1// SPDX-License-Identifier: GPL-2.0
2/*
3 * Common Ultravisor functions and initialization
4 *
5 * Copyright IBM Corp. 2019, 2020
6 */
7#define KMSG_COMPONENT "prot_virt"
8#define pr_fmt(fmt) KMSG_COMPONENT ": " fmt
9
10#include <linux/kernel.h>
11#include <linux/types.h>
12#include <linux/sizes.h>
13#include <linux/bitmap.h>
14#include <linux/memblock.h>
15#include <linux/pagemap.h>
16#include <linux/swap.h>
17#include <asm/facility.h>
18#include <asm/sections.h>
19#include <asm/uv.h>
20
21/* the bootdata_preserved fields come from ones in arch/s390/boot/uv.c */
22#ifdef CONFIG_PROTECTED_VIRTUALIZATION_GUEST
23int __bootdata_preserved(prot_virt_guest);
24#endif
25
26/*
27 * uv_info contains both host and guest information but it's currently only
28 * expected to be used within modules if it's the KVM module or for
29 * any PV guest module.
30 *
31 * The kernel itself will write these values once in uv_query_info()
32 * and then make some of them readable via a sysfs interface.
33 */
34struct uv_info __bootdata_preserved(uv_info);
35EXPORT_SYMBOL(uv_info);
36
37#if IS_ENABLED(CONFIG_KVM)
38int __bootdata_preserved(prot_virt_host);
39EXPORT_SYMBOL(prot_virt_host);
40
41static int __init uv_init(phys_addr_t stor_base, unsigned long stor_len)
42{
43	struct uv_cb_init uvcb = {
44		.header.cmd = UVC_CMD_INIT_UV,
45		.header.len = sizeof(uvcb),
46		.stor_origin = stor_base,
47		.stor_len = stor_len,
48	};
49
50	if (uv_call(0, (uint64_t)&uvcb)) {
51		pr_err("Ultravisor init failed with rc: 0x%x rrc: 0%x\n",
52		       uvcb.header.rc, uvcb.header.rrc);
53		return -1;
54	}
55	return 0;
56}
57
58void __init setup_uv(void)
59{
60	void *uv_stor_base;
61
62	if (!is_prot_virt_host())
63		return;
64
65	uv_stor_base = memblock_alloc_try_nid(
66		uv_info.uv_base_stor_len, SZ_1M, SZ_2G,
67		MEMBLOCK_ALLOC_ACCESSIBLE, NUMA_NO_NODE);
68	if (!uv_stor_base) {
69		pr_warn("Failed to reserve %lu bytes for ultravisor base storage\n",
70			uv_info.uv_base_stor_len);
71		goto fail;
72	}
73
74	if (uv_init(__pa(uv_stor_base), uv_info.uv_base_stor_len)) {
75		memblock_free(uv_stor_base, uv_info.uv_base_stor_len);
76		goto fail;
77	}
78
79	pr_info("Reserving %luMB as ultravisor base storage\n",
80		uv_info.uv_base_stor_len >> 20);
81	return;
82fail:
83	pr_info("Disabling support for protected virtualization");
84	prot_virt_host = 0;
85}
86
87/*
88 * Requests the Ultravisor to pin the page in the shared state. This will
89 * cause an intercept when the guest attempts to unshare the pinned page.
90 */
91int uv_pin_shared(unsigned long paddr)
92{
93	struct uv_cb_cfs uvcb = {
94		.header.cmd = UVC_CMD_PIN_PAGE_SHARED,
95		.header.len = sizeof(uvcb),
96		.paddr = paddr,
97	};
98
99	if (uv_call(0, (u64)&uvcb))
100		return -EINVAL;
101	return 0;
102}
103EXPORT_SYMBOL_GPL(uv_pin_shared);
104
105/*
106 * Requests the Ultravisor to destroy a guest page and make it
107 * accessible to the host. The destroy clears the page instead of
108 * exporting.
109 *
110 * @paddr: Absolute host address of page to be destroyed
111 */
112static int uv_destroy_page(unsigned long paddr)
113{
114	struct uv_cb_cfs uvcb = {
115		.header.cmd = UVC_CMD_DESTR_SEC_STOR,
116		.header.len = sizeof(uvcb),
117		.paddr = paddr
118	};
119
120	if (uv_call(0, (u64)&uvcb)) {
121		/*
122		 * Older firmware uses 107/d as an indication of a non secure
123		 * page. Let us emulate the newer variant (no-op).
124		 */
125		if (uvcb.header.rc == 0x107 && uvcb.header.rrc == 0xd)
126			return 0;
127		return -EINVAL;
128	}
129	return 0;
130}
131
132/*
133 * The caller must already hold a reference to the page
134 */
135int uv_destroy_owned_page(unsigned long paddr)
136{
137	struct page *page = phys_to_page(paddr);
138	int rc;
139
140	get_page(page);
141	rc = uv_destroy_page(paddr);
142	if (!rc)
143		clear_bit(PG_arch_1, &page->flags);
144	put_page(page);
145	return rc;
146}
147
148/*
149 * Requests the Ultravisor to encrypt a guest page and make it
150 * accessible to the host for paging (export).
151 *
152 * @paddr: Absolute host address of page to be exported
153 */
154int uv_convert_from_secure(unsigned long paddr)
155{
156	struct uv_cb_cfs uvcb = {
157		.header.cmd = UVC_CMD_CONV_FROM_SEC_STOR,
158		.header.len = sizeof(uvcb),
159		.paddr = paddr
160	};
161
162	if (uv_call(0, (u64)&uvcb))
163		return -EINVAL;
164	return 0;
165}
166
167/*
168 * The caller must already hold a reference to the page
169 */
170int uv_convert_owned_from_secure(unsigned long paddr)
171{
172	struct page *page = phys_to_page(paddr);
173	int rc;
174
175	get_page(page);
176	rc = uv_convert_from_secure(paddr);
177	if (!rc)
178		clear_bit(PG_arch_1, &page->flags);
179	put_page(page);
180	return rc;
181}
182
183/*
184 * Calculate the expected ref_count for a page that would otherwise have no
185 * further pins. This was cribbed from similar functions in other places in
186 * the kernel, but with some slight modifications. We know that a secure
187 * page can not be a huge page for example.
188 */
189static int expected_page_refs(struct page *page)
190{
191	int res;
192
193	res = page_mapcount(page);
194	if (PageSwapCache(page)) {
195		res++;
196	} else if (page_mapping(page)) {
197		res++;
198		if (page_has_private(page))
199			res++;
200	}
201	return res;
202}
203
204static int make_page_secure(struct page *page, struct uv_cb_header *uvcb)
205{
206	int expected, cc = 0;
207
208	if (PageWriteback(page))
209		return -EAGAIN;
210	expected = expected_page_refs(page);
211	if (!page_ref_freeze(page, expected))
212		return -EBUSY;
213	set_bit(PG_arch_1, &page->flags);
214	/*
215	 * If the UVC does not succeed or fail immediately, we don't want to
216	 * loop for long, or we might get stall notifications.
217	 * On the other hand, this is a complex scenario and we are holding a lot of
218	 * locks, so we can't easily sleep and reschedule. We try only once,
219	 * and if the UVC returned busy or partial completion, we return
220	 * -EAGAIN and we let the callers deal with it.
221	 */
222	cc = __uv_call(0, (u64)uvcb);
223	page_ref_unfreeze(page, expected);
224	/*
225	 * Return -ENXIO if the page was not mapped, -EINVAL for other errors.
226	 * If busy or partially completed, return -EAGAIN.
227	 */
228	if (cc == UVC_CC_OK)
229		return 0;
230	else if (cc == UVC_CC_BUSY || cc == UVC_CC_PARTIAL)
231		return -EAGAIN;
232	return uvcb->rc == 0x10a ? -ENXIO : -EINVAL;
233}
234
235/**
236 * should_export_before_import - Determine whether an export is needed
237 * before an import-like operation
238 * @uvcb: the Ultravisor control block of the UVC to be performed
239 * @mm: the mm of the process
240 *
241 * Returns whether an export is needed before every import-like operation.
242 * This is needed for shared pages, which don't trigger a secure storage
243 * exception when accessed from a different guest.
244 *
245 * Although considered as one, the Unpin Page UVC is not an actual import,
246 * so it is not affected.
247 *
248 * No export is needed also when there is only one protected VM, because the
249 * page cannot belong to the wrong VM in that case (there is no "other VM"
250 * it can belong to).
251 *
252 * Return: true if an export is needed before every import, otherwise false.
253 */
254static bool should_export_before_import(struct uv_cb_header *uvcb, struct mm_struct *mm)
255{
256	/*
257	 * The misc feature indicates, among other things, that importing a
258	 * shared page from a different protected VM will automatically also
259	 * transfer its ownership.
260	 */
261	if (uv_has_feature(BIT_UV_FEAT_MISC))
262		return false;
263	if (uvcb->cmd == UVC_CMD_UNPIN_PAGE_SHARED)
264		return false;
265	return atomic_read(&mm->context.protected_count) > 1;
266}
267
268/*
269 * Requests the Ultravisor to make a page accessible to a guest.
270 * If it's brought in the first time, it will be cleared. If
271 * it has been exported before, it will be decrypted and integrity
272 * checked.
273 */
274int gmap_make_secure(struct gmap *gmap, unsigned long gaddr, void *uvcb)
275{
276	struct vm_area_struct *vma;
277	bool local_drain = false;
278	spinlock_t *ptelock;
279	unsigned long uaddr;
280	struct page *page;
281	pte_t *ptep;
282	int rc;
283
284again:
285	rc = -EFAULT;
286	mmap_read_lock(gmap->mm);
287
288	uaddr = __gmap_translate(gmap, gaddr);
289	if (IS_ERR_VALUE(uaddr))
290		goto out;
291	vma = vma_lookup(gmap->mm, uaddr);
292	if (!vma)
293		goto out;
294	/*
295	 * Secure pages cannot be huge and userspace should not combine both.
296	 * In case userspace does it anyway this will result in an -EFAULT for
297	 * the unpack. The guest is thus never reaching secure mode. If
298	 * userspace is playing dirty tricky with mapping huge pages later
299	 * on this will result in a segmentation fault.
300	 */
301	if (is_vm_hugetlb_page(vma))
302		goto out;
303
304	rc = -ENXIO;
305	ptep = get_locked_pte(gmap->mm, uaddr, &ptelock);
306	if (!ptep)
307		goto out;
308	if (pte_present(*ptep) && !(pte_val(*ptep) & _PAGE_INVALID) && pte_write(*ptep)) {
309		page = pte_page(*ptep);
310		rc = -EAGAIN;
311		if (trylock_page(page)) {
312			if (should_export_before_import(uvcb, gmap->mm))
313				uv_convert_from_secure(page_to_phys(page));
314			rc = make_page_secure(page, uvcb);
315			unlock_page(page);
316		}
317	}
318	pte_unmap_unlock(ptep, ptelock);
319out:
320	mmap_read_unlock(gmap->mm);
321
322	if (rc == -EAGAIN) {
323		/*
324		 * If we are here because the UVC returned busy or partial
325		 * completion, this is just a useless check, but it is safe.
326		 */
327		wait_on_page_writeback(page);
328	} else if (rc == -EBUSY) {
329		/*
330		 * If we have tried a local drain and the page refcount
331		 * still does not match our expected safe value, try with a
332		 * system wide drain. This is needed if the pagevecs holding
333		 * the page are on a different CPU.
334		 */
335		if (local_drain) {
336			lru_add_drain_all();
337			/* We give up here, and let the caller try again */
338			return -EAGAIN;
339		}
340		/*
341		 * We are here if the page refcount does not match the
342		 * expected safe value. The main culprits are usually
343		 * pagevecs. With lru_add_drain() we drain the pagevecs
344		 * on the local CPU so that hopefully the refcount will
345		 * reach the expected safe value.
346		 */
347		lru_add_drain();
348		local_drain = true;
349		/* And now we try again immediately after draining */
350		goto again;
351	} else if (rc == -ENXIO) {
352		if (gmap_fault(gmap, gaddr, FAULT_FLAG_WRITE))
353			return -EFAULT;
354		return -EAGAIN;
355	}
356	return rc;
357}
358EXPORT_SYMBOL_GPL(gmap_make_secure);
359
360int gmap_convert_to_secure(struct gmap *gmap, unsigned long gaddr)
361{
362	struct uv_cb_cts uvcb = {
363		.header.cmd = UVC_CMD_CONV_TO_SEC_STOR,
364		.header.len = sizeof(uvcb),
365		.guest_handle = gmap->guest_handle,
366		.gaddr = gaddr,
367	};
368
369	return gmap_make_secure(gmap, gaddr, &uvcb);
370}
371EXPORT_SYMBOL_GPL(gmap_convert_to_secure);
372
373/**
374 * gmap_destroy_page - Destroy a guest page.
375 * @gmap: the gmap of the guest
376 * @gaddr: the guest address to destroy
377 *
378 * An attempt will be made to destroy the given guest page. If the attempt
379 * fails, an attempt is made to export the page. If both attempts fail, an
380 * appropriate error is returned.
381 */
382int gmap_destroy_page(struct gmap *gmap, unsigned long gaddr)
383{
384	struct vm_area_struct *vma;
385	unsigned long uaddr;
386	struct page *page;
387	int rc;
388
389	rc = -EFAULT;
390	mmap_read_lock(gmap->mm);
391
392	uaddr = __gmap_translate(gmap, gaddr);
393	if (IS_ERR_VALUE(uaddr))
394		goto out;
395	vma = vma_lookup(gmap->mm, uaddr);
396	if (!vma)
397		goto out;
398	/*
399	 * Huge pages should not be able to become secure
400	 */
401	if (is_vm_hugetlb_page(vma))
402		goto out;
403
404	rc = 0;
405	/* we take an extra reference here */
406	page = follow_page(vma, uaddr, FOLL_WRITE | FOLL_GET);
407	if (IS_ERR_OR_NULL(page))
408		goto out;
409	rc = uv_destroy_owned_page(page_to_phys(page));
410	/*
411	 * Fault handlers can race; it is possible that two CPUs will fault
412	 * on the same secure page. One CPU can destroy the page, reboot,
413	 * re-enter secure mode and import it, while the second CPU was
414	 * stuck at the beginning of the handler. At some point the second
415	 * CPU will be able to progress, and it will not be able to destroy
416	 * the page. In that case we do not want to terminate the process,
417	 * we instead try to export the page.
418	 */
419	if (rc)
420		rc = uv_convert_owned_from_secure(page_to_phys(page));
421	put_page(page);
422out:
423	mmap_read_unlock(gmap->mm);
424	return rc;
425}
426EXPORT_SYMBOL_GPL(gmap_destroy_page);
427
428/*
429 * To be called with the page locked or with an extra reference! This will
430 * prevent gmap_make_secure from touching the page concurrently. Having 2
431 * parallel make_page_accessible is fine, as the UV calls will become a
432 * no-op if the page is already exported.
433 */
434int arch_make_page_accessible(struct page *page)
435{
436	int rc = 0;
437
438	/* Hugepage cannot be protected, so nothing to do */
439	if (PageHuge(page))
440		return 0;
441
442	/*
443	 * PG_arch_1 is used in 3 places:
444	 * 1. for kernel page tables during early boot
445	 * 2. for storage keys of huge pages and KVM
446	 * 3. As an indication that this page might be secure. This can
447	 *    overindicate, e.g. we set the bit before calling
448	 *    convert_to_secure.
449	 * As secure pages are never huge, all 3 variants can co-exists.
450	 */
451	if (!test_bit(PG_arch_1, &page->flags))
452		return 0;
453
454	rc = uv_pin_shared(page_to_phys(page));
455	if (!rc) {
456		clear_bit(PG_arch_1, &page->flags);
457		return 0;
458	}
459
460	rc = uv_convert_from_secure(page_to_phys(page));
461	if (!rc) {
462		clear_bit(PG_arch_1, &page->flags);
463		return 0;
464	}
465
466	return rc;
467}
468EXPORT_SYMBOL_GPL(arch_make_page_accessible);
469
470#endif
471
472#if defined(CONFIG_PROTECTED_VIRTUALIZATION_GUEST) || IS_ENABLED(CONFIG_KVM)
473static ssize_t uv_query_facilities(struct kobject *kobj,
474				   struct kobj_attribute *attr, char *buf)
475{
476	return sysfs_emit(buf, "%lx\n%lx\n%lx\n%lx\n",
477			  uv_info.inst_calls_list[0],
478			  uv_info.inst_calls_list[1],
479			  uv_info.inst_calls_list[2],
480			  uv_info.inst_calls_list[3]);
481}
482
483static struct kobj_attribute uv_query_facilities_attr =
484	__ATTR(facilities, 0444, uv_query_facilities, NULL);
485
486static ssize_t uv_query_supp_se_hdr_ver(struct kobject *kobj,
487					struct kobj_attribute *attr, char *buf)
488{
489	return sysfs_emit(buf, "%lx\n", uv_info.supp_se_hdr_ver);
490}
491
492static struct kobj_attribute uv_query_supp_se_hdr_ver_attr =
493	__ATTR(supp_se_hdr_ver, 0444, uv_query_supp_se_hdr_ver, NULL);
494
495static ssize_t uv_query_supp_se_hdr_pcf(struct kobject *kobj,
496					struct kobj_attribute *attr, char *buf)
497{
498	return sysfs_emit(buf, "%lx\n", uv_info.supp_se_hdr_pcf);
499}
500
501static struct kobj_attribute uv_query_supp_se_hdr_pcf_attr =
502	__ATTR(supp_se_hdr_pcf, 0444, uv_query_supp_se_hdr_pcf, NULL);
503
504static ssize_t uv_query_dump_cpu_len(struct kobject *kobj,
505				     struct kobj_attribute *attr, char *buf)
506{
507	return sysfs_emit(buf, "%lx\n", uv_info.guest_cpu_stor_len);
508}
509
510static struct kobj_attribute uv_query_dump_cpu_len_attr =
511	__ATTR(uv_query_dump_cpu_len, 0444, uv_query_dump_cpu_len, NULL);
512
513static ssize_t uv_query_dump_storage_state_len(struct kobject *kobj,
514					       struct kobj_attribute *attr, char *buf)
515{
516	return sysfs_emit(buf, "%lx\n", uv_info.conf_dump_storage_state_len);
517}
518
519static struct kobj_attribute uv_query_dump_storage_state_len_attr =
520	__ATTR(dump_storage_state_len, 0444, uv_query_dump_storage_state_len, NULL);
521
522static ssize_t uv_query_dump_finalize_len(struct kobject *kobj,
523					  struct kobj_attribute *attr, char *buf)
524{
525	return sysfs_emit(buf, "%lx\n", uv_info.conf_dump_finalize_len);
526}
527
528static struct kobj_attribute uv_query_dump_finalize_len_attr =
529	__ATTR(dump_finalize_len, 0444, uv_query_dump_finalize_len, NULL);
530
531static ssize_t uv_query_feature_indications(struct kobject *kobj,
532					    struct kobj_attribute *attr, char *buf)
533{
534	return sysfs_emit(buf, "%lx\n", uv_info.uv_feature_indications);
535}
536
537static struct kobj_attribute uv_query_feature_indications_attr =
538	__ATTR(feature_indications, 0444, uv_query_feature_indications, NULL);
539
540static ssize_t uv_query_max_guest_cpus(struct kobject *kobj,
541				       struct kobj_attribute *attr, char *buf)
542{
543	return sysfs_emit(buf, "%d\n", uv_info.max_guest_cpu_id + 1);
544}
545
546static struct kobj_attribute uv_query_max_guest_cpus_attr =
547	__ATTR(max_cpus, 0444, uv_query_max_guest_cpus, NULL);
548
549static ssize_t uv_query_max_guest_vms(struct kobject *kobj,
550				      struct kobj_attribute *attr, char *buf)
551{
552	return sysfs_emit(buf, "%d\n", uv_info.max_num_sec_conf);
553}
554
555static struct kobj_attribute uv_query_max_guest_vms_attr =
556	__ATTR(max_guests, 0444, uv_query_max_guest_vms, NULL);
557
558static ssize_t uv_query_max_guest_addr(struct kobject *kobj,
559				       struct kobj_attribute *attr, char *buf)
560{
561	return sysfs_emit(buf, "%lx\n", uv_info.max_sec_stor_addr);
562}
563
564static struct kobj_attribute uv_query_max_guest_addr_attr =
565	__ATTR(max_address, 0444, uv_query_max_guest_addr, NULL);
566
567static ssize_t uv_query_supp_att_req_hdr_ver(struct kobject *kobj,
568					     struct kobj_attribute *attr, char *buf)
569{
570	return sysfs_emit(buf, "%lx\n", uv_info.supp_att_req_hdr_ver);
571}
572
573static struct kobj_attribute uv_query_supp_att_req_hdr_ver_attr =
574	__ATTR(supp_att_req_hdr_ver, 0444, uv_query_supp_att_req_hdr_ver, NULL);
575
576static ssize_t uv_query_supp_att_pflags(struct kobject *kobj,
577					struct kobj_attribute *attr, char *buf)
578{
579	return sysfs_emit(buf, "%lx\n", uv_info.supp_att_pflags);
580}
581
582static struct kobj_attribute uv_query_supp_att_pflags_attr =
583	__ATTR(supp_att_pflags, 0444, uv_query_supp_att_pflags, NULL);
584
585static ssize_t uv_query_supp_add_secret_req_ver(struct kobject *kobj,
586						struct kobj_attribute *attr, char *buf)
587{
588	return sysfs_emit(buf, "%lx\n", uv_info.supp_add_secret_req_ver);
589}
590
591static struct kobj_attribute uv_query_supp_add_secret_req_ver_attr =
592	__ATTR(supp_add_secret_req_ver, 0444, uv_query_supp_add_secret_req_ver, NULL);
593
594static ssize_t uv_query_supp_add_secret_pcf(struct kobject *kobj,
595					    struct kobj_attribute *attr, char *buf)
596{
597	return sysfs_emit(buf, "%lx\n", uv_info.supp_add_secret_pcf);
598}
599
600static struct kobj_attribute uv_query_supp_add_secret_pcf_attr =
601	__ATTR(supp_add_secret_pcf, 0444, uv_query_supp_add_secret_pcf, NULL);
602
603static ssize_t uv_query_supp_secret_types(struct kobject *kobj,
604					  struct kobj_attribute *attr, char *buf)
605{
606	return sysfs_emit(buf, "%lx\n", uv_info.supp_secret_types);
607}
608
609static struct kobj_attribute uv_query_supp_secret_types_attr =
610	__ATTR(supp_secret_types, 0444, uv_query_supp_secret_types, NULL);
611
612static ssize_t uv_query_max_secrets(struct kobject *kobj,
613				    struct kobj_attribute *attr, char *buf)
614{
615	return sysfs_emit(buf, "%d\n", uv_info.max_secrets);
616}
617
618static struct kobj_attribute uv_query_max_secrets_attr =
619	__ATTR(max_secrets, 0444, uv_query_max_secrets, NULL);
620
621static struct attribute *uv_query_attrs[] = {
622	&uv_query_facilities_attr.attr,
623	&uv_query_feature_indications_attr.attr,
624	&uv_query_max_guest_cpus_attr.attr,
625	&uv_query_max_guest_vms_attr.attr,
626	&uv_query_max_guest_addr_attr.attr,
627	&uv_query_supp_se_hdr_ver_attr.attr,
628	&uv_query_supp_se_hdr_pcf_attr.attr,
629	&uv_query_dump_storage_state_len_attr.attr,
630	&uv_query_dump_finalize_len_attr.attr,
631	&uv_query_dump_cpu_len_attr.attr,
632	&uv_query_supp_att_req_hdr_ver_attr.attr,
633	&uv_query_supp_att_pflags_attr.attr,
634	&uv_query_supp_add_secret_req_ver_attr.attr,
635	&uv_query_supp_add_secret_pcf_attr.attr,
636	&uv_query_supp_secret_types_attr.attr,
637	&uv_query_max_secrets_attr.attr,
638	NULL,
639};
640
641static struct attribute_group uv_query_attr_group = {
642	.attrs = uv_query_attrs,
643};
644
645static ssize_t uv_is_prot_virt_guest(struct kobject *kobj,
646				     struct kobj_attribute *attr, char *buf)
647{
648	int val = 0;
649
650#ifdef CONFIG_PROTECTED_VIRTUALIZATION_GUEST
651	val = prot_virt_guest;
652#endif
653	return sysfs_emit(buf, "%d\n", val);
654}
655
656static ssize_t uv_is_prot_virt_host(struct kobject *kobj,
657				    struct kobj_attribute *attr, char *buf)
658{
659	int val = 0;
660
661#if IS_ENABLED(CONFIG_KVM)
662	val = prot_virt_host;
663#endif
664
665	return sysfs_emit(buf, "%d\n", val);
666}
667
668static struct kobj_attribute uv_prot_virt_guest =
669	__ATTR(prot_virt_guest, 0444, uv_is_prot_virt_guest, NULL);
670
671static struct kobj_attribute uv_prot_virt_host =
672	__ATTR(prot_virt_host, 0444, uv_is_prot_virt_host, NULL);
673
674static const struct attribute *uv_prot_virt_attrs[] = {
675	&uv_prot_virt_guest.attr,
676	&uv_prot_virt_host.attr,
677	NULL,
678};
679
680static struct kset *uv_query_kset;
681static struct kobject *uv_kobj;
682
683static int __init uv_info_init(void)
684{
685	int rc = -ENOMEM;
686
687	if (!test_facility(158))
688		return 0;
689
690	uv_kobj = kobject_create_and_add("uv", firmware_kobj);
691	if (!uv_kobj)
692		return -ENOMEM;
693
694	rc = sysfs_create_files(uv_kobj, uv_prot_virt_attrs);
695	if (rc)
696		goto out_kobj;
697
698	uv_query_kset = kset_create_and_add("query", NULL, uv_kobj);
699	if (!uv_query_kset) {
700		rc = -ENOMEM;
701		goto out_ind_files;
702	}
703
704	rc = sysfs_create_group(&uv_query_kset->kobj, &uv_query_attr_group);
705	if (!rc)
706		return 0;
707
708	kset_unregister(uv_query_kset);
709out_ind_files:
710	sysfs_remove_files(uv_kobj, uv_prot_virt_attrs);
711out_kobj:
712	kobject_del(uv_kobj);
713	kobject_put(uv_kobj);
714	return rc;
715}
716device_initcall(uv_info_init);
717#endif
718