1// SPDX-License-Identifier: GPL-2.0
2/*
3 * arch/sparc64/math-emu/math.c
4 *
5 * Copyright (C) 1997,1999 Jakub Jelinek (jj@ultra.linux.cz)
6 * Copyright (C) 1999 David S. Miller (davem@redhat.com)
7 *
8 * Emulation routines originate from soft-fp package, which is part
9 * of glibc and has appropriate copyrights in it.
10 */
11
12#include <linux/types.h>
13#include <linux/sched.h>
14#include <linux/errno.h>
15#include <linux/perf_event.h>
16
17#include <asm/fpumacro.h>
18#include <asm/ptrace.h>
19#include <linux/uaccess.h>
20#include <asm/cacheflush.h>
21
22#include "sfp-util_64.h"
23#include <math-emu/soft-fp.h>
24#include <math-emu/single.h>
25#include <math-emu/double.h>
26#include <math-emu/quad.h>
27
28/* QUAD - ftt == 3 */
29#define FMOVQ	0x003
30#define FNEGQ	0x007
31#define FABSQ	0x00b
32#define FSQRTQ	0x02b
33#define FADDQ	0x043
34#define FSUBQ	0x047
35#define FMULQ	0x04b
36#define FDIVQ	0x04f
37#define FDMULQ	0x06e
38#define FQTOX	0x083
39#define FXTOQ	0x08c
40#define FQTOS	0x0c7
41#define FQTOD	0x0cb
42#define FITOQ	0x0cc
43#define FSTOQ	0x0cd
44#define FDTOQ	0x0ce
45#define FQTOI	0x0d3
46/* SUBNORMAL - ftt == 2 */
47#define FSQRTS	0x029
48#define FSQRTD	0x02a
49#define FADDS	0x041
50#define FADDD	0x042
51#define FSUBS	0x045
52#define FSUBD	0x046
53#define FMULS	0x049
54#define FMULD	0x04a
55#define FDIVS	0x04d
56#define FDIVD	0x04e
57#define FSMULD	0x069
58#define FSTOX	0x081
59#define FDTOX	0x082
60#define FDTOS	0x0c6
61#define FSTOD	0x0c9
62#define FSTOI	0x0d1
63#define FDTOI	0x0d2
64#define FXTOS	0x084 /* Only Ultra-III generates this. */
65#define FXTOD	0x088 /* Only Ultra-III generates this. */
66#if 0	/* Optimized inline in sparc64/kernel/entry.S */
67#define FITOS	0x0c4 /* Only Ultra-III generates this. */
68#endif
69#define FITOD	0x0c8 /* Only Ultra-III generates this. */
70/* FPOP2 */
71#define FCMPQ	0x053
72#define FCMPEQ	0x057
73#define FMOVQ0	0x003
74#define FMOVQ1	0x043
75#define FMOVQ2	0x083
76#define FMOVQ3	0x0c3
77#define FMOVQI	0x103
78#define FMOVQX	0x183
79#define FMOVQZ	0x027
80#define FMOVQLE	0x047
81#define FMOVQLZ 0x067
82#define FMOVQNZ	0x0a7
83#define FMOVQGZ	0x0c7
84#define FMOVQGE 0x0e7
85
86#define FSR_TEM_SHIFT	23UL
87#define FSR_TEM_MASK	(0x1fUL << FSR_TEM_SHIFT)
88#define FSR_AEXC_SHIFT	5UL
89#define FSR_AEXC_MASK	(0x1fUL << FSR_AEXC_SHIFT)
90#define FSR_CEXC_SHIFT	0UL
91#define FSR_CEXC_MASK	(0x1fUL << FSR_CEXC_SHIFT)
92
93/* All routines returning an exception to raise should detect
94 * such exceptions _before_ rounding to be consistent with
95 * the behavior of the hardware in the implemented cases
96 * (and thus with the recommendations in the V9 architecture
97 * manual).
98 *
99 * We return 0 if a SIGFPE should be sent, 1 otherwise.
100 */
101static inline int record_exception(struct pt_regs *regs, int eflag)
102{
103	u64 fsr = current_thread_info()->xfsr[0];
104	int would_trap;
105
106	/* Determine if this exception would have generated a trap. */
107	would_trap = (fsr & ((long)eflag << FSR_TEM_SHIFT)) != 0UL;
108
109	/* If trapping, we only want to signal one bit. */
110	if(would_trap != 0) {
111		eflag &= ((fsr & FSR_TEM_MASK) >> FSR_TEM_SHIFT);
112		if((eflag & (eflag - 1)) != 0) {
113			if(eflag & FP_EX_INVALID)
114				eflag = FP_EX_INVALID;
115			else if(eflag & FP_EX_OVERFLOW)
116				eflag = FP_EX_OVERFLOW;
117			else if(eflag & FP_EX_UNDERFLOW)
118				eflag = FP_EX_UNDERFLOW;
119			else if(eflag & FP_EX_DIVZERO)
120				eflag = FP_EX_DIVZERO;
121			else if(eflag & FP_EX_INEXACT)
122				eflag = FP_EX_INEXACT;
123		}
124	}
125
126	/* Set CEXC, here is the rule:
127	 *
128	 *    In general all FPU ops will set one and only one
129	 *    bit in the CEXC field, this is always the case
130	 *    when the IEEE exception trap is enabled in TEM.
131	 */
132	fsr &= ~(FSR_CEXC_MASK);
133	fsr |= ((long)eflag << FSR_CEXC_SHIFT);
134
135	/* Set the AEXC field, rule is:
136	 *
137	 *    If a trap would not be generated, the
138	 *    CEXC just generated is OR'd into the
139	 *    existing value of AEXC.
140	 */
141	if(would_trap == 0)
142		fsr |= ((long)eflag << FSR_AEXC_SHIFT);
143
144	/* If trapping, indicate fault trap type IEEE. */
145	if(would_trap != 0)
146		fsr |= (1UL << 14);
147
148	current_thread_info()->xfsr[0] = fsr;
149
150	/* If we will not trap, advance the program counter over
151	 * the instruction being handled.
152	 */
153	if(would_trap == 0) {
154		regs->tpc = regs->tnpc;
155		regs->tnpc += 4;
156	}
157
158	return (would_trap ? 0 : 1);
159}
160
161typedef union {
162	u32 s;
163	u64 d;
164	u64 q[2];
165} *argp;
166
167int do_mathemu(struct pt_regs *regs, struct fpustate *f, bool illegal_insn_trap)
168{
169	unsigned long pc = regs->tpc;
170	unsigned long tstate = regs->tstate;
171	u32 insn = 0;
172	int type = 0;
173	/* ftt tells which ftt it may happen in, r is rd, b is rs2 and a is rs1. The *u arg tells
174	   whether the argument should be packed/unpacked (0 - do not unpack/pack, 1 - unpack/pack)
175	   non-u args tells the size of the argument (0 - no argument, 1 - single, 2 - double, 3 - quad */
176#define TYPE(ftt, r, ru, b, bu, a, au) type = (au << 2) | (a << 0) | (bu << 5) | (b << 3) | (ru << 8) | (r << 6) | (ftt << 9)
177	int freg;
178	static u64 zero[2] = { 0L, 0L };
179	int flags;
180	FP_DECL_EX;
181	FP_DECL_S(SA); FP_DECL_S(SB); FP_DECL_S(SR);
182	FP_DECL_D(DA); FP_DECL_D(DB); FP_DECL_D(DR);
183	FP_DECL_Q(QA); FP_DECL_Q(QB); FP_DECL_Q(QR);
184	int IR;
185	long XR, xfsr;
186
187	if (tstate & TSTATE_PRIV)
188		die_if_kernel("unfinished/unimplemented FPop from kernel", regs);
189	perf_sw_event(PERF_COUNT_SW_EMULATION_FAULTS, 1, regs, 0);
190	if (test_thread_flag(TIF_32BIT))
191		pc = (u32)pc;
192	if (get_user(insn, (u32 __user *) pc) != -EFAULT) {
193		if ((insn & 0xc1f80000) == 0x81a00000) /* FPOP1 */ {
194			switch ((insn >> 5) & 0x1ff) {
195			/* QUAD - ftt == 3 */
196			case FMOVQ:
197			case FNEGQ:
198			case FABSQ: TYPE(3,3,0,3,0,0,0); break;
199			case FSQRTQ: TYPE(3,3,1,3,1,0,0); break;
200			case FADDQ:
201			case FSUBQ:
202			case FMULQ:
203			case FDIVQ: TYPE(3,3,1,3,1,3,1); break;
204			case FDMULQ: TYPE(3,3,1,2,1,2,1); break;
205			case FQTOX: TYPE(3,2,0,3,1,0,0); break;
206			case FXTOQ: TYPE(3,3,1,2,0,0,0); break;
207			case FQTOS: TYPE(3,1,1,3,1,0,0); break;
208			case FQTOD: TYPE(3,2,1,3,1,0,0); break;
209			case FITOQ: TYPE(3,3,1,1,0,0,0); break;
210			case FSTOQ: TYPE(3,3,1,1,1,0,0); break;
211			case FDTOQ: TYPE(3,3,1,2,1,0,0); break;
212			case FQTOI: TYPE(3,1,0,3,1,0,0); break;
213
214			/* We can get either unimplemented or unfinished
215			 * for these cases.  Pre-Niagara systems generate
216			 * unfinished fpop for SUBNORMAL cases, and Niagara
217			 * always gives unimplemented fpop for fsqrt{s,d}.
218			 */
219			case FSQRTS: {
220				unsigned long x = current_thread_info()->xfsr[0];
221
222				x = (x >> 14) & 0x7;
223				TYPE(x,1,1,1,1,0,0);
224				break;
225			}
226
227			case FSQRTD: {
228				unsigned long x = current_thread_info()->xfsr[0];
229
230				x = (x >> 14) & 0x7;
231				TYPE(x,2,1,2,1,0,0);
232				break;
233			}
234
235			/* SUBNORMAL - ftt == 2 */
236			case FADDD:
237			case FSUBD:
238			case FMULD:
239			case FDIVD: TYPE(2,2,1,2,1,2,1); break;
240			case FADDS:
241			case FSUBS:
242			case FMULS:
243			case FDIVS: TYPE(2,1,1,1,1,1,1); break;
244			case FSMULD: TYPE(2,2,1,1,1,1,1); break;
245			case FSTOX: TYPE(2,2,0,1,1,0,0); break;
246			case FDTOX: TYPE(2,2,0,2,1,0,0); break;
247			case FDTOS: TYPE(2,1,1,2,1,0,0); break;
248			case FSTOD: TYPE(2,2,1,1,1,0,0); break;
249			case FSTOI: TYPE(2,1,0,1,1,0,0); break;
250			case FDTOI: TYPE(2,1,0,2,1,0,0); break;
251
252			/* Only Ultra-III generates these */
253			case FXTOS: TYPE(2,1,1,2,0,0,0); break;
254			case FXTOD: TYPE(2,2,1,2,0,0,0); break;
255#if 0			/* Optimized inline in sparc64/kernel/entry.S */
256			case FITOS: TYPE(2,1,1,1,0,0,0); break;
257#endif
258			case FITOD: TYPE(2,2,1,1,0,0,0); break;
259			}
260		}
261		else if ((insn & 0xc1f80000) == 0x81a80000) /* FPOP2 */ {
262			IR = 2;
263			switch ((insn >> 5) & 0x1ff) {
264			case FCMPQ: TYPE(3,0,0,3,1,3,1); break;
265			case FCMPEQ: TYPE(3,0,0,3,1,3,1); break;
266			/* Now the conditional fmovq support */
267			case FMOVQ0:
268			case FMOVQ1:
269			case FMOVQ2:
270			case FMOVQ3:
271				/* fmovq %fccX, %fY, %fZ */
272				if (!((insn >> 11) & 3))
273					XR = current_thread_info()->xfsr[0] >> 10;
274				else
275					XR = current_thread_info()->xfsr[0] >> (30 + ((insn >> 10) & 0x6));
276				XR &= 3;
277				IR = 0;
278				switch ((insn >> 14) & 0x7) {
279				/* case 0: IR = 0; break; */			/* Never */
280				case 1: if (XR) IR = 1; break;			/* Not Equal */
281				case 2: if (XR == 1 || XR == 2) IR = 1; break;	/* Less or Greater */
282				case 3: if (XR & 1) IR = 1; break;		/* Unordered or Less */
283				case 4: if (XR == 1) IR = 1; break;		/* Less */
284				case 5: if (XR & 2) IR = 1; break;		/* Unordered or Greater */
285				case 6: if (XR == 2) IR = 1; break;		/* Greater */
286				case 7: if (XR == 3) IR = 1; break;		/* Unordered */
287				}
288				if ((insn >> 14) & 8)
289					IR ^= 1;
290				break;
291			case FMOVQI:
292			case FMOVQX:
293				/* fmovq %[ix]cc, %fY, %fZ */
294				XR = regs->tstate >> 32;
295				if ((insn >> 5) & 0x80)
296					XR >>= 4;
297				XR &= 0xf;
298				IR = 0;
299				freg = ((XR >> 2) ^ XR) & 2;
300				switch ((insn >> 14) & 0x7) {
301				/* case 0: IR = 0; break; */			/* Never */
302				case 1: if (XR & 4) IR = 1; break;		/* Equal */
303				case 2: if ((XR & 4) || freg) IR = 1; break;	/* Less or Equal */
304				case 3: if (freg) IR = 1; break;		/* Less */
305				case 4: if (XR & 5) IR = 1; break;		/* Less or Equal Unsigned */
306				case 5: if (XR & 1) IR = 1; break;		/* Carry Set */
307				case 6: if (XR & 8) IR = 1; break;		/* Negative */
308				case 7: if (XR & 2) IR = 1; break;		/* Overflow Set */
309				}
310				if ((insn >> 14) & 8)
311					IR ^= 1;
312				break;
313			case FMOVQZ:
314			case FMOVQLE:
315			case FMOVQLZ:
316			case FMOVQNZ:
317			case FMOVQGZ:
318			case FMOVQGE:
319				freg = (insn >> 14) & 0x1f;
320				if (!freg)
321					XR = 0;
322				else if (freg < 16)
323					XR = regs->u_regs[freg];
324				else if (!test_thread_64bit_stack(regs->u_regs[UREG_FP])) {
325					struct reg_window32 __user *win32;
326					flushw_user ();
327					win32 = (struct reg_window32 __user *)((unsigned long)((u32)regs->u_regs[UREG_FP]));
328					get_user(XR, &win32->locals[freg - 16]);
329				} else {
330					struct reg_window __user *win;
331					flushw_user ();
332					win = (struct reg_window __user *)(regs->u_regs[UREG_FP] + STACK_BIAS);
333					get_user(XR, &win->locals[freg - 16]);
334				}
335				IR = 0;
336				switch ((insn >> 10) & 3) {
337				case 1: if (!XR) IR = 1; break;			/* Register Zero */
338				case 2: if (XR <= 0) IR = 1; break;		/* Register Less Than or Equal to Zero */
339				case 3: if (XR < 0) IR = 1; break;		/* Register Less Than Zero */
340				}
341				if ((insn >> 10) & 4)
342					IR ^= 1;
343				break;
344			}
345			if (IR == 0) {
346				/* The fmov test was false. Do a nop instead */
347				current_thread_info()->xfsr[0] &= ~(FSR_CEXC_MASK);
348				regs->tpc = regs->tnpc;
349				regs->tnpc += 4;
350				return 1;
351			} else if (IR == 1) {
352				/* Change the instruction into plain fmovq */
353				insn = (insn & 0x3e00001f) | 0x81a00060;
354				TYPE(3,3,0,3,0,0,0);
355			}
356		}
357	}
358	if (type) {
359		argp rs1 = NULL, rs2 = NULL, rd = NULL;
360
361		/* Starting with UltraSPARC-T2, the cpu does not set the FP Trap
362		 * Type field in the %fsr to unimplemented_FPop.  Nor does it
363		 * use the fp_exception_other trap.  Instead it signals an
364		 * illegal instruction and leaves the FP trap type field of
365		 * the %fsr unchanged.
366		 */
367		if (!illegal_insn_trap) {
368			int ftt = (current_thread_info()->xfsr[0] >> 14) & 0x7;
369			if (ftt != (type >> 9))
370				goto err;
371		}
372		current_thread_info()->xfsr[0] &= ~0x1c000;
373		freg = ((insn >> 14) & 0x1f);
374		switch (type & 0x3) {
375		case 3: if (freg & 2) {
376				current_thread_info()->xfsr[0] |= (6 << 14) /* invalid_fp_register */;
377				goto err;
378			}
379		case 2: freg = ((freg & 1) << 5) | (freg & 0x1e);
380		case 1: rs1 = (argp)&f->regs[freg];
381			flags = (freg < 32) ? FPRS_DL : FPRS_DU;
382			if (!(current_thread_info()->fpsaved[0] & flags))
383				rs1 = (argp)&zero;
384			break;
385		}
386		switch (type & 0x7) {
387		case 7: FP_UNPACK_QP (QA, rs1); break;
388		case 6: FP_UNPACK_DP (DA, rs1); break;
389		case 5: FP_UNPACK_SP (SA, rs1); break;
390		}
391		freg = (insn & 0x1f);
392		switch ((type >> 3) & 0x3) {
393		case 3: if (freg & 2) {
394				current_thread_info()->xfsr[0] |= (6 << 14) /* invalid_fp_register */;
395				goto err;
396			}
397		case 2: freg = ((freg & 1) << 5) | (freg & 0x1e);
398		case 1: rs2 = (argp)&f->regs[freg];
399			flags = (freg < 32) ? FPRS_DL : FPRS_DU;
400			if (!(current_thread_info()->fpsaved[0] & flags))
401				rs2 = (argp)&zero;
402			break;
403		}
404		switch ((type >> 3) & 0x7) {
405		case 7: FP_UNPACK_QP (QB, rs2); break;
406		case 6: FP_UNPACK_DP (DB, rs2); break;
407		case 5: FP_UNPACK_SP (SB, rs2); break;
408		}
409		freg = ((insn >> 25) & 0x1f);
410		switch ((type >> 6) & 0x3) {
411		case 3: if (freg & 2) {
412				current_thread_info()->xfsr[0] |= (6 << 14) /* invalid_fp_register */;
413				goto err;
414			}
415		case 2: freg = ((freg & 1) << 5) | (freg & 0x1e);
416		case 1: rd = (argp)&f->regs[freg];
417			flags = (freg < 32) ? FPRS_DL : FPRS_DU;
418			if (!(current_thread_info()->fpsaved[0] & FPRS_FEF)) {
419				current_thread_info()->fpsaved[0] = FPRS_FEF;
420				current_thread_info()->gsr[0] = 0;
421			}
422			if (!(current_thread_info()->fpsaved[0] & flags)) {
423				if (freg < 32)
424					memset(f->regs, 0, 32*sizeof(u32));
425				else
426					memset(f->regs+32, 0, 32*sizeof(u32));
427			}
428			current_thread_info()->fpsaved[0] |= flags;
429			break;
430		}
431		switch ((insn >> 5) & 0x1ff) {
432		/* + */
433		case FADDS: FP_ADD_S (SR, SA, SB); break;
434		case FADDD: FP_ADD_D (DR, DA, DB); break;
435		case FADDQ: FP_ADD_Q (QR, QA, QB); break;
436		/* - */
437		case FSUBS: FP_SUB_S (SR, SA, SB); break;
438		case FSUBD: FP_SUB_D (DR, DA, DB); break;
439		case FSUBQ: FP_SUB_Q (QR, QA, QB); break;
440		/* * */
441		case FMULS: FP_MUL_S (SR, SA, SB); break;
442		case FSMULD: FP_CONV (D, S, 1, 1, DA, SA);
443			     FP_CONV (D, S, 1, 1, DB, SB);
444		case FMULD: FP_MUL_D (DR, DA, DB); break;
445		case FDMULQ: FP_CONV (Q, D, 2, 1, QA, DA);
446			     FP_CONV (Q, D, 2, 1, QB, DB);
447		case FMULQ: FP_MUL_Q (QR, QA, QB); break;
448		/* / */
449		case FDIVS: FP_DIV_S (SR, SA, SB); break;
450		case FDIVD: FP_DIV_D (DR, DA, DB); break;
451		case FDIVQ: FP_DIV_Q (QR, QA, QB); break;
452		/* sqrt */
453		case FSQRTS: FP_SQRT_S (SR, SB); break;
454		case FSQRTD: FP_SQRT_D (DR, DB); break;
455		case FSQRTQ: FP_SQRT_Q (QR, QB); break;
456		/* mov */
457		case FMOVQ: rd->q[0] = rs2->q[0]; rd->q[1] = rs2->q[1]; break;
458		case FABSQ: rd->q[0] = rs2->q[0] & 0x7fffffffffffffffUL; rd->q[1] = rs2->q[1]; break;
459		case FNEGQ: rd->q[0] = rs2->q[0] ^ 0x8000000000000000UL; rd->q[1] = rs2->q[1]; break;
460		/* float to int */
461		case FSTOI: FP_TO_INT_S (IR, SB, 32, 1); break;
462		case FDTOI: FP_TO_INT_D (IR, DB, 32, 1); break;
463		case FQTOI: FP_TO_INT_Q (IR, QB, 32, 1); break;
464		case FSTOX: FP_TO_INT_S (XR, SB, 64, 1); break;
465		case FDTOX: FP_TO_INT_D (XR, DB, 64, 1); break;
466		case FQTOX: FP_TO_INT_Q (XR, QB, 64, 1); break;
467		/* int to float */
468		case FITOQ: IR = rs2->s; FP_FROM_INT_Q (QR, IR, 32, int); break;
469		case FXTOQ: XR = rs2->d; FP_FROM_INT_Q (QR, XR, 64, long); break;
470		/* Only Ultra-III generates these */
471		case FXTOS: XR = rs2->d; FP_FROM_INT_S (SR, XR, 64, long); break;
472		case FXTOD: XR = rs2->d; FP_FROM_INT_D (DR, XR, 64, long); break;
473#if 0		/* Optimized inline in sparc64/kernel/entry.S */
474		case FITOS: IR = rs2->s; FP_FROM_INT_S (SR, IR, 32, int); break;
475#endif
476		case FITOD: IR = rs2->s; FP_FROM_INT_D (DR, IR, 32, int); break;
477		/* float to float */
478		case FSTOD: FP_CONV (D, S, 1, 1, DR, SB); break;
479		case FSTOQ: FP_CONV (Q, S, 2, 1, QR, SB); break;
480		case FDTOQ: FP_CONV (Q, D, 2, 1, QR, DB); break;
481		case FDTOS: FP_CONV (S, D, 1, 1, SR, DB); break;
482		case FQTOS: FP_CONV (S, Q, 1, 2, SR, QB); break;
483		case FQTOD: FP_CONV (D, Q, 1, 2, DR, QB); break;
484		/* comparison */
485		case FCMPQ:
486		case FCMPEQ:
487			FP_CMP_Q(XR, QB, QA, 3);
488			if (XR == 3 &&
489			    (((insn >> 5) & 0x1ff) == FCMPEQ ||
490			     FP_ISSIGNAN_Q(QA) ||
491			     FP_ISSIGNAN_Q(QB)))
492				FP_SET_EXCEPTION (FP_EX_INVALID);
493		}
494		if (!FP_INHIBIT_RESULTS) {
495			switch ((type >> 6) & 0x7) {
496			case 0: xfsr = current_thread_info()->xfsr[0];
497				if (XR == -1) XR = 2;
498				switch (freg & 3) {
499				/* fcc0, 1, 2, 3 */
500				case 0: xfsr &= ~0xc00; xfsr |= (XR << 10); break;
501				case 1: xfsr &= ~0x300000000UL; xfsr |= (XR << 32); break;
502				case 2: xfsr &= ~0xc00000000UL; xfsr |= (XR << 34); break;
503				case 3: xfsr &= ~0x3000000000UL; xfsr |= (XR << 36); break;
504				}
505				current_thread_info()->xfsr[0] = xfsr;
506				break;
507			case 1: rd->s = IR; break;
508			case 2: rd->d = XR; break;
509			case 5: FP_PACK_SP (rd, SR); break;
510			case 6: FP_PACK_DP (rd, DR); break;
511			case 7: FP_PACK_QP (rd, QR); break;
512			}
513		}
514
515		if(_fex != 0)
516			return record_exception(regs, _fex);
517
518		/* Success and no exceptions detected. */
519		current_thread_info()->xfsr[0] &= ~(FSR_CEXC_MASK);
520		regs->tpc = regs->tnpc;
521		regs->tnpc += 4;
522		return 1;
523	}
524err:	return 0;
525}
526