1// SPDX-License-Identifier: GPL-2.0
2/* time.c: UltraSparc timer and TOD clock support.
3 *
4 * Copyright (C) 1997, 2008 David S. Miller (davem@davemloft.net)
5 * Copyright (C) 1998 Eddie C. Dost   (ecd@skynet.be)
6 *
7 * Based largely on code which is:
8 *
9 * Copyright (C) 1996 Thomas K. Dyas (tdyas@eden.rutgers.edu)
10 */
11
12#include <linux/errno.h>
13#include <linux/export.h>
14#include <linux/sched.h>
15#include <linux/kernel.h>
16#include <linux/param.h>
17#include <linux/string.h>
18#include <linux/mm.h>
19#include <linux/interrupt.h>
20#include <linux/time.h>
21#include <linux/timex.h>
22#include <linux/init.h>
23#include <linux/ioport.h>
24#include <linux/mc146818rtc.h>
25#include <linux/delay.h>
26#include <linux/profile.h>
27#include <linux/bcd.h>
28#include <linux/jiffies.h>
29#include <linux/cpufreq.h>
30#include <linux/percpu.h>
31#include <linux/rtc/m48t59.h>
32#include <linux/kernel_stat.h>
33#include <linux/clockchips.h>
34#include <linux/clocksource.h>
35#include <linux/platform_device.h>
36#include <linux/ftrace.h>
37
38#include <asm/oplib.h>
39#include <asm/timer.h>
40#include <asm/irq.h>
41#include <asm/io.h>
42#include <asm/prom.h>
43#include <asm/starfire.h>
44#include <asm/smp.h>
45#include <asm/sections.h>
46#include <asm/cpudata.h>
47#include <linux/uaccess.h>
48#include <asm/irq_regs.h>
49#include <asm/cacheflush.h>
50
51#include "entry.h"
52#include "kernel.h"
53
54DEFINE_SPINLOCK(rtc_lock);
55
56#ifdef CONFIG_SMP
57unsigned long profile_pc(struct pt_regs *regs)
58{
59	unsigned long pc = instruction_pointer(regs);
60
61	if (in_lock_functions(pc))
62		return regs->u_regs[UREG_RETPC];
63	return pc;
64}
65EXPORT_SYMBOL(profile_pc);
66#endif
67
68static void tick_disable_protection(void)
69{
70	/* Set things up so user can access tick register for profiling
71	 * purposes.  Also workaround BB_ERRATA_1 by doing a dummy
72	 * read back of %tick after writing it.
73	 */
74	__asm__ __volatile__(
75	"	ba,pt	%%xcc, 1f\n"
76	"	 nop\n"
77	"	.align	64\n"
78	"1:	rd	%%tick, %%g2\n"
79	"	add	%%g2, 6, %%g2\n"
80	"	andn	%%g2, %0, %%g2\n"
81	"	wrpr	%%g2, 0, %%tick\n"
82	"	rdpr	%%tick, %%g0"
83	: /* no outputs */
84	: "r" (TICK_PRIV_BIT)
85	: "g2");
86}
87
88static void tick_disable_irq(void)
89{
90	__asm__ __volatile__(
91	"	ba,pt	%%xcc, 1f\n"
92	"	 nop\n"
93	"	.align	64\n"
94	"1:	wr	%0, 0x0, %%tick_cmpr\n"
95	"	rd	%%tick_cmpr, %%g0"
96	: /* no outputs */
97	: "r" (TICKCMP_IRQ_BIT));
98}
99
100static void tick_init_tick(void)
101{
102	tick_disable_protection();
103	tick_disable_irq();
104}
105
106static unsigned long long tick_get_tick(void)
107{
108	unsigned long ret;
109
110	__asm__ __volatile__("rd	%%tick, %0\n\t"
111			     "mov	%0, %0"
112			     : "=r" (ret));
113
114	return ret & ~TICK_PRIV_BIT;
115}
116
117static int tick_add_compare(unsigned long adj)
118{
119	unsigned long orig_tick, new_tick, new_compare;
120
121	__asm__ __volatile__("rd	%%tick, %0"
122			     : "=r" (orig_tick));
123
124	orig_tick &= ~TICKCMP_IRQ_BIT;
125
126	/* Workaround for Spitfire Errata (#54 I think??), I discovered
127	 * this via Sun BugID 4008234, mentioned in Solaris-2.5.1 patch
128	 * number 103640.
129	 *
130	 * On Blackbird writes to %tick_cmpr can fail, the
131	 * workaround seems to be to execute the wr instruction
132	 * at the start of an I-cache line, and perform a dummy
133	 * read back from %tick_cmpr right after writing to it. -DaveM
134	 */
135	__asm__ __volatile__("ba,pt	%%xcc, 1f\n\t"
136			     " add	%1, %2, %0\n\t"
137			     ".align	64\n"
138			     "1:\n\t"
139			     "wr	%0, 0, %%tick_cmpr\n\t"
140			     "rd	%%tick_cmpr, %%g0\n\t"
141			     : "=r" (new_compare)
142			     : "r" (orig_tick), "r" (adj));
143
144	__asm__ __volatile__("rd	%%tick, %0"
145			     : "=r" (new_tick));
146	new_tick &= ~TICKCMP_IRQ_BIT;
147
148	return ((long)(new_tick - (orig_tick+adj))) > 0L;
149}
150
151static unsigned long tick_add_tick(unsigned long adj)
152{
153	unsigned long new_tick;
154
155	/* Also need to handle Blackbird bug here too. */
156	__asm__ __volatile__("rd	%%tick, %0\n\t"
157			     "add	%0, %1, %0\n\t"
158			     "wrpr	%0, 0, %%tick\n\t"
159			     : "=&r" (new_tick)
160			     : "r" (adj));
161
162	return new_tick;
163}
164
165/* Searches for cpu clock frequency with given cpuid in OpenBoot tree */
166static unsigned long cpuid_to_freq(phandle node, int cpuid)
167{
168	bool is_cpu_node = false;
169	unsigned long freq = 0;
170	char type[128];
171
172	if (!node)
173		return freq;
174
175	if (prom_getproperty(node, "device_type", type, sizeof(type)) != -1)
176		is_cpu_node = (strcmp(type, "cpu") == 0);
177
178	/* try upa-portid then cpuid to get cpuid, see prom_64.c */
179	if (is_cpu_node && (prom_getint(node, "upa-portid") == cpuid ||
180			    prom_getint(node, "cpuid") == cpuid))
181		freq = prom_getintdefault(node, "clock-frequency", 0);
182	if (!freq)
183		freq = cpuid_to_freq(prom_getchild(node), cpuid);
184	if (!freq)
185		freq = cpuid_to_freq(prom_getsibling(node), cpuid);
186
187	return freq;
188}
189
190static unsigned long tick_get_frequency(void)
191{
192	return cpuid_to_freq(prom_root_node, hard_smp_processor_id());
193}
194
195static struct sparc64_tick_ops tick_operations __cacheline_aligned = {
196	.name		=	"tick",
197	.init_tick	=	tick_init_tick,
198	.disable_irq	=	tick_disable_irq,
199	.get_tick	=	tick_get_tick,
200	.add_tick	=	tick_add_tick,
201	.add_compare	=	tick_add_compare,
202	.get_frequency	=	tick_get_frequency,
203	.softint_mask	=	1UL << 0,
204};
205
206struct sparc64_tick_ops *tick_ops __read_mostly = &tick_operations;
207EXPORT_SYMBOL(tick_ops);
208
209static void stick_disable_irq(void)
210{
211	__asm__ __volatile__(
212	"wr	%0, 0x0, %%asr25"
213	: /* no outputs */
214	: "r" (TICKCMP_IRQ_BIT));
215}
216
217static void stick_init_tick(void)
218{
219	/* Writes to the %tick and %stick register are not
220	 * allowed on sun4v.  The Hypervisor controls that
221	 * bit, per-strand.
222	 */
223	if (tlb_type != hypervisor) {
224		tick_disable_protection();
225		tick_disable_irq();
226
227		/* Let the user get at STICK too. */
228		__asm__ __volatile__(
229		"	rd	%%asr24, %%g2\n"
230		"	andn	%%g2, %0, %%g2\n"
231		"	wr	%%g2, 0, %%asr24"
232		: /* no outputs */
233		: "r" (TICK_PRIV_BIT)
234		: "g1", "g2");
235	}
236
237	stick_disable_irq();
238}
239
240static unsigned long long stick_get_tick(void)
241{
242	unsigned long ret;
243
244	__asm__ __volatile__("rd	%%asr24, %0"
245			     : "=r" (ret));
246
247	return ret & ~TICK_PRIV_BIT;
248}
249
250static unsigned long stick_add_tick(unsigned long adj)
251{
252	unsigned long new_tick;
253
254	__asm__ __volatile__("rd	%%asr24, %0\n\t"
255			     "add	%0, %1, %0\n\t"
256			     "wr	%0, 0, %%asr24\n\t"
257			     : "=&r" (new_tick)
258			     : "r" (adj));
259
260	return new_tick;
261}
262
263static int stick_add_compare(unsigned long adj)
264{
265	unsigned long orig_tick, new_tick;
266
267	__asm__ __volatile__("rd	%%asr24, %0"
268			     : "=r" (orig_tick));
269	orig_tick &= ~TICKCMP_IRQ_BIT;
270
271	__asm__ __volatile__("wr	%0, 0, %%asr25"
272			     : /* no outputs */
273			     : "r" (orig_tick + adj));
274
275	__asm__ __volatile__("rd	%%asr24, %0"
276			     : "=r" (new_tick));
277	new_tick &= ~TICKCMP_IRQ_BIT;
278
279	return ((long)(new_tick - (orig_tick+adj))) > 0L;
280}
281
282static unsigned long stick_get_frequency(void)
283{
284	return prom_getintdefault(prom_root_node, "stick-frequency", 0);
285}
286
287static struct sparc64_tick_ops stick_operations __read_mostly = {
288	.name		=	"stick",
289	.init_tick	=	stick_init_tick,
290	.disable_irq	=	stick_disable_irq,
291	.get_tick	=	stick_get_tick,
292	.add_tick	=	stick_add_tick,
293	.add_compare	=	stick_add_compare,
294	.get_frequency	=	stick_get_frequency,
295	.softint_mask	=	1UL << 16,
296};
297
298/* On Hummingbird the STICK/STICK_CMPR register is implemented
299 * in I/O space.  There are two 64-bit registers each, the
300 * first holds the low 32-bits of the value and the second holds
301 * the high 32-bits.
302 *
303 * Since STICK is constantly updating, we have to access it carefully.
304 *
305 * The sequence we use to read is:
306 * 1) read high
307 * 2) read low
308 * 3) read high again, if it rolled re-read both low and high again.
309 *
310 * Writing STICK safely is also tricky:
311 * 1) write low to zero
312 * 2) write high
313 * 3) write low
314 */
315static unsigned long __hbird_read_stick(void)
316{
317	unsigned long ret, tmp1, tmp2, tmp3;
318	unsigned long addr = HBIRD_STICK_ADDR+8;
319
320	__asm__ __volatile__("ldxa	[%1] %5, %2\n"
321			     "1:\n\t"
322			     "sub	%1, 0x8, %1\n\t"
323			     "ldxa	[%1] %5, %3\n\t"
324			     "add	%1, 0x8, %1\n\t"
325			     "ldxa	[%1] %5, %4\n\t"
326			     "cmp	%4, %2\n\t"
327			     "bne,a,pn	%%xcc, 1b\n\t"
328			     " mov	%4, %2\n\t"
329			     "sllx	%4, 32, %4\n\t"
330			     "or	%3, %4, %0\n\t"
331			     : "=&r" (ret), "=&r" (addr),
332			       "=&r" (tmp1), "=&r" (tmp2), "=&r" (tmp3)
333			     : "i" (ASI_PHYS_BYPASS_EC_E), "1" (addr));
334
335	return ret;
336}
337
338static void __hbird_write_stick(unsigned long val)
339{
340	unsigned long low = (val & 0xffffffffUL);
341	unsigned long high = (val >> 32UL);
342	unsigned long addr = HBIRD_STICK_ADDR;
343
344	__asm__ __volatile__("stxa	%%g0, [%0] %4\n\t"
345			     "add	%0, 0x8, %0\n\t"
346			     "stxa	%3, [%0] %4\n\t"
347			     "sub	%0, 0x8, %0\n\t"
348			     "stxa	%2, [%0] %4"
349			     : "=&r" (addr)
350			     : "0" (addr), "r" (low), "r" (high),
351			       "i" (ASI_PHYS_BYPASS_EC_E));
352}
353
354static void __hbird_write_compare(unsigned long val)
355{
356	unsigned long low = (val & 0xffffffffUL);
357	unsigned long high = (val >> 32UL);
358	unsigned long addr = HBIRD_STICKCMP_ADDR + 0x8UL;
359
360	__asm__ __volatile__("stxa	%3, [%0] %4\n\t"
361			     "sub	%0, 0x8, %0\n\t"
362			     "stxa	%2, [%0] %4"
363			     : "=&r" (addr)
364			     : "0" (addr), "r" (low), "r" (high),
365			       "i" (ASI_PHYS_BYPASS_EC_E));
366}
367
368static void hbtick_disable_irq(void)
369{
370	__hbird_write_compare(TICKCMP_IRQ_BIT);
371}
372
373static void hbtick_init_tick(void)
374{
375	tick_disable_protection();
376
377	/* XXX This seems to be necessary to 'jumpstart' Hummingbird
378	 * XXX into actually sending STICK interrupts.  I think because
379	 * XXX of how we store %tick_cmpr in head.S this somehow resets the
380	 * XXX {TICK + STICK} interrupt mux.  -DaveM
381	 */
382	__hbird_write_stick(__hbird_read_stick());
383
384	hbtick_disable_irq();
385}
386
387static unsigned long long hbtick_get_tick(void)
388{
389	return __hbird_read_stick() & ~TICK_PRIV_BIT;
390}
391
392static unsigned long hbtick_add_tick(unsigned long adj)
393{
394	unsigned long val;
395
396	val = __hbird_read_stick() + adj;
397	__hbird_write_stick(val);
398
399	return val;
400}
401
402static int hbtick_add_compare(unsigned long adj)
403{
404	unsigned long val = __hbird_read_stick();
405	unsigned long val2;
406
407	val &= ~TICKCMP_IRQ_BIT;
408	val += adj;
409	__hbird_write_compare(val);
410
411	val2 = __hbird_read_stick() & ~TICKCMP_IRQ_BIT;
412
413	return ((long)(val2 - val)) > 0L;
414}
415
416static unsigned long hbtick_get_frequency(void)
417{
418	return prom_getintdefault(prom_root_node, "stick-frequency", 0);
419}
420
421static struct sparc64_tick_ops hbtick_operations __read_mostly = {
422	.name		=	"hbtick",
423	.init_tick	=	hbtick_init_tick,
424	.disable_irq	=	hbtick_disable_irq,
425	.get_tick	=	hbtick_get_tick,
426	.add_tick	=	hbtick_add_tick,
427	.add_compare	=	hbtick_add_compare,
428	.get_frequency	=	hbtick_get_frequency,
429	.softint_mask	=	1UL << 0,
430};
431
432unsigned long cmos_regs;
433EXPORT_SYMBOL(cmos_regs);
434
435static struct resource rtc_cmos_resource;
436
437static struct platform_device rtc_cmos_device = {
438	.name		= "rtc_cmos",
439	.id		= -1,
440	.resource	= &rtc_cmos_resource,
441	.num_resources	= 1,
442};
443
444static int rtc_probe(struct platform_device *op)
445{
446	struct resource *r;
447
448	printk(KERN_INFO "%pOF: RTC regs at 0x%llx\n",
449	       op->dev.of_node, op->resource[0].start);
450
451	/* The CMOS RTC driver only accepts IORESOURCE_IO, so cons
452	 * up a fake resource so that the probe works for all cases.
453	 * When the RTC is behind an ISA bus it will have IORESOURCE_IO
454	 * already, whereas when it's behind EBUS is will be IORESOURCE_MEM.
455	 */
456
457	r = &rtc_cmos_resource;
458	r->flags = IORESOURCE_IO;
459	r->name = op->resource[0].name;
460	r->start = op->resource[0].start;
461	r->end = op->resource[0].end;
462
463	cmos_regs = op->resource[0].start;
464	return platform_device_register(&rtc_cmos_device);
465}
466
467static const struct of_device_id rtc_match[] = {
468	{
469		.name = "rtc",
470		.compatible = "m5819",
471	},
472	{
473		.name = "rtc",
474		.compatible = "isa-m5819p",
475	},
476	{
477		.name = "rtc",
478		.compatible = "isa-m5823p",
479	},
480	{
481		.name = "rtc",
482		.compatible = "ds1287",
483	},
484	{},
485};
486
487static struct platform_driver rtc_driver = {
488	.probe		= rtc_probe,
489	.driver = {
490		.name = "rtc",
491		.of_match_table = rtc_match,
492	},
493};
494
495static struct platform_device rtc_bq4802_device = {
496	.name		= "rtc-bq4802",
497	.id		= -1,
498	.num_resources	= 1,
499};
500
501static int bq4802_probe(struct platform_device *op)
502{
503
504	printk(KERN_INFO "%pOF: BQ4802 regs at 0x%llx\n",
505	       op->dev.of_node, op->resource[0].start);
506
507	rtc_bq4802_device.resource = &op->resource[0];
508	return platform_device_register(&rtc_bq4802_device);
509}
510
511static const struct of_device_id bq4802_match[] = {
512	{
513		.name = "rtc",
514		.compatible = "bq4802",
515	},
516	{},
517};
518
519static struct platform_driver bq4802_driver = {
520	.probe		= bq4802_probe,
521	.driver = {
522		.name = "bq4802",
523		.of_match_table = bq4802_match,
524	},
525};
526
527static unsigned char mostek_read_byte(struct device *dev, u32 ofs)
528{
529	struct platform_device *pdev = to_platform_device(dev);
530	void __iomem *regs = (void __iomem *) pdev->resource[0].start;
531
532	return readb(regs + ofs);
533}
534
535static void mostek_write_byte(struct device *dev, u32 ofs, u8 val)
536{
537	struct platform_device *pdev = to_platform_device(dev);
538	void __iomem *regs = (void __iomem *) pdev->resource[0].start;
539
540	writeb(val, regs + ofs);
541}
542
543static struct m48t59_plat_data m48t59_data = {
544	.read_byte	= mostek_read_byte,
545	.write_byte	= mostek_write_byte,
546};
547
548static struct platform_device m48t59_rtc = {
549	.name		= "rtc-m48t59",
550	.id		= 0,
551	.num_resources	= 1,
552	.dev	= {
553		.platform_data = &m48t59_data,
554	},
555};
556
557static int mostek_probe(struct platform_device *op)
558{
559	struct device_node *dp = op->dev.of_node;
560
561	/* On an Enterprise system there can be multiple mostek clocks.
562	 * We should only match the one that is on the central FHC bus.
563	 */
564	if (of_node_name_eq(dp->parent, "fhc") &&
565	    !of_node_name_eq(dp->parent->parent, "central"))
566		return -ENODEV;
567
568	printk(KERN_INFO "%pOF: Mostek regs at 0x%llx\n",
569	       dp, op->resource[0].start);
570
571	m48t59_rtc.resource = &op->resource[0];
572	return platform_device_register(&m48t59_rtc);
573}
574
575static const struct of_device_id mostek_match[] = {
576	{
577		.name = "eeprom",
578	},
579	{},
580};
581
582static struct platform_driver mostek_driver = {
583	.probe		= mostek_probe,
584	.driver = {
585		.name = "mostek",
586		.of_match_table = mostek_match,
587	},
588};
589
590static struct platform_device rtc_sun4v_device = {
591	.name		= "rtc-sun4v",
592	.id		= -1,
593};
594
595static struct platform_device rtc_starfire_device = {
596	.name		= "rtc-starfire",
597	.id		= -1,
598};
599
600static int __init clock_init(void)
601{
602	if (this_is_starfire)
603		return platform_device_register(&rtc_starfire_device);
604
605	if (tlb_type == hypervisor)
606		return platform_device_register(&rtc_sun4v_device);
607
608	(void) platform_driver_register(&rtc_driver);
609	(void) platform_driver_register(&mostek_driver);
610	(void) platform_driver_register(&bq4802_driver);
611
612	return 0;
613}
614
615/* Must be after subsys_initcall() so that busses are probed.  Must
616 * be before device_initcall() because things like the RTC driver
617 * need to see the clock registers.
618 */
619fs_initcall(clock_init);
620
621/* Return true if this is Hummingbird, aka Ultra-IIe */
622static bool is_hummingbird(void)
623{
624	unsigned long ver, manuf, impl;
625
626	__asm__ __volatile__ ("rdpr %%ver, %0"
627			      : "=&r" (ver));
628	manuf = ((ver >> 48) & 0xffff);
629	impl = ((ver >> 32) & 0xffff);
630
631	return (manuf == 0x17 && impl == 0x13);
632}
633
634struct freq_table {
635	unsigned long clock_tick_ref;
636	unsigned int ref_freq;
637};
638static DEFINE_PER_CPU(struct freq_table, sparc64_freq_table) = { 0, 0 };
639
640unsigned long sparc64_get_clock_tick(unsigned int cpu)
641{
642	struct freq_table *ft = &per_cpu(sparc64_freq_table, cpu);
643
644	if (ft->clock_tick_ref)
645		return ft->clock_tick_ref;
646	return cpu_data(cpu).clock_tick;
647}
648EXPORT_SYMBOL(sparc64_get_clock_tick);
649
650#ifdef CONFIG_CPU_FREQ
651
652static int sparc64_cpufreq_notifier(struct notifier_block *nb, unsigned long val,
653				    void *data)
654{
655	struct cpufreq_freqs *freq = data;
656	unsigned int cpu;
657	struct freq_table *ft;
658
659	for_each_cpu(cpu, freq->policy->cpus) {
660		ft = &per_cpu(sparc64_freq_table, cpu);
661
662		if (!ft->ref_freq) {
663			ft->ref_freq = freq->old;
664			ft->clock_tick_ref = cpu_data(cpu).clock_tick;
665		}
666
667		if ((val == CPUFREQ_PRECHANGE  && freq->old < freq->new) ||
668		    (val == CPUFREQ_POSTCHANGE && freq->old > freq->new)) {
669			cpu_data(cpu).clock_tick =
670				cpufreq_scale(ft->clock_tick_ref, ft->ref_freq,
671					      freq->new);
672		}
673	}
674
675	return 0;
676}
677
678static struct notifier_block sparc64_cpufreq_notifier_block = {
679	.notifier_call	= sparc64_cpufreq_notifier
680};
681
682static int __init register_sparc64_cpufreq_notifier(void)
683{
684
685	cpufreq_register_notifier(&sparc64_cpufreq_notifier_block,
686				  CPUFREQ_TRANSITION_NOTIFIER);
687	return 0;
688}
689
690core_initcall(register_sparc64_cpufreq_notifier);
691
692#endif /* CONFIG_CPU_FREQ */
693
694static int sparc64_next_event(unsigned long delta,
695			      struct clock_event_device *evt)
696{
697	return tick_operations.add_compare(delta) ? -ETIME : 0;
698}
699
700static int sparc64_timer_shutdown(struct clock_event_device *evt)
701{
702	tick_operations.disable_irq();
703	return 0;
704}
705
706static struct clock_event_device sparc64_clockevent = {
707	.features		= CLOCK_EVT_FEAT_ONESHOT,
708	.set_state_shutdown	= sparc64_timer_shutdown,
709	.set_next_event		= sparc64_next_event,
710	.rating			= 100,
711	.shift			= 30,
712	.irq			= -1,
713};
714static DEFINE_PER_CPU(struct clock_event_device, sparc64_events);
715
716void __irq_entry timer_interrupt(int irq, struct pt_regs *regs)
717{
718	struct pt_regs *old_regs = set_irq_regs(regs);
719	unsigned long tick_mask = tick_operations.softint_mask;
720	int cpu = smp_processor_id();
721	struct clock_event_device *evt = &per_cpu(sparc64_events, cpu);
722
723	clear_softint(tick_mask);
724
725	irq_enter();
726
727	local_cpu_data().irq0_irqs++;
728	kstat_incr_irq_this_cpu(0);
729
730	if (unlikely(!evt->event_handler)) {
731		printk(KERN_WARNING
732		       "Spurious SPARC64 timer interrupt on cpu %d\n", cpu);
733	} else
734		evt->event_handler(evt);
735
736	irq_exit();
737
738	set_irq_regs(old_regs);
739}
740
741void setup_sparc64_timer(void)
742{
743	struct clock_event_device *sevt;
744	unsigned long pstate;
745
746	/* Guarantee that the following sequences execute
747	 * uninterrupted.
748	 */
749	__asm__ __volatile__("rdpr	%%pstate, %0\n\t"
750			     "wrpr	%0, %1, %%pstate"
751			     : "=r" (pstate)
752			     : "i" (PSTATE_IE));
753
754	tick_operations.init_tick();
755
756	/* Restore PSTATE_IE. */
757	__asm__ __volatile__("wrpr	%0, 0x0, %%pstate"
758			     : /* no outputs */
759			     : "r" (pstate));
760
761	sevt = this_cpu_ptr(&sparc64_events);
762
763	memcpy(sevt, &sparc64_clockevent, sizeof(*sevt));
764	sevt->cpumask = cpumask_of(smp_processor_id());
765
766	clockevents_register_device(sevt);
767}
768
769#define SPARC64_NSEC_PER_CYC_SHIFT	10UL
770
771static struct clocksource clocksource_tick = {
772	.rating		= 100,
773	.mask		= CLOCKSOURCE_MASK(64),
774	.flags		= CLOCK_SOURCE_IS_CONTINUOUS,
775};
776
777static unsigned long tb_ticks_per_usec __read_mostly;
778
779void __delay(unsigned long loops)
780{
781	unsigned long bclock = get_tick();
782
783	while ((get_tick() - bclock) < loops)
784		;
785}
786EXPORT_SYMBOL(__delay);
787
788void udelay(unsigned long usecs)
789{
790	__delay(tb_ticks_per_usec * usecs);
791}
792EXPORT_SYMBOL(udelay);
793
794static u64 clocksource_tick_read(struct clocksource *cs)
795{
796	return get_tick();
797}
798
799static void __init get_tick_patch(void)
800{
801	unsigned int *addr, *instr, i;
802	struct get_tick_patch *p;
803
804	if (tlb_type == spitfire && is_hummingbird())
805		return;
806
807	for (p = &__get_tick_patch; p < &__get_tick_patch_end; p++) {
808		instr = (tlb_type == spitfire) ? p->tick : p->stick;
809		addr = (unsigned int *)(unsigned long)p->addr;
810		for (i = 0; i < GET_TICK_NINSTR; i++) {
811			addr[i] = instr[i];
812			/* ensure that address is modified before flush */
813			wmb();
814			flushi(&addr[i]);
815		}
816	}
817}
818
819static void __init init_tick_ops(struct sparc64_tick_ops *ops)
820{
821	unsigned long freq, quotient, tick;
822
823	freq = ops->get_frequency();
824	quotient = clocksource_hz2mult(freq, SPARC64_NSEC_PER_CYC_SHIFT);
825	tick = ops->get_tick();
826
827	ops->offset = (tick * quotient) >> SPARC64_NSEC_PER_CYC_SHIFT;
828	ops->ticks_per_nsec_quotient = quotient;
829	ops->frequency = freq;
830	tick_operations = *ops;
831	get_tick_patch();
832}
833
834void __init time_init_early(void)
835{
836	if (tlb_type == spitfire) {
837		if (is_hummingbird()) {
838			init_tick_ops(&hbtick_operations);
839			clocksource_tick.archdata.vclock_mode = VCLOCK_NONE;
840		} else {
841			init_tick_ops(&tick_operations);
842			clocksource_tick.archdata.vclock_mode = VCLOCK_TICK;
843		}
844	} else {
845		init_tick_ops(&stick_operations);
846		clocksource_tick.archdata.vclock_mode = VCLOCK_STICK;
847	}
848}
849
850void __init time_init(void)
851{
852	unsigned long freq;
853
854	freq = tick_operations.frequency;
855	tb_ticks_per_usec = freq / USEC_PER_SEC;
856
857	clocksource_tick.name = tick_operations.name;
858	clocksource_tick.read = clocksource_tick_read;
859
860	clocksource_register_hz(&clocksource_tick, freq);
861	printk("clocksource: mult[%x] shift[%d]\n",
862	       clocksource_tick.mult, clocksource_tick.shift);
863
864	sparc64_clockevent.name = tick_operations.name;
865	clockevents_calc_mult_shift(&sparc64_clockevent, freq, 4);
866
867	sparc64_clockevent.max_delta_ns =
868		clockevent_delta2ns(0x7fffffffffffffffUL, &sparc64_clockevent);
869	sparc64_clockevent.max_delta_ticks = 0x7fffffffffffffffUL;
870	sparc64_clockevent.min_delta_ns =
871		clockevent_delta2ns(0xF, &sparc64_clockevent);
872	sparc64_clockevent.min_delta_ticks = 0xF;
873
874	printk("clockevent: mult[%x] shift[%d]\n",
875	       sparc64_clockevent.mult, sparc64_clockevent.shift);
876
877	setup_sparc64_timer();
878}
879
880unsigned long long sched_clock(void)
881{
882	unsigned long quotient = tick_operations.ticks_per_nsec_quotient;
883	unsigned long offset = tick_operations.offset;
884
885	/* Use barrier so the compiler emits the loads first and overlaps load
886	 * latency with reading tick, because reading %tick/%stick is a
887	 * post-sync instruction that will flush and restart subsequent
888	 * instructions after it commits.
889	 */
890	barrier();
891
892	return ((get_tick() * quotient) >> SPARC64_NSEC_PER_CYC_SHIFT) - offset;
893}
894
895int read_current_timer(unsigned long *timer_val)
896{
897	*timer_val = get_tick();
898	return 0;
899}
900