1// SPDX-License-Identifier: GPL-2.0
2/*
3 * Copyright IBM Corp. 2012
4 *
5 * Author(s):
6 *   Jan Glauber <jang@linux.vnet.ibm.com>
7 *
8 * The System z PCI code is a rewrite from a prototype by
9 * the following people (Kudoz!):
10 *   Alexander Schmidt
11 *   Christoph Raisch
12 *   Hannes Hering
13 *   Hoang-Nam Nguyen
14 *   Jan-Bernd Themann
15 *   Stefan Roscher
16 *   Thomas Klein
17 */
18
19#define KMSG_COMPONENT "zpci"
20#define pr_fmt(fmt) KMSG_COMPONENT ": " fmt
21
22#include <linux/kernel.h>
23#include <linux/slab.h>
24#include <linux/err.h>
25#include <linux/export.h>
26#include <linux/delay.h>
27#include <linux/seq_file.h>
28#include <linux/jump_label.h>
29#include <linux/pci.h>
30#include <linux/printk.h>
31#include <linux/lockdep.h>
32
33#include <asm/isc.h>
34#include <asm/airq.h>
35#include <asm/facility.h>
36#include <asm/pci_insn.h>
37#include <asm/pci_clp.h>
38#include <asm/pci_dma.h>
39
40#include "pci_bus.h"
41#include "pci_iov.h"
42
43/* list of all detected zpci devices */
44static LIST_HEAD(zpci_list);
45static DEFINE_SPINLOCK(zpci_list_lock);
46
47static DECLARE_BITMAP(zpci_domain, ZPCI_DOMAIN_BITMAP_SIZE);
48static DEFINE_SPINLOCK(zpci_domain_lock);
49
50#define ZPCI_IOMAP_ENTRIES						\
51	min(((unsigned long) ZPCI_NR_DEVICES * PCI_STD_NUM_BARS / 2),	\
52	    ZPCI_IOMAP_MAX_ENTRIES)
53
54unsigned int s390_pci_no_rid;
55
56static DEFINE_SPINLOCK(zpci_iomap_lock);
57static unsigned long *zpci_iomap_bitmap;
58struct zpci_iomap_entry *zpci_iomap_start;
59EXPORT_SYMBOL_GPL(zpci_iomap_start);
60
61DEFINE_STATIC_KEY_FALSE(have_mio);
62
63static struct kmem_cache *zdev_fmb_cache;
64
65/* AEN structures that must be preserved over KVM module re-insertion */
66union zpci_sic_iib *zpci_aipb;
67EXPORT_SYMBOL_GPL(zpci_aipb);
68struct airq_iv *zpci_aif_sbv;
69EXPORT_SYMBOL_GPL(zpci_aif_sbv);
70
71struct zpci_dev *get_zdev_by_fid(u32 fid)
72{
73	struct zpci_dev *tmp, *zdev = NULL;
74
75	spin_lock(&zpci_list_lock);
76	list_for_each_entry(tmp, &zpci_list, entry) {
77		if (tmp->fid == fid) {
78			zdev = tmp;
79			zpci_zdev_get(zdev);
80			break;
81		}
82	}
83	spin_unlock(&zpci_list_lock);
84	return zdev;
85}
86
87void zpci_remove_reserved_devices(void)
88{
89	struct zpci_dev *tmp, *zdev;
90	enum zpci_state state;
91	LIST_HEAD(remove);
92
93	spin_lock(&zpci_list_lock);
94	list_for_each_entry_safe(zdev, tmp, &zpci_list, entry) {
95		if (zdev->state == ZPCI_FN_STATE_STANDBY &&
96		    !clp_get_state(zdev->fid, &state) &&
97		    state == ZPCI_FN_STATE_RESERVED)
98			list_move_tail(&zdev->entry, &remove);
99	}
100	spin_unlock(&zpci_list_lock);
101
102	list_for_each_entry_safe(zdev, tmp, &remove, entry)
103		zpci_device_reserved(zdev);
104}
105
106int pci_domain_nr(struct pci_bus *bus)
107{
108	return ((struct zpci_bus *) bus->sysdata)->domain_nr;
109}
110EXPORT_SYMBOL_GPL(pci_domain_nr);
111
112int pci_proc_domain(struct pci_bus *bus)
113{
114	return pci_domain_nr(bus);
115}
116EXPORT_SYMBOL_GPL(pci_proc_domain);
117
118/* Modify PCI: Register I/O address translation parameters */
119int zpci_register_ioat(struct zpci_dev *zdev, u8 dmaas,
120		       u64 base, u64 limit, u64 iota, u8 *status)
121{
122	u64 req = ZPCI_CREATE_REQ(zdev->fh, dmaas, ZPCI_MOD_FC_REG_IOAT);
123	struct zpci_fib fib = {0};
124	u8 cc;
125
126	WARN_ON_ONCE(iota & 0x3fff);
127	fib.pba = base;
128	/* Work around off by one in ISM virt device */
129	if (zdev->pft == PCI_FUNC_TYPE_ISM && limit > base)
130		fib.pal = limit + (1 << 12);
131	else
132		fib.pal = limit;
133	fib.iota = iota | ZPCI_IOTA_RTTO_FLAG;
134	fib.gd = zdev->gisa;
135	cc = zpci_mod_fc(req, &fib, status);
136	if (cc)
137		zpci_dbg(3, "reg ioat fid:%x, cc:%d, status:%d\n", zdev->fid, cc, *status);
138	return cc;
139}
140EXPORT_SYMBOL_GPL(zpci_register_ioat);
141
142/* Modify PCI: Unregister I/O address translation parameters */
143int zpci_unregister_ioat(struct zpci_dev *zdev, u8 dmaas)
144{
145	u64 req = ZPCI_CREATE_REQ(zdev->fh, dmaas, ZPCI_MOD_FC_DEREG_IOAT);
146	struct zpci_fib fib = {0};
147	u8 cc, status;
148
149	fib.gd = zdev->gisa;
150
151	cc = zpci_mod_fc(req, &fib, &status);
152	if (cc)
153		zpci_dbg(3, "unreg ioat fid:%x, cc:%d, status:%d\n", zdev->fid, cc, status);
154	return cc;
155}
156
157/* Modify PCI: Set PCI function measurement parameters */
158int zpci_fmb_enable_device(struct zpci_dev *zdev)
159{
160	u64 req = ZPCI_CREATE_REQ(zdev->fh, 0, ZPCI_MOD_FC_SET_MEASURE);
161	struct zpci_iommu_ctrs *ctrs;
162	struct zpci_fib fib = {0};
163	u8 cc, status;
164
165	if (zdev->fmb || sizeof(*zdev->fmb) < zdev->fmb_length)
166		return -EINVAL;
167
168	zdev->fmb = kmem_cache_zalloc(zdev_fmb_cache, GFP_KERNEL);
169	if (!zdev->fmb)
170		return -ENOMEM;
171	WARN_ON((u64) zdev->fmb & 0xf);
172
173	/* reset software counters */
174	ctrs = zpci_get_iommu_ctrs(zdev);
175	if (ctrs) {
176		atomic64_set(&ctrs->mapped_pages, 0);
177		atomic64_set(&ctrs->unmapped_pages, 0);
178		atomic64_set(&ctrs->global_rpcits, 0);
179		atomic64_set(&ctrs->sync_map_rpcits, 0);
180		atomic64_set(&ctrs->sync_rpcits, 0);
181	}
182
183
184	fib.fmb_addr = virt_to_phys(zdev->fmb);
185	fib.gd = zdev->gisa;
186	cc = zpci_mod_fc(req, &fib, &status);
187	if (cc) {
188		kmem_cache_free(zdev_fmb_cache, zdev->fmb);
189		zdev->fmb = NULL;
190	}
191	return cc ? -EIO : 0;
192}
193
194/* Modify PCI: Disable PCI function measurement */
195int zpci_fmb_disable_device(struct zpci_dev *zdev)
196{
197	u64 req = ZPCI_CREATE_REQ(zdev->fh, 0, ZPCI_MOD_FC_SET_MEASURE);
198	struct zpci_fib fib = {0};
199	u8 cc, status;
200
201	if (!zdev->fmb)
202		return -EINVAL;
203
204	fib.gd = zdev->gisa;
205
206	/* Function measurement is disabled if fmb address is zero */
207	cc = zpci_mod_fc(req, &fib, &status);
208	if (cc == 3) /* Function already gone. */
209		cc = 0;
210
211	if (!cc) {
212		kmem_cache_free(zdev_fmb_cache, zdev->fmb);
213		zdev->fmb = NULL;
214	}
215	return cc ? -EIO : 0;
216}
217
218static int zpci_cfg_load(struct zpci_dev *zdev, int offset, u32 *val, u8 len)
219{
220	u64 req = ZPCI_CREATE_REQ(zdev->fh, ZPCI_PCIAS_CFGSPC, len);
221	u64 data;
222	int rc;
223
224	rc = __zpci_load(&data, req, offset);
225	if (!rc) {
226		data = le64_to_cpu((__force __le64) data);
227		data >>= (8 - len) * 8;
228		*val = (u32) data;
229	} else
230		*val = 0xffffffff;
231	return rc;
232}
233
234static int zpci_cfg_store(struct zpci_dev *zdev, int offset, u32 val, u8 len)
235{
236	u64 req = ZPCI_CREATE_REQ(zdev->fh, ZPCI_PCIAS_CFGSPC, len);
237	u64 data = val;
238	int rc;
239
240	data <<= (8 - len) * 8;
241	data = (__force u64) cpu_to_le64(data);
242	rc = __zpci_store(data, req, offset);
243	return rc;
244}
245
246resource_size_t pcibios_align_resource(void *data, const struct resource *res,
247				       resource_size_t size,
248				       resource_size_t align)
249{
250	return 0;
251}
252
253/* combine single writes by using store-block insn */
254void __iowrite64_copy(void __iomem *to, const void *from, size_t count)
255{
256	zpci_memcpy_toio(to, from, count * 8);
257}
258
259void __iomem *ioremap_prot(phys_addr_t phys_addr, size_t size,
260			   unsigned long prot)
261{
262	/*
263	 * When PCI MIO instructions are unavailable the "physical" address
264	 * encodes a hint for accessing the PCI memory space it represents.
265	 * Just pass it unchanged such that ioread/iowrite can decode it.
266	 */
267	if (!static_branch_unlikely(&have_mio))
268		return (void __iomem *)phys_addr;
269
270	return generic_ioremap_prot(phys_addr, size, __pgprot(prot));
271}
272EXPORT_SYMBOL(ioremap_prot);
273
274void iounmap(volatile void __iomem *addr)
275{
276	if (static_branch_likely(&have_mio))
277		generic_iounmap(addr);
278}
279EXPORT_SYMBOL(iounmap);
280
281/* Create a virtual mapping cookie for a PCI BAR */
282static void __iomem *pci_iomap_range_fh(struct pci_dev *pdev, int bar,
283					unsigned long offset, unsigned long max)
284{
285	struct zpci_dev *zdev =	to_zpci(pdev);
286	int idx;
287
288	idx = zdev->bars[bar].map_idx;
289	spin_lock(&zpci_iomap_lock);
290	/* Detect overrun */
291	WARN_ON(!++zpci_iomap_start[idx].count);
292	zpci_iomap_start[idx].fh = zdev->fh;
293	zpci_iomap_start[idx].bar = bar;
294	spin_unlock(&zpci_iomap_lock);
295
296	return (void __iomem *) ZPCI_ADDR(idx) + offset;
297}
298
299static void __iomem *pci_iomap_range_mio(struct pci_dev *pdev, int bar,
300					 unsigned long offset,
301					 unsigned long max)
302{
303	unsigned long barsize = pci_resource_len(pdev, bar);
304	struct zpci_dev *zdev = to_zpci(pdev);
305	void __iomem *iova;
306
307	iova = ioremap((unsigned long) zdev->bars[bar].mio_wt, barsize);
308	return iova ? iova + offset : iova;
309}
310
311void __iomem *pci_iomap_range(struct pci_dev *pdev, int bar,
312			      unsigned long offset, unsigned long max)
313{
314	if (bar >= PCI_STD_NUM_BARS || !pci_resource_len(pdev, bar))
315		return NULL;
316
317	if (static_branch_likely(&have_mio))
318		return pci_iomap_range_mio(pdev, bar, offset, max);
319	else
320		return pci_iomap_range_fh(pdev, bar, offset, max);
321}
322EXPORT_SYMBOL(pci_iomap_range);
323
324void __iomem *pci_iomap(struct pci_dev *dev, int bar, unsigned long maxlen)
325{
326	return pci_iomap_range(dev, bar, 0, maxlen);
327}
328EXPORT_SYMBOL(pci_iomap);
329
330static void __iomem *pci_iomap_wc_range_mio(struct pci_dev *pdev, int bar,
331					    unsigned long offset, unsigned long max)
332{
333	unsigned long barsize = pci_resource_len(pdev, bar);
334	struct zpci_dev *zdev = to_zpci(pdev);
335	void __iomem *iova;
336
337	iova = ioremap((unsigned long) zdev->bars[bar].mio_wb, barsize);
338	return iova ? iova + offset : iova;
339}
340
341void __iomem *pci_iomap_wc_range(struct pci_dev *pdev, int bar,
342				 unsigned long offset, unsigned long max)
343{
344	if (bar >= PCI_STD_NUM_BARS || !pci_resource_len(pdev, bar))
345		return NULL;
346
347	if (static_branch_likely(&have_mio))
348		return pci_iomap_wc_range_mio(pdev, bar, offset, max);
349	else
350		return pci_iomap_range_fh(pdev, bar, offset, max);
351}
352EXPORT_SYMBOL(pci_iomap_wc_range);
353
354void __iomem *pci_iomap_wc(struct pci_dev *dev, int bar, unsigned long maxlen)
355{
356	return pci_iomap_wc_range(dev, bar, 0, maxlen);
357}
358EXPORT_SYMBOL(pci_iomap_wc);
359
360static void pci_iounmap_fh(struct pci_dev *pdev, void __iomem *addr)
361{
362	unsigned int idx = ZPCI_IDX(addr);
363
364	spin_lock(&zpci_iomap_lock);
365	/* Detect underrun */
366	WARN_ON(!zpci_iomap_start[idx].count);
367	if (!--zpci_iomap_start[idx].count) {
368		zpci_iomap_start[idx].fh = 0;
369		zpci_iomap_start[idx].bar = 0;
370	}
371	spin_unlock(&zpci_iomap_lock);
372}
373
374static void pci_iounmap_mio(struct pci_dev *pdev, void __iomem *addr)
375{
376	iounmap(addr);
377}
378
379void pci_iounmap(struct pci_dev *pdev, void __iomem *addr)
380{
381	if (static_branch_likely(&have_mio))
382		pci_iounmap_mio(pdev, addr);
383	else
384		pci_iounmap_fh(pdev, addr);
385}
386EXPORT_SYMBOL(pci_iounmap);
387
388static int pci_read(struct pci_bus *bus, unsigned int devfn, int where,
389		    int size, u32 *val)
390{
391	struct zpci_dev *zdev = zdev_from_bus(bus, devfn);
392
393	return (zdev) ? zpci_cfg_load(zdev, where, val, size) : -ENODEV;
394}
395
396static int pci_write(struct pci_bus *bus, unsigned int devfn, int where,
397		     int size, u32 val)
398{
399	struct zpci_dev *zdev = zdev_from_bus(bus, devfn);
400
401	return (zdev) ? zpci_cfg_store(zdev, where, val, size) : -ENODEV;
402}
403
404static struct pci_ops pci_root_ops = {
405	.read = pci_read,
406	.write = pci_write,
407};
408
409static void zpci_map_resources(struct pci_dev *pdev)
410{
411	struct zpci_dev *zdev = to_zpci(pdev);
412	resource_size_t len;
413	int i;
414
415	for (i = 0; i < PCI_STD_NUM_BARS; i++) {
416		len = pci_resource_len(pdev, i);
417		if (!len)
418			continue;
419
420		if (zpci_use_mio(zdev))
421			pdev->resource[i].start =
422				(resource_size_t __force) zdev->bars[i].mio_wt;
423		else
424			pdev->resource[i].start = (resource_size_t __force)
425				pci_iomap_range_fh(pdev, i, 0, 0);
426		pdev->resource[i].end = pdev->resource[i].start + len - 1;
427	}
428
429	zpci_iov_map_resources(pdev);
430}
431
432static void zpci_unmap_resources(struct pci_dev *pdev)
433{
434	struct zpci_dev *zdev = to_zpci(pdev);
435	resource_size_t len;
436	int i;
437
438	if (zpci_use_mio(zdev))
439		return;
440
441	for (i = 0; i < PCI_STD_NUM_BARS; i++) {
442		len = pci_resource_len(pdev, i);
443		if (!len)
444			continue;
445		pci_iounmap_fh(pdev, (void __iomem __force *)
446			       pdev->resource[i].start);
447	}
448}
449
450static int zpci_alloc_iomap(struct zpci_dev *zdev)
451{
452	unsigned long entry;
453
454	spin_lock(&zpci_iomap_lock);
455	entry = find_first_zero_bit(zpci_iomap_bitmap, ZPCI_IOMAP_ENTRIES);
456	if (entry == ZPCI_IOMAP_ENTRIES) {
457		spin_unlock(&zpci_iomap_lock);
458		return -ENOSPC;
459	}
460	set_bit(entry, zpci_iomap_bitmap);
461	spin_unlock(&zpci_iomap_lock);
462	return entry;
463}
464
465static void zpci_free_iomap(struct zpci_dev *zdev, int entry)
466{
467	spin_lock(&zpci_iomap_lock);
468	memset(&zpci_iomap_start[entry], 0, sizeof(struct zpci_iomap_entry));
469	clear_bit(entry, zpci_iomap_bitmap);
470	spin_unlock(&zpci_iomap_lock);
471}
472
473static void zpci_do_update_iomap_fh(struct zpci_dev *zdev, u32 fh)
474{
475	int bar, idx;
476
477	spin_lock(&zpci_iomap_lock);
478	for (bar = 0; bar < PCI_STD_NUM_BARS; bar++) {
479		if (!zdev->bars[bar].size)
480			continue;
481		idx = zdev->bars[bar].map_idx;
482		if (!zpci_iomap_start[idx].count)
483			continue;
484		WRITE_ONCE(zpci_iomap_start[idx].fh, zdev->fh);
485	}
486	spin_unlock(&zpci_iomap_lock);
487}
488
489void zpci_update_fh(struct zpci_dev *zdev, u32 fh)
490{
491	if (!fh || zdev->fh == fh)
492		return;
493
494	zdev->fh = fh;
495	if (zpci_use_mio(zdev))
496		return;
497	if (zdev->has_resources && zdev_enabled(zdev))
498		zpci_do_update_iomap_fh(zdev, fh);
499}
500
501static struct resource *__alloc_res(struct zpci_dev *zdev, unsigned long start,
502				    unsigned long size, unsigned long flags)
503{
504	struct resource *r;
505
506	r = kzalloc(sizeof(*r), GFP_KERNEL);
507	if (!r)
508		return NULL;
509
510	r->start = start;
511	r->end = r->start + size - 1;
512	r->flags = flags;
513	r->name = zdev->res_name;
514
515	if (request_resource(&iomem_resource, r)) {
516		kfree(r);
517		return NULL;
518	}
519	return r;
520}
521
522int zpci_setup_bus_resources(struct zpci_dev *zdev)
523{
524	unsigned long addr, size, flags;
525	struct resource *res;
526	int i, entry;
527
528	snprintf(zdev->res_name, sizeof(zdev->res_name),
529		 "PCI Bus %04x:%02x", zdev->uid, ZPCI_BUS_NR);
530
531	for (i = 0; i < PCI_STD_NUM_BARS; i++) {
532		if (!zdev->bars[i].size)
533			continue;
534		entry = zpci_alloc_iomap(zdev);
535		if (entry < 0)
536			return entry;
537		zdev->bars[i].map_idx = entry;
538
539		/* only MMIO is supported */
540		flags = IORESOURCE_MEM;
541		if (zdev->bars[i].val & 8)
542			flags |= IORESOURCE_PREFETCH;
543		if (zdev->bars[i].val & 4)
544			flags |= IORESOURCE_MEM_64;
545
546		if (zpci_use_mio(zdev))
547			addr = (unsigned long) zdev->bars[i].mio_wt;
548		else
549			addr = ZPCI_ADDR(entry);
550		size = 1UL << zdev->bars[i].size;
551
552		res = __alloc_res(zdev, addr, size, flags);
553		if (!res) {
554			zpci_free_iomap(zdev, entry);
555			return -ENOMEM;
556		}
557		zdev->bars[i].res = res;
558	}
559	zdev->has_resources = 1;
560
561	return 0;
562}
563
564static void zpci_cleanup_bus_resources(struct zpci_dev *zdev)
565{
566	struct resource *res;
567	int i;
568
569	pci_lock_rescan_remove();
570	for (i = 0; i < PCI_STD_NUM_BARS; i++) {
571		res = zdev->bars[i].res;
572		if (!res)
573			continue;
574
575		release_resource(res);
576		pci_bus_remove_resource(zdev->zbus->bus, res);
577		zpci_free_iomap(zdev, zdev->bars[i].map_idx);
578		zdev->bars[i].res = NULL;
579		kfree(res);
580	}
581	zdev->has_resources = 0;
582	pci_unlock_rescan_remove();
583}
584
585int pcibios_device_add(struct pci_dev *pdev)
586{
587	struct zpci_dev *zdev = to_zpci(pdev);
588	struct resource *res;
589	int i;
590
591	/* The pdev has a reference to the zdev via its bus */
592	zpci_zdev_get(zdev);
593	if (pdev->is_physfn)
594		pdev->no_vf_scan = 1;
595
596	pdev->dev.groups = zpci_attr_groups;
597	zpci_map_resources(pdev);
598
599	for (i = 0; i < PCI_STD_NUM_BARS; i++) {
600		res = &pdev->resource[i];
601		if (res->parent || !res->flags)
602			continue;
603		pci_claim_resource(pdev, i);
604	}
605
606	return 0;
607}
608
609void pcibios_release_device(struct pci_dev *pdev)
610{
611	struct zpci_dev *zdev = to_zpci(pdev);
612
613	zpci_unmap_resources(pdev);
614	zpci_zdev_put(zdev);
615}
616
617int pcibios_enable_device(struct pci_dev *pdev, int mask)
618{
619	struct zpci_dev *zdev = to_zpci(pdev);
620
621	zpci_debug_init_device(zdev, dev_name(&pdev->dev));
622	zpci_fmb_enable_device(zdev);
623
624	return pci_enable_resources(pdev, mask);
625}
626
627void pcibios_disable_device(struct pci_dev *pdev)
628{
629	struct zpci_dev *zdev = to_zpci(pdev);
630
631	zpci_fmb_disable_device(zdev);
632	zpci_debug_exit_device(zdev);
633}
634
635static int __zpci_register_domain(int domain)
636{
637	spin_lock(&zpci_domain_lock);
638	if (test_bit(domain, zpci_domain)) {
639		spin_unlock(&zpci_domain_lock);
640		pr_err("Domain %04x is already assigned\n", domain);
641		return -EEXIST;
642	}
643	set_bit(domain, zpci_domain);
644	spin_unlock(&zpci_domain_lock);
645	return domain;
646}
647
648static int __zpci_alloc_domain(void)
649{
650	int domain;
651
652	spin_lock(&zpci_domain_lock);
653	/*
654	 * We can always auto allocate domains below ZPCI_NR_DEVICES.
655	 * There is either a free domain or we have reached the maximum in
656	 * which case we would have bailed earlier.
657	 */
658	domain = find_first_zero_bit(zpci_domain, ZPCI_NR_DEVICES);
659	set_bit(domain, zpci_domain);
660	spin_unlock(&zpci_domain_lock);
661	return domain;
662}
663
664int zpci_alloc_domain(int domain)
665{
666	if (zpci_unique_uid) {
667		if (domain)
668			return __zpci_register_domain(domain);
669		pr_warn("UID checking was active but no UID is provided: switching to automatic domain allocation\n");
670		update_uid_checking(false);
671	}
672	return __zpci_alloc_domain();
673}
674
675void zpci_free_domain(int domain)
676{
677	spin_lock(&zpci_domain_lock);
678	clear_bit(domain, zpci_domain);
679	spin_unlock(&zpci_domain_lock);
680}
681
682
683int zpci_enable_device(struct zpci_dev *zdev)
684{
685	u32 fh = zdev->fh;
686	int rc = 0;
687
688	if (clp_enable_fh(zdev, &fh, ZPCI_NR_DMA_SPACES))
689		rc = -EIO;
690	else
691		zpci_update_fh(zdev, fh);
692	return rc;
693}
694EXPORT_SYMBOL_GPL(zpci_enable_device);
695
696int zpci_disable_device(struct zpci_dev *zdev)
697{
698	u32 fh = zdev->fh;
699	int cc, rc = 0;
700
701	cc = clp_disable_fh(zdev, &fh);
702	if (!cc) {
703		zpci_update_fh(zdev, fh);
704	} else if (cc == CLP_RC_SETPCIFN_ALRDY) {
705		pr_info("Disabling PCI function %08x had no effect as it was already disabled\n",
706			zdev->fid);
707		/* Function is already disabled - update handle */
708		rc = clp_refresh_fh(zdev->fid, &fh);
709		if (!rc) {
710			zpci_update_fh(zdev, fh);
711			rc = -EINVAL;
712		}
713	} else {
714		rc = -EIO;
715	}
716	return rc;
717}
718EXPORT_SYMBOL_GPL(zpci_disable_device);
719
720/**
721 * zpci_hot_reset_device - perform a reset of the given zPCI function
722 * @zdev: the slot which should be reset
723 *
724 * Performs a low level reset of the zPCI function. The reset is low level in
725 * the sense that the zPCI function can be reset without detaching it from the
726 * common PCI subsystem. The reset may be performed while under control of
727 * either DMA or IOMMU APIs in which case the existing DMA/IOMMU translation
728 * table is reinstated at the end of the reset.
729 *
730 * After the reset the functions internal state is reset to an initial state
731 * equivalent to its state during boot when first probing a driver.
732 * Consequently after reset the PCI function requires re-initialization via the
733 * common PCI code including re-enabling IRQs via pci_alloc_irq_vectors()
734 * and enabling the function via e.g. pci_enable_device_flags(). The caller
735 * must guard against concurrent reset attempts.
736 *
737 * In most cases this function should not be called directly but through
738 * pci_reset_function() or pci_reset_bus() which handle the save/restore and
739 * locking - asserted by lockdep.
740 *
741 * Return: 0 on success and an error value otherwise
742 */
743int zpci_hot_reset_device(struct zpci_dev *zdev)
744{
745	u8 status;
746	int rc;
747
748	lockdep_assert_held(&zdev->state_lock);
749	zpci_dbg(3, "rst fid:%x, fh:%x\n", zdev->fid, zdev->fh);
750	if (zdev_enabled(zdev)) {
751		/* Disables device access, DMAs and IRQs (reset state) */
752		rc = zpci_disable_device(zdev);
753		/*
754		 * Due to a z/VM vs LPAR inconsistency in the error state the
755		 * FH may indicate an enabled device but disable says the
756		 * device is already disabled don't treat it as an error here.
757		 */
758		if (rc == -EINVAL)
759			rc = 0;
760		if (rc)
761			return rc;
762	}
763
764	rc = zpci_enable_device(zdev);
765	if (rc)
766		return rc;
767
768	if (zdev->dma_table)
769		rc = zpci_register_ioat(zdev, 0, zdev->start_dma, zdev->end_dma,
770					virt_to_phys(zdev->dma_table), &status);
771	if (rc) {
772		zpci_disable_device(zdev);
773		return rc;
774	}
775
776	return 0;
777}
778
779/**
780 * zpci_create_device() - Create a new zpci_dev and add it to the zbus
781 * @fid: Function ID of the device to be created
782 * @fh: Current Function Handle of the device to be created
783 * @state: Initial state after creation either Standby or Configured
784 *
785 * Creates a new zpci device and adds it to its, possibly newly created, zbus
786 * as well as zpci_list.
787 *
788 * Returns: the zdev on success or an error pointer otherwise
789 */
790struct zpci_dev *zpci_create_device(u32 fid, u32 fh, enum zpci_state state)
791{
792	struct zpci_dev *zdev;
793	int rc;
794
795	zpci_dbg(1, "add fid:%x, fh:%x, c:%d\n", fid, fh, state);
796	zdev = kzalloc(sizeof(*zdev), GFP_KERNEL);
797	if (!zdev)
798		return ERR_PTR(-ENOMEM);
799
800	/* FID and Function Handle are the static/dynamic identifiers */
801	zdev->fid = fid;
802	zdev->fh = fh;
803
804	/* Query function properties and update zdev */
805	rc = clp_query_pci_fn(zdev);
806	if (rc)
807		goto error;
808	zdev->state =  state;
809
810	kref_init(&zdev->kref);
811	mutex_init(&zdev->state_lock);
812	mutex_init(&zdev->fmb_lock);
813	mutex_init(&zdev->kzdev_lock);
814
815	rc = zpci_init_iommu(zdev);
816	if (rc)
817		goto error;
818
819	rc = zpci_bus_device_register(zdev, &pci_root_ops);
820	if (rc)
821		goto error_destroy_iommu;
822
823	spin_lock(&zpci_list_lock);
824	list_add_tail(&zdev->entry, &zpci_list);
825	spin_unlock(&zpci_list_lock);
826
827	return zdev;
828
829error_destroy_iommu:
830	zpci_destroy_iommu(zdev);
831error:
832	zpci_dbg(0, "add fid:%x, rc:%d\n", fid, rc);
833	kfree(zdev);
834	return ERR_PTR(rc);
835}
836
837bool zpci_is_device_configured(struct zpci_dev *zdev)
838{
839	enum zpci_state state = zdev->state;
840
841	return state != ZPCI_FN_STATE_RESERVED &&
842		state != ZPCI_FN_STATE_STANDBY;
843}
844
845/**
846 * zpci_scan_configured_device() - Scan a freshly configured zpci_dev
847 * @zdev: The zpci_dev to be configured
848 * @fh: The general function handle supplied by the platform
849 *
850 * Given a device in the configuration state Configured, enables, scans and
851 * adds it to the common code PCI subsystem if possible. If any failure occurs,
852 * the zpci_dev is left disabled.
853 *
854 * Return: 0 on success, or an error code otherwise
855 */
856int zpci_scan_configured_device(struct zpci_dev *zdev, u32 fh)
857{
858	zpci_update_fh(zdev, fh);
859	return zpci_bus_scan_device(zdev);
860}
861
862/**
863 * zpci_deconfigure_device() - Deconfigure a zpci_dev
864 * @zdev: The zpci_dev to configure
865 *
866 * Deconfigure a zPCI function that is currently configured and possibly known
867 * to the common code PCI subsystem.
868 * If any failure occurs the device is left as is.
869 *
870 * Return: 0 on success, or an error code otherwise
871 */
872int zpci_deconfigure_device(struct zpci_dev *zdev)
873{
874	int rc;
875
876	lockdep_assert_held(&zdev->state_lock);
877	if (zdev->state != ZPCI_FN_STATE_CONFIGURED)
878		return 0;
879
880	if (zdev->zbus->bus)
881		zpci_bus_remove_device(zdev, false);
882
883	if (zdev_enabled(zdev)) {
884		rc = zpci_disable_device(zdev);
885		if (rc)
886			return rc;
887	}
888
889	rc = sclp_pci_deconfigure(zdev->fid);
890	zpci_dbg(3, "deconf fid:%x, rc:%d\n", zdev->fid, rc);
891	if (rc)
892		return rc;
893	zdev->state = ZPCI_FN_STATE_STANDBY;
894
895	return 0;
896}
897
898/**
899 * zpci_device_reserved() - Mark device as reserved
900 * @zdev: the zpci_dev that was reserved
901 *
902 * Handle the case that a given zPCI function was reserved by another system.
903 * After a call to this function the zpci_dev can not be found via
904 * get_zdev_by_fid() anymore but may still be accessible via existing
905 * references though it will not be functional anymore.
906 */
907void zpci_device_reserved(struct zpci_dev *zdev)
908{
909	/*
910	 * Remove device from zpci_list as it is going away. This also
911	 * makes sure we ignore subsequent zPCI events for this device.
912	 */
913	spin_lock(&zpci_list_lock);
914	list_del(&zdev->entry);
915	spin_unlock(&zpci_list_lock);
916	zdev->state = ZPCI_FN_STATE_RESERVED;
917	zpci_dbg(3, "rsv fid:%x\n", zdev->fid);
918	zpci_zdev_put(zdev);
919}
920
921void zpci_release_device(struct kref *kref)
922{
923	struct zpci_dev *zdev = container_of(kref, struct zpci_dev, kref);
924	int ret;
925
926	if (zdev->has_hp_slot)
927		zpci_exit_slot(zdev);
928
929	if (zdev->zbus->bus)
930		zpci_bus_remove_device(zdev, false);
931
932	if (zdev_enabled(zdev))
933		zpci_disable_device(zdev);
934
935	switch (zdev->state) {
936	case ZPCI_FN_STATE_CONFIGURED:
937		ret = sclp_pci_deconfigure(zdev->fid);
938		zpci_dbg(3, "deconf fid:%x, rc:%d\n", zdev->fid, ret);
939		fallthrough;
940	case ZPCI_FN_STATE_STANDBY:
941		if (zdev->has_hp_slot)
942			zpci_exit_slot(zdev);
943		spin_lock(&zpci_list_lock);
944		list_del(&zdev->entry);
945		spin_unlock(&zpci_list_lock);
946		zpci_dbg(3, "rsv fid:%x\n", zdev->fid);
947		fallthrough;
948	case ZPCI_FN_STATE_RESERVED:
949		if (zdev->has_resources)
950			zpci_cleanup_bus_resources(zdev);
951		zpci_bus_device_unregister(zdev);
952		zpci_destroy_iommu(zdev);
953		fallthrough;
954	default:
955		break;
956	}
957	zpci_dbg(3, "rem fid:%x\n", zdev->fid);
958	kfree_rcu(zdev, rcu);
959}
960
961int zpci_report_error(struct pci_dev *pdev,
962		      struct zpci_report_error_header *report)
963{
964	struct zpci_dev *zdev = to_zpci(pdev);
965
966	return sclp_pci_report(report, zdev->fh, zdev->fid);
967}
968EXPORT_SYMBOL(zpci_report_error);
969
970/**
971 * zpci_clear_error_state() - Clears the zPCI error state of the device
972 * @zdev: The zdev for which the zPCI error state should be reset
973 *
974 * Clear the zPCI error state of the device. If clearing the zPCI error state
975 * fails the device is left in the error state. In this case it may make sense
976 * to call zpci_io_perm_failure() on the associated pdev if it exists.
977 *
978 * Returns: 0 on success, -EIO otherwise
979 */
980int zpci_clear_error_state(struct zpci_dev *zdev)
981{
982	u64 req = ZPCI_CREATE_REQ(zdev->fh, 0, ZPCI_MOD_FC_RESET_ERROR);
983	struct zpci_fib fib = {0};
984	u8 status;
985	int cc;
986
987	cc = zpci_mod_fc(req, &fib, &status);
988	if (cc) {
989		zpci_dbg(3, "ces fid:%x, cc:%d, status:%x\n", zdev->fid, cc, status);
990		return -EIO;
991	}
992
993	return 0;
994}
995
996/**
997 * zpci_reset_load_store_blocked() - Re-enables L/S from error state
998 * @zdev: The zdev for which to unblock load/store access
999 *
1000 * Re-enables load/store access for a PCI function in the error state while
1001 * keeping DMA blocked. In this state drivers can poke MMIO space to determine
1002 * if error recovery is possible while catching any rogue DMA access from the
1003 * device.
1004 *
1005 * Returns: 0 on success, -EIO otherwise
1006 */
1007int zpci_reset_load_store_blocked(struct zpci_dev *zdev)
1008{
1009	u64 req = ZPCI_CREATE_REQ(zdev->fh, 0, ZPCI_MOD_FC_RESET_BLOCK);
1010	struct zpci_fib fib = {0};
1011	u8 status;
1012	int cc;
1013
1014	cc = zpci_mod_fc(req, &fib, &status);
1015	if (cc) {
1016		zpci_dbg(3, "rls fid:%x, cc:%d, status:%x\n", zdev->fid, cc, status);
1017		return -EIO;
1018	}
1019
1020	return 0;
1021}
1022
1023static int zpci_mem_init(void)
1024{
1025	BUILD_BUG_ON(!is_power_of_2(__alignof__(struct zpci_fmb)) ||
1026		     __alignof__(struct zpci_fmb) < sizeof(struct zpci_fmb));
1027
1028	zdev_fmb_cache = kmem_cache_create("PCI_FMB_cache", sizeof(struct zpci_fmb),
1029					   __alignof__(struct zpci_fmb), 0, NULL);
1030	if (!zdev_fmb_cache)
1031		goto error_fmb;
1032
1033	zpci_iomap_start = kcalloc(ZPCI_IOMAP_ENTRIES,
1034				   sizeof(*zpci_iomap_start), GFP_KERNEL);
1035	if (!zpci_iomap_start)
1036		goto error_iomap;
1037
1038	zpci_iomap_bitmap = kcalloc(BITS_TO_LONGS(ZPCI_IOMAP_ENTRIES),
1039				    sizeof(*zpci_iomap_bitmap), GFP_KERNEL);
1040	if (!zpci_iomap_bitmap)
1041		goto error_iomap_bitmap;
1042
1043	if (static_branch_likely(&have_mio))
1044		clp_setup_writeback_mio();
1045
1046	return 0;
1047error_iomap_bitmap:
1048	kfree(zpci_iomap_start);
1049error_iomap:
1050	kmem_cache_destroy(zdev_fmb_cache);
1051error_fmb:
1052	return -ENOMEM;
1053}
1054
1055static void zpci_mem_exit(void)
1056{
1057	kfree(zpci_iomap_bitmap);
1058	kfree(zpci_iomap_start);
1059	kmem_cache_destroy(zdev_fmb_cache);
1060}
1061
1062static unsigned int s390_pci_probe __initdata = 1;
1063unsigned int s390_pci_force_floating __initdata;
1064static unsigned int s390_pci_initialized;
1065
1066char * __init pcibios_setup(char *str)
1067{
1068	if (!strcmp(str, "off")) {
1069		s390_pci_probe = 0;
1070		return NULL;
1071	}
1072	if (!strcmp(str, "nomio")) {
1073		S390_lowcore.machine_flags &= ~MACHINE_FLAG_PCI_MIO;
1074		return NULL;
1075	}
1076	if (!strcmp(str, "force_floating")) {
1077		s390_pci_force_floating = 1;
1078		return NULL;
1079	}
1080	if (!strcmp(str, "norid")) {
1081		s390_pci_no_rid = 1;
1082		return NULL;
1083	}
1084	return str;
1085}
1086
1087bool zpci_is_enabled(void)
1088{
1089	return s390_pci_initialized;
1090}
1091
1092static int __init pci_base_init(void)
1093{
1094	int rc;
1095
1096	if (!s390_pci_probe)
1097		return 0;
1098
1099	if (!test_facility(69) || !test_facility(71)) {
1100		pr_info("PCI is not supported because CPU facilities 69 or 71 are not available\n");
1101		return 0;
1102	}
1103
1104	if (MACHINE_HAS_PCI_MIO) {
1105		static_branch_enable(&have_mio);
1106		system_ctl_set_bit(2, CR2_MIO_ADDRESSING_BIT);
1107	}
1108
1109	rc = zpci_debug_init();
1110	if (rc)
1111		goto out;
1112
1113	rc = zpci_mem_init();
1114	if (rc)
1115		goto out_mem;
1116
1117	rc = zpci_irq_init();
1118	if (rc)
1119		goto out_irq;
1120
1121	rc = clp_scan_pci_devices();
1122	if (rc)
1123		goto out_find;
1124	zpci_bus_scan_busses();
1125
1126	s390_pci_initialized = 1;
1127	return 0;
1128
1129out_find:
1130	zpci_irq_exit();
1131out_irq:
1132	zpci_mem_exit();
1133out_mem:
1134	zpci_debug_exit();
1135out:
1136	return rc;
1137}
1138subsys_initcall_sync(pci_base_init);
1139