1// SPDX-License-Identifier: GPL-2.0
2/*
3 * Copyright (C) 2015 Anton Ivanov (aivanov@{brocade.com,kot-begemot.co.uk})
4 * Copyright (C) 2015 Thomas Meyer (thomas@m3y3r.de)
5 * Copyright (C) 2000 - 2007 Jeff Dike (jdike@{addtoit,linux.intel}.com)
6 * Copyright 2003 PathScale, Inc.
7 */
8
9#include <linux/stddef.h>
10#include <linux/err.h>
11#include <linux/hardirq.h>
12#include <linux/mm.h>
13#include <linux/module.h>
14#include <linux/personality.h>
15#include <linux/proc_fs.h>
16#include <linux/ptrace.h>
17#include <linux/random.h>
18#include <linux/slab.h>
19#include <linux/sched.h>
20#include <linux/sched/debug.h>
21#include <linux/sched/task.h>
22#include <linux/sched/task_stack.h>
23#include <linux/seq_file.h>
24#include <linux/tick.h>
25#include <linux/threads.h>
26#include <linux/resume_user_mode.h>
27#include <asm/current.h>
28#include <asm/mmu_context.h>
29#include <linux/uaccess.h>
30#include <as-layout.h>
31#include <kern_util.h>
32#include <os.h>
33#include <skas.h>
34#include <registers.h>
35#include <linux/time-internal.h>
36#include <linux/elfcore.h>
37
38/*
39 * This is a per-cpu array.  A processor only modifies its entry and it only
40 * cares about its entry, so it's OK if another processor is modifying its
41 * entry.
42 */
43struct cpu_task cpu_tasks[NR_CPUS] = { [0 ... NR_CPUS - 1] = { -1, NULL } };
44
45static inline int external_pid(void)
46{
47	/* FIXME: Need to look up userspace_pid by cpu */
48	return userspace_pid[0];
49}
50
51int pid_to_processor_id(int pid)
52{
53	int i;
54
55	for (i = 0; i < ncpus; i++) {
56		if (cpu_tasks[i].pid == pid)
57			return i;
58	}
59	return -1;
60}
61
62void free_stack(unsigned long stack, int order)
63{
64	free_pages(stack, order);
65}
66
67unsigned long alloc_stack(int order, int atomic)
68{
69	unsigned long page;
70	gfp_t flags = GFP_KERNEL;
71
72	if (atomic)
73		flags = GFP_ATOMIC;
74	page = __get_free_pages(flags, order);
75
76	return page;
77}
78
79static inline void set_current(struct task_struct *task)
80{
81	cpu_tasks[task_thread_info(task)->cpu] = ((struct cpu_task)
82		{ external_pid(), task });
83}
84
85extern void arch_switch_to(struct task_struct *to);
86
87void *__switch_to(struct task_struct *from, struct task_struct *to)
88{
89	to->thread.prev_sched = from;
90	set_current(to);
91
92	switch_threads(&from->thread.switch_buf, &to->thread.switch_buf);
93	arch_switch_to(current);
94
95	return current->thread.prev_sched;
96}
97
98void interrupt_end(void)
99{
100	struct pt_regs *regs = &current->thread.regs;
101
102	if (need_resched())
103		schedule();
104	if (test_thread_flag(TIF_SIGPENDING) ||
105	    test_thread_flag(TIF_NOTIFY_SIGNAL))
106		do_signal(regs);
107	if (test_thread_flag(TIF_NOTIFY_RESUME))
108		resume_user_mode_work(regs);
109}
110
111int get_current_pid(void)
112{
113	return task_pid_nr(current);
114}
115
116/*
117 * This is called magically, by its address being stuffed in a jmp_buf
118 * and being longjmp-d to.
119 */
120void new_thread_handler(void)
121{
122	int (*fn)(void *), n;
123	void *arg;
124
125	if (current->thread.prev_sched != NULL)
126		schedule_tail(current->thread.prev_sched);
127	current->thread.prev_sched = NULL;
128
129	fn = current->thread.request.u.thread.proc;
130	arg = current->thread.request.u.thread.arg;
131
132	/*
133	 * callback returns only if the kernel thread execs a process
134	 */
135	n = fn(arg);
136	userspace(&current->thread.regs.regs, current_thread_info()->aux_fp_regs);
137}
138
139/* Called magically, see new_thread_handler above */
140void fork_handler(void)
141{
142	force_flush_all();
143
144	schedule_tail(current->thread.prev_sched);
145
146	/*
147	 * XXX: if interrupt_end() calls schedule, this call to
148	 * arch_switch_to isn't needed. We could want to apply this to
149	 * improve performance. -bb
150	 */
151	arch_switch_to(current);
152
153	current->thread.prev_sched = NULL;
154
155	userspace(&current->thread.regs.regs, current_thread_info()->aux_fp_regs);
156}
157
158int copy_thread(struct task_struct * p, const struct kernel_clone_args *args)
159{
160	unsigned long clone_flags = args->flags;
161	unsigned long sp = args->stack;
162	unsigned long tls = args->tls;
163	void (*handler)(void);
164	int ret = 0;
165
166	p->thread = (struct thread_struct) INIT_THREAD;
167
168	if (!args->fn) {
169	  	memcpy(&p->thread.regs.regs, current_pt_regs(),
170		       sizeof(p->thread.regs.regs));
171		PT_REGS_SET_SYSCALL_RETURN(&p->thread.regs, 0);
172		if (sp != 0)
173			REGS_SP(p->thread.regs.regs.gp) = sp;
174
175		handler = fork_handler;
176
177		arch_copy_thread(&current->thread.arch, &p->thread.arch);
178	} else {
179		get_safe_registers(p->thread.regs.regs.gp, p->thread.regs.regs.fp);
180		p->thread.request.u.thread.proc = args->fn;
181		p->thread.request.u.thread.arg = args->fn_arg;
182		handler = new_thread_handler;
183	}
184
185	new_thread(task_stack_page(p), &p->thread.switch_buf, handler);
186
187	if (!args->fn) {
188		clear_flushed_tls(p);
189
190		/*
191		 * Set a new TLS for the child thread?
192		 */
193		if (clone_flags & CLONE_SETTLS)
194			ret = arch_set_tls(p, tls);
195	}
196
197	return ret;
198}
199
200void initial_thread_cb(void (*proc)(void *), void *arg)
201{
202	int save_kmalloc_ok = kmalloc_ok;
203
204	kmalloc_ok = 0;
205	initial_thread_cb_skas(proc, arg);
206	kmalloc_ok = save_kmalloc_ok;
207}
208
209void um_idle_sleep(void)
210{
211	if (time_travel_mode != TT_MODE_OFF)
212		time_travel_sleep();
213	else
214		os_idle_sleep();
215}
216
217void arch_cpu_idle(void)
218{
219	cpu_tasks[current_thread_info()->cpu].pid = os_getpid();
220	um_idle_sleep();
221}
222
223int __uml_cant_sleep(void) {
224	return in_atomic() || irqs_disabled() || in_interrupt();
225	/* Is in_interrupt() really needed? */
226}
227
228int user_context(unsigned long sp)
229{
230	unsigned long stack;
231
232	stack = sp & (PAGE_MASK << CONFIG_KERNEL_STACK_ORDER);
233	return stack != (unsigned long) current_thread_info();
234}
235
236extern exitcall_t __uml_exitcall_begin, __uml_exitcall_end;
237
238void do_uml_exitcalls(void)
239{
240	exitcall_t *call;
241
242	call = &__uml_exitcall_end;
243	while (--call >= &__uml_exitcall_begin)
244		(*call)();
245}
246
247char *uml_strdup(const char *string)
248{
249	return kstrdup(string, GFP_KERNEL);
250}
251EXPORT_SYMBOL(uml_strdup);
252
253int copy_to_user_proc(void __user *to, void *from, int size)
254{
255	return copy_to_user(to, from, size);
256}
257
258int copy_from_user_proc(void *to, void __user *from, int size)
259{
260	return copy_from_user(to, from, size);
261}
262
263int clear_user_proc(void __user *buf, int size)
264{
265	return clear_user(buf, size);
266}
267
268static atomic_t using_sysemu = ATOMIC_INIT(0);
269int sysemu_supported;
270
271void set_using_sysemu(int value)
272{
273	if (value > sysemu_supported)
274		return;
275	atomic_set(&using_sysemu, value);
276}
277
278int get_using_sysemu(void)
279{
280	return atomic_read(&using_sysemu);
281}
282
283static int sysemu_proc_show(struct seq_file *m, void *v)
284{
285	seq_printf(m, "%d\n", get_using_sysemu());
286	return 0;
287}
288
289static int sysemu_proc_open(struct inode *inode, struct file *file)
290{
291	return single_open(file, sysemu_proc_show, NULL);
292}
293
294static ssize_t sysemu_proc_write(struct file *file, const char __user *buf,
295				 size_t count, loff_t *pos)
296{
297	char tmp[2];
298
299	if (copy_from_user(tmp, buf, 1))
300		return -EFAULT;
301
302	if (tmp[0] >= '0' && tmp[0] <= '2')
303		set_using_sysemu(tmp[0] - '0');
304	/* We use the first char, but pretend to write everything */
305	return count;
306}
307
308static const struct proc_ops sysemu_proc_ops = {
309	.proc_open	= sysemu_proc_open,
310	.proc_read	= seq_read,
311	.proc_lseek	= seq_lseek,
312	.proc_release	= single_release,
313	.proc_write	= sysemu_proc_write,
314};
315
316int __init make_proc_sysemu(void)
317{
318	struct proc_dir_entry *ent;
319	if (!sysemu_supported)
320		return 0;
321
322	ent = proc_create("sysemu", 0600, NULL, &sysemu_proc_ops);
323
324	if (ent == NULL)
325	{
326		printk(KERN_WARNING "Failed to register /proc/sysemu\n");
327		return 0;
328	}
329
330	return 0;
331}
332
333late_initcall(make_proc_sysemu);
334
335int singlestepping(void)
336{
337	return test_thread_flag(TIF_SINGLESTEP);
338}
339
340/*
341 * Only x86 and x86_64 have an arch_align_stack().
342 * All other arches have "#define arch_align_stack(x) (x)"
343 * in their asm/exec.h
344 * As this is included in UML from asm-um/system-generic.h,
345 * we can use it to behave as the subarch does.
346 */
347#ifndef arch_align_stack
348unsigned long arch_align_stack(unsigned long sp)
349{
350	if (!(current->personality & ADDR_NO_RANDOMIZE) && randomize_va_space)
351		sp -= get_random_u32_below(8192);
352	return sp & ~0xf;
353}
354#endif
355
356unsigned long __get_wchan(struct task_struct *p)
357{
358	unsigned long stack_page, sp, ip;
359	bool seen_sched = 0;
360
361	stack_page = (unsigned long) task_stack_page(p);
362	/* Bail if the process has no kernel stack for some reason */
363	if (stack_page == 0)
364		return 0;
365
366	sp = p->thread.switch_buf->JB_SP;
367	/*
368	 * Bail if the stack pointer is below the bottom of the kernel
369	 * stack for some reason
370	 */
371	if (sp < stack_page)
372		return 0;
373
374	while (sp < stack_page + THREAD_SIZE) {
375		ip = *((unsigned long *) sp);
376		if (in_sched_functions(ip))
377			/* Ignore everything until we're above the scheduler */
378			seen_sched = 1;
379		else if (kernel_text_address(ip) && seen_sched)
380			return ip;
381
382		sp += sizeof(unsigned long);
383	}
384
385	return 0;
386}
387
388int elf_core_copy_task_fpregs(struct task_struct *t, elf_fpregset_t *fpu)
389{
390	int cpu = current_thread_info()->cpu;
391
392	return save_i387_registers(userspace_pid[cpu], (unsigned long *) fpu);
393}
394
395