1// SPDX-License-Identifier: GPL-2.0
2/*
3 * guest access functions
4 *
5 * Copyright IBM Corp. 2014
6 *
7 */
8
9#include <linux/vmalloc.h>
10#include <linux/mm_types.h>
11#include <linux/err.h>
12#include <linux/pgtable.h>
13#include <linux/bitfield.h>
14#include <asm/access-regs.h>
15#include <asm/fault.h>
16#include <asm/gmap.h>
17#include "kvm-s390.h"
18#include "gaccess.h"
19
20union asce {
21	unsigned long val;
22	struct {
23		unsigned long origin : 52; /* Region- or Segment-Table Origin */
24		unsigned long	 : 2;
25		unsigned long g  : 1; /* Subspace Group Control */
26		unsigned long p  : 1; /* Private Space Control */
27		unsigned long s  : 1; /* Storage-Alteration-Event Control */
28		unsigned long x  : 1; /* Space-Switch-Event Control */
29		unsigned long r  : 1; /* Real-Space Control */
30		unsigned long	 : 1;
31		unsigned long dt : 2; /* Designation-Type Control */
32		unsigned long tl : 2; /* Region- or Segment-Table Length */
33	};
34};
35
36enum {
37	ASCE_TYPE_SEGMENT = 0,
38	ASCE_TYPE_REGION3 = 1,
39	ASCE_TYPE_REGION2 = 2,
40	ASCE_TYPE_REGION1 = 3
41};
42
43union region1_table_entry {
44	unsigned long val;
45	struct {
46		unsigned long rto: 52;/* Region-Table Origin */
47		unsigned long	 : 2;
48		unsigned long p  : 1; /* DAT-Protection Bit */
49		unsigned long	 : 1;
50		unsigned long tf : 2; /* Region-Second-Table Offset */
51		unsigned long i  : 1; /* Region-Invalid Bit */
52		unsigned long	 : 1;
53		unsigned long tt : 2; /* Table-Type Bits */
54		unsigned long tl : 2; /* Region-Second-Table Length */
55	};
56};
57
58union region2_table_entry {
59	unsigned long val;
60	struct {
61		unsigned long rto: 52;/* Region-Table Origin */
62		unsigned long	 : 2;
63		unsigned long p  : 1; /* DAT-Protection Bit */
64		unsigned long	 : 1;
65		unsigned long tf : 2; /* Region-Third-Table Offset */
66		unsigned long i  : 1; /* Region-Invalid Bit */
67		unsigned long	 : 1;
68		unsigned long tt : 2; /* Table-Type Bits */
69		unsigned long tl : 2; /* Region-Third-Table Length */
70	};
71};
72
73struct region3_table_entry_fc0 {
74	unsigned long sto: 52;/* Segment-Table Origin */
75	unsigned long	 : 1;
76	unsigned long fc : 1; /* Format-Control */
77	unsigned long p  : 1; /* DAT-Protection Bit */
78	unsigned long	 : 1;
79	unsigned long tf : 2; /* Segment-Table Offset */
80	unsigned long i  : 1; /* Region-Invalid Bit */
81	unsigned long cr : 1; /* Common-Region Bit */
82	unsigned long tt : 2; /* Table-Type Bits */
83	unsigned long tl : 2; /* Segment-Table Length */
84};
85
86struct region3_table_entry_fc1 {
87	unsigned long rfaa : 33; /* Region-Frame Absolute Address */
88	unsigned long	 : 14;
89	unsigned long av : 1; /* ACCF-Validity Control */
90	unsigned long acc: 4; /* Access-Control Bits */
91	unsigned long f  : 1; /* Fetch-Protection Bit */
92	unsigned long fc : 1; /* Format-Control */
93	unsigned long p  : 1; /* DAT-Protection Bit */
94	unsigned long iep: 1; /* Instruction-Execution-Protection */
95	unsigned long	 : 2;
96	unsigned long i  : 1; /* Region-Invalid Bit */
97	unsigned long cr : 1; /* Common-Region Bit */
98	unsigned long tt : 2; /* Table-Type Bits */
99	unsigned long	 : 2;
100};
101
102union region3_table_entry {
103	unsigned long val;
104	struct region3_table_entry_fc0 fc0;
105	struct region3_table_entry_fc1 fc1;
106	struct {
107		unsigned long	 : 53;
108		unsigned long fc : 1; /* Format-Control */
109		unsigned long	 : 4;
110		unsigned long i  : 1; /* Region-Invalid Bit */
111		unsigned long cr : 1; /* Common-Region Bit */
112		unsigned long tt : 2; /* Table-Type Bits */
113		unsigned long	 : 2;
114	};
115};
116
117struct segment_entry_fc0 {
118	unsigned long pto: 53;/* Page-Table Origin */
119	unsigned long fc : 1; /* Format-Control */
120	unsigned long p  : 1; /* DAT-Protection Bit */
121	unsigned long	 : 3;
122	unsigned long i  : 1; /* Segment-Invalid Bit */
123	unsigned long cs : 1; /* Common-Segment Bit */
124	unsigned long tt : 2; /* Table-Type Bits */
125	unsigned long	 : 2;
126};
127
128struct segment_entry_fc1 {
129	unsigned long sfaa : 44; /* Segment-Frame Absolute Address */
130	unsigned long	 : 3;
131	unsigned long av : 1; /* ACCF-Validity Control */
132	unsigned long acc: 4; /* Access-Control Bits */
133	unsigned long f  : 1; /* Fetch-Protection Bit */
134	unsigned long fc : 1; /* Format-Control */
135	unsigned long p  : 1; /* DAT-Protection Bit */
136	unsigned long iep: 1; /* Instruction-Execution-Protection */
137	unsigned long	 : 2;
138	unsigned long i  : 1; /* Segment-Invalid Bit */
139	unsigned long cs : 1; /* Common-Segment Bit */
140	unsigned long tt : 2; /* Table-Type Bits */
141	unsigned long	 : 2;
142};
143
144union segment_table_entry {
145	unsigned long val;
146	struct segment_entry_fc0 fc0;
147	struct segment_entry_fc1 fc1;
148	struct {
149		unsigned long	 : 53;
150		unsigned long fc : 1; /* Format-Control */
151		unsigned long	 : 4;
152		unsigned long i  : 1; /* Segment-Invalid Bit */
153		unsigned long cs : 1; /* Common-Segment Bit */
154		unsigned long tt : 2; /* Table-Type Bits */
155		unsigned long	 : 2;
156	};
157};
158
159enum {
160	TABLE_TYPE_SEGMENT = 0,
161	TABLE_TYPE_REGION3 = 1,
162	TABLE_TYPE_REGION2 = 2,
163	TABLE_TYPE_REGION1 = 3
164};
165
166union page_table_entry {
167	unsigned long val;
168	struct {
169		unsigned long pfra : 52; /* Page-Frame Real Address */
170		unsigned long z  : 1; /* Zero Bit */
171		unsigned long i  : 1; /* Page-Invalid Bit */
172		unsigned long p  : 1; /* DAT-Protection Bit */
173		unsigned long iep: 1; /* Instruction-Execution-Protection */
174		unsigned long	 : 8;
175	};
176};
177
178/*
179 * vaddress union in order to easily decode a virtual address into its
180 * region first index, region second index etc. parts.
181 */
182union vaddress {
183	unsigned long addr;
184	struct {
185		unsigned long rfx : 11;
186		unsigned long rsx : 11;
187		unsigned long rtx : 11;
188		unsigned long sx  : 11;
189		unsigned long px  : 8;
190		unsigned long bx  : 12;
191	};
192	struct {
193		unsigned long rfx01 : 2;
194		unsigned long	    : 9;
195		unsigned long rsx01 : 2;
196		unsigned long	    : 9;
197		unsigned long rtx01 : 2;
198		unsigned long	    : 9;
199		unsigned long sx01  : 2;
200		unsigned long	    : 29;
201	};
202};
203
204/*
205 * raddress union which will contain the result (real or absolute address)
206 * after a page table walk. The rfaa, sfaa and pfra members are used to
207 * simply assign them the value of a region, segment or page table entry.
208 */
209union raddress {
210	unsigned long addr;
211	unsigned long rfaa : 33; /* Region-Frame Absolute Address */
212	unsigned long sfaa : 44; /* Segment-Frame Absolute Address */
213	unsigned long pfra : 52; /* Page-Frame Real Address */
214};
215
216union alet {
217	u32 val;
218	struct {
219		u32 reserved : 7;
220		u32 p        : 1;
221		u32 alesn    : 8;
222		u32 alen     : 16;
223	};
224};
225
226union ald {
227	u32 val;
228	struct {
229		u32     : 1;
230		u32 alo : 24;
231		u32 all : 7;
232	};
233};
234
235struct ale {
236	unsigned long i      : 1; /* ALEN-Invalid Bit */
237	unsigned long        : 5;
238	unsigned long fo     : 1; /* Fetch-Only Bit */
239	unsigned long p      : 1; /* Private Bit */
240	unsigned long alesn  : 8; /* Access-List-Entry Sequence Number */
241	unsigned long aleax  : 16; /* Access-List-Entry Authorization Index */
242	unsigned long        : 32;
243	unsigned long        : 1;
244	unsigned long asteo  : 25; /* ASN-Second-Table-Entry Origin */
245	unsigned long        : 6;
246	unsigned long astesn : 32; /* ASTE Sequence Number */
247};
248
249struct aste {
250	unsigned long i      : 1; /* ASX-Invalid Bit */
251	unsigned long ato    : 29; /* Authority-Table Origin */
252	unsigned long        : 1;
253	unsigned long b      : 1; /* Base-Space Bit */
254	unsigned long ax     : 16; /* Authorization Index */
255	unsigned long atl    : 12; /* Authority-Table Length */
256	unsigned long        : 2;
257	unsigned long ca     : 1; /* Controlled-ASN Bit */
258	unsigned long ra     : 1; /* Reusable-ASN Bit */
259	unsigned long asce   : 64; /* Address-Space-Control Element */
260	unsigned long ald    : 32;
261	unsigned long astesn : 32;
262	/* .. more fields there */
263};
264
265int ipte_lock_held(struct kvm *kvm)
266{
267	if (sclp.has_siif) {
268		int rc;
269
270		read_lock(&kvm->arch.sca_lock);
271		rc = kvm_s390_get_ipte_control(kvm)->kh != 0;
272		read_unlock(&kvm->arch.sca_lock);
273		return rc;
274	}
275	return kvm->arch.ipte_lock_count != 0;
276}
277
278static void ipte_lock_simple(struct kvm *kvm)
279{
280	union ipte_control old, new, *ic;
281
282	mutex_lock(&kvm->arch.ipte_mutex);
283	kvm->arch.ipte_lock_count++;
284	if (kvm->arch.ipte_lock_count > 1)
285		goto out;
286retry:
287	read_lock(&kvm->arch.sca_lock);
288	ic = kvm_s390_get_ipte_control(kvm);
289	do {
290		old = READ_ONCE(*ic);
291		if (old.k) {
292			read_unlock(&kvm->arch.sca_lock);
293			cond_resched();
294			goto retry;
295		}
296		new = old;
297		new.k = 1;
298	} while (cmpxchg(&ic->val, old.val, new.val) != old.val);
299	read_unlock(&kvm->arch.sca_lock);
300out:
301	mutex_unlock(&kvm->arch.ipte_mutex);
302}
303
304static void ipte_unlock_simple(struct kvm *kvm)
305{
306	union ipte_control old, new, *ic;
307
308	mutex_lock(&kvm->arch.ipte_mutex);
309	kvm->arch.ipte_lock_count--;
310	if (kvm->arch.ipte_lock_count)
311		goto out;
312	read_lock(&kvm->arch.sca_lock);
313	ic = kvm_s390_get_ipte_control(kvm);
314	do {
315		old = READ_ONCE(*ic);
316		new = old;
317		new.k = 0;
318	} while (cmpxchg(&ic->val, old.val, new.val) != old.val);
319	read_unlock(&kvm->arch.sca_lock);
320	wake_up(&kvm->arch.ipte_wq);
321out:
322	mutex_unlock(&kvm->arch.ipte_mutex);
323}
324
325static void ipte_lock_siif(struct kvm *kvm)
326{
327	union ipte_control old, new, *ic;
328
329retry:
330	read_lock(&kvm->arch.sca_lock);
331	ic = kvm_s390_get_ipte_control(kvm);
332	do {
333		old = READ_ONCE(*ic);
334		if (old.kg) {
335			read_unlock(&kvm->arch.sca_lock);
336			cond_resched();
337			goto retry;
338		}
339		new = old;
340		new.k = 1;
341		new.kh++;
342	} while (cmpxchg(&ic->val, old.val, new.val) != old.val);
343	read_unlock(&kvm->arch.sca_lock);
344}
345
346static void ipte_unlock_siif(struct kvm *kvm)
347{
348	union ipte_control old, new, *ic;
349
350	read_lock(&kvm->arch.sca_lock);
351	ic = kvm_s390_get_ipte_control(kvm);
352	do {
353		old = READ_ONCE(*ic);
354		new = old;
355		new.kh--;
356		if (!new.kh)
357			new.k = 0;
358	} while (cmpxchg(&ic->val, old.val, new.val) != old.val);
359	read_unlock(&kvm->arch.sca_lock);
360	if (!new.kh)
361		wake_up(&kvm->arch.ipte_wq);
362}
363
364void ipte_lock(struct kvm *kvm)
365{
366	if (sclp.has_siif)
367		ipte_lock_siif(kvm);
368	else
369		ipte_lock_simple(kvm);
370}
371
372void ipte_unlock(struct kvm *kvm)
373{
374	if (sclp.has_siif)
375		ipte_unlock_siif(kvm);
376	else
377		ipte_unlock_simple(kvm);
378}
379
380static int ar_translation(struct kvm_vcpu *vcpu, union asce *asce, u8 ar,
381			  enum gacc_mode mode)
382{
383	union alet alet;
384	struct ale ale;
385	struct aste aste;
386	unsigned long ald_addr, authority_table_addr;
387	union ald ald;
388	int eax, rc;
389	u8 authority_table;
390
391	if (ar >= NUM_ACRS)
392		return -EINVAL;
393
394	if (vcpu->arch.acrs_loaded)
395		save_access_regs(vcpu->run->s.regs.acrs);
396	alet.val = vcpu->run->s.regs.acrs[ar];
397
398	if (ar == 0 || alet.val == 0) {
399		asce->val = vcpu->arch.sie_block->gcr[1];
400		return 0;
401	} else if (alet.val == 1) {
402		asce->val = vcpu->arch.sie_block->gcr[7];
403		return 0;
404	}
405
406	if (alet.reserved)
407		return PGM_ALET_SPECIFICATION;
408
409	if (alet.p)
410		ald_addr = vcpu->arch.sie_block->gcr[5];
411	else
412		ald_addr = vcpu->arch.sie_block->gcr[2];
413	ald_addr &= 0x7fffffc0;
414
415	rc = read_guest_real(vcpu, ald_addr + 16, &ald.val, sizeof(union ald));
416	if (rc)
417		return rc;
418
419	if (alet.alen / 8 > ald.all)
420		return PGM_ALEN_TRANSLATION;
421
422	if (0x7fffffff - ald.alo * 128 < alet.alen * 16)
423		return PGM_ADDRESSING;
424
425	rc = read_guest_real(vcpu, ald.alo * 128 + alet.alen * 16, &ale,
426			     sizeof(struct ale));
427	if (rc)
428		return rc;
429
430	if (ale.i == 1)
431		return PGM_ALEN_TRANSLATION;
432	if (ale.alesn != alet.alesn)
433		return PGM_ALE_SEQUENCE;
434
435	rc = read_guest_real(vcpu, ale.asteo * 64, &aste, sizeof(struct aste));
436	if (rc)
437		return rc;
438
439	if (aste.i)
440		return PGM_ASTE_VALIDITY;
441	if (aste.astesn != ale.astesn)
442		return PGM_ASTE_SEQUENCE;
443
444	if (ale.p == 1) {
445		eax = (vcpu->arch.sie_block->gcr[8] >> 16) & 0xffff;
446		if (ale.aleax != eax) {
447			if (eax / 16 > aste.atl)
448				return PGM_EXTENDED_AUTHORITY;
449
450			authority_table_addr = aste.ato * 4 + eax / 4;
451
452			rc = read_guest_real(vcpu, authority_table_addr,
453					     &authority_table,
454					     sizeof(u8));
455			if (rc)
456				return rc;
457
458			if ((authority_table & (0x40 >> ((eax & 3) * 2))) == 0)
459				return PGM_EXTENDED_AUTHORITY;
460		}
461	}
462
463	if (ale.fo == 1 && mode == GACC_STORE)
464		return PGM_PROTECTION;
465
466	asce->val = aste.asce;
467	return 0;
468}
469
470enum prot_type {
471	PROT_TYPE_LA   = 0,
472	PROT_TYPE_KEYC = 1,
473	PROT_TYPE_ALC  = 2,
474	PROT_TYPE_DAT  = 3,
475	PROT_TYPE_IEP  = 4,
476	/* Dummy value for passing an initialized value when code != PGM_PROTECTION */
477	PROT_NONE,
478};
479
480static int trans_exc_ending(struct kvm_vcpu *vcpu, int code, unsigned long gva, u8 ar,
481			    enum gacc_mode mode, enum prot_type prot, bool terminate)
482{
483	struct kvm_s390_pgm_info *pgm = &vcpu->arch.pgm;
484	union teid *teid;
485
486	memset(pgm, 0, sizeof(*pgm));
487	pgm->code = code;
488	teid = (union teid *)&pgm->trans_exc_code;
489
490	switch (code) {
491	case PGM_PROTECTION:
492		switch (prot) {
493		case PROT_NONE:
494			/* We should never get here, acts like termination */
495			WARN_ON_ONCE(1);
496			break;
497		case PROT_TYPE_IEP:
498			teid->b61 = 1;
499			fallthrough;
500		case PROT_TYPE_LA:
501			teid->b56 = 1;
502			break;
503		case PROT_TYPE_KEYC:
504			teid->b60 = 1;
505			break;
506		case PROT_TYPE_ALC:
507			teid->b60 = 1;
508			fallthrough;
509		case PROT_TYPE_DAT:
510			teid->b61 = 1;
511			break;
512		}
513		if (terminate) {
514			teid->b56 = 0;
515			teid->b60 = 0;
516			teid->b61 = 0;
517		}
518		fallthrough;
519	case PGM_ASCE_TYPE:
520	case PGM_PAGE_TRANSLATION:
521	case PGM_REGION_FIRST_TRANS:
522	case PGM_REGION_SECOND_TRANS:
523	case PGM_REGION_THIRD_TRANS:
524	case PGM_SEGMENT_TRANSLATION:
525		/*
526		 * op_access_id only applies to MOVE_PAGE -> set bit 61
527		 * exc_access_id has to be set to 0 for some instructions. Both
528		 * cases have to be handled by the caller.
529		 */
530		teid->addr = gva >> PAGE_SHIFT;
531		teid->fsi = mode == GACC_STORE ? TEID_FSI_STORE : TEID_FSI_FETCH;
532		teid->as = psw_bits(vcpu->arch.sie_block->gpsw).as;
533		fallthrough;
534	case PGM_ALEN_TRANSLATION:
535	case PGM_ALE_SEQUENCE:
536	case PGM_ASTE_VALIDITY:
537	case PGM_ASTE_SEQUENCE:
538	case PGM_EXTENDED_AUTHORITY:
539		/*
540		 * We can always store exc_access_id, as it is
541		 * undefined for non-ar cases. It is undefined for
542		 * most DAT protection exceptions.
543		 */
544		pgm->exc_access_id = ar;
545		break;
546	}
547	return code;
548}
549
550static int trans_exc(struct kvm_vcpu *vcpu, int code, unsigned long gva, u8 ar,
551		     enum gacc_mode mode, enum prot_type prot)
552{
553	return trans_exc_ending(vcpu, code, gva, ar, mode, prot, false);
554}
555
556static int get_vcpu_asce(struct kvm_vcpu *vcpu, union asce *asce,
557			 unsigned long ga, u8 ar, enum gacc_mode mode)
558{
559	int rc;
560	struct psw_bits psw = psw_bits(vcpu->arch.sie_block->gpsw);
561
562	if (!psw.dat) {
563		asce->val = 0;
564		asce->r = 1;
565		return 0;
566	}
567
568	if ((mode == GACC_IFETCH) && (psw.as != PSW_BITS_AS_HOME))
569		psw.as = PSW_BITS_AS_PRIMARY;
570
571	switch (psw.as) {
572	case PSW_BITS_AS_PRIMARY:
573		asce->val = vcpu->arch.sie_block->gcr[1];
574		return 0;
575	case PSW_BITS_AS_SECONDARY:
576		asce->val = vcpu->arch.sie_block->gcr[7];
577		return 0;
578	case PSW_BITS_AS_HOME:
579		asce->val = vcpu->arch.sie_block->gcr[13];
580		return 0;
581	case PSW_BITS_AS_ACCREG:
582		rc = ar_translation(vcpu, asce, ar, mode);
583		if (rc > 0)
584			return trans_exc(vcpu, rc, ga, ar, mode, PROT_TYPE_ALC);
585		return rc;
586	}
587	return 0;
588}
589
590static int deref_table(struct kvm *kvm, unsigned long gpa, unsigned long *val)
591{
592	return kvm_read_guest(kvm, gpa, val, sizeof(*val));
593}
594
595/**
596 * guest_translate - translate a guest virtual into a guest absolute address
597 * @vcpu: virtual cpu
598 * @gva: guest virtual address
599 * @gpa: points to where guest physical (absolute) address should be stored
600 * @asce: effective asce
601 * @mode: indicates the access mode to be used
602 * @prot: returns the type for protection exceptions
603 *
604 * Translate a guest virtual address into a guest absolute address by means
605 * of dynamic address translation as specified by the architecture.
606 * If the resulting absolute address is not available in the configuration
607 * an addressing exception is indicated and @gpa will not be changed.
608 *
609 * Returns: - zero on success; @gpa contains the resulting absolute address
610 *	    - a negative value if guest access failed due to e.g. broken
611 *	      guest mapping
612 *	    - a positive value if an access exception happened. In this case
613 *	      the returned value is the program interruption code as defined
614 *	      by the architecture
615 */
616static unsigned long guest_translate(struct kvm_vcpu *vcpu, unsigned long gva,
617				     unsigned long *gpa, const union asce asce,
618				     enum gacc_mode mode, enum prot_type *prot)
619{
620	union vaddress vaddr = {.addr = gva};
621	union raddress raddr = {.addr = gva};
622	union page_table_entry pte;
623	int dat_protection = 0;
624	int iep_protection = 0;
625	union ctlreg0 ctlreg0;
626	unsigned long ptr;
627	int edat1, edat2, iep;
628
629	ctlreg0.val = vcpu->arch.sie_block->gcr[0];
630	edat1 = ctlreg0.edat && test_kvm_facility(vcpu->kvm, 8);
631	edat2 = edat1 && test_kvm_facility(vcpu->kvm, 78);
632	iep = ctlreg0.iep && test_kvm_facility(vcpu->kvm, 130);
633	if (asce.r)
634		goto real_address;
635	ptr = asce.origin * PAGE_SIZE;
636	switch (asce.dt) {
637	case ASCE_TYPE_REGION1:
638		if (vaddr.rfx01 > asce.tl)
639			return PGM_REGION_FIRST_TRANS;
640		ptr += vaddr.rfx * 8;
641		break;
642	case ASCE_TYPE_REGION2:
643		if (vaddr.rfx)
644			return PGM_ASCE_TYPE;
645		if (vaddr.rsx01 > asce.tl)
646			return PGM_REGION_SECOND_TRANS;
647		ptr += vaddr.rsx * 8;
648		break;
649	case ASCE_TYPE_REGION3:
650		if (vaddr.rfx || vaddr.rsx)
651			return PGM_ASCE_TYPE;
652		if (vaddr.rtx01 > asce.tl)
653			return PGM_REGION_THIRD_TRANS;
654		ptr += vaddr.rtx * 8;
655		break;
656	case ASCE_TYPE_SEGMENT:
657		if (vaddr.rfx || vaddr.rsx || vaddr.rtx)
658			return PGM_ASCE_TYPE;
659		if (vaddr.sx01 > asce.tl)
660			return PGM_SEGMENT_TRANSLATION;
661		ptr += vaddr.sx * 8;
662		break;
663	}
664	switch (asce.dt) {
665	case ASCE_TYPE_REGION1:	{
666		union region1_table_entry rfte;
667
668		if (!kvm_is_gpa_in_memslot(vcpu->kvm, ptr))
669			return PGM_ADDRESSING;
670		if (deref_table(vcpu->kvm, ptr, &rfte.val))
671			return -EFAULT;
672		if (rfte.i)
673			return PGM_REGION_FIRST_TRANS;
674		if (rfte.tt != TABLE_TYPE_REGION1)
675			return PGM_TRANSLATION_SPEC;
676		if (vaddr.rsx01 < rfte.tf || vaddr.rsx01 > rfte.tl)
677			return PGM_REGION_SECOND_TRANS;
678		if (edat1)
679			dat_protection |= rfte.p;
680		ptr = rfte.rto * PAGE_SIZE + vaddr.rsx * 8;
681	}
682		fallthrough;
683	case ASCE_TYPE_REGION2: {
684		union region2_table_entry rste;
685
686		if (!kvm_is_gpa_in_memslot(vcpu->kvm, ptr))
687			return PGM_ADDRESSING;
688		if (deref_table(vcpu->kvm, ptr, &rste.val))
689			return -EFAULT;
690		if (rste.i)
691			return PGM_REGION_SECOND_TRANS;
692		if (rste.tt != TABLE_TYPE_REGION2)
693			return PGM_TRANSLATION_SPEC;
694		if (vaddr.rtx01 < rste.tf || vaddr.rtx01 > rste.tl)
695			return PGM_REGION_THIRD_TRANS;
696		if (edat1)
697			dat_protection |= rste.p;
698		ptr = rste.rto * PAGE_SIZE + vaddr.rtx * 8;
699	}
700		fallthrough;
701	case ASCE_TYPE_REGION3: {
702		union region3_table_entry rtte;
703
704		if (!kvm_is_gpa_in_memslot(vcpu->kvm, ptr))
705			return PGM_ADDRESSING;
706		if (deref_table(vcpu->kvm, ptr, &rtte.val))
707			return -EFAULT;
708		if (rtte.i)
709			return PGM_REGION_THIRD_TRANS;
710		if (rtte.tt != TABLE_TYPE_REGION3)
711			return PGM_TRANSLATION_SPEC;
712		if (rtte.cr && asce.p && edat2)
713			return PGM_TRANSLATION_SPEC;
714		if (rtte.fc && edat2) {
715			dat_protection |= rtte.fc1.p;
716			iep_protection = rtte.fc1.iep;
717			raddr.rfaa = rtte.fc1.rfaa;
718			goto absolute_address;
719		}
720		if (vaddr.sx01 < rtte.fc0.tf)
721			return PGM_SEGMENT_TRANSLATION;
722		if (vaddr.sx01 > rtte.fc0.tl)
723			return PGM_SEGMENT_TRANSLATION;
724		if (edat1)
725			dat_protection |= rtte.fc0.p;
726		ptr = rtte.fc0.sto * PAGE_SIZE + vaddr.sx * 8;
727	}
728		fallthrough;
729	case ASCE_TYPE_SEGMENT: {
730		union segment_table_entry ste;
731
732		if (!kvm_is_gpa_in_memslot(vcpu->kvm, ptr))
733			return PGM_ADDRESSING;
734		if (deref_table(vcpu->kvm, ptr, &ste.val))
735			return -EFAULT;
736		if (ste.i)
737			return PGM_SEGMENT_TRANSLATION;
738		if (ste.tt != TABLE_TYPE_SEGMENT)
739			return PGM_TRANSLATION_SPEC;
740		if (ste.cs && asce.p)
741			return PGM_TRANSLATION_SPEC;
742		if (ste.fc && edat1) {
743			dat_protection |= ste.fc1.p;
744			iep_protection = ste.fc1.iep;
745			raddr.sfaa = ste.fc1.sfaa;
746			goto absolute_address;
747		}
748		dat_protection |= ste.fc0.p;
749		ptr = ste.fc0.pto * (PAGE_SIZE / 2) + vaddr.px * 8;
750	}
751	}
752	if (!kvm_is_gpa_in_memslot(vcpu->kvm, ptr))
753		return PGM_ADDRESSING;
754	if (deref_table(vcpu->kvm, ptr, &pte.val))
755		return -EFAULT;
756	if (pte.i)
757		return PGM_PAGE_TRANSLATION;
758	if (pte.z)
759		return PGM_TRANSLATION_SPEC;
760	dat_protection |= pte.p;
761	iep_protection = pte.iep;
762	raddr.pfra = pte.pfra;
763real_address:
764	raddr.addr = kvm_s390_real_to_abs(vcpu, raddr.addr);
765absolute_address:
766	if (mode == GACC_STORE && dat_protection) {
767		*prot = PROT_TYPE_DAT;
768		return PGM_PROTECTION;
769	}
770	if (mode == GACC_IFETCH && iep_protection && iep) {
771		*prot = PROT_TYPE_IEP;
772		return PGM_PROTECTION;
773	}
774	if (!kvm_is_gpa_in_memslot(vcpu->kvm, raddr.addr))
775		return PGM_ADDRESSING;
776	*gpa = raddr.addr;
777	return 0;
778}
779
780static inline int is_low_address(unsigned long ga)
781{
782	/* Check for address ranges 0..511 and 4096..4607 */
783	return (ga & ~0x11fful) == 0;
784}
785
786static int low_address_protection_enabled(struct kvm_vcpu *vcpu,
787					  const union asce asce)
788{
789	union ctlreg0 ctlreg0 = {.val = vcpu->arch.sie_block->gcr[0]};
790	psw_t *psw = &vcpu->arch.sie_block->gpsw;
791
792	if (!ctlreg0.lap)
793		return 0;
794	if (psw_bits(*psw).dat && asce.p)
795		return 0;
796	return 1;
797}
798
799static int vm_check_access_key(struct kvm *kvm, u8 access_key,
800			       enum gacc_mode mode, gpa_t gpa)
801{
802	u8 storage_key, access_control;
803	bool fetch_protected;
804	unsigned long hva;
805	int r;
806
807	if (access_key == 0)
808		return 0;
809
810	hva = gfn_to_hva(kvm, gpa_to_gfn(gpa));
811	if (kvm_is_error_hva(hva))
812		return PGM_ADDRESSING;
813
814	mmap_read_lock(current->mm);
815	r = get_guest_storage_key(current->mm, hva, &storage_key);
816	mmap_read_unlock(current->mm);
817	if (r)
818		return r;
819	access_control = FIELD_GET(_PAGE_ACC_BITS, storage_key);
820	if (access_control == access_key)
821		return 0;
822	fetch_protected = storage_key & _PAGE_FP_BIT;
823	if ((mode == GACC_FETCH || mode == GACC_IFETCH) && !fetch_protected)
824		return 0;
825	return PGM_PROTECTION;
826}
827
828static bool fetch_prot_override_applicable(struct kvm_vcpu *vcpu, enum gacc_mode mode,
829					   union asce asce)
830{
831	psw_t *psw = &vcpu->arch.sie_block->gpsw;
832	unsigned long override;
833
834	if (mode == GACC_FETCH || mode == GACC_IFETCH) {
835		/* check if fetch protection override enabled */
836		override = vcpu->arch.sie_block->gcr[0];
837		override &= CR0_FETCH_PROTECTION_OVERRIDE;
838		/* not applicable if subject to DAT && private space */
839		override = override && !(psw_bits(*psw).dat && asce.p);
840		return override;
841	}
842	return false;
843}
844
845static bool fetch_prot_override_applies(unsigned long ga, unsigned int len)
846{
847	return ga < 2048 && ga + len <= 2048;
848}
849
850static bool storage_prot_override_applicable(struct kvm_vcpu *vcpu)
851{
852	/* check if storage protection override enabled */
853	return vcpu->arch.sie_block->gcr[0] & CR0_STORAGE_PROTECTION_OVERRIDE;
854}
855
856static bool storage_prot_override_applies(u8 access_control)
857{
858	/* matches special storage protection override key (9) -> allow */
859	return access_control == PAGE_SPO_ACC;
860}
861
862static int vcpu_check_access_key(struct kvm_vcpu *vcpu, u8 access_key,
863				 enum gacc_mode mode, union asce asce, gpa_t gpa,
864				 unsigned long ga, unsigned int len)
865{
866	u8 storage_key, access_control;
867	unsigned long hva;
868	int r;
869
870	/* access key 0 matches any storage key -> allow */
871	if (access_key == 0)
872		return 0;
873	/*
874	 * caller needs to ensure that gfn is accessible, so we can
875	 * assume that this cannot fail
876	 */
877	hva = gfn_to_hva(vcpu->kvm, gpa_to_gfn(gpa));
878	mmap_read_lock(current->mm);
879	r = get_guest_storage_key(current->mm, hva, &storage_key);
880	mmap_read_unlock(current->mm);
881	if (r)
882		return r;
883	access_control = FIELD_GET(_PAGE_ACC_BITS, storage_key);
884	/* access key matches storage key -> allow */
885	if (access_control == access_key)
886		return 0;
887	if (mode == GACC_FETCH || mode == GACC_IFETCH) {
888		/* it is a fetch and fetch protection is off -> allow */
889		if (!(storage_key & _PAGE_FP_BIT))
890			return 0;
891		if (fetch_prot_override_applicable(vcpu, mode, asce) &&
892		    fetch_prot_override_applies(ga, len))
893			return 0;
894	}
895	if (storage_prot_override_applicable(vcpu) &&
896	    storage_prot_override_applies(access_control))
897		return 0;
898	return PGM_PROTECTION;
899}
900
901/**
902 * guest_range_to_gpas() - Calculate guest physical addresses of page fragments
903 * covering a logical range
904 * @vcpu: virtual cpu
905 * @ga: guest address, start of range
906 * @ar: access register
907 * @gpas: output argument, may be NULL
908 * @len: length of range in bytes
909 * @asce: address-space-control element to use for translation
910 * @mode: access mode
911 * @access_key: access key to mach the range's storage keys against
912 *
913 * Translate a logical range to a series of guest absolute addresses,
914 * such that the concatenation of page fragments starting at each gpa make up
915 * the whole range.
916 * The translation is performed as if done by the cpu for the given @asce, @ar,
917 * @mode and state of the @vcpu.
918 * If the translation causes an exception, its program interruption code is
919 * returned and the &struct kvm_s390_pgm_info pgm member of @vcpu is modified
920 * such that a subsequent call to kvm_s390_inject_prog_vcpu() will inject
921 * a correct exception into the guest.
922 * The resulting gpas are stored into @gpas, unless it is NULL.
923 *
924 * Note: All fragments except the first one start at the beginning of a page.
925 *	 When deriving the boundaries of a fragment from a gpa, all but the last
926 *	 fragment end at the end of the page.
927 *
928 * Return:
929 * * 0		- success
930 * * <0		- translation could not be performed, for example if  guest
931 *		  memory could not be accessed
932 * * >0		- an access exception occurred. In this case the returned value
933 *		  is the program interruption code and the contents of pgm may
934 *		  be used to inject an exception into the guest.
935 */
936static int guest_range_to_gpas(struct kvm_vcpu *vcpu, unsigned long ga, u8 ar,
937			       unsigned long *gpas, unsigned long len,
938			       const union asce asce, enum gacc_mode mode,
939			       u8 access_key)
940{
941	psw_t *psw = &vcpu->arch.sie_block->gpsw;
942	unsigned int offset = offset_in_page(ga);
943	unsigned int fragment_len;
944	int lap_enabled, rc = 0;
945	enum prot_type prot;
946	unsigned long gpa;
947
948	lap_enabled = low_address_protection_enabled(vcpu, asce);
949	while (min(PAGE_SIZE - offset, len) > 0) {
950		fragment_len = min(PAGE_SIZE - offset, len);
951		ga = kvm_s390_logical_to_effective(vcpu, ga);
952		if (mode == GACC_STORE && lap_enabled && is_low_address(ga))
953			return trans_exc(vcpu, PGM_PROTECTION, ga, ar, mode,
954					 PROT_TYPE_LA);
955		if (psw_bits(*psw).dat) {
956			rc = guest_translate(vcpu, ga, &gpa, asce, mode, &prot);
957			if (rc < 0)
958				return rc;
959		} else {
960			gpa = kvm_s390_real_to_abs(vcpu, ga);
961			if (!kvm_is_gpa_in_memslot(vcpu->kvm, gpa)) {
962				rc = PGM_ADDRESSING;
963				prot = PROT_NONE;
964			}
965		}
966		if (rc)
967			return trans_exc(vcpu, rc, ga, ar, mode, prot);
968		rc = vcpu_check_access_key(vcpu, access_key, mode, asce, gpa, ga,
969					   fragment_len);
970		if (rc)
971			return trans_exc(vcpu, rc, ga, ar, mode, PROT_TYPE_KEYC);
972		if (gpas)
973			*gpas++ = gpa;
974		offset = 0;
975		ga += fragment_len;
976		len -= fragment_len;
977	}
978	return 0;
979}
980
981static int access_guest_page(struct kvm *kvm, enum gacc_mode mode, gpa_t gpa,
982			     void *data, unsigned int len)
983{
984	const unsigned int offset = offset_in_page(gpa);
985	const gfn_t gfn = gpa_to_gfn(gpa);
986	int rc;
987
988	if (mode == GACC_STORE)
989		rc = kvm_write_guest_page(kvm, gfn, data, offset, len);
990	else
991		rc = kvm_read_guest_page(kvm, gfn, data, offset, len);
992	return rc;
993}
994
995static int
996access_guest_page_with_key(struct kvm *kvm, enum gacc_mode mode, gpa_t gpa,
997			   void *data, unsigned int len, u8 access_key)
998{
999	struct kvm_memory_slot *slot;
1000	bool writable;
1001	gfn_t gfn;
1002	hva_t hva;
1003	int rc;
1004
1005	gfn = gpa >> PAGE_SHIFT;
1006	slot = gfn_to_memslot(kvm, gfn);
1007	hva = gfn_to_hva_memslot_prot(slot, gfn, &writable);
1008
1009	if (kvm_is_error_hva(hva))
1010		return PGM_ADDRESSING;
1011	/*
1012	 * Check if it's a ro memslot, even tho that can't occur (they're unsupported).
1013	 * Don't try to actually handle that case.
1014	 */
1015	if (!writable && mode == GACC_STORE)
1016		return -EOPNOTSUPP;
1017	hva += offset_in_page(gpa);
1018	if (mode == GACC_STORE)
1019		rc = copy_to_user_key((void __user *)hva, data, len, access_key);
1020	else
1021		rc = copy_from_user_key(data, (void __user *)hva, len, access_key);
1022	if (rc)
1023		return PGM_PROTECTION;
1024	if (mode == GACC_STORE)
1025		mark_page_dirty_in_slot(kvm, slot, gfn);
1026	return 0;
1027}
1028
1029int access_guest_abs_with_key(struct kvm *kvm, gpa_t gpa, void *data,
1030			      unsigned long len, enum gacc_mode mode, u8 access_key)
1031{
1032	int offset = offset_in_page(gpa);
1033	int fragment_len;
1034	int rc;
1035
1036	while (min(PAGE_SIZE - offset, len) > 0) {
1037		fragment_len = min(PAGE_SIZE - offset, len);
1038		rc = access_guest_page_with_key(kvm, mode, gpa, data, fragment_len, access_key);
1039		if (rc)
1040			return rc;
1041		offset = 0;
1042		len -= fragment_len;
1043		data += fragment_len;
1044		gpa += fragment_len;
1045	}
1046	return 0;
1047}
1048
1049int access_guest_with_key(struct kvm_vcpu *vcpu, unsigned long ga, u8 ar,
1050			  void *data, unsigned long len, enum gacc_mode mode,
1051			  u8 access_key)
1052{
1053	psw_t *psw = &vcpu->arch.sie_block->gpsw;
1054	unsigned long nr_pages, idx;
1055	unsigned long gpa_array[2];
1056	unsigned int fragment_len;
1057	unsigned long *gpas;
1058	enum prot_type prot;
1059	int need_ipte_lock;
1060	union asce asce;
1061	bool try_storage_prot_override;
1062	bool try_fetch_prot_override;
1063	int rc;
1064
1065	if (!len)
1066		return 0;
1067	ga = kvm_s390_logical_to_effective(vcpu, ga);
1068	rc = get_vcpu_asce(vcpu, &asce, ga, ar, mode);
1069	if (rc)
1070		return rc;
1071	nr_pages = (((ga & ~PAGE_MASK) + len - 1) >> PAGE_SHIFT) + 1;
1072	gpas = gpa_array;
1073	if (nr_pages > ARRAY_SIZE(gpa_array))
1074		gpas = vmalloc(array_size(nr_pages, sizeof(unsigned long)));
1075	if (!gpas)
1076		return -ENOMEM;
1077	try_fetch_prot_override = fetch_prot_override_applicable(vcpu, mode, asce);
1078	try_storage_prot_override = storage_prot_override_applicable(vcpu);
1079	need_ipte_lock = psw_bits(*psw).dat && !asce.r;
1080	if (need_ipte_lock)
1081		ipte_lock(vcpu->kvm);
1082	/*
1083	 * Since we do the access further down ultimately via a move instruction
1084	 * that does key checking and returns an error in case of a protection
1085	 * violation, we don't need to do the check during address translation.
1086	 * Skip it by passing access key 0, which matches any storage key,
1087	 * obviating the need for any further checks. As a result the check is
1088	 * handled entirely in hardware on access, we only need to take care to
1089	 * forego key protection checking if fetch protection override applies or
1090	 * retry with the special key 9 in case of storage protection override.
1091	 */
1092	rc = guest_range_to_gpas(vcpu, ga, ar, gpas, len, asce, mode, 0);
1093	if (rc)
1094		goto out_unlock;
1095	for (idx = 0; idx < nr_pages; idx++) {
1096		fragment_len = min(PAGE_SIZE - offset_in_page(gpas[idx]), len);
1097		if (try_fetch_prot_override && fetch_prot_override_applies(ga, fragment_len)) {
1098			rc = access_guest_page(vcpu->kvm, mode, gpas[idx],
1099					       data, fragment_len);
1100		} else {
1101			rc = access_guest_page_with_key(vcpu->kvm, mode, gpas[idx],
1102							data, fragment_len, access_key);
1103		}
1104		if (rc == PGM_PROTECTION && try_storage_prot_override)
1105			rc = access_guest_page_with_key(vcpu->kvm, mode, gpas[idx],
1106							data, fragment_len, PAGE_SPO_ACC);
1107		if (rc)
1108			break;
1109		len -= fragment_len;
1110		data += fragment_len;
1111		ga = kvm_s390_logical_to_effective(vcpu, ga + fragment_len);
1112	}
1113	if (rc > 0) {
1114		bool terminate = (mode == GACC_STORE) && (idx > 0);
1115
1116		if (rc == PGM_PROTECTION)
1117			prot = PROT_TYPE_KEYC;
1118		else
1119			prot = PROT_NONE;
1120		rc = trans_exc_ending(vcpu, rc, ga, ar, mode, prot, terminate);
1121	}
1122out_unlock:
1123	if (need_ipte_lock)
1124		ipte_unlock(vcpu->kvm);
1125	if (nr_pages > ARRAY_SIZE(gpa_array))
1126		vfree(gpas);
1127	return rc;
1128}
1129
1130int access_guest_real(struct kvm_vcpu *vcpu, unsigned long gra,
1131		      void *data, unsigned long len, enum gacc_mode mode)
1132{
1133	unsigned int fragment_len;
1134	unsigned long gpa;
1135	int rc = 0;
1136
1137	while (len && !rc) {
1138		gpa = kvm_s390_real_to_abs(vcpu, gra);
1139		fragment_len = min(PAGE_SIZE - offset_in_page(gpa), len);
1140		rc = access_guest_page(vcpu->kvm, mode, gpa, data, fragment_len);
1141		len -= fragment_len;
1142		gra += fragment_len;
1143		data += fragment_len;
1144	}
1145	return rc;
1146}
1147
1148/**
1149 * cmpxchg_guest_abs_with_key() - Perform cmpxchg on guest absolute address.
1150 * @kvm: Virtual machine instance.
1151 * @gpa: Absolute guest address of the location to be changed.
1152 * @len: Operand length of the cmpxchg, required: 1 <= len <= 16. Providing a
1153 *       non power of two will result in failure.
1154 * @old_addr: Pointer to old value. If the location at @gpa contains this value,
1155 *            the exchange will succeed. After calling cmpxchg_guest_abs_with_key()
1156 *            *@old_addr contains the value at @gpa before the attempt to
1157 *            exchange the value.
1158 * @new: The value to place at @gpa.
1159 * @access_key: The access key to use for the guest access.
1160 * @success: output value indicating if an exchange occurred.
1161 *
1162 * Atomically exchange the value at @gpa by @new, if it contains *@old.
1163 * Honors storage keys.
1164 *
1165 * Return: * 0: successful exchange
1166 *         * >0: a program interruption code indicating the reason cmpxchg could
1167 *               not be attempted
1168 *         * -EINVAL: address misaligned or len not power of two
1169 *         * -EAGAIN: transient failure (len 1 or 2)
1170 *         * -EOPNOTSUPP: read-only memslot (should never occur)
1171 */
1172int cmpxchg_guest_abs_with_key(struct kvm *kvm, gpa_t gpa, int len,
1173			       __uint128_t *old_addr, __uint128_t new,
1174			       u8 access_key, bool *success)
1175{
1176	gfn_t gfn = gpa_to_gfn(gpa);
1177	struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
1178	bool writable;
1179	hva_t hva;
1180	int ret;
1181
1182	if (!IS_ALIGNED(gpa, len))
1183		return -EINVAL;
1184
1185	hva = gfn_to_hva_memslot_prot(slot, gfn, &writable);
1186	if (kvm_is_error_hva(hva))
1187		return PGM_ADDRESSING;
1188	/*
1189	 * Check if it's a read-only memslot, even though that cannot occur
1190	 * since those are unsupported.
1191	 * Don't try to actually handle that case.
1192	 */
1193	if (!writable)
1194		return -EOPNOTSUPP;
1195
1196	hva += offset_in_page(gpa);
1197	/*
1198	 * The cmpxchg_user_key macro depends on the type of "old", so we need
1199	 * a case for each valid length and get some code duplication as long
1200	 * as we don't introduce a new macro.
1201	 */
1202	switch (len) {
1203	case 1: {
1204		u8 old;
1205
1206		ret = cmpxchg_user_key((u8 __user *)hva, &old, *old_addr, new, access_key);
1207		*success = !ret && old == *old_addr;
1208		*old_addr = old;
1209		break;
1210	}
1211	case 2: {
1212		u16 old;
1213
1214		ret = cmpxchg_user_key((u16 __user *)hva, &old, *old_addr, new, access_key);
1215		*success = !ret && old == *old_addr;
1216		*old_addr = old;
1217		break;
1218	}
1219	case 4: {
1220		u32 old;
1221
1222		ret = cmpxchg_user_key((u32 __user *)hva, &old, *old_addr, new, access_key);
1223		*success = !ret && old == *old_addr;
1224		*old_addr = old;
1225		break;
1226	}
1227	case 8: {
1228		u64 old;
1229
1230		ret = cmpxchg_user_key((u64 __user *)hva, &old, *old_addr, new, access_key);
1231		*success = !ret && old == *old_addr;
1232		*old_addr = old;
1233		break;
1234	}
1235	case 16: {
1236		__uint128_t old;
1237
1238		ret = cmpxchg_user_key((__uint128_t __user *)hva, &old, *old_addr, new, access_key);
1239		*success = !ret && old == *old_addr;
1240		*old_addr = old;
1241		break;
1242	}
1243	default:
1244		return -EINVAL;
1245	}
1246	if (*success)
1247		mark_page_dirty_in_slot(kvm, slot, gfn);
1248	/*
1249	 * Assume that the fault is caused by protection, either key protection
1250	 * or user page write protection.
1251	 */
1252	if (ret == -EFAULT)
1253		ret = PGM_PROTECTION;
1254	return ret;
1255}
1256
1257/**
1258 * guest_translate_address_with_key - translate guest logical into guest absolute address
1259 * @vcpu: virtual cpu
1260 * @gva: Guest virtual address
1261 * @ar: Access register
1262 * @gpa: Guest physical address
1263 * @mode: Translation access mode
1264 * @access_key: access key to mach the storage key with
1265 *
1266 * Parameter semantics are the same as the ones from guest_translate.
1267 * The memory contents at the guest address are not changed.
1268 *
1269 * Note: The IPTE lock is not taken during this function, so the caller
1270 * has to take care of this.
1271 */
1272int guest_translate_address_with_key(struct kvm_vcpu *vcpu, unsigned long gva, u8 ar,
1273				     unsigned long *gpa, enum gacc_mode mode,
1274				     u8 access_key)
1275{
1276	union asce asce;
1277	int rc;
1278
1279	gva = kvm_s390_logical_to_effective(vcpu, gva);
1280	rc = get_vcpu_asce(vcpu, &asce, gva, ar, mode);
1281	if (rc)
1282		return rc;
1283	return guest_range_to_gpas(vcpu, gva, ar, gpa, 1, asce, mode,
1284				   access_key);
1285}
1286
1287/**
1288 * check_gva_range - test a range of guest virtual addresses for accessibility
1289 * @vcpu: virtual cpu
1290 * @gva: Guest virtual address
1291 * @ar: Access register
1292 * @length: Length of test range
1293 * @mode: Translation access mode
1294 * @access_key: access key to mach the storage keys with
1295 */
1296int check_gva_range(struct kvm_vcpu *vcpu, unsigned long gva, u8 ar,
1297		    unsigned long length, enum gacc_mode mode, u8 access_key)
1298{
1299	union asce asce;
1300	int rc = 0;
1301
1302	rc = get_vcpu_asce(vcpu, &asce, gva, ar, mode);
1303	if (rc)
1304		return rc;
1305	ipte_lock(vcpu->kvm);
1306	rc = guest_range_to_gpas(vcpu, gva, ar, NULL, length, asce, mode,
1307				 access_key);
1308	ipte_unlock(vcpu->kvm);
1309
1310	return rc;
1311}
1312
1313/**
1314 * check_gpa_range - test a range of guest physical addresses for accessibility
1315 * @kvm: virtual machine instance
1316 * @gpa: guest physical address
1317 * @length: length of test range
1318 * @mode: access mode to test, relevant for storage keys
1319 * @access_key: access key to mach the storage keys with
1320 */
1321int check_gpa_range(struct kvm *kvm, unsigned long gpa, unsigned long length,
1322		    enum gacc_mode mode, u8 access_key)
1323{
1324	unsigned int fragment_len;
1325	int rc = 0;
1326
1327	while (length && !rc) {
1328		fragment_len = min(PAGE_SIZE - offset_in_page(gpa), length);
1329		rc = vm_check_access_key(kvm, access_key, mode, gpa);
1330		length -= fragment_len;
1331		gpa += fragment_len;
1332	}
1333	return rc;
1334}
1335
1336/**
1337 * kvm_s390_check_low_addr_prot_real - check for low-address protection
1338 * @vcpu: virtual cpu
1339 * @gra: Guest real address
1340 *
1341 * Checks whether an address is subject to low-address protection and set
1342 * up vcpu->arch.pgm accordingly if necessary.
1343 *
1344 * Return: 0 if no protection exception, or PGM_PROTECTION if protected.
1345 */
1346int kvm_s390_check_low_addr_prot_real(struct kvm_vcpu *vcpu, unsigned long gra)
1347{
1348	union ctlreg0 ctlreg0 = {.val = vcpu->arch.sie_block->gcr[0]};
1349
1350	if (!ctlreg0.lap || !is_low_address(gra))
1351		return 0;
1352	return trans_exc(vcpu, PGM_PROTECTION, gra, 0, GACC_STORE, PROT_TYPE_LA);
1353}
1354
1355/**
1356 * kvm_s390_shadow_tables - walk the guest page table and create shadow tables
1357 * @sg: pointer to the shadow guest address space structure
1358 * @saddr: faulting address in the shadow gmap
1359 * @pgt: pointer to the beginning of the page table for the given address if
1360 *	 successful (return value 0), or to the first invalid DAT entry in
1361 *	 case of exceptions (return value > 0)
1362 * @dat_protection: referenced memory is write protected
1363 * @fake: pgt references contiguous guest memory block, not a pgtable
1364 */
1365static int kvm_s390_shadow_tables(struct gmap *sg, unsigned long saddr,
1366				  unsigned long *pgt, int *dat_protection,
1367				  int *fake)
1368{
1369	struct kvm *kvm;
1370	struct gmap *parent;
1371	union asce asce;
1372	union vaddress vaddr;
1373	unsigned long ptr;
1374	int rc;
1375
1376	*fake = 0;
1377	*dat_protection = 0;
1378	kvm = sg->private;
1379	parent = sg->parent;
1380	vaddr.addr = saddr;
1381	asce.val = sg->orig_asce;
1382	ptr = asce.origin * PAGE_SIZE;
1383	if (asce.r) {
1384		*fake = 1;
1385		ptr = 0;
1386		asce.dt = ASCE_TYPE_REGION1;
1387	}
1388	switch (asce.dt) {
1389	case ASCE_TYPE_REGION1:
1390		if (vaddr.rfx01 > asce.tl && !*fake)
1391			return PGM_REGION_FIRST_TRANS;
1392		break;
1393	case ASCE_TYPE_REGION2:
1394		if (vaddr.rfx)
1395			return PGM_ASCE_TYPE;
1396		if (vaddr.rsx01 > asce.tl)
1397			return PGM_REGION_SECOND_TRANS;
1398		break;
1399	case ASCE_TYPE_REGION3:
1400		if (vaddr.rfx || vaddr.rsx)
1401			return PGM_ASCE_TYPE;
1402		if (vaddr.rtx01 > asce.tl)
1403			return PGM_REGION_THIRD_TRANS;
1404		break;
1405	case ASCE_TYPE_SEGMENT:
1406		if (vaddr.rfx || vaddr.rsx || vaddr.rtx)
1407			return PGM_ASCE_TYPE;
1408		if (vaddr.sx01 > asce.tl)
1409			return PGM_SEGMENT_TRANSLATION;
1410		break;
1411	}
1412
1413	switch (asce.dt) {
1414	case ASCE_TYPE_REGION1: {
1415		union region1_table_entry rfte;
1416
1417		if (*fake) {
1418			ptr += vaddr.rfx * _REGION1_SIZE;
1419			rfte.val = ptr;
1420			goto shadow_r2t;
1421		}
1422		*pgt = ptr + vaddr.rfx * 8;
1423		rc = gmap_read_table(parent, ptr + vaddr.rfx * 8, &rfte.val);
1424		if (rc)
1425			return rc;
1426		if (rfte.i)
1427			return PGM_REGION_FIRST_TRANS;
1428		if (rfte.tt != TABLE_TYPE_REGION1)
1429			return PGM_TRANSLATION_SPEC;
1430		if (vaddr.rsx01 < rfte.tf || vaddr.rsx01 > rfte.tl)
1431			return PGM_REGION_SECOND_TRANS;
1432		if (sg->edat_level >= 1)
1433			*dat_protection |= rfte.p;
1434		ptr = rfte.rto * PAGE_SIZE;
1435shadow_r2t:
1436		rc = gmap_shadow_r2t(sg, saddr, rfte.val, *fake);
1437		if (rc)
1438			return rc;
1439		kvm->stat.gmap_shadow_r1_entry++;
1440	}
1441		fallthrough;
1442	case ASCE_TYPE_REGION2: {
1443		union region2_table_entry rste;
1444
1445		if (*fake) {
1446			ptr += vaddr.rsx * _REGION2_SIZE;
1447			rste.val = ptr;
1448			goto shadow_r3t;
1449		}
1450		*pgt = ptr + vaddr.rsx * 8;
1451		rc = gmap_read_table(parent, ptr + vaddr.rsx * 8, &rste.val);
1452		if (rc)
1453			return rc;
1454		if (rste.i)
1455			return PGM_REGION_SECOND_TRANS;
1456		if (rste.tt != TABLE_TYPE_REGION2)
1457			return PGM_TRANSLATION_SPEC;
1458		if (vaddr.rtx01 < rste.tf || vaddr.rtx01 > rste.tl)
1459			return PGM_REGION_THIRD_TRANS;
1460		if (sg->edat_level >= 1)
1461			*dat_protection |= rste.p;
1462		ptr = rste.rto * PAGE_SIZE;
1463shadow_r3t:
1464		rste.p |= *dat_protection;
1465		rc = gmap_shadow_r3t(sg, saddr, rste.val, *fake);
1466		if (rc)
1467			return rc;
1468		kvm->stat.gmap_shadow_r2_entry++;
1469	}
1470		fallthrough;
1471	case ASCE_TYPE_REGION3: {
1472		union region3_table_entry rtte;
1473
1474		if (*fake) {
1475			ptr += vaddr.rtx * _REGION3_SIZE;
1476			rtte.val = ptr;
1477			goto shadow_sgt;
1478		}
1479		*pgt = ptr + vaddr.rtx * 8;
1480		rc = gmap_read_table(parent, ptr + vaddr.rtx * 8, &rtte.val);
1481		if (rc)
1482			return rc;
1483		if (rtte.i)
1484			return PGM_REGION_THIRD_TRANS;
1485		if (rtte.tt != TABLE_TYPE_REGION3)
1486			return PGM_TRANSLATION_SPEC;
1487		if (rtte.cr && asce.p && sg->edat_level >= 2)
1488			return PGM_TRANSLATION_SPEC;
1489		if (rtte.fc && sg->edat_level >= 2) {
1490			*dat_protection |= rtte.fc0.p;
1491			*fake = 1;
1492			ptr = rtte.fc1.rfaa * _REGION3_SIZE;
1493			rtte.val = ptr;
1494			goto shadow_sgt;
1495		}
1496		if (vaddr.sx01 < rtte.fc0.tf || vaddr.sx01 > rtte.fc0.tl)
1497			return PGM_SEGMENT_TRANSLATION;
1498		if (sg->edat_level >= 1)
1499			*dat_protection |= rtte.fc0.p;
1500		ptr = rtte.fc0.sto * PAGE_SIZE;
1501shadow_sgt:
1502		rtte.fc0.p |= *dat_protection;
1503		rc = gmap_shadow_sgt(sg, saddr, rtte.val, *fake);
1504		if (rc)
1505			return rc;
1506		kvm->stat.gmap_shadow_r3_entry++;
1507	}
1508		fallthrough;
1509	case ASCE_TYPE_SEGMENT: {
1510		union segment_table_entry ste;
1511
1512		if (*fake) {
1513			ptr += vaddr.sx * _SEGMENT_SIZE;
1514			ste.val = ptr;
1515			goto shadow_pgt;
1516		}
1517		*pgt = ptr + vaddr.sx * 8;
1518		rc = gmap_read_table(parent, ptr + vaddr.sx * 8, &ste.val);
1519		if (rc)
1520			return rc;
1521		if (ste.i)
1522			return PGM_SEGMENT_TRANSLATION;
1523		if (ste.tt != TABLE_TYPE_SEGMENT)
1524			return PGM_TRANSLATION_SPEC;
1525		if (ste.cs && asce.p)
1526			return PGM_TRANSLATION_SPEC;
1527		*dat_protection |= ste.fc0.p;
1528		if (ste.fc && sg->edat_level >= 1) {
1529			*fake = 1;
1530			ptr = ste.fc1.sfaa * _SEGMENT_SIZE;
1531			ste.val = ptr;
1532			goto shadow_pgt;
1533		}
1534		ptr = ste.fc0.pto * (PAGE_SIZE / 2);
1535shadow_pgt:
1536		ste.fc0.p |= *dat_protection;
1537		rc = gmap_shadow_pgt(sg, saddr, ste.val, *fake);
1538		if (rc)
1539			return rc;
1540		kvm->stat.gmap_shadow_sg_entry++;
1541	}
1542	}
1543	/* Return the parent address of the page table */
1544	*pgt = ptr;
1545	return 0;
1546}
1547
1548/**
1549 * kvm_s390_shadow_fault - handle fault on a shadow page table
1550 * @vcpu: virtual cpu
1551 * @sg: pointer to the shadow guest address space structure
1552 * @saddr: faulting address in the shadow gmap
1553 * @datptr: will contain the address of the faulting DAT table entry, or of
1554 *	    the valid leaf, plus some flags
1555 *
1556 * Returns: - 0 if the shadow fault was successfully resolved
1557 *	    - > 0 (pgm exception code) on exceptions while faulting
1558 *	    - -EAGAIN if the caller can retry immediately
1559 *	    - -EFAULT when accessing invalid guest addresses
1560 *	    - -ENOMEM if out of memory
1561 */
1562int kvm_s390_shadow_fault(struct kvm_vcpu *vcpu, struct gmap *sg,
1563			  unsigned long saddr, unsigned long *datptr)
1564{
1565	union vaddress vaddr;
1566	union page_table_entry pte;
1567	unsigned long pgt = 0;
1568	int dat_protection, fake;
1569	int rc;
1570
1571	mmap_read_lock(sg->mm);
1572	/*
1573	 * We don't want any guest-2 tables to change - so the parent
1574	 * tables/pointers we read stay valid - unshadowing is however
1575	 * always possible - only guest_table_lock protects us.
1576	 */
1577	ipte_lock(vcpu->kvm);
1578
1579	rc = gmap_shadow_pgt_lookup(sg, saddr, &pgt, &dat_protection, &fake);
1580	if (rc)
1581		rc = kvm_s390_shadow_tables(sg, saddr, &pgt, &dat_protection,
1582					    &fake);
1583
1584	vaddr.addr = saddr;
1585	if (fake) {
1586		pte.val = pgt + vaddr.px * PAGE_SIZE;
1587		goto shadow_page;
1588	}
1589
1590	switch (rc) {
1591	case PGM_SEGMENT_TRANSLATION:
1592	case PGM_REGION_THIRD_TRANS:
1593	case PGM_REGION_SECOND_TRANS:
1594	case PGM_REGION_FIRST_TRANS:
1595		pgt |= PEI_NOT_PTE;
1596		break;
1597	case 0:
1598		pgt += vaddr.px * 8;
1599		rc = gmap_read_table(sg->parent, pgt, &pte.val);
1600	}
1601	if (datptr)
1602		*datptr = pgt | dat_protection * PEI_DAT_PROT;
1603	if (!rc && pte.i)
1604		rc = PGM_PAGE_TRANSLATION;
1605	if (!rc && pte.z)
1606		rc = PGM_TRANSLATION_SPEC;
1607shadow_page:
1608	pte.p |= dat_protection;
1609	if (!rc)
1610		rc = gmap_shadow_page(sg, saddr, __pte(pte.val));
1611	vcpu->kvm->stat.gmap_shadow_pg_entry++;
1612	ipte_unlock(vcpu->kvm);
1613	mmap_read_unlock(sg->mm);
1614	return rc;
1615}
1616