_LD(0xd2, 0xf),    /* MEM_LOAD_UOPS_L3_HIT_RETIRED.* */
1006	INTEL_FLAGS_EVENT_CONSTRAINT_DATALA_LD(0xd3, 0xf),    /* MEM_LOAD_UOPS_L3_MISS_RETIRED.* */
1007	/* Allow all events as PEBS with no flags */
1008	INTEL_ALL_EVENT_CONSTRAINT(0, 0xf),
1009	EVENT_CONSTRAINT_END
1010};
1011
1012
1013struct event_constraint intel_skl_pebs_event_constraints[] = {
1014	INTEL_FLAGS_UEVENT_CONSTRAINT(0x1c0, 0x2),	/* INST_RETIRED.PREC_DIST */
1015	/* INST_RETIRED.PREC_DIST, inv=1, cmask=16 (cycles:ppp). */
1016	INTEL_FLAGS_UEVENT_CONSTRAINT(0x108001c0, 0x2),
1017	/* INST_RETIRED.TOTAL_CYCLES_PS (inv=1, cmask=16) (cycles:p). */
1018	INTEL_FLAGS_UEVENT_CONSTRAINT(0x108000c0, 0x0f),
1019	INTEL_PLD_CONSTRAINT(0x1cd, 0xf),		      /* MEM_TRANS_RETIRED.* */
1020	INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_LD(0x11d0, 0xf), /* MEM_INST_RETIRED.STLB_MISS_LOADS */
1021	INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_ST(0x12d0, 0xf), /* MEM_INST_RETIRED.STLB_MISS_STORES */
1022	INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_LD(0x21d0, 0xf), /* MEM_INST_RETIRED.LOCK_LOADS */
1023	INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_ST(0x22d0, 0xf), /* MEM_INST_RETIRED.LOCK_STORES */
1024	INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_LD(0x41d0, 0xf), /* MEM_INST_RETIRED.SPLIT_LOADS */
1025	INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_ST(0x42d0, 0xf), /* MEM_INST_RETIRED.SPLIT_STORES */
1026	INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_LD(0x81d0, 0xf), /* MEM_INST_RETIRED.ALL_LOADS */
1027	INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_ST(0x82d0, 0xf), /* MEM_INST_RETIRED.ALL_STORES */
1028	INTEL_FLAGS_EVENT_CONSTRAINT_DATALA_LD(0xd1, 0xf),    /* MEM_LOAD_RETIRED.* */
1029	INTEL_FLAGS_EVENT_CONSTRAINT_DATALA_LD(0xd2, 0xf),    /* MEM_LOAD_L3_HIT_RETIRED.* */
1030	INTEL_FLAGS_EVENT_CONSTRAINT_DATALA_LD(0xd3, 0xf),    /* MEM_LOAD_L3_MISS_RETIRED.* */
1031	/* Allow all events as PEBS with no flags */
1032	INTEL_ALL_EVENT_CONSTRAINT(0, 0xf),
1033	EVENT_CONSTRAINT_END
1034};
1035
1036struct event_constraint intel_icl_pebs_event_constraints[] = {
1037	INTEL_FLAGS_UEVENT_CONSTRAINT(0x01c0, 0x100000000ULL),	/* old INST_RETIRED.PREC_DIST */
1038	INTEL_FLAGS_UEVENT_CONSTRAINT(0x0100, 0x100000000ULL),	/* INST_RETIRED.PREC_DIST */
1039	INTEL_FLAGS_UEVENT_CONSTRAINT(0x0400, 0x800000000ULL),	/* SLOTS */
1040
1041	INTEL_PLD_CONSTRAINT(0x1cd, 0xff),			/* MEM_TRANS_RETIRED.LOAD_LATENCY */
1042	INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_LD(0x11d0, 0xf),	/* MEM_INST_RETIRED.STLB_MISS_LOADS */
1043	INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_ST(0x12d0, 0xf),	/* MEM_INST_RETIRED.STLB_MISS_STORES */
1044	INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_LD(0x21d0, 0xf),	/* MEM_INST_RETIRED.LOCK_LOADS */
1045	INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_LD(0x41d0, 0xf),	/* MEM_INST_RETIRED.SPLIT_LOADS */
1046	INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_ST(0x42d0, 0xf),	/* MEM_INST_RETIRED.SPLIT_STORES */
1047	INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_LD(0x81d0, 0xf),	/* MEM_INST_RETIRED.ALL_LOADS */
1048	INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_ST(0x82d0, 0xf),	/* MEM_INST_RETIRED.ALL_STORES */
1049
1050	INTEL_FLAGS_EVENT_CONSTRAINT_DATALA_LD_RANGE(0xd1, 0xd4, 0xf), /* MEM_LOAD_*_RETIRED.* */
1051
1052	INTEL_FLAGS_EVENT_CONSTRAINT(0xd0, 0xf),		/* MEM_INST_RETIRED.* */
1053
1054	/*
1055	 * Everything else is handled by PMU_FL_PEBS_ALL, because we
1056	 * need the full constraints from the main table.
1057	 */
1058
1059	EVENT_CONSTRAINT_END
1060};
1061
1062struct event_constraint intel_glc_pebs_event_constraints[] = {
1063	INTEL_FLAGS_UEVENT_CONSTRAINT(0x100, 0x100000000ULL),	/* INST_RETIRED.PREC_DIST */
1064	INTEL_FLAGS_UEVENT_CONSTRAINT(0x0400, 0x800000000ULL),
1065
1066	INTEL_FLAGS_EVENT_CONSTRAINT(0xc0, 0xfe),
1067	INTEL_PLD_CONSTRAINT(0x1cd, 0xfe),
1068	INTEL_PSD_CONSTRAINT(0x2cd, 0x1),
1069	INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_LD(0x11d0, 0xf),	/* MEM_INST_RETIRED.STLB_MISS_LOADS */
1070	INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_ST(0x12d0, 0xf),	/* MEM_INST_RETIRED.STLB_MISS_STORES */
1071	INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_LD(0x21d0, 0xf),	/* MEM_INST_RETIRED.LOCK_LOADS */
1072	INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_LD(0x41d0, 0xf),	/* MEM_INST_RETIRED.SPLIT_LOADS */
1073	INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_ST(0x42d0, 0xf),	/* MEM_INST_RETIRED.SPLIT_STORES */
1074	INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_LD(0x81d0, 0xf),	/* MEM_INST_RETIRED.ALL_LOADS */
1075	INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_ST(0x82d0, 0xf),	/* MEM_INST_RETIRED.ALL_STORES */
1076
1077	INTEL_FLAGS_EVENT_CONSTRAINT_DATALA_LD_RANGE(0xd1, 0xd4, 0xf),
1078
1079	INTEL_FLAGS_EVENT_CONSTRAINT(0xd0, 0xf),
1080
1081	/*
1082	 * Everything else is handled by PMU_FL_PEBS_ALL, because we
1083	 * need the full constraints from the main table.
1084	 */
1085
1086	EVENT_CONSTRAINT_END
1087};
1088
1089struct event_constraint *intel_pebs_constraints(struct perf_event *event)
1090{
1091	struct event_constraint *pebs_constraints = hybrid(event->pmu, pebs_constraints);
1092	struct event_constraint *c;
1093
1094	if (!event->attr.precise_ip)
1095		return NULL;
1096
1097	if (pebs_constraints) {
1098		for_each_event_constraint(c, pebs_constraints) {
1099			if (constraint_match(c, event->hw.config)) {
1100				event->hw.flags |= c->flags;
1101				return c;
1102			}
1103		}
1104	}
1105
1106	/*
1107	 * Extended PEBS support
1108	 * Makes the PEBS code search the normal constraints.
1109	 */
1110	if (x86_pmu.flags & PMU_FL_PEBS_ALL)
1111		return NULL;
1112
1113	return &emptyconstraint;
1114}
1115
1116/*
1117 * We need the sched_task callback even for per-cpu events when we use
1118 * the large interrupt threshold, such that we can provide PID and TID
1119 * to PEBS samples.
1120 */
1121static inline bool pebs_needs_sched_cb(struct cpu_hw_events *cpuc)
1122{
1123	if (cpuc->n_pebs == cpuc->n_pebs_via_pt)
1124		return false;
1125
1126	return cpuc->n_pebs && (cpuc->n_pebs == cpuc->n_large_pebs);
1127}
1128
1129void intel_pmu_pebs_sched_task(struct perf_event_pmu_context *pmu_ctx, bool sched_in)
1130{
1131	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1132
1133	if (!sched_in && pebs_needs_sched_cb(cpuc))
1134		intel_pmu_drain_pebs_buffer();
1135}
1136
1137static inline void pebs_update_threshold(struct cpu_hw_events *cpuc)
1138{
1139	struct debug_store *ds = cpuc->ds;
1140	int max_pebs_events = hybrid(cpuc->pmu, max_pebs_events);
1141	int num_counters_fixed = hybrid(cpuc->pmu, num_counters_fixed);
1142	u64 threshold;
1143	int reserved;
1144
1145	if (cpuc->n_pebs_via_pt)
1146		return;
1147
1148	if (x86_pmu.flags & PMU_FL_PEBS_ALL)
1149		reserved = max_pebs_events + num_counters_fixed;
1150	else
1151		reserved = max_pebs_events;
1152
1153	if (cpuc->n_pebs == cpuc->n_large_pebs) {
1154		threshold = ds->pebs_absolute_maximum -
1155			reserved * cpuc->pebs_record_size;
1156	} else {
1157		threshold = ds->pebs_buffer_base + cpuc->pebs_record_size;
1158	}
1159
1160	ds->pebs_interrupt_threshold = threshold;
1161}
1162
1163static void adaptive_pebs_record_size_update(void)
1164{
1165	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1166	u64 pebs_data_cfg = cpuc->pebs_data_cfg;
1167	int sz = sizeof(struct pebs_basic);
1168
1169	if (pebs_data_cfg & PEBS_DATACFG_MEMINFO)
1170		sz += sizeof(struct pebs_meminfo);
1171	if (pebs_data_cfg & PEBS_DATACFG_GP)
1172		sz += sizeof(struct pebs_gprs);
1173	if (pebs_data_cfg & PEBS_DATACFG_XMMS)
1174		sz += sizeof(struct pebs_xmm);
1175	if (pebs_data_cfg & PEBS_DATACFG_LBRS)
1176		sz += x86_pmu.lbr_nr * sizeof(struct lbr_entry);
1177
1178	cpuc->pebs_record_size = sz;
1179}
1180
1181#define PERF_PEBS_MEMINFO_TYPE	(PERF_SAMPLE_ADDR | PERF_SAMPLE_DATA_SRC |   \
1182				PERF_SAMPLE_PHYS_ADDR |			     \
1183				PERF_SAMPLE_WEIGHT_TYPE |		     \
1184				PERF_SAMPLE_TRANSACTION |		     \
1185				PERF_SAMPLE_DATA_PAGE_SIZE)
1186
1187static u64 pebs_update_adaptive_cfg(struct perf_event *event)
1188{
1189	struct perf_event_attr *attr = &event->attr;
1190	u64 sample_type = attr->sample_type;
1191	u64 pebs_data_cfg = 0;
1192	bool gprs, tsx_weight;
1193
1194	if (!(sample_type & ~(PERF_SAMPLE_IP|PERF_SAMPLE_TIME)) &&
1195	    attr->precise_ip > 1)
1196		return pebs_data_cfg;
1197
1198	if (sample_type & PERF_PEBS_MEMINFO_TYPE)
1199		pebs_data_cfg |= PEBS_DATACFG_MEMINFO;
1200
1201	/*
1202	 * We need GPRs when:
1203	 * + user requested them
1204	 * + precise_ip < 2 for the non event IP
1205	 * + For RTM TSX weight we need GPRs for the abort code.
1206	 */
1207	gprs = (sample_type & PERF_SAMPLE_REGS_INTR) &&
1208	       (attr->sample_regs_intr & PEBS_GP_REGS);
1209
1210	tsx_weight = (sample_type & PERF_SAMPLE_WEIGHT_TYPE) &&
1211		     ((attr->config & INTEL_ARCH_EVENT_MASK) ==
1212		      x86_pmu.rtm_abort_event);
1213
1214	if (gprs || (attr->precise_ip < 2) || tsx_weight)
1215		pebs_data_cfg |= PEBS_DATACFG_GP;
1216
1217	if ((sample_type & PERF_SAMPLE_REGS_INTR) &&
1218	    (attr->sample_regs_intr & PERF_REG_EXTENDED_MASK))
1219		pebs_data_cfg |= PEBS_DATACFG_XMMS;
1220
1221	if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
1222		/*
1223		 * For now always log all LBRs. Could configure this
1224		 * later.
1225		 */
1226		pebs_data_cfg |= PEBS_DATACFG_LBRS |
1227			((x86_pmu.lbr_nr-1) << PEBS_DATACFG_LBR_SHIFT);
1228	}
1229
1230	return pebs_data_cfg;
1231}
1232
1233static void
1234pebs_update_state(bool needed_cb, struct cpu_hw_events *cpuc,
1235		  struct perf_event *event, bool add)
1236{
1237	struct pmu *pmu = event->pmu;
1238
1239	/*
1240	 * Make sure we get updated with the first PEBS event.
1241	 * During removal, ->pebs_data_cfg is still valid for
1242	 * the last PEBS event. Don't clear it.
1243	 */
1244	if ((cpuc->n_pebs == 1) && add)
1245		cpuc->pebs_data_cfg = PEBS_UPDATE_DS_SW;
1246
1247	if (needed_cb != pebs_needs_sched_cb(cpuc)) {
1248		if (!needed_cb)
1249			perf_sched_cb_inc(pmu);
1250		else
1251			perf_sched_cb_dec(pmu);
1252
1253		cpuc->pebs_data_cfg |= PEBS_UPDATE_DS_SW;
1254	}
1255
1256	/*
1257	 * The PEBS record doesn't shrink on pmu::del(). Doing so would require
1258	 * iterating all remaining PEBS events to reconstruct the config.
1259	 */
1260	if (x86_pmu.intel_cap.pebs_baseline && add) {
1261		u64 pebs_data_cfg;
1262
1263		pebs_data_cfg = pebs_update_adaptive_cfg(event);
1264		/*
1265		 * Be sure to update the thresholds when we change the record.
1266		 */
1267		if (pebs_data_cfg & ~cpuc->pebs_data_cfg)
1268			cpuc->pebs_data_cfg |= pebs_data_cfg | PEBS_UPDATE_DS_SW;
1269	}
1270}
1271
1272void intel_pmu_pebs_add(struct perf_event *event)
1273{
1274	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1275	struct hw_perf_event *hwc = &event->hw;
1276	bool needed_cb = pebs_needs_sched_cb(cpuc);
1277
1278	cpuc->n_pebs++;
1279	if (hwc->flags & PERF_X86_EVENT_LARGE_PEBS)
1280		cpuc->n_large_pebs++;
1281	if (hwc->flags & PERF_X86_EVENT_PEBS_VIA_PT)
1282		cpuc->n_pebs_via_pt++;
1283
1284	pebs_update_state(needed_cb, cpuc, event, true);
1285}
1286
1287static void intel_pmu_pebs_via_pt_disable(struct perf_event *event)
1288{
1289	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1290
1291	if (!is_pebs_pt(event))
1292		return;
1293
1294	if (!(cpuc->pebs_enabled & ~PEBS_VIA_PT_MASK))
1295		cpuc->pebs_enabled &= ~PEBS_VIA_PT_MASK;
1296}
1297
1298static void intel_pmu_pebs_via_pt_enable(struct perf_event *event)
1299{
1300	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1301	struct hw_perf_event *hwc = &event->hw;
1302	struct debug_store *ds = cpuc->ds;
1303	u64 value = ds->pebs_event_reset[hwc->idx];
1304	u32 base = MSR_RELOAD_PMC0;
1305	unsigned int idx = hwc->idx;
1306
1307	if (!is_pebs_pt(event))
1308		return;
1309
1310	if (!(event->hw.flags & PERF_X86_EVENT_LARGE_PEBS))
1311		cpuc->pebs_enabled |= PEBS_PMI_AFTER_EACH_RECORD;
1312
1313	cpuc->pebs_enabled |= PEBS_OUTPUT_PT;
1314
1315	if (hwc->idx >= INTEL_PMC_IDX_FIXED) {
1316		base = MSR_RELOAD_FIXED_CTR0;
1317		idx = hwc->idx - INTEL_PMC_IDX_FIXED;
1318		if (x86_pmu.intel_cap.pebs_format < 5)
1319			value = ds->pebs_event_reset[MAX_PEBS_EVENTS_FMT4 + idx];
1320		else
1321			value = ds->pebs_event_reset[MAX_PEBS_EVENTS + idx];
1322	}
1323	wrmsrl(base + idx, value);
1324}
1325
1326static inline void intel_pmu_drain_large_pebs(struct cpu_hw_events *cpuc)
1327{
1328	if (cpuc->n_pebs == cpuc->n_large_pebs &&
1329	    cpuc->n_pebs != cpuc->n_pebs_via_pt)
1330		intel_pmu_drain_pebs_buffer();
1331}
1332
1333void intel_pmu_pebs_enable(struct perf_event *event)
1334{
1335	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1336	u64 pebs_data_cfg = cpuc->pebs_data_cfg & ~PEBS_UPDATE_DS_SW;
1337	struct hw_perf_event *hwc = &event->hw;
1338	struct debug_store *ds = cpuc->ds;
1339	unsigned int idx = hwc->idx;
1340
1341	hwc->config &= ~ARCH_PERFMON_EVENTSEL_INT;
1342
1343	cpuc->pebs_enabled |= 1ULL << hwc->idx;
1344
1345	if ((event->hw.flags & PERF_X86_EVENT_PEBS_LDLAT) && (x86_pmu.version < 5))
1346		cpuc->pebs_enabled |= 1ULL << (hwc->idx + 32);
1347	else if (event->hw.flags & PERF_X86_EVENT_PEBS_ST)
1348		cpuc->pebs_enabled |= 1ULL << 63;
1349
1350	if (x86_pmu.intel_cap.pebs_baseline) {
1351		hwc->config |= ICL_EVENTSEL_ADAPTIVE;
1352		if (pebs_data_cfg != cpuc->active_pebs_data_cfg) {
1353			/*
1354			 * drain_pebs() assumes uniform record size;
1355			 * hence we need to drain when changing said
1356			 * size.
1357			 */
1358			intel_pmu_drain_large_pebs(cpuc);
1359			adaptive_pebs_record_size_update();
1360			wrmsrl(MSR_PEBS_DATA_CFG, pebs_data_cfg);
1361			cpuc->active_pebs_data_cfg = pebs_data_cfg;
1362		}
1363	}
1364	if (cpuc->pebs_data_cfg & PEBS_UPDATE_DS_SW) {
1365		cpuc->pebs_data_cfg = pebs_data_cfg;
1366		pebs_update_threshold(cpuc);
1367	}
1368
1369	if (idx >= INTEL_PMC_IDX_FIXED) {
1370		if (x86_pmu.intel_cap.pebs_format < 5)
1371			idx = MAX_PEBS_EVENTS_FMT4 + (idx - INTEL_PMC_IDX_FIXED);
1372		else
1373			idx = MAX_PEBS_EVENTS + (idx - INTEL_PMC_IDX_FIXED);
1374	}
1375
1376	/*
1377	 * Use auto-reload if possible to save a MSR write in the PMI.
1378	 * This must be done in pmu::start(), because PERF_EVENT_IOC_PERIOD.
1379	 */
1380	if (hwc->flags & PERF_X86_EVENT_AUTO_RELOAD) {
1381		ds->pebs_event_reset[idx] =
1382			(u64)(-hwc->sample_period) & x86_pmu.cntval_mask;
1383	} else {
1384		ds->pebs_event_reset[idx] = 0;
1385	}
1386
1387	intel_pmu_pebs_via_pt_enable(event);
1388}
1389
1390void intel_pmu_pebs_del(struct perf_event *event)
1391{
1392	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1393	struct hw_perf_event *hwc = &event->hw;
1394	bool needed_cb = pebs_needs_sched_cb(cpuc);
1395
1396	cpuc->n_pebs--;
1397	if (hwc->flags & PERF_X86_EVENT_LARGE_PEBS)
1398		cpuc->n_large_pebs--;
1399	if (hwc->flags & PERF_X86_EVENT_PEBS_VIA_PT)
1400		cpuc->n_pebs_via_pt--;
1401
1402	pebs_update_state(needed_cb, cpuc, event, false);
1403}
1404
1405void intel_pmu_pebs_disable(struct perf_event *event)
1406{
1407	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1408	struct hw_perf_event *hwc = &event->hw;
1409
1410	intel_pmu_drain_large_pebs(cpuc);
1411
1412	cpuc->pebs_enabled &= ~(1ULL << hwc->idx);
1413
1414	if ((event->hw.flags & PERF_X86_EVENT_PEBS_LDLAT) &&
1415	    (x86_pmu.version < 5))
1416		cpuc->pebs_enabled &= ~(1ULL << (hwc->idx + 32));
1417	else if (event->hw.flags & PERF_X86_EVENT_PEBS_ST)
1418		cpuc->pebs_enabled &= ~(1ULL << 63);
1419
1420	intel_pmu_pebs_via_pt_disable(event);
1421
1422	if (cpuc->enabled)
1423		wrmsrl(MSR_IA32_PEBS_ENABLE, cpuc->pebs_enabled);
1424
1425	hwc->config |= ARCH_PERFMON_EVENTSEL_INT;
1426}
1427
1428void intel_pmu_pebs_enable_all(void)
1429{
1430	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1431
1432	if (cpuc->pebs_enabled)
1433		wrmsrl(MSR_IA32_PEBS_ENABLE, cpuc->pebs_enabled);
1434}
1435
1436void intel_pmu_pebs_disable_all(void)
1437{
1438	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1439
1440	if (cpuc->pebs_enabled)
1441		__intel_pmu_pebs_disable_all();
1442}
1443
1444static int intel_pmu_pebs_fixup_ip(struct pt_regs *regs)
1445{
1446	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1447	unsigned long from = cpuc->lbr_entries[0].from;
1448	unsigned long old_to, to = cpuc->lbr_entries[0].to;
1449	unsigned long ip = regs->ip;
1450	int is_64bit = 0;
1451	void *kaddr;
1452	int size;
1453
1454	/*
1455	 * We don't need to fixup if the PEBS assist is fault like
1456	 */
1457	if (!x86_pmu.intel_cap.pebs_trap)
1458		return 1;
1459
1460	/*
1461	 * No LBR entry, no basic block, no rewinding
1462	 */
1463	if (!cpuc->lbr_stack.nr || !from || !to)
1464		return 0;
1465
1466	/*
1467	 * Basic blocks should never cross user/kernel boundaries
1468	 */
1469	if (kernel_ip(ip) != kernel_ip(to))
1470		return 0;
1471
1472	/*
1473	 * unsigned math, either ip is before the start (impossible) or
1474	 * the basic block is larger than 1 page (sanity)
1475	 */
1476	if ((ip - to) > PEBS_FIXUP_SIZE)
1477		return 0;
1478
1479	/*
1480	 * We sampled a branch insn, rewind using the LBR stack
1481	 */
1482	if (ip == to) {
1483		set_linear_ip(regs, from);
1484		return 1;
1485	}
1486
1487	size = ip - to;
1488	if (!kernel_ip(ip)) {
1489		int bytes;
1490		u8 *buf = this_cpu_read(insn_buffer);
1491
1492		/* 'size' must fit our buffer, see above */
1493		bytes = copy_from_user_nmi(buf, (void __user *)to, size);
1494		if (bytes != 0)
1495			return 0;
1496
1497		kaddr = buf;
1498	} else {
1499		kaddr = (void *)to;
1500	}
1501
1502	do {
1503		struct insn insn;
1504
1505		old_to = to;
1506
1507#ifdef CONFIG_X86_64
1508		is_64bit = kernel_ip(to) || any_64bit_mode(regs);
1509#endif
1510		insn_init(&insn, kaddr, size, is_64bit);
1511
1512		/*
1513		 * Make sure there was not a problem decoding the instruction.
1514		 * This is doubly important because we have an infinite loop if
1515		 * insn.length=0.
1516		 */
1517		if (insn_get_length(&insn))
1518			break;
1519
1520		to += insn.length;
1521		kaddr += insn.length;
1522		size -= insn.length;
1523	} while (to < ip);
1524
1525	if (to == ip) {
1526		set_linear_ip(regs, old_to);
1527		return 1;
1528	}
1529
1530	/*
1531	 * Even though we decoded the basic block, the instruction stream
1532	 * never matched the given IP, either the TO or the IP got corrupted.
1533	 */
1534	return 0;
1535}
1536
1537static inline u64 intel_get_tsx_weight(u64 tsx_tuning)
1538{
1539	if (tsx_tuning) {
1540		union hsw_tsx_tuning tsx = { .value = tsx_tuning };
1541		return tsx.cycles_last_block;
1542	}
1543	return 0;
1544}
1545
1546static inline u64 intel_get_tsx_transaction(u64 tsx_tuning, u64 ax)
1547{
1548	u64 txn = (tsx_tuning & PEBS_HSW_TSX_FLAGS) >> 32;
1549
1550	/* For RTM XABORTs also log the abort code from AX */
1551	if ((txn & PERF_TXN_TRANSACTION) && (ax & 1))
1552		txn |= ((ax >> 24) & 0xff) << PERF_TXN_ABORT_SHIFT;
1553	return txn;
1554}
1555
1556static inline u64 get_pebs_status(void *n)
1557{
1558	if (x86_pmu.intel_cap.pebs_format < 4)
1559		return ((struct pebs_record_nhm *)n)->status;
1560	return ((struct pebs_basic *)n)->applicable_counters;
1561}
1562
1563#define PERF_X86_EVENT_PEBS_HSW_PREC \
1564		(PERF_X86_EVENT_PEBS_ST_HSW | \
1565		 PERF_X86_EVENT_PEBS_LD_HSW | \
1566		 PERF_X86_EVENT_PEBS_NA_HSW)
1567
1568static u64 get_data_src(struct perf_event *event, u64 aux)
1569{
1570	u64 val = PERF_MEM_NA;
1571	int fl = event->hw.flags;
1572	bool fst = fl & (PERF_X86_EVENT_PEBS_ST | PERF_X86_EVENT_PEBS_HSW_PREC);
1573
1574	if (fl & PERF_X86_EVENT_PEBS_LDLAT)
1575		val = load_latency_data(event, aux);
1576	else if (fl & PERF_X86_EVENT_PEBS_STLAT)
1577		val = store_latency_data(event, aux);
1578	else if (fl & PERF_X86_EVENT_PEBS_LAT_HYBRID)
1579		val = x86_pmu.pebs_latency_data(event, aux);
1580	else if (fst && (fl & PERF_X86_EVENT_PEBS_HSW_PREC))
1581		val = precise_datala_hsw(event, aux);
1582	else if (fst)
1583		val = precise_store_data(aux);
1584	return val;
1585}
1586
1587static void setup_pebs_time(struct perf_event *event,
1588			    struct perf_sample_data *data,
1589			    u64 tsc)
1590{
1591	/* Converting to a user-defined clock is not supported yet. */
1592	if (event->attr.use_clockid != 0)
1593		return;
1594
1595	/*
1596	 * Doesn't support the conversion when the TSC is unstable.
1597	 * The TSC unstable case is a corner case and very unlikely to
1598	 * happen. If it happens, the TSC in a PEBS record will be
1599	 * dropped and fall back to perf_event_clock().
1600	 */
1601	if (!using_native_sched_clock() || !sched_clock_stable())
1602		return;
1603
1604	data->time = native_sched_clock_from_tsc(tsc) + __sched_clock_offset;
1605	data->sample_flags |= PERF_SAMPLE_TIME;
1606}
1607
1608#define PERF_SAMPLE_ADDR_TYPE	(PERF_SAMPLE_ADDR |		\
1609				 PERF_SAMPLE_PHYS_ADDR |	\
1610				 PERF_SAMPLE_DATA_PAGE_SIZE)
1611
1612static void setup_pebs_fixed_sample_data(struct perf_event *event,
1613				   struct pt_regs *iregs, void *__pebs,
1614				   struct perf_sample_data *data,
1615				   struct pt_regs *regs)
1616{
1617	/*
1618	 * We cast to the biggest pebs_record but are careful not to
1619	 * unconditionally access the 'extra' entries.
1620	 */
1621	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1622	struct pebs_record_skl *pebs = __pebs;
1623	u64 sample_type;
1624	int fll;
1625
1626	if (pebs == NULL)
1627		return;
1628
1629	sample_type = event->attr.sample_type;
1630	fll = event->hw.flags & PERF_X86_EVENT_PEBS_LDLAT;
1631
1632	perf_sample_data_init(data, 0, event->hw.last_period);
1633
1634	data->period = event->hw.last_period;
1635
1636	/*
1637	 * Use latency for weight (only avail with PEBS-LL)
1638	 */
1639	if (fll && (sample_type & PERF_SAMPLE_WEIGHT_TYPE)) {
1640		data->weight.full = pebs->lat;
1641		data->sample_flags |= PERF_SAMPLE_WEIGHT_TYPE;
1642	}
1643
1644	/*
1645	 * data.data_src encodes the data source
1646	 */
1647	if (sample_type & PERF_SAMPLE_DATA_SRC) {
1648		data->data_src.val = get_data_src(event, pebs->dse);
1649		data->sample_flags |= PERF_SAMPLE_DATA_SRC;
1650	}
1651
1652	/*
1653	 * We must however always use iregs for the unwinder to stay sane; the
1654	 * record BP,SP,IP can point into thin air when the record is from a
1655	 * previous PMI context or an (I)RET happened between the record and
1656	 * PMI.
1657	 */
1658	if (sample_type & PERF_SAMPLE_CALLCHAIN)
1659		perf_sample_save_callchain(data, event, iregs);
1660
1661	/*
1662	 * We use the interrupt regs as a base because the PEBS record does not
1663	 * contain a full regs set, specifically it seems to lack segment
1664	 * descriptors, which get used by things like user_mode().
1665	 *
1666	 * In the simple case fix up only the IP for PERF_SAMPLE_IP.
1667	 */
1668	*regs = *iregs;
1669
1670	/*
1671	 * Initialize regs_>flags from PEBS,
1672	 * Clear exact bit (which uses x86 EFLAGS Reserved bit 3),
1673	 * i.e., do not rely on it being zero:
1674	 */
1675	regs->flags = pebs->flags & ~PERF_EFLAGS_EXACT;
1676
1677	if (sample_type & PERF_SAMPLE_REGS_INTR) {
1678		regs->ax = pebs->ax;
1679		regs->bx = pebs->bx;
1680		regs->cx = pebs->cx;
1681		regs->dx = pebs->dx;
1682		regs->si = pebs->si;
1683		regs->di = pebs->di;
1684
1685		regs->bp = pebs->bp;
1686		regs->sp = pebs->sp;
1687
1688#ifndef CONFIG_X86_32
1689		regs->r8 = pebs->r8;
1690		regs->r9 = pebs->r9;
1691		regs->r10 = pebs->r10;
1692		regs->r11 = pebs->r11;
1693		regs->r12 = pebs->r12;
1694		regs->r13 = pebs->r13;
1695		regs->r14 = pebs->r14;
1696		regs->r15 = pebs->r15;
1697#endif
1698	}
1699
1700	if (event->attr.precise_ip > 1) {
1701		/*
1702		 * Haswell and later processors have an 'eventing IP'
1703		 * (real IP) which fixes the off-by-1 skid in hardware.
1704		 * Use it when precise_ip >= 2 :
1705		 */
1706		if (x86_pmu.intel_cap.pebs_format >= 2) {
1707			set_linear_ip(regs, pebs->real_ip);
1708			regs->flags |= PERF_EFLAGS_EXACT;
1709		} else {
1710			/* Otherwise, use PEBS off-by-1 IP: */
1711			set_linear_ip(regs, pebs->ip);
1712
1713			/*
1714			 * With precise_ip >= 2, try to fix up the off-by-1 IP
1715			 * using the LBR. If successful, the fixup function
1716			 * corrects regs->ip and calls set_linear_ip() on regs:
1717			 */
1718			if (intel_pmu_pebs_fixup_ip(regs))
1719				regs->flags |= PERF_EFLAGS_EXACT;
1720		}
1721	} else {
1722		/*
1723		 * When precise_ip == 1, return the PEBS off-by-1 IP,
1724		 * no fixup attempted:
1725		 */
1726		set_linear_ip(regs, pebs->ip);
1727	}
1728
1729
1730	if ((sample_type & PERF_SAMPLE_ADDR_TYPE) &&
1731	    x86_pmu.intel_cap.pebs_format >= 1) {
1732		data->addr = pebs->dla;
1733		data->sample_flags |= PERF_SAMPLE_ADDR;
1734	}
1735
1736	if (x86_pmu.intel_cap.pebs_format >= 2) {
1737		/* Only set the TSX weight when no memory weight. */
1738		if ((sample_type & PERF_SAMPLE_WEIGHT_TYPE) && !fll) {
1739			data->weight.full = intel_get_tsx_weight(pebs->tsx_tuning);
1740			data->sample_flags |= PERF_SAMPLE_WEIGHT_TYPE;
1741		}
1742		if (sample_type & PERF_SAMPLE_TRANSACTION) {
1743			data->txn = intel_get_tsx_transaction(pebs->tsx_tuning,
1744							      pebs->ax);
1745			data->sample_flags |= PERF_SAMPLE_TRANSACTION;
1746		}
1747	}
1748
1749	/*
1750	 * v3 supplies an accurate time stamp, so we use that
1751	 * for the time stamp.
1752	 *
1753	 * We can only do this for the default trace clock.
1754	 */
1755	if (x86_pmu.intel_cap.pebs_format >= 3)
1756		setup_pebs_time(event, data, pebs->tsc);
1757
1758	if (has_branch_stack(event))
1759		perf_sample_save_brstack(data, event, &cpuc->lbr_stack, NULL);
1760}
1761
1762static void adaptive_pebs_save_regs(struct pt_regs *regs,
1763				    struct pebs_gprs *gprs)
1764{
1765	regs->ax = gprs->ax;
1766	regs->bx = gprs->bx;
1767	regs->cx = gprs->cx;
1768	regs->dx = gprs->dx;
1769	regs->si = gprs->si;
1770	regs->di = gprs->di;
1771	regs->bp = gprs->bp;
1772	regs->sp = gprs->sp;
1773#ifndef CONFIG_X86_32
1774	regs->r8 = gprs->r8;
1775	regs->r9 = gprs->r9;
1776	regs->r10 = gprs->r10;
1777	regs->r11 = gprs->r11;
1778	regs->r12 = gprs->r12;
1779	regs->r13 = gprs->r13;
1780	regs->r14 = gprs->r14;
1781	regs->r15 = gprs->r15;
1782#endif
1783}
1784
1785#define PEBS_LATENCY_MASK			0xffff
1786#define PEBS_CACHE_LATENCY_OFFSET		32
1787#define PEBS_RETIRE_LATENCY_OFFSET		32
1788
1789/*
1790 * With adaptive PEBS the layout depends on what fields are configured.
1791 */
1792
1793static void setup_pebs_adaptive_sample_data(struct perf_event *event,
1794					    struct pt_regs *iregs, void *__pebs,
1795					    struct perf_sample_data *data,
1796					    struct pt_regs *regs)
1797{
1798	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1799	struct pebs_basic *basic = __pebs;
1800	void *next_record = basic + 1;
1801	u64 sample_type;
1802	u64 format_size;
1803	struct pebs_meminfo *meminfo = NULL;
1804	struct pebs_gprs *gprs = NULL;
1805	struct x86_perf_regs *perf_regs;
1806
1807	if (basic == NULL)
1808		return;
1809
1810	perf_regs = container_of(regs, struct x86_perf_regs, regs);
1811	perf_regs->xmm_regs = NULL;
1812
1813	sample_type = event->attr.sample_type;
1814	format_size = basic->format_size;
1815	perf_sample_data_init(data, 0, event->hw.last_period);
1816	data->period = event->hw.last_period;
1817
1818	setup_pebs_time(event, data, basic->tsc);
1819
1820	/*
1821	 * We must however always use iregs for the unwinder to stay sane; the
1822	 * record BP,SP,IP can point into thin air when the record is from a
1823	 * previous PMI context or an (I)RET happened between the record and
1824	 * PMI.
1825	 */
1826	if (sample_type & PERF_SAMPLE_CALLCHAIN)
1827		perf_sample_save_callchain(data, event, iregs);
1828
1829	*regs = *iregs;
1830	/* The ip in basic is EventingIP */
1831	set_linear_ip(regs, basic->ip);
1832	regs->flags = PERF_EFLAGS_EXACT;
1833
1834	if ((sample_type & PERF_SAMPLE_WEIGHT_STRUCT) && (x86_pmu.flags & PMU_FL_RETIRE_LATENCY))
1835		data->weight.var3_w = format_size >> PEBS_RETIRE_LATENCY_OFFSET & PEBS_LATENCY_MASK;
1836
1837	/*
1838	 * The record for MEMINFO is in front of GP
1839	 * But PERF_SAMPLE_TRANSACTION needs gprs->ax.
1840	 * Save the pointer here but process later.
1841	 */
1842	if (format_size & PEBS_DATACFG_MEMINFO) {
1843		meminfo = next_record;
1844		next_record = meminfo + 1;
1845	}
1846
1847	if (format_size & PEBS_DATACFG_GP) {
1848		gprs = next_record;
1849		next_record = gprs + 1;
1850
1851		if (event->attr.precise_ip < 2) {
1852			set_linear_ip(regs, gprs->ip);
1853			regs->flags &= ~PERF_EFLAGS_EXACT;
1854		}
1855
1856		if (sample_type & PERF_SAMPLE_REGS_INTR)
1857			adaptive_pebs_save_regs(regs, gprs);
1858	}
1859
1860	if (format_size & PEBS_DATACFG_MEMINFO) {
1861		if (sample_type & PERF_SAMPLE_WEIGHT_TYPE) {
1862			u64 weight = meminfo->latency;
1863
1864			if (x86_pmu.flags & PMU_FL_INSTR_LATENCY) {
1865				data->weight.var2_w = weight & PEBS_LATENCY_MASK;
1866				weight >>= PEBS_CACHE_LATENCY_OFFSET;
1867			}
1868
1869			/*
1870			 * Although meminfo::latency is defined as a u64,
1871			 * only the lower 32 bits include the valid data
1872			 * in practice on Ice Lake and earlier platforms.
1873			 */
1874			if (sample_type & PERF_SAMPLE_WEIGHT) {
1875				data->weight.full = weight ?:
1876					intel_get_tsx_weight(meminfo->tsx_tuning);
1877			} else {
1878				data->weight.var1_dw = (u32)(weight & PEBS_LATENCY_MASK) ?:
1879					intel_get_tsx_weight(meminfo->tsx_tuning);
1880			}
1881			data->sample_flags |= PERF_SAMPLE_WEIGHT_TYPE;
1882		}
1883
1884		if (sample_type & PERF_SAMPLE_DATA_SRC) {
1885			data->data_src.val = get_data_src(event, meminfo->aux);
1886			data->sample_flags |= PERF_SAMPLE_DATA_SRC;
1887		}
1888
1889		if (sample_type & PERF_SAMPLE_ADDR_TYPE) {
1890			data->addr = meminfo->address;
1891			data->sample_flags |= PERF_SAMPLE_ADDR;
1892		}
1893
1894		if (sample_type & PERF_SAMPLE_TRANSACTION) {
1895			data->txn = intel_get_tsx_transaction(meminfo->tsx_tuning,
1896							  gprs ? gprs->ax : 0);
1897			data->sample_flags |= PERF_SAMPLE_TRANSACTION;
1898		}
1899	}
1900
1901	if (format_size & PEBS_DATACFG_XMMS) {
1902		struct pebs_xmm *xmm = next_record;
1903
1904		next_record = xmm + 1;
1905		perf_regs->xmm_regs = xmm->xmm;
1906	}
1907
1908	if (format_size & PEBS_DATACFG_LBRS) {
1909		struct lbr_entry *lbr = next_record;
1910		int num_lbr = ((format_size >> PEBS_DATACFG_LBR_SHIFT)
1911					& 0xff) + 1;
1912		next_record = next_record + num_lbr * sizeof(struct lbr_entry);
1913
1914		if (has_branch_stack(event)) {
1915			intel_pmu_store_pebs_lbrs(lbr);
1916			intel_pmu_lbr_save_brstack(data, cpuc, event);
1917		}
1918	}
1919
1920	WARN_ONCE(next_record != __pebs + (format_size >> 48),
1921			"PEBS record size %llu, expected %llu, config %llx\n",
1922			format_size >> 48,
1923			(u64)(next_record - __pebs),
1924			basic->format_size);
1925}
1926
1927static inline void *
1928get_next_pebs_record_by_bit(void *base, void *top, int bit)
1929{
1930	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1931	void *at;
1932	u64 pebs_status;
1933
1934	/*
1935	 * fmt0 does not have a status bitfield (does not use
1936	 * perf_record_nhm format)
1937	 */
1938	if (x86_pmu.intel_cap.pebs_format < 1)
1939		return base;
1940
1941	if (base == NULL)
1942		return NULL;
1943
1944	for (at = base; at < top; at += cpuc->pebs_record_size) {
1945		unsigned long status = get_pebs_status(at);
1946
1947		if (test_bit(bit, (unsigned long *)&status)) {
1948			/* PEBS v3 has accurate status bits */
1949			if (x86_pmu.intel_cap.pebs_format >= 3)
1950				return at;
1951
1952			if (status == (1 << bit))
1953				return at;
1954
1955			/* clear non-PEBS bit and re-check */
1956			pebs_status = status & cpuc->pebs_enabled;
1957			pebs_status &= PEBS_COUNTER_MASK;
1958			if (pebs_status == (1 << bit))
1959				return at;
1960		}
1961	}
1962	return NULL;
1963}
1964
1965void intel_pmu_auto_reload_read(struct perf_event *event)
1966{
1967	WARN_ON(!(event->hw.flags & PERF_X86_EVENT_AUTO_RELOAD));
1968
1969	perf_pmu_disable(event->pmu);
1970	intel_pmu_drain_pebs_buffer();
1971	perf_pmu_enable(event->pmu);
1972}
1973
1974/*
1975 * Special variant of intel_pmu_save_and_restart() for auto-reload.
1976 */
1977static int
1978intel_pmu_save_and_restart_reload(struct perf_event *event, int count)
1979{
1980	struct hw_perf_event *hwc = &event->hw;
1981	int shift = 64 - x86_pmu.cntval_bits;
1982	u64 period = hwc->sample_period;
1983	u64 prev_raw_count, new_raw_count;
1984	s64 new, old;
1985
1986	WARN_ON(!period);
1987
1988	/*
1989	 * drain_pebs() only happens when the PMU is disabled.
1990	 */
1991	WARN_ON(this_cpu_read(cpu_hw_events.enabled));
1992
1993	prev_raw_count = local64_read(&hwc->prev_count);
1994	rdpmcl(hwc->event_base_rdpmc, new_raw_count);
1995	local64_set(&hwc->prev_count, new_raw_count);
1996
1997	/*
1998	 * Since the counter increments a negative counter value and
1999	 * overflows on the sign switch, giving the interval:
2000	 *
2001	 *   [-period, 0]
2002	 *
2003	 * the difference between two consecutive reads is:
2004	 *
2005	 *   A) value2 - value1;
2006	 *      when no overflows have happened in between,
2007	 *
2008	 *   B) (0 - value1) + (value2 - (-period));
2009	 *      when one overflow happened in between,
2010	 *
2011	 *   C) (0 - value1) + (n - 1) * (period) + (value2 - (-period));
2012	 *      when @n overflows happened in between.
2013	 *
2014	 * Here A) is the obvious difference, B) is the extension to the
2015	 * discrete interval, where the first term is to the top of the
2016	 * interval and the second term is from the bottom of the next
2017	 * interval and C) the extension to multiple intervals, where the
2018	 * middle term is the whole intervals covered.
2019	 *
2020	 * An equivalent of C, by reduction, is:
2021	 *
2022	 *   value2 - value1 + n * period
2023	 */
2024	new = ((s64)(new_raw_count << shift) >> shift);
2025	old = ((s64)(prev_raw_count << shift) >> shift);
2026	local64_add(new - old + count * period, &event->count);
2027
2028	local64_set(&hwc->period_left, -new);
2029
2030	perf_event_update_userpage(event);
2031
2032	return 0;
2033}
2034
2035static __always_inline void
2036__intel_pmu_pebs_event(struct perf_event *event,
2037		       struct pt_regs *iregs,
2038		       struct perf_sample_data *data,
2039		       void *base, void *top,
2040		       int bit, int count,
2041		       void (*setup_sample)(struct perf_event *,
2042					    struct pt_regs *,
2043					    void *,
2044					    struct perf_sample_data *,
2045					    struct pt_regs *))
2046{
2047	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
2048	struct hw_perf_event *hwc = &event->hw;
2049	struct x86_perf_regs perf_regs;
2050	struct pt_regs *regs = &perf_regs.regs;
2051	void *at = get_next_pebs_record_by_bit(base, top, bit);
2052	static struct pt_regs dummy_iregs;
2053
2054	if (hwc->flags & PERF_X86_EVENT_AUTO_RELOAD) {
2055		/*
2056		 * Now, auto-reload is only enabled in fixed period mode.
2057		 * The reload value is always hwc->sample_period.
2058		 * May need to change it, if auto-reload is enabled in
2059		 * freq mode later.
2060		 */
2061		intel_pmu_save_and_restart_reload(event, count);
2062	} else if (!intel_pmu_save_and_restart(event))
2063		return;
2064
2065	if (!iregs)
2066		iregs = &dummy_iregs;
2067
2068	while (count > 1) {
2069		setup_sample(event, iregs, at, data, regs);
2070		perf_event_output(event, data, regs);
2071		at += cpuc->pebs_record_size;
2072		at = get_next_pebs_record_by_bit(at, top, bit);
2073		count--;
2074	}
2075
2076	setup_sample(event, iregs, at, data, regs);
2077	if (iregs == &dummy_iregs) {
2078		/*
2079		 * The PEBS records may be drained in the non-overflow context,
2080		 * e.g., large PEBS + context switch. Perf should treat the
2081		 * last record the same as other PEBS records, and doesn't
2082		 * invoke the generic overflow handler.
2083		 */
2084		perf_event_output(event, data, regs);
2085	} else {
2086		/*
2087		 * All but the last records are processed.
2088		 * The last one is left to be able to call the overflow handler.
2089		 */
2090		if (perf_event_overflow(event, data, regs))
2091			x86_pmu_stop(event, 0);
2092	}
2093}
2094
2095static void intel_pmu_drain_pebs_core(struct pt_regs *iregs, struct perf_sample_data *data)
2096{
2097	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
2098	struct debug_store *ds = cpuc->ds;
2099	struct perf_event *event = cpuc->events[0]; /* PMC0 only */
2100	struct pebs_record_core *at, *top;
2101	int n;
2102
2103	if (!x86_pmu.pebs_active)
2104		return;
2105
2106	at  = (struct pebs_record_core *)(unsigned long)ds->pebs_buffer_base;
2107	top = (struct pebs_record_core *)(unsigned long)ds->pebs_index;
2108
2109	/*
2110	 * Whatever else happens, drain the thing
2111	 */
2112	ds->pebs_index = ds->pebs_buffer_base;
2113
2114	if (!test_bit(0, cpuc->active_mask))
2115		return;
2116
2117	WARN_ON_ONCE(!event);
2118
2119	if (!event->attr.precise_ip)
2120		return;
2121
2122	n = top - at;
2123	if (n <= 0) {
2124		if (event->hw.flags & PERF_X86_EVENT_AUTO_RELOAD)
2125			intel_pmu_save_and_restart_reload(event, 0);
2126		return;
2127	}
2128
2129	__intel_pmu_pebs_event(event, iregs, data, at, top, 0, n,
2130			       setup_pebs_fixed_sample_data);
2131}
2132
2133static void intel_pmu_pebs_event_update_no_drain(struct cpu_hw_events *cpuc, int size)
2134{
2135	struct perf_event *event;
2136	int bit;
2137
2138	/*
2139	 * The drain_pebs() could be called twice in a short period
2140	 * for auto-reload event in pmu::read(). There are no
2141	 * overflows have happened in between.
2142	 * It needs to call intel_pmu_save_and_restart_reload() to
2143	 * update the event->count for this case.
2144	 */
2145	for_each_set_bit(bit, (unsigned long *)&cpuc->pebs_enabled, size) {
2146		event = cpuc->events[bit];
2147		if (event->hw.flags & PERF_X86_EVENT_AUTO_RELOAD)
2148			intel_pmu_save_and_restart_reload(event, 0);
2149	}
2150}
2151
2152static void intel_pmu_drain_pebs_nhm(struct pt_regs *iregs, struct perf_sample_data *data)
2153{
2154	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
2155	struct debug_store *ds = cpuc->ds;
2156	struct perf_event *event;
2157	void *base, *at, *top;
2158	short counts[INTEL_PMC_IDX_FIXED + MAX_FIXED_PEBS_EVENTS] = {};
2159	short error[INTEL_PMC_IDX_FIXED + MAX_FIXED_PEBS_EVENTS] = {};
2160	int bit, i, size;
2161	u64 mask;
2162
2163	if (!x86_pmu.pebs_active)
2164		return;
2165
2166	base = (struct pebs_record_nhm *)(unsigned long)ds->pebs_buffer_base;
2167	top = (struct pebs_record_nhm *)(unsigned long)ds->pebs_index;
2168
2169	ds->pebs_index = ds->pebs_buffer_base;
2170
2171	mask = (1ULL << x86_pmu.max_pebs_events) - 1;
2172	size = x86_pmu.max_pebs_events;
2173	if (x86_pmu.flags & PMU_FL_PEBS_ALL) {
2174		mask |= ((1ULL << x86_pmu.num_counters_fixed) - 1) << INTEL_PMC_IDX_FIXED;
2175		size = INTEL_PMC_IDX_FIXED + x86_pmu.num_counters_fixed;
2176	}
2177
2178	if (unlikely(base >= top)) {
2179		intel_pmu_pebs_event_update_no_drain(cpuc, size);
2180		return;
2181	}
2182
2183	for (at = base; at < top; at += x86_pmu.pebs_record_size) {
2184		struct pebs_record_nhm *p = at;
2185		u64 pebs_status;
2186
2187		pebs_status = p->status & cpuc->pebs_enabled;
2188		pebs_status &= mask;
2189
2190		/* PEBS v3 has more accurate status bits */
2191		if (x86_pmu.intel_cap.pebs_format >= 3) {
2192			for_each_set_bit(bit, (unsigned long *)&pebs_status, size)
2193				counts[bit]++;
2194
2195			continue;
2196		}
2197
2198		/*
2199		 * On some CPUs the PEBS status can be zero when PEBS is
2200		 * racing with clearing of GLOBAL_STATUS.
2201		 *
2202		 * Normally we would drop that record, but in the
2203		 * case when there is only a single active PEBS event
2204		 * we can assume it's for that event.
2205		 */
2206		if (!pebs_status && cpuc->pebs_enabled &&
2207			!(cpuc->pebs_enabled & (cpuc->pebs_enabled-1)))
2208			pebs_status = p->status = cpuc->pebs_enabled;
2209
2210		bit = find_first_bit((unsigned long *)&pebs_status,
2211					x86_pmu.max_pebs_events);
2212		if (bit >= x86_pmu.max_pebs_events)
2213			continue;
2214
2215		/*
2216		 * The PEBS hardware does not deal well with the situation
2217		 * when events happen near to each other and multiple bits
2218		 * are set. But it should happen rarely.
2219		 *
2220		 * If these events include one PEBS and multiple non-PEBS
2221		 * events, it doesn't impact PEBS record. The record will
2222		 * be handled normally. (slow path)
2223		 *
2224		 * If these events include two or more PEBS events, the
2225		 * records for the events can be collapsed into a single
2226		 * one, and it's not possible to reconstruct all events
2227		 * that caused the PEBS record. It's called collision.
2228		 * If collision happened, the record will be dropped.
2229		 */
2230		if (pebs_status != (1ULL << bit)) {
2231			for_each_set_bit(i, (unsigned long *)&pebs_status, size)
2232				error[i]++;
2233			continue;
2234		}
2235
2236		counts[bit]++;
2237	}
2238
2239	for_each_set_bit(bit, (unsigned long *)&mask, size) {
2240		if ((counts[bit] == 0) && (error[bit] == 0))
2241			continue;
2242
2243		event = cpuc->events[bit];
2244		if (WARN_ON_ONCE(!event))
2245			continue;
2246
2247		if (WARN_ON_ONCE(!event->attr.precise_ip))
2248			continue;
2249
2250		/* log dropped samples number */
2251		if (error[bit]) {
2252			perf_log_lost_samples(event, error[bit]);
2253
2254			if (iregs && perf_event_account_interrupt(event))
2255				x86_pmu_stop(event, 0);
2256		}
2257
2258		if (counts[bit]) {
2259			__intel_pmu_pebs_event(event, iregs, data, base,
2260					       top, bit, counts[bit],
2261					       setup_pebs_fixed_sample_data);
2262		}
2263	}
2264}
2265
2266static void intel_pmu_drain_pebs_icl(struct pt_regs *iregs, struct perf_sample_data *data)
2267{
2268	short counts[INTEL_PMC_IDX_FIXED + MAX_FIXED_PEBS_EVENTS] = {};
2269	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
2270	int max_pebs_events = hybrid(cpuc->pmu, max_pebs_events);
2271	int num_counters_fixed = hybrid(cpuc->pmu, num_counters_fixed);
2272	struct debug_store *ds = cpuc->ds;
2273	struct perf_event *event;
2274	void *base, *at, *top;
2275	int bit, size;
2276	u64 mask;
2277
2278	if (!x86_pmu.pebs_active)
2279		return;
2280
2281	base = (struct pebs_basic *)(unsigned long)ds->pebs_buffer_base;
2282	top = (struct pebs_basic *)(unsigned long)ds->pebs_index;
2283
2284	ds->pebs_index = ds->pebs_buffer_base;
2285
2286	mask = ((1ULL << max_pebs_events) - 1) |
2287	       (((1ULL << num_counters_fixed) - 1) << INTEL_PMC_IDX_FIXED);
2288	size = INTEL_PMC_IDX_FIXED + num_counters_fixed;
2289
2290	if (unlikely(base >= top)) {
2291		intel_pmu_pebs_event_update_no_drain(cpuc, size);
2292		return;
2293	}
2294
2295	for (at = base; at < top; at += cpuc->pebs_record_size) {
2296		u64 pebs_status;
2297
2298		pebs_status = get_pebs_status(at) & cpuc->pebs_enabled;
2299		pebs_status &= mask;
2300
2301		for_each_set_bit(bit, (unsigned long *)&pebs_status, size)
2302			counts[bit]++;
2303	}
2304
2305	for_each_set_bit(bit, (unsigned long *)&mask, size) {
2306		if (counts[bit] == 0)
2307			continue;
2308
2309		event = cpuc->events[bit];
2310		if (WARN_ON_ONCE(!event))
2311			continue;
2312
2313		if (WARN_ON_ONCE(!event->attr.precise_ip))
2314			continue;
2315
2316		__intel_pmu_pebs_event(event, iregs, data, base,
2317				       top, bit, counts[bit],
2318				       setup_pebs_adaptive_sample_data);
2319	}
2320}
2321
2322/*
2323 * BTS, PEBS probe and setup
2324 */
2325
2326void __init intel_ds_init(void)
2327{
2328	/*
2329	 * No support for 32bit formats
2330	 */
2331	if (!boot_cpu_has(X86_FEATURE_DTES64))
2332		return;
2333
2334	x86_pmu.bts  = boot_cpu_has(X86_FEATURE_BTS);
2335	x86_pmu.pebs = boot_cpu_has(X86_FEATURE_PEBS);
2336	x86_pmu.pebs_buffer_size = PEBS_BUFFER_SIZE;
2337	if (x86_pmu.version <= 4)
2338		x86_pmu.pebs_no_isolation = 1;
2339
2340	if (x86_pmu.pebs) {
2341		char pebs_type = x86_pmu.intel_cap.pebs_trap ?  '+' : '-';
2342		char *pebs_qual = "";
2343		int format = x86_pmu.intel_cap.pebs_format;
2344
2345		if (format < 4)
2346			x86_pmu.intel_cap.pebs_baseline = 0;
2347
2348		switch (format) {
2349		case 0:
2350			pr_cont("PEBS fmt0%c, ", pebs_type);
2351			x86_pmu.pebs_record_size = sizeof(struct pebs_record_core);
2352			/*
2353			 * Using >PAGE_SIZE buffers makes the WRMSR to
2354			 * PERF_GLOBAL_CTRL in intel_pmu_enable_all()
2355			 * mysteriously hang on Core2.
2356			 *
2357			 * As a workaround, we don't do this.
2358			 */
2359			x86_pmu.pebs_buffer_size = PAGE_SIZE;
2360			x86_pmu.drain_pebs = intel_pmu_drain_pebs_core;
2361			break;
2362
2363		case 1:
2364			pr_cont("PEBS fmt1%c, ", pebs_type);
2365			x86_pmu.pebs_record_size = sizeof(struct pebs_record_nhm);
2366			x86_pmu.drain_pebs = intel_pmu_drain_pebs_nhm;
2367			break;
2368
2369		case 2:
2370			pr_cont("PEBS fmt2%c, ", pebs_type);
2371			x86_pmu.pebs_record_size = sizeof(struct pebs_record_hsw);
2372			x86_pmu.drain_pebs = intel_pmu_drain_pebs_nhm;
2373			break;
2374
2375		case 3:
2376			pr_cont("PEBS fmt3%c, ", pebs_type);
2377			x86_pmu.pebs_record_size =
2378						sizeof(struct pebs_record_skl);
2379			x86_pmu.drain_pebs = intel_pmu_drain_pebs_nhm;
2380			x86_pmu.large_pebs_flags |= PERF_SAMPLE_TIME;
2381			break;
2382
2383		case 5:
2384			x86_pmu.pebs_ept = 1;
2385			fallthrough;
2386		case 4:
2387			x86_pmu.drain_pebs = intel_pmu_drain_pebs_icl;
2388			x86_pmu.pebs_record_size = sizeof(struct pebs_basic);
2389			if (x86_pmu.intel_cap.pebs_baseline) {
2390				x86_pmu.large_pebs_flags |=
2391					PERF_SAMPLE_BRANCH_STACK |
2392					PERF_SAMPLE_TIME;
2393				x86_pmu.flags |= PMU_FL_PEBS_ALL;
2394				x86_pmu.pebs_capable = ~0ULL;
2395				pebs_qual = "-baseline";
2396				x86_get_pmu(smp_processor_id())->capabilities |= PERF_PMU_CAP_EXTENDED_REGS;
2397			} else {
2398				/* Only basic record supported */
2399				x86_pmu.large_pebs_flags &=
2400					~(PERF_SAMPLE_ADDR |
2401					  PERF_SAMPLE_TIME |
2402					  PERF_SAMPLE_DATA_SRC |
2403					  PERF_SAMPLE_TRANSACTION |
2404					  PERF_SAMPLE_REGS_USER |
2405					  PERF_SAMPLE_REGS_INTR);
2406			}
2407			pr_cont("PEBS fmt4%c%s, ", pebs_type, pebs_qual);
2408
2409			if (!is_hybrid() && x86_pmu.intel_cap.pebs_output_pt_available) {
2410				pr_cont("PEBS-via-PT, ");
2411				x86_get_pmu(smp_processor_id())->capabilities |= PERF_PMU_CAP_AUX_OUTPUT;
2412			}
2413
2414			break;
2415
2416		default:
2417			pr_cont("no PEBS fmt%d%c, ", format, pebs_type);
2418			x86_pmu.pebs = 0;
2419		}
2420	}
2421}
2422
2423void perf_restore_debug_store(void)
2424{
2425	struct debug_store *ds = __this_cpu_read(cpu_hw_events.ds);
2426
2427	if (!x86_pmu.bts && !x86_pmu.pebs)
2428		return;
2429
2430	wrmsrl(MSR_IA32_DS_AREA, (unsigned long)ds);
2431}
2432