1// SPDX-License-Identifier: GPL-2.0
2/*
3 * AMD Encrypted Register State Support
4 *
5 * Author: Joerg Roedel <jroedel@suse.de>
6 */
7
8/*
9 * misc.h needs to be first because it knows how to include the other kernel
10 * headers in the pre-decompression code in a way that does not break
11 * compilation.
12 */
13#include "misc.h"
14
15#include <asm/bootparam.h>
16#include <asm/pgtable_types.h>
17#include <asm/sev.h>
18#include <asm/trapnr.h>
19#include <asm/trap_pf.h>
20#include <asm/msr-index.h>
21#include <asm/fpu/xcr.h>
22#include <asm/ptrace.h>
23#include <asm/svm.h>
24#include <asm/cpuid.h>
25
26#include "error.h"
27#include "../msr.h"
28
29static struct ghcb boot_ghcb_page __aligned(PAGE_SIZE);
30struct ghcb *boot_ghcb;
31
32/*
33 * Copy a version of this function here - insn-eval.c can't be used in
34 * pre-decompression code.
35 */
36static bool insn_has_rep_prefix(struct insn *insn)
37{
38	insn_byte_t p;
39	int i;
40
41	insn_get_prefixes(insn);
42
43	for_each_insn_prefix(insn, i, p) {
44		if (p == 0xf2 || p == 0xf3)
45			return true;
46	}
47
48	return false;
49}
50
51/*
52 * Only a dummy for insn_get_seg_base() - Early boot-code is 64bit only and
53 * doesn't use segments.
54 */
55static unsigned long insn_get_seg_base(struct pt_regs *regs, int seg_reg_idx)
56{
57	return 0UL;
58}
59
60static inline u64 sev_es_rd_ghcb_msr(void)
61{
62	struct msr m;
63
64	boot_rdmsr(MSR_AMD64_SEV_ES_GHCB, &m);
65
66	return m.q;
67}
68
69static inline void sev_es_wr_ghcb_msr(u64 val)
70{
71	struct msr m;
72
73	m.q = val;
74	boot_wrmsr(MSR_AMD64_SEV_ES_GHCB, &m);
75}
76
77static enum es_result vc_decode_insn(struct es_em_ctxt *ctxt)
78{
79	char buffer[MAX_INSN_SIZE];
80	int ret;
81
82	memcpy(buffer, (unsigned char *)ctxt->regs->ip, MAX_INSN_SIZE);
83
84	ret = insn_decode(&ctxt->insn, buffer, MAX_INSN_SIZE, INSN_MODE_64);
85	if (ret < 0)
86		return ES_DECODE_FAILED;
87
88	return ES_OK;
89}
90
91static enum es_result vc_write_mem(struct es_em_ctxt *ctxt,
92				   void *dst, char *buf, size_t size)
93{
94	memcpy(dst, buf, size);
95
96	return ES_OK;
97}
98
99static enum es_result vc_read_mem(struct es_em_ctxt *ctxt,
100				  void *src, char *buf, size_t size)
101{
102	memcpy(buf, src, size);
103
104	return ES_OK;
105}
106
107static enum es_result vc_ioio_check(struct es_em_ctxt *ctxt, u16 port, size_t size)
108{
109	return ES_OK;
110}
111
112static bool fault_in_kernel_space(unsigned long address)
113{
114	return false;
115}
116
117#undef __init
118#define __init
119
120#undef __head
121#define __head
122
123#define __BOOT_COMPRESSED
124
125/* Basic instruction decoding support needed */
126#include "../../lib/inat.c"
127#include "../../lib/insn.c"
128
129/* Include code for early handlers */
130#include "../../kernel/sev-shared.c"
131
132bool sev_snp_enabled(void)
133{
134	return sev_status & MSR_AMD64_SEV_SNP_ENABLED;
135}
136
137static void __page_state_change(unsigned long paddr, enum psc_op op)
138{
139	u64 val;
140
141	if (!sev_snp_enabled())
142		return;
143
144	/*
145	 * If private -> shared then invalidate the page before requesting the
146	 * state change in the RMP table.
147	 */
148	if (op == SNP_PAGE_STATE_SHARED && pvalidate(paddr, RMP_PG_SIZE_4K, 0))
149		sev_es_terminate(SEV_TERM_SET_LINUX, GHCB_TERM_PVALIDATE);
150
151	/* Issue VMGEXIT to change the page state in RMP table. */
152	sev_es_wr_ghcb_msr(GHCB_MSR_PSC_REQ_GFN(paddr >> PAGE_SHIFT, op));
153	VMGEXIT();
154
155	/* Read the response of the VMGEXIT. */
156	val = sev_es_rd_ghcb_msr();
157	if ((GHCB_RESP_CODE(val) != GHCB_MSR_PSC_RESP) || GHCB_MSR_PSC_RESP_VAL(val))
158		sev_es_terminate(SEV_TERM_SET_LINUX, GHCB_TERM_PSC);
159
160	/*
161	 * Now that page state is changed in the RMP table, validate it so that it is
162	 * consistent with the RMP entry.
163	 */
164	if (op == SNP_PAGE_STATE_PRIVATE && pvalidate(paddr, RMP_PG_SIZE_4K, 1))
165		sev_es_terminate(SEV_TERM_SET_LINUX, GHCB_TERM_PVALIDATE);
166}
167
168void snp_set_page_private(unsigned long paddr)
169{
170	__page_state_change(paddr, SNP_PAGE_STATE_PRIVATE);
171}
172
173void snp_set_page_shared(unsigned long paddr)
174{
175	__page_state_change(paddr, SNP_PAGE_STATE_SHARED);
176}
177
178static bool early_setup_ghcb(void)
179{
180	if (set_page_decrypted((unsigned long)&boot_ghcb_page))
181		return false;
182
183	/* Page is now mapped decrypted, clear it */
184	memset(&boot_ghcb_page, 0, sizeof(boot_ghcb_page));
185
186	boot_ghcb = &boot_ghcb_page;
187
188	/* Initialize lookup tables for the instruction decoder */
189	inat_init_tables();
190
191	/* SNP guest requires the GHCB GPA must be registered */
192	if (sev_snp_enabled())
193		snp_register_ghcb_early(__pa(&boot_ghcb_page));
194
195	return true;
196}
197
198static phys_addr_t __snp_accept_memory(struct snp_psc_desc *desc,
199				       phys_addr_t pa, phys_addr_t pa_end)
200{
201	struct psc_hdr *hdr;
202	struct psc_entry *e;
203	unsigned int i;
204
205	hdr = &desc->hdr;
206	memset(hdr, 0, sizeof(*hdr));
207
208	e = desc->entries;
209
210	i = 0;
211	while (pa < pa_end && i < VMGEXIT_PSC_MAX_ENTRY) {
212		hdr->end_entry = i;
213
214		e->gfn = pa >> PAGE_SHIFT;
215		e->operation = SNP_PAGE_STATE_PRIVATE;
216		if (IS_ALIGNED(pa, PMD_SIZE) && (pa_end - pa) >= PMD_SIZE) {
217			e->pagesize = RMP_PG_SIZE_2M;
218			pa += PMD_SIZE;
219		} else {
220			e->pagesize = RMP_PG_SIZE_4K;
221			pa += PAGE_SIZE;
222		}
223
224		e++;
225		i++;
226	}
227
228	if (vmgexit_psc(boot_ghcb, desc))
229		sev_es_terminate(SEV_TERM_SET_LINUX, GHCB_TERM_PSC);
230
231	pvalidate_pages(desc);
232
233	return pa;
234}
235
236void snp_accept_memory(phys_addr_t start, phys_addr_t end)
237{
238	struct snp_psc_desc desc = {};
239	unsigned int i;
240	phys_addr_t pa;
241
242	if (!boot_ghcb && !early_setup_ghcb())
243		sev_es_terminate(SEV_TERM_SET_LINUX, GHCB_TERM_PSC);
244
245	pa = start;
246	while (pa < end)
247		pa = __snp_accept_memory(&desc, pa, end);
248}
249
250void sev_es_shutdown_ghcb(void)
251{
252	if (!boot_ghcb)
253		return;
254
255	if (!sev_es_check_cpu_features())
256		error("SEV-ES CPU Features missing.");
257
258	/*
259	 * GHCB Page must be flushed from the cache and mapped encrypted again.
260	 * Otherwise the running kernel will see strange cache effects when
261	 * trying to use that page.
262	 */
263	if (set_page_encrypted((unsigned long)&boot_ghcb_page))
264		error("Can't map GHCB page encrypted");
265
266	/*
267	 * GHCB page is mapped encrypted again and flushed from the cache.
268	 * Mark it non-present now to catch bugs when #VC exceptions trigger
269	 * after this point.
270	 */
271	if (set_page_non_present((unsigned long)&boot_ghcb_page))
272		error("Can't unmap GHCB page");
273}
274
275static void __noreturn sev_es_ghcb_terminate(struct ghcb *ghcb, unsigned int set,
276					     unsigned int reason, u64 exit_info_2)
277{
278	u64 exit_info_1 = SVM_VMGEXIT_TERM_REASON(set, reason);
279
280	vc_ghcb_invalidate(ghcb);
281	ghcb_set_sw_exit_code(ghcb, SVM_VMGEXIT_TERM_REQUEST);
282	ghcb_set_sw_exit_info_1(ghcb, exit_info_1);
283	ghcb_set_sw_exit_info_2(ghcb, exit_info_2);
284
285	sev_es_wr_ghcb_msr(__pa(ghcb));
286	VMGEXIT();
287
288	while (true)
289		asm volatile("hlt\n" : : : "memory");
290}
291
292bool sev_es_check_ghcb_fault(unsigned long address)
293{
294	/* Check whether the fault was on the GHCB page */
295	return ((address & PAGE_MASK) == (unsigned long)&boot_ghcb_page);
296}
297
298void do_boot_stage2_vc(struct pt_regs *regs, unsigned long exit_code)
299{
300	struct es_em_ctxt ctxt;
301	enum es_result result;
302
303	if (!boot_ghcb && !early_setup_ghcb())
304		sev_es_terminate(SEV_TERM_SET_GEN, GHCB_SEV_ES_GEN_REQ);
305
306	vc_ghcb_invalidate(boot_ghcb);
307	result = vc_init_em_ctxt(&ctxt, regs, exit_code);
308	if (result != ES_OK)
309		goto finish;
310
311	result = vc_check_opcode_bytes(&ctxt, exit_code);
312	if (result != ES_OK)
313		goto finish;
314
315	switch (exit_code) {
316	case SVM_EXIT_RDTSC:
317	case SVM_EXIT_RDTSCP:
318		result = vc_handle_rdtsc(boot_ghcb, &ctxt, exit_code);
319		break;
320	case SVM_EXIT_IOIO:
321		result = vc_handle_ioio(boot_ghcb, &ctxt);
322		break;
323	case SVM_EXIT_CPUID:
324		result = vc_handle_cpuid(boot_ghcb, &ctxt);
325		break;
326	default:
327		result = ES_UNSUPPORTED;
328		break;
329	}
330
331finish:
332	if (result == ES_OK)
333		vc_finish_insn(&ctxt);
334	else if (result != ES_RETRY)
335		sev_es_terminate(SEV_TERM_SET_GEN, GHCB_SEV_ES_GEN_REQ);
336}
337
338static void enforce_vmpl0(void)
339{
340	u64 attrs;
341	int err;
342
343	/*
344	 * RMPADJUST modifies RMP permissions of a lesser-privileged (numerically
345	 * higher) privilege level. Here, clear the VMPL1 permission mask of the
346	 * GHCB page. If the guest is not running at VMPL0, this will fail.
347	 *
348	 * If the guest is running at VMPL0, it will succeed. Even if that operation
349	 * modifies permission bits, it is still ok to do so currently because Linux
350	 * SNP guests are supported only on VMPL0 so VMPL1 or higher permission masks
351	 * changing is a don't-care.
352	 */
353	attrs = 1;
354	if (rmpadjust((unsigned long)&boot_ghcb_page, RMP_PG_SIZE_4K, attrs))
355		sev_es_terminate(SEV_TERM_SET_LINUX, GHCB_TERM_NOT_VMPL0);
356}
357
358/*
359 * SNP_FEATURES_IMPL_REQ is the mask of SNP features that will need
360 * guest side implementation for proper functioning of the guest. If any
361 * of these features are enabled in the hypervisor but are lacking guest
362 * side implementation, the behavior of the guest will be undefined. The
363 * guest could fail in non-obvious way making it difficult to debug.
364 *
365 * As the behavior of reserved feature bits is unknown to be on the
366 * safe side add them to the required features mask.
367 */
368#define SNP_FEATURES_IMPL_REQ	(MSR_AMD64_SNP_VTOM |			\
369				 MSR_AMD64_SNP_REFLECT_VC |		\
370				 MSR_AMD64_SNP_RESTRICTED_INJ |		\
371				 MSR_AMD64_SNP_ALT_INJ |		\
372				 MSR_AMD64_SNP_DEBUG_SWAP |		\
373				 MSR_AMD64_SNP_VMPL_SSS |		\
374				 MSR_AMD64_SNP_SECURE_TSC |		\
375				 MSR_AMD64_SNP_VMGEXIT_PARAM |		\
376				 MSR_AMD64_SNP_VMSA_REG_PROT |		\
377				 MSR_AMD64_SNP_RESERVED_BIT13 |		\
378				 MSR_AMD64_SNP_RESERVED_BIT15 |		\
379				 MSR_AMD64_SNP_RESERVED_MASK)
380
381/*
382 * SNP_FEATURES_PRESENT is the mask of SNP features that are implemented
383 * by the guest kernel. As and when a new feature is implemented in the
384 * guest kernel, a corresponding bit should be added to the mask.
385 */
386#define SNP_FEATURES_PRESENT	MSR_AMD64_SNP_DEBUG_SWAP
387
388u64 snp_get_unsupported_features(u64 status)
389{
390	if (!(status & MSR_AMD64_SEV_SNP_ENABLED))
391		return 0;
392
393	return status & SNP_FEATURES_IMPL_REQ & ~SNP_FEATURES_PRESENT;
394}
395
396void snp_check_features(void)
397{
398	u64 unsupported;
399
400	/*
401	 * Terminate the boot if hypervisor has enabled any feature lacking
402	 * guest side implementation. Pass on the unsupported features mask through
403	 * EXIT_INFO_2 of the GHCB protocol so that those features can be reported
404	 * as part of the guest boot failure.
405	 */
406	unsupported = snp_get_unsupported_features(sev_status);
407	if (unsupported) {
408		if (ghcb_version < 2 || (!boot_ghcb && !early_setup_ghcb()))
409			sev_es_terminate(SEV_TERM_SET_GEN, GHCB_SNP_UNSUPPORTED);
410
411		sev_es_ghcb_terminate(boot_ghcb, SEV_TERM_SET_GEN,
412				      GHCB_SNP_UNSUPPORTED, unsupported);
413	}
414}
415
416/*
417 * sev_check_cpu_support - Check for SEV support in the CPU capabilities
418 *
419 * Returns < 0 if SEV is not supported, otherwise the position of the
420 * encryption bit in the page table descriptors.
421 */
422static int sev_check_cpu_support(void)
423{
424	unsigned int eax, ebx, ecx, edx;
425
426	/* Check for the SME/SEV support leaf */
427	eax = 0x80000000;
428	ecx = 0;
429	native_cpuid(&eax, &ebx, &ecx, &edx);
430	if (eax < 0x8000001f)
431		return -ENODEV;
432
433	/*
434	 * Check for the SME/SEV feature:
435	 *   CPUID Fn8000_001F[EAX]
436	 *   - Bit 0 - Secure Memory Encryption support
437	 *   - Bit 1 - Secure Encrypted Virtualization support
438	 *   CPUID Fn8000_001F[EBX]
439	 *   - Bits 5:0 - Pagetable bit position used to indicate encryption
440	 */
441	eax = 0x8000001f;
442	ecx = 0;
443	native_cpuid(&eax, &ebx, &ecx, &edx);
444	/* Check whether SEV is supported */
445	if (!(eax & BIT(1)))
446		return -ENODEV;
447
448	return ebx & 0x3f;
449}
450
451void sev_enable(struct boot_params *bp)
452{
453	struct msr m;
454	int bitpos;
455	bool snp;
456
457	/*
458	 * bp->cc_blob_address should only be set by boot/compressed kernel.
459	 * Initialize it to 0 to ensure that uninitialized values from
460	 * buggy bootloaders aren't propagated.
461	 */
462	if (bp)
463		bp->cc_blob_address = 0;
464
465	/*
466	 * Do an initial SEV capability check before snp_init() which
467	 * loads the CPUID page and the same checks afterwards are done
468	 * without the hypervisor and are trustworthy.
469	 *
470	 * If the HV fakes SEV support, the guest will crash'n'burn
471	 * which is good enough.
472	 */
473
474	if (sev_check_cpu_support() < 0)
475		return;
476
477	/*
478	 * Setup/preliminary detection of SNP. This will be sanity-checked
479	 * against CPUID/MSR values later.
480	 */
481	snp = snp_init(bp);
482
483	/* Now repeat the checks with the SNP CPUID table. */
484
485	bitpos = sev_check_cpu_support();
486	if (bitpos < 0) {
487		if (snp)
488			error("SEV-SNP support indicated by CC blob, but not CPUID.");
489		return;
490	}
491
492	/* Set the SME mask if this is an SEV guest. */
493	boot_rdmsr(MSR_AMD64_SEV, &m);
494	sev_status = m.q;
495	if (!(sev_status & MSR_AMD64_SEV_ENABLED))
496		return;
497
498	/* Negotiate the GHCB protocol version. */
499	if (sev_status & MSR_AMD64_SEV_ES_ENABLED) {
500		if (!sev_es_negotiate_protocol())
501			sev_es_terminate(SEV_TERM_SET_GEN, GHCB_SEV_ES_PROT_UNSUPPORTED);
502	}
503
504	/*
505	 * SNP is supported in v2 of the GHCB spec which mandates support for HV
506	 * features.
507	 */
508	if (sev_status & MSR_AMD64_SEV_SNP_ENABLED) {
509		if (!(get_hv_features() & GHCB_HV_FT_SNP))
510			sev_es_terminate(SEV_TERM_SET_GEN, GHCB_SNP_UNSUPPORTED);
511
512		enforce_vmpl0();
513	}
514
515	if (snp && !(sev_status & MSR_AMD64_SEV_SNP_ENABLED))
516		error("SEV-SNP supported indicated by CC blob, but not SEV status MSR.");
517
518	sme_me_mask = BIT_ULL(bitpos);
519}
520
521/*
522 * sev_get_status - Retrieve the SEV status mask
523 *
524 * Returns 0 if the CPU is not SEV capable, otherwise the value of the
525 * AMD64_SEV MSR.
526 */
527u64 sev_get_status(void)
528{
529	struct msr m;
530
531	if (sev_check_cpu_support() < 0)
532		return 0;
533
534	boot_rdmsr(MSR_AMD64_SEV, &m);
535	return m.q;
536}
537
538/* Search for Confidential Computing blob in the EFI config table. */
539static struct cc_blob_sev_info *find_cc_blob_efi(struct boot_params *bp)
540{
541	unsigned long cfg_table_pa;
542	unsigned int cfg_table_len;
543	int ret;
544
545	ret = efi_get_conf_table(bp, &cfg_table_pa, &cfg_table_len);
546	if (ret)
547		return NULL;
548
549	return (struct cc_blob_sev_info *)efi_find_vendor_table(bp, cfg_table_pa,
550								cfg_table_len,
551								EFI_CC_BLOB_GUID);
552}
553
554/*
555 * Initial set up of SNP relies on information provided by the
556 * Confidential Computing blob, which can be passed to the boot kernel
557 * by firmware/bootloader in the following ways:
558 *
559 * - via an entry in the EFI config table
560 * - via a setup_data structure, as defined by the Linux Boot Protocol
561 *
562 * Scan for the blob in that order.
563 */
564static struct cc_blob_sev_info *find_cc_blob(struct boot_params *bp)
565{
566	struct cc_blob_sev_info *cc_info;
567
568	cc_info = find_cc_blob_efi(bp);
569	if (cc_info)
570		goto found_cc_info;
571
572	cc_info = find_cc_blob_setup_data(bp);
573	if (!cc_info)
574		return NULL;
575
576found_cc_info:
577	if (cc_info->magic != CC_BLOB_SEV_HDR_MAGIC)
578		sev_es_terminate(SEV_TERM_SET_GEN, GHCB_SNP_UNSUPPORTED);
579
580	return cc_info;
581}
582
583/*
584 * Indicate SNP based on presence of SNP-specific CC blob. Subsequent checks
585 * will verify the SNP CPUID/MSR bits.
586 */
587bool snp_init(struct boot_params *bp)
588{
589	struct cc_blob_sev_info *cc_info;
590
591	if (!bp)
592		return false;
593
594	cc_info = find_cc_blob(bp);
595	if (!cc_info)
596		return false;
597
598	/*
599	 * If a SNP-specific Confidential Computing blob is present, then
600	 * firmware/bootloader have indicated SNP support. Verifying this
601	 * involves CPUID checks which will be more reliable if the SNP
602	 * CPUID table is used. See comments over snp_setup_cpuid_table() for
603	 * more details.
604	 */
605	setup_cpuid_table(cc_info);
606
607	/*
608	 * Pass run-time kernel a pointer to CC info via boot_params so EFI
609	 * config table doesn't need to be searched again during early startup
610	 * phase.
611	 */
612	bp->cc_blob_address = (u32)(unsigned long)cc_info;
613
614	return true;
615}
616
617void sev_prep_identity_maps(unsigned long top_level_pgt)
618{
619	/*
620	 * The Confidential Computing blob is used very early in uncompressed
621	 * kernel to find the in-memory CPUID table to handle CPUID
622	 * instructions. Make sure an identity-mapping exists so it can be
623	 * accessed after switchover.
624	 */
625	if (sev_snp_enabled()) {
626		unsigned long cc_info_pa = boot_params_ptr->cc_blob_address;
627		struct cc_blob_sev_info *cc_info;
628
629		kernel_add_identity_map(cc_info_pa, cc_info_pa + sizeof(*cc_info));
630
631		cc_info = (struct cc_blob_sev_info *)cc_info_pa;
632		kernel_add_identity_map(cc_info->cpuid_phys, cc_info->cpuid_phys + cc_info->cpuid_len);
633	}
634
635	sev_verify_cbit(top_level_pgt);
636}
637