1// SPDX-License-Identifier: GPL-2.0
2/*
3 * kaslr.c
4 *
5 * This contains the routines needed to generate a reasonable level of
6 * entropy to choose a randomized kernel base address offset in support
7 * of Kernel Address Space Layout Randomization (KASLR). Additionally
8 * handles walking the physical memory maps (and tracking memory regions
9 * to avoid) in order to select a physical memory location that can
10 * contain the entire properly aligned running kernel image.
11 *
12 */
13
14/*
15 * isspace() in linux/ctype.h is expected by next_args() to filter
16 * out "space/lf/tab". While boot/ctype.h conflicts with linux/ctype.h,
17 * since isdigit() is implemented in both of them. Hence disable it
18 * here.
19 */
20#define BOOT_CTYPE_H
21
22#include "misc.h"
23#include "error.h"
24#include "../string.h"
25#include "efi.h"
26
27#include <generated/compile.h>
28#include <linux/module.h>
29#include <linux/uts.h>
30#include <linux/utsname.h>
31#include <linux/ctype.h>
32#include <generated/utsversion.h>
33#include <generated/utsrelease.h>
34
35#define _SETUP
36#include <asm/setup.h>	/* For COMMAND_LINE_SIZE */
37#undef _SETUP
38
39extern unsigned long get_cmd_line_ptr(void);
40
41/* Simplified build-specific string for starting entropy. */
42static const char build_str[] = UTS_RELEASE " (" LINUX_COMPILE_BY "@"
43		LINUX_COMPILE_HOST ") (" LINUX_COMPILER ") " UTS_VERSION;
44
45static unsigned long rotate_xor(unsigned long hash, const void *area,
46				size_t size)
47{
48	size_t i;
49	unsigned long *ptr = (unsigned long *)area;
50
51	for (i = 0; i < size / sizeof(hash); i++) {
52		/* Rotate by odd number of bits and XOR. */
53		hash = (hash << ((sizeof(hash) * 8) - 7)) | (hash >> 7);
54		hash ^= ptr[i];
55	}
56
57	return hash;
58}
59
60/* Attempt to create a simple but unpredictable starting entropy. */
61static unsigned long get_boot_seed(void)
62{
63	unsigned long hash = 0;
64
65	hash = rotate_xor(hash, build_str, sizeof(build_str));
66	hash = rotate_xor(hash, boot_params_ptr, sizeof(*boot_params_ptr));
67
68	return hash;
69}
70
71#define KASLR_COMPRESSED_BOOT
72#include "../../lib/kaslr.c"
73
74
75/* Only supporting at most 4 unusable memmap regions with kaslr */
76#define MAX_MEMMAP_REGIONS	4
77
78static bool memmap_too_large;
79
80
81/*
82 * Store memory limit: MAXMEM on 64-bit and KERNEL_IMAGE_SIZE on 32-bit.
83 * It may be reduced by "mem=nn[KMG]" or "memmap=nn[KMG]" command line options.
84 */
85static u64 mem_limit;
86
87/* Number of immovable memory regions */
88static int num_immovable_mem;
89
90enum mem_avoid_index {
91	MEM_AVOID_ZO_RANGE = 0,
92	MEM_AVOID_INITRD,
93	MEM_AVOID_CMDLINE,
94	MEM_AVOID_BOOTPARAMS,
95	MEM_AVOID_MEMMAP_BEGIN,
96	MEM_AVOID_MEMMAP_END = MEM_AVOID_MEMMAP_BEGIN + MAX_MEMMAP_REGIONS - 1,
97	MEM_AVOID_MAX,
98};
99
100static struct mem_vector mem_avoid[MEM_AVOID_MAX];
101
102static bool mem_overlaps(struct mem_vector *one, struct mem_vector *two)
103{
104	/* Item one is entirely before item two. */
105	if (one->start + one->size <= two->start)
106		return false;
107	/* Item one is entirely after item two. */
108	if (one->start >= two->start + two->size)
109		return false;
110	return true;
111}
112
113char *skip_spaces(const char *str)
114{
115	while (isspace(*str))
116		++str;
117	return (char *)str;
118}
119#include "../../../../lib/ctype.c"
120#include "../../../../lib/cmdline.c"
121
122enum parse_mode {
123	PARSE_MEMMAP,
124	PARSE_EFI,
125};
126
127static int
128parse_memmap(char *p, u64 *start, u64 *size, enum parse_mode mode)
129{
130	char *oldp;
131
132	if (!p)
133		return -EINVAL;
134
135	/* We don't care about this option here */
136	if (!strncmp(p, "exactmap", 8))
137		return -EINVAL;
138
139	oldp = p;
140	*size = memparse(p, &p);
141	if (p == oldp)
142		return -EINVAL;
143
144	switch (*p) {
145	case '#':
146	case '$':
147	case '!':
148		*start = memparse(p + 1, &p);
149		return 0;
150	case '@':
151		if (mode == PARSE_MEMMAP) {
152			/*
153			 * memmap=nn@ss specifies usable region, should
154			 * be skipped
155			 */
156			*size = 0;
157		} else {
158			u64 flags;
159
160			/*
161			 * efi_fake_mem=nn@ss:attr the attr specifies
162			 * flags that might imply a soft-reservation.
163			 */
164			*start = memparse(p + 1, &p);
165			if (p && *p == ':') {
166				p++;
167				if (kstrtoull(p, 0, &flags) < 0)
168					*size = 0;
169				else if (flags & EFI_MEMORY_SP)
170					return 0;
171			}
172			*size = 0;
173		}
174		fallthrough;
175	default:
176		/*
177		 * If w/o offset, only size specified, memmap=nn[KMG] has the
178		 * same behaviour as mem=nn[KMG]. It limits the max address
179		 * system can use. Region above the limit should be avoided.
180		 */
181		*start = 0;
182		return 0;
183	}
184
185	return -EINVAL;
186}
187
188static void mem_avoid_memmap(enum parse_mode mode, char *str)
189{
190	static int i;
191
192	if (i >= MAX_MEMMAP_REGIONS)
193		return;
194
195	while (str && (i < MAX_MEMMAP_REGIONS)) {
196		int rc;
197		u64 start, size;
198		char *k = strchr(str, ',');
199
200		if (k)
201			*k++ = 0;
202
203		rc = parse_memmap(str, &start, &size, mode);
204		if (rc < 0)
205			break;
206		str = k;
207
208		if (start == 0) {
209			/* Store the specified memory limit if size > 0 */
210			if (size > 0 && size < mem_limit)
211				mem_limit = size;
212
213			continue;
214		}
215
216		mem_avoid[MEM_AVOID_MEMMAP_BEGIN + i].start = start;
217		mem_avoid[MEM_AVOID_MEMMAP_BEGIN + i].size = size;
218		i++;
219	}
220
221	/* More than 4 memmaps, fail kaslr */
222	if ((i >= MAX_MEMMAP_REGIONS) && str)
223		memmap_too_large = true;
224}
225
226/* Store the number of 1GB huge pages which users specified: */
227static unsigned long max_gb_huge_pages;
228
229static void parse_gb_huge_pages(char *param, char *val)
230{
231	static bool gbpage_sz;
232	char *p;
233
234	if (!strcmp(param, "hugepagesz")) {
235		p = val;
236		if (memparse(p, &p) != PUD_SIZE) {
237			gbpage_sz = false;
238			return;
239		}
240
241		if (gbpage_sz)
242			warn("Repeatedly set hugeTLB page size of 1G!\n");
243		gbpage_sz = true;
244		return;
245	}
246
247	if (!strcmp(param, "hugepages") && gbpage_sz) {
248		p = val;
249		max_gb_huge_pages = simple_strtoull(p, &p, 0);
250		return;
251	}
252}
253
254static void handle_mem_options(void)
255{
256	char *args = (char *)get_cmd_line_ptr();
257	size_t len;
258	char *tmp_cmdline;
259	char *param, *val;
260	u64 mem_size;
261
262	if (!args)
263		return;
264
265	len = strnlen(args, COMMAND_LINE_SIZE-1);
266	tmp_cmdline = malloc(len + 1);
267	if (!tmp_cmdline)
268		error("Failed to allocate space for tmp_cmdline");
269
270	memcpy(tmp_cmdline, args, len);
271	tmp_cmdline[len] = 0;
272	args = tmp_cmdline;
273
274	/* Chew leading spaces */
275	args = skip_spaces(args);
276
277	while (*args) {
278		args = next_arg(args, &param, &val);
279		/* Stop at -- */
280		if (!val && strcmp(param, "--") == 0)
281			break;
282
283		if (!strcmp(param, "memmap")) {
284			mem_avoid_memmap(PARSE_MEMMAP, val);
285		} else if (IS_ENABLED(CONFIG_X86_64) && strstr(param, "hugepages")) {
286			parse_gb_huge_pages(param, val);
287		} else if (!strcmp(param, "mem")) {
288			char *p = val;
289
290			if (!strcmp(p, "nopentium"))
291				continue;
292			mem_size = memparse(p, &p);
293			if (mem_size == 0)
294				break;
295
296			if (mem_size < mem_limit)
297				mem_limit = mem_size;
298		} else if (!strcmp(param, "efi_fake_mem")) {
299			mem_avoid_memmap(PARSE_EFI, val);
300		}
301	}
302
303	free(tmp_cmdline);
304	return;
305}
306
307/*
308 * In theory, KASLR can put the kernel anywhere in the range of [16M, MAXMEM)
309 * on 64-bit, and [16M, KERNEL_IMAGE_SIZE) on 32-bit.
310 *
311 * The mem_avoid array is used to store the ranges that need to be avoided
312 * when KASLR searches for an appropriate random address. We must avoid any
313 * regions that are unsafe to overlap with during decompression, and other
314 * things like the initrd, cmdline and boot_params. This comment seeks to
315 * explain mem_avoid as clearly as possible since incorrect mem_avoid
316 * memory ranges lead to really hard to debug boot failures.
317 *
318 * The initrd, cmdline, and boot_params are trivial to identify for
319 * avoiding. They are MEM_AVOID_INITRD, MEM_AVOID_CMDLINE, and
320 * MEM_AVOID_BOOTPARAMS respectively below.
321 *
322 * What is not obvious how to avoid is the range of memory that is used
323 * during decompression (MEM_AVOID_ZO_RANGE below). This range must cover
324 * the compressed kernel (ZO) and its run space, which is used to extract
325 * the uncompressed kernel (VO) and relocs.
326 *
327 * ZO's full run size sits against the end of the decompression buffer, so
328 * we can calculate where text, data, bss, etc of ZO are positioned more
329 * easily.
330 *
331 * For additional background, the decompression calculations can be found
332 * in header.S, and the memory diagram is based on the one found in misc.c.
333 *
334 * The following conditions are already enforced by the image layouts and
335 * associated code:
336 *  - input + input_size >= output + output_size
337 *  - kernel_total_size <= init_size
338 *  - kernel_total_size <= output_size (see Note below)
339 *  - output + init_size >= output + output_size
340 *
341 * (Note that kernel_total_size and output_size have no fundamental
342 * relationship, but output_size is passed to choose_random_location
343 * as a maximum of the two. The diagram is showing a case where
344 * kernel_total_size is larger than output_size, but this case is
345 * handled by bumping output_size.)
346 *
347 * The above conditions can be illustrated by a diagram:
348 *
349 * 0   output            input            input+input_size    output+init_size
350 * |     |                 |                             |             |
351 * |     |                 |                             |             |
352 * |-----|--------|--------|--------------|-----------|--|-------------|
353 *                |                       |           |
354 *                |                       |           |
355 * output+init_size-ZO_INIT_SIZE  output+output_size  output+kernel_total_size
356 *
357 * [output, output+init_size) is the entire memory range used for
358 * extracting the compressed image.
359 *
360 * [output, output+kernel_total_size) is the range needed for the
361 * uncompressed kernel (VO) and its run size (bss, brk, etc).
362 *
363 * [output, output+output_size) is VO plus relocs (i.e. the entire
364 * uncompressed payload contained by ZO). This is the area of the buffer
365 * written to during decompression.
366 *
367 * [output+init_size-ZO_INIT_SIZE, output+init_size) is the worst-case
368 * range of the copied ZO and decompression code. (i.e. the range
369 * covered backwards of size ZO_INIT_SIZE, starting from output+init_size.)
370 *
371 * [input, input+input_size) is the original copied compressed image (ZO)
372 * (i.e. it does not include its run size). This range must be avoided
373 * because it contains the data used for decompression.
374 *
375 * [input+input_size, output+init_size) is [_text, _end) for ZO. This
376 * range includes ZO's heap and stack, and must be avoided since it
377 * performs the decompression.
378 *
379 * Since the above two ranges need to be avoided and they are adjacent,
380 * they can be merged, resulting in: [input, output+init_size) which
381 * becomes the MEM_AVOID_ZO_RANGE below.
382 */
383static void mem_avoid_init(unsigned long input, unsigned long input_size,
384			   unsigned long output)
385{
386	unsigned long init_size = boot_params_ptr->hdr.init_size;
387	u64 initrd_start, initrd_size;
388	unsigned long cmd_line, cmd_line_size;
389
390	/*
391	 * Avoid the region that is unsafe to overlap during
392	 * decompression.
393	 */
394	mem_avoid[MEM_AVOID_ZO_RANGE].start = input;
395	mem_avoid[MEM_AVOID_ZO_RANGE].size = (output + init_size) - input;
396
397	/* Avoid initrd. */
398	initrd_start  = (u64)boot_params_ptr->ext_ramdisk_image << 32;
399	initrd_start |= boot_params_ptr->hdr.ramdisk_image;
400	initrd_size  = (u64)boot_params_ptr->ext_ramdisk_size << 32;
401	initrd_size |= boot_params_ptr->hdr.ramdisk_size;
402	mem_avoid[MEM_AVOID_INITRD].start = initrd_start;
403	mem_avoid[MEM_AVOID_INITRD].size = initrd_size;
404	/* No need to set mapping for initrd, it will be handled in VO. */
405
406	/* Avoid kernel command line. */
407	cmd_line = get_cmd_line_ptr();
408	/* Calculate size of cmd_line. */
409	if (cmd_line) {
410		cmd_line_size = strnlen((char *)cmd_line, COMMAND_LINE_SIZE-1) + 1;
411		mem_avoid[MEM_AVOID_CMDLINE].start = cmd_line;
412		mem_avoid[MEM_AVOID_CMDLINE].size = cmd_line_size;
413	}
414
415	/* Avoid boot parameters. */
416	mem_avoid[MEM_AVOID_BOOTPARAMS].start = (unsigned long)boot_params_ptr;
417	mem_avoid[MEM_AVOID_BOOTPARAMS].size = sizeof(*boot_params_ptr);
418
419	/* We don't need to set a mapping for setup_data. */
420
421	/* Mark the memmap regions we need to avoid */
422	handle_mem_options();
423
424	/* Enumerate the immovable memory regions */
425	num_immovable_mem = count_immovable_mem_regions();
426}
427
428/*
429 * Does this memory vector overlap a known avoided area? If so, record the
430 * overlap region with the lowest address.
431 */
432static bool mem_avoid_overlap(struct mem_vector *img,
433			      struct mem_vector *overlap)
434{
435	int i;
436	struct setup_data *ptr;
437	u64 earliest = img->start + img->size;
438	bool is_overlapping = false;
439
440	for (i = 0; i < MEM_AVOID_MAX; i++) {
441		if (mem_overlaps(img, &mem_avoid[i]) &&
442		    mem_avoid[i].start < earliest) {
443			*overlap = mem_avoid[i];
444			earliest = overlap->start;
445			is_overlapping = true;
446		}
447	}
448
449	/* Avoid all entries in the setup_data linked list. */
450	ptr = (struct setup_data *)(unsigned long)boot_params_ptr->hdr.setup_data;
451	while (ptr) {
452		struct mem_vector avoid;
453
454		avoid.start = (unsigned long)ptr;
455		avoid.size = sizeof(*ptr) + ptr->len;
456
457		if (mem_overlaps(img, &avoid) && (avoid.start < earliest)) {
458			*overlap = avoid;
459			earliest = overlap->start;
460			is_overlapping = true;
461		}
462
463		if (ptr->type == SETUP_INDIRECT &&
464		    ((struct setup_indirect *)ptr->data)->type != SETUP_INDIRECT) {
465			avoid.start = ((struct setup_indirect *)ptr->data)->addr;
466			avoid.size = ((struct setup_indirect *)ptr->data)->len;
467
468			if (mem_overlaps(img, &avoid) && (avoid.start < earliest)) {
469				*overlap = avoid;
470				earliest = overlap->start;
471				is_overlapping = true;
472			}
473		}
474
475		ptr = (struct setup_data *)(unsigned long)ptr->next;
476	}
477
478	return is_overlapping;
479}
480
481struct slot_area {
482	u64 addr;
483	unsigned long num;
484};
485
486#define MAX_SLOT_AREA 100
487
488static struct slot_area slot_areas[MAX_SLOT_AREA];
489static unsigned int slot_area_index;
490static unsigned long slot_max;
491
492static void store_slot_info(struct mem_vector *region, unsigned long image_size)
493{
494	struct slot_area slot_area;
495
496	if (slot_area_index == MAX_SLOT_AREA)
497		return;
498
499	slot_area.addr = region->start;
500	slot_area.num = 1 + (region->size - image_size) / CONFIG_PHYSICAL_ALIGN;
501
502	slot_areas[slot_area_index++] = slot_area;
503	slot_max += slot_area.num;
504}
505
506/*
507 * Skip as many 1GB huge pages as possible in the passed region
508 * according to the number which users specified:
509 */
510static void
511process_gb_huge_pages(struct mem_vector *region, unsigned long image_size)
512{
513	u64 pud_start, pud_end;
514	unsigned long gb_huge_pages;
515	struct mem_vector tmp;
516
517	if (!IS_ENABLED(CONFIG_X86_64) || !max_gb_huge_pages) {
518		store_slot_info(region, image_size);
519		return;
520	}
521
522	/* Are there any 1GB pages in the region? */
523	pud_start = ALIGN(region->start, PUD_SIZE);
524	pud_end = ALIGN_DOWN(region->start + region->size, PUD_SIZE);
525
526	/* No good 1GB huge pages found: */
527	if (pud_start >= pud_end) {
528		store_slot_info(region, image_size);
529		return;
530	}
531
532	/* Check if the head part of the region is usable. */
533	if (pud_start >= region->start + image_size) {
534		tmp.start = region->start;
535		tmp.size = pud_start - region->start;
536		store_slot_info(&tmp, image_size);
537	}
538
539	/* Skip the good 1GB pages. */
540	gb_huge_pages = (pud_end - pud_start) >> PUD_SHIFT;
541	if (gb_huge_pages > max_gb_huge_pages) {
542		pud_end = pud_start + (max_gb_huge_pages << PUD_SHIFT);
543		max_gb_huge_pages = 0;
544	} else {
545		max_gb_huge_pages -= gb_huge_pages;
546	}
547
548	/* Check if the tail part of the region is usable. */
549	if (region->start + region->size >= pud_end + image_size) {
550		tmp.start = pud_end;
551		tmp.size = region->start + region->size - pud_end;
552		store_slot_info(&tmp, image_size);
553	}
554}
555
556static u64 slots_fetch_random(void)
557{
558	unsigned long slot;
559	unsigned int i;
560
561	/* Handle case of no slots stored. */
562	if (slot_max == 0)
563		return 0;
564
565	slot = kaslr_get_random_long("Physical") % slot_max;
566
567	for (i = 0; i < slot_area_index; i++) {
568		if (slot >= slot_areas[i].num) {
569			slot -= slot_areas[i].num;
570			continue;
571		}
572		return slot_areas[i].addr + ((u64)slot * CONFIG_PHYSICAL_ALIGN);
573	}
574
575	if (i == slot_area_index)
576		debug_putstr("slots_fetch_random() failed!?\n");
577	return 0;
578}
579
580static void __process_mem_region(struct mem_vector *entry,
581				 unsigned long minimum,
582				 unsigned long image_size)
583{
584	struct mem_vector region, overlap;
585	u64 region_end;
586
587	/* Enforce minimum and memory limit. */
588	region.start = max_t(u64, entry->start, minimum);
589	region_end = min(entry->start + entry->size, mem_limit);
590
591	/* Give up if slot area array is full. */
592	while (slot_area_index < MAX_SLOT_AREA) {
593		/* Potentially raise address to meet alignment needs. */
594		region.start = ALIGN(region.start, CONFIG_PHYSICAL_ALIGN);
595
596		/* Did we raise the address above the passed in memory entry? */
597		if (region.start > region_end)
598			return;
599
600		/* Reduce size by any delta from the original address. */
601		region.size = region_end - region.start;
602
603		/* Return if region can't contain decompressed kernel */
604		if (region.size < image_size)
605			return;
606
607		/* If nothing overlaps, store the region and return. */
608		if (!mem_avoid_overlap(&region, &overlap)) {
609			process_gb_huge_pages(&region, image_size);
610			return;
611		}
612
613		/* Store beginning of region if holds at least image_size. */
614		if (overlap.start >= region.start + image_size) {
615			region.size = overlap.start - region.start;
616			process_gb_huge_pages(&region, image_size);
617		}
618
619		/* Clip off the overlapping region and start over. */
620		region.start = overlap.start + overlap.size;
621	}
622}
623
624static bool process_mem_region(struct mem_vector *region,
625			       unsigned long minimum,
626			       unsigned long image_size)
627{
628	int i;
629	/*
630	 * If no immovable memory found, or MEMORY_HOTREMOVE disabled,
631	 * use @region directly.
632	 */
633	if (!num_immovable_mem) {
634		__process_mem_region(region, minimum, image_size);
635
636		if (slot_area_index == MAX_SLOT_AREA) {
637			debug_putstr("Aborted e820/efi memmap scan (slot_areas full)!\n");
638			return true;
639		}
640		return false;
641	}
642
643#if defined(CONFIG_MEMORY_HOTREMOVE) && defined(CONFIG_ACPI)
644	/*
645	 * If immovable memory found, filter the intersection between
646	 * immovable memory and @region.
647	 */
648	for (i = 0; i < num_immovable_mem; i++) {
649		u64 start, end, entry_end, region_end;
650		struct mem_vector entry;
651
652		if (!mem_overlaps(region, &immovable_mem[i]))
653			continue;
654
655		start = immovable_mem[i].start;
656		end = start + immovable_mem[i].size;
657		region_end = region->start + region->size;
658
659		entry.start = clamp(region->start, start, end);
660		entry_end = clamp(region_end, start, end);
661		entry.size = entry_end - entry.start;
662
663		__process_mem_region(&entry, minimum, image_size);
664
665		if (slot_area_index == MAX_SLOT_AREA) {
666			debug_putstr("Aborted e820/efi memmap scan when walking immovable regions(slot_areas full)!\n");
667			return true;
668		}
669	}
670#endif
671	return false;
672}
673
674#ifdef CONFIG_EFI
675
676/*
677 * Only EFI_CONVENTIONAL_MEMORY and EFI_UNACCEPTED_MEMORY (if supported) are
678 * guaranteed to be free.
679 *
680 * Pick free memory more conservatively than the EFI spec allows: according to
681 * the spec, EFI_BOOT_SERVICES_{CODE|DATA} are also free memory and thus
682 * available to place the kernel image into, but in practice there's firmware
683 * where using that memory leads to crashes. Buggy vendor EFI code registers
684 * for an event that triggers on SetVirtualAddressMap(). The handler assumes
685 * that EFI_BOOT_SERVICES_DATA memory has not been touched by loader yet, which
686 * is probably true for Windows.
687 *
688 * Preserve EFI_BOOT_SERVICES_* regions until after SetVirtualAddressMap().
689 */
690static inline bool memory_type_is_free(efi_memory_desc_t *md)
691{
692	if (md->type == EFI_CONVENTIONAL_MEMORY)
693		return true;
694
695	if (IS_ENABLED(CONFIG_UNACCEPTED_MEMORY) &&
696	    md->type == EFI_UNACCEPTED_MEMORY)
697		    return true;
698
699	return false;
700}
701
702/*
703 * Returns true if we processed the EFI memmap, which we prefer over the E820
704 * table if it is available.
705 */
706static bool
707process_efi_entries(unsigned long minimum, unsigned long image_size)
708{
709	struct efi_info *e = &boot_params_ptr->efi_info;
710	bool efi_mirror_found = false;
711	struct mem_vector region;
712	efi_memory_desc_t *md;
713	unsigned long pmap;
714	char *signature;
715	u32 nr_desc;
716	int i;
717
718	signature = (char *)&e->efi_loader_signature;
719	if (strncmp(signature, EFI32_LOADER_SIGNATURE, 4) &&
720	    strncmp(signature, EFI64_LOADER_SIGNATURE, 4))
721		return false;
722
723#ifdef CONFIG_X86_32
724	/* Can't handle data above 4GB at this time */
725	if (e->efi_memmap_hi) {
726		warn("EFI memmap is above 4GB, can't be handled now on x86_32. EFI should be disabled.\n");
727		return false;
728	}
729	pmap =  e->efi_memmap;
730#else
731	pmap = (e->efi_memmap | ((__u64)e->efi_memmap_hi << 32));
732#endif
733
734	nr_desc = e->efi_memmap_size / e->efi_memdesc_size;
735	for (i = 0; i < nr_desc; i++) {
736		md = efi_early_memdesc_ptr(pmap, e->efi_memdesc_size, i);
737		if (md->attribute & EFI_MEMORY_MORE_RELIABLE) {
738			efi_mirror_found = true;
739			break;
740		}
741	}
742
743	for (i = 0; i < nr_desc; i++) {
744		md = efi_early_memdesc_ptr(pmap, e->efi_memdesc_size, i);
745
746		if (!memory_type_is_free(md))
747			continue;
748
749		if (efi_soft_reserve_enabled() &&
750		    (md->attribute & EFI_MEMORY_SP))
751			continue;
752
753		if (efi_mirror_found &&
754		    !(md->attribute & EFI_MEMORY_MORE_RELIABLE))
755			continue;
756
757		region.start = md->phys_addr;
758		region.size = md->num_pages << EFI_PAGE_SHIFT;
759		if (process_mem_region(&region, minimum, image_size))
760			break;
761	}
762	return true;
763}
764#else
765static inline bool
766process_efi_entries(unsigned long minimum, unsigned long image_size)
767{
768	return false;
769}
770#endif
771
772static void process_e820_entries(unsigned long minimum,
773				 unsigned long image_size)
774{
775	int i;
776	struct mem_vector region;
777	struct boot_e820_entry *entry;
778
779	/* Verify potential e820 positions, appending to slots list. */
780	for (i = 0; i < boot_params_ptr->e820_entries; i++) {
781		entry = &boot_params_ptr->e820_table[i];
782		/* Skip non-RAM entries. */
783		if (entry->type != E820_TYPE_RAM)
784			continue;
785		region.start = entry->addr;
786		region.size = entry->size;
787		if (process_mem_region(&region, minimum, image_size))
788			break;
789	}
790}
791
792static unsigned long find_random_phys_addr(unsigned long minimum,
793					   unsigned long image_size)
794{
795	u64 phys_addr;
796
797	/* Bail out early if it's impossible to succeed. */
798	if (minimum + image_size > mem_limit)
799		return 0;
800
801	/* Check if we had too many memmaps. */
802	if (memmap_too_large) {
803		debug_putstr("Aborted memory entries scan (more than 4 memmap= args)!\n");
804		return 0;
805	}
806
807	if (!process_efi_entries(minimum, image_size))
808		process_e820_entries(minimum, image_size);
809
810	phys_addr = slots_fetch_random();
811
812	/* Perform a final check to make sure the address is in range. */
813	if (phys_addr < minimum || phys_addr + image_size > mem_limit) {
814		warn("Invalid physical address chosen!\n");
815		return 0;
816	}
817
818	return (unsigned long)phys_addr;
819}
820
821static unsigned long find_random_virt_addr(unsigned long minimum,
822					   unsigned long image_size)
823{
824	unsigned long slots, random_addr;
825
826	/*
827	 * There are how many CONFIG_PHYSICAL_ALIGN-sized slots
828	 * that can hold image_size within the range of minimum to
829	 * KERNEL_IMAGE_SIZE?
830	 */
831	slots = 1 + (KERNEL_IMAGE_SIZE - minimum - image_size) / CONFIG_PHYSICAL_ALIGN;
832
833	random_addr = kaslr_get_random_long("Virtual") % slots;
834
835	return random_addr * CONFIG_PHYSICAL_ALIGN + minimum;
836}
837
838/*
839 * Since this function examines addresses much more numerically,
840 * it takes the input and output pointers as 'unsigned long'.
841 */
842void choose_random_location(unsigned long input,
843			    unsigned long input_size,
844			    unsigned long *output,
845			    unsigned long output_size,
846			    unsigned long *virt_addr)
847{
848	unsigned long random_addr, min_addr;
849
850	if (cmdline_find_option_bool("nokaslr")) {
851		warn("KASLR disabled: 'nokaslr' on cmdline.");
852		return;
853	}
854
855	boot_params_ptr->hdr.loadflags |= KASLR_FLAG;
856
857	if (IS_ENABLED(CONFIG_X86_32))
858		mem_limit = KERNEL_IMAGE_SIZE;
859	else
860		mem_limit = MAXMEM;
861
862	/* Record the various known unsafe memory ranges. */
863	mem_avoid_init(input, input_size, *output);
864
865	/*
866	 * Low end of the randomization range should be the
867	 * smaller of 512M or the initial kernel image
868	 * location:
869	 */
870	min_addr = min(*output, 512UL << 20);
871	/* Make sure minimum is aligned. */
872	min_addr = ALIGN(min_addr, CONFIG_PHYSICAL_ALIGN);
873
874	/* Walk available memory entries to find a random address. */
875	random_addr = find_random_phys_addr(min_addr, output_size);
876	if (!random_addr) {
877		warn("Physical KASLR disabled: no suitable memory region!");
878	} else {
879		/* Update the new physical address location. */
880		if (*output != random_addr)
881			*output = random_addr;
882	}
883
884
885	/* Pick random virtual address starting from LOAD_PHYSICAL_ADDR. */
886	if (IS_ENABLED(CONFIG_X86_64))
887		random_addr = find_random_virt_addr(LOAD_PHYSICAL_ADDR, output_size);
888	*virt_addr = random_addr;
889}
890