1// SPDX-License-Identifier: GPL-2.0
2/*
3 *  SMP related functions
4 *
5 *    Copyright IBM Corp. 1999, 2012
6 *    Author(s): Denis Joseph Barrow,
7 *		 Martin Schwidefsky <schwidefsky@de.ibm.com>,
8 *
9 *  based on other smp stuff by
10 *    (c) 1995 Alan Cox, CymruNET Ltd  <alan@cymru.net>
11 *    (c) 1998 Ingo Molnar
12 *
13 * The code outside of smp.c uses logical cpu numbers, only smp.c does
14 * the translation of logical to physical cpu ids. All new code that
15 * operates on physical cpu numbers needs to go into smp.c.
16 */
17
18#define KMSG_COMPONENT "cpu"
19#define pr_fmt(fmt) KMSG_COMPONENT ": " fmt
20
21#include <linux/workqueue.h>
22#include <linux/memblock.h>
23#include <linux/export.h>
24#include <linux/init.h>
25#include <linux/mm.h>
26#include <linux/err.h>
27#include <linux/spinlock.h>
28#include <linux/kernel_stat.h>
29#include <linux/delay.h>
30#include <linux/interrupt.h>
31#include <linux/irqflags.h>
32#include <linux/irq_work.h>
33#include <linux/cpu.h>
34#include <linux/slab.h>
35#include <linux/sched/hotplug.h>
36#include <linux/sched/task_stack.h>
37#include <linux/crash_dump.h>
38#include <linux/kprobes.h>
39#include <asm/access-regs.h>
40#include <asm/asm-offsets.h>
41#include <asm/ctlreg.h>
42#include <asm/pfault.h>
43#include <asm/diag.h>
44#include <asm/facility.h>
45#include <asm/fpu.h>
46#include <asm/ipl.h>
47#include <asm/setup.h>
48#include <asm/irq.h>
49#include <asm/tlbflush.h>
50#include <asm/vtimer.h>
51#include <asm/abs_lowcore.h>
52#include <asm/sclp.h>
53#include <asm/debug.h>
54#include <asm/os_info.h>
55#include <asm/sigp.h>
56#include <asm/idle.h>
57#include <asm/nmi.h>
58#include <asm/stacktrace.h>
59#include <asm/topology.h>
60#include <asm/vdso.h>
61#include <asm/maccess.h>
62#include "entry.h"
63
64enum {
65	ec_schedule = 0,
66	ec_call_function_single,
67	ec_stop_cpu,
68	ec_mcck_pending,
69	ec_irq_work,
70};
71
72enum {
73	CPU_STATE_STANDBY,
74	CPU_STATE_CONFIGURED,
75};
76
77static DEFINE_PER_CPU(struct cpu *, cpu_device);
78
79struct pcpu {
80	unsigned long ec_mask;		/* bit mask for ec_xxx functions */
81	unsigned long ec_clk;		/* sigp timestamp for ec_xxx */
82	signed char state;		/* physical cpu state */
83	signed char polarization;	/* physical polarization */
84	u16 address;			/* physical cpu address */
85};
86
87static u8 boot_core_type;
88static struct pcpu pcpu_devices[NR_CPUS];
89
90unsigned int smp_cpu_mt_shift;
91EXPORT_SYMBOL(smp_cpu_mt_shift);
92
93unsigned int smp_cpu_mtid;
94EXPORT_SYMBOL(smp_cpu_mtid);
95
96#ifdef CONFIG_CRASH_DUMP
97__vector128 __initdata boot_cpu_vector_save_area[__NUM_VXRS];
98#endif
99
100static unsigned int smp_max_threads __initdata = -1U;
101cpumask_t cpu_setup_mask;
102
103static int __init early_nosmt(char *s)
104{
105	smp_max_threads = 1;
106	return 0;
107}
108early_param("nosmt", early_nosmt);
109
110static int __init early_smt(char *s)
111{
112	get_option(&s, &smp_max_threads);
113	return 0;
114}
115early_param("smt", early_smt);
116
117/*
118 * The smp_cpu_state_mutex must be held when changing the state or polarization
119 * member of a pcpu data structure within the pcpu_devices array.
120 */
121DEFINE_MUTEX(smp_cpu_state_mutex);
122
123/*
124 * Signal processor helper functions.
125 */
126static inline int __pcpu_sigp_relax(u16 addr, u8 order, unsigned long parm)
127{
128	int cc;
129
130	while (1) {
131		cc = __pcpu_sigp(addr, order, parm, NULL);
132		if (cc != SIGP_CC_BUSY)
133			return cc;
134		cpu_relax();
135	}
136}
137
138static int pcpu_sigp_retry(struct pcpu *pcpu, u8 order, u32 parm)
139{
140	int cc, retry;
141
142	for (retry = 0; ; retry++) {
143		cc = __pcpu_sigp(pcpu->address, order, parm, NULL);
144		if (cc != SIGP_CC_BUSY)
145			break;
146		if (retry >= 3)
147			udelay(10);
148	}
149	return cc;
150}
151
152static inline int pcpu_stopped(struct pcpu *pcpu)
153{
154	u32 status;
155
156	if (__pcpu_sigp(pcpu->address, SIGP_SENSE,
157			0, &status) != SIGP_CC_STATUS_STORED)
158		return 0;
159	return !!(status & (SIGP_STATUS_CHECK_STOP|SIGP_STATUS_STOPPED));
160}
161
162static inline int pcpu_running(struct pcpu *pcpu)
163{
164	if (__pcpu_sigp(pcpu->address, SIGP_SENSE_RUNNING,
165			0, NULL) != SIGP_CC_STATUS_STORED)
166		return 1;
167	/* Status stored condition code is equivalent to cpu not running. */
168	return 0;
169}
170
171/*
172 * Find struct pcpu by cpu address.
173 */
174static struct pcpu *pcpu_find_address(const struct cpumask *mask, u16 address)
175{
176	int cpu;
177
178	for_each_cpu(cpu, mask)
179		if (pcpu_devices[cpu].address == address)
180			return pcpu_devices + cpu;
181	return NULL;
182}
183
184static void pcpu_ec_call(struct pcpu *pcpu, int ec_bit)
185{
186	int order;
187
188	if (test_and_set_bit(ec_bit, &pcpu->ec_mask))
189		return;
190	order = pcpu_running(pcpu) ? SIGP_EXTERNAL_CALL : SIGP_EMERGENCY_SIGNAL;
191	pcpu->ec_clk = get_tod_clock_fast();
192	pcpu_sigp_retry(pcpu, order, 0);
193}
194
195static int pcpu_alloc_lowcore(struct pcpu *pcpu, int cpu)
196{
197	unsigned long async_stack, nodat_stack, mcck_stack;
198	struct lowcore *lc;
199
200	lc = (struct lowcore *) __get_free_pages(GFP_KERNEL | GFP_DMA, LC_ORDER);
201	nodat_stack = __get_free_pages(GFP_KERNEL, THREAD_SIZE_ORDER);
202	async_stack = stack_alloc();
203	mcck_stack = stack_alloc();
204	if (!lc || !nodat_stack || !async_stack || !mcck_stack)
205		goto out;
206	memcpy(lc, &S390_lowcore, 512);
207	memset((char *) lc + 512, 0, sizeof(*lc) - 512);
208	lc->async_stack = async_stack + STACK_INIT_OFFSET;
209	lc->nodat_stack = nodat_stack + STACK_INIT_OFFSET;
210	lc->mcck_stack = mcck_stack + STACK_INIT_OFFSET;
211	lc->cpu_nr = cpu;
212	lc->spinlock_lockval = arch_spin_lockval(cpu);
213	lc->spinlock_index = 0;
214	lc->return_lpswe = gen_lpswe(__LC_RETURN_PSW);
215	lc->return_mcck_lpswe = gen_lpswe(__LC_RETURN_MCCK_PSW);
216	lc->preempt_count = PREEMPT_DISABLED;
217	if (nmi_alloc_mcesa(&lc->mcesad))
218		goto out;
219	if (abs_lowcore_map(cpu, lc, true))
220		goto out_mcesa;
221	lowcore_ptr[cpu] = lc;
222	pcpu_sigp_retry(pcpu, SIGP_SET_PREFIX, __pa(lc));
223	return 0;
224
225out_mcesa:
226	nmi_free_mcesa(&lc->mcesad);
227out:
228	stack_free(mcck_stack);
229	stack_free(async_stack);
230	free_pages(nodat_stack, THREAD_SIZE_ORDER);
231	free_pages((unsigned long) lc, LC_ORDER);
232	return -ENOMEM;
233}
234
235static void pcpu_free_lowcore(struct pcpu *pcpu)
236{
237	unsigned long async_stack, nodat_stack, mcck_stack;
238	struct lowcore *lc;
239	int cpu;
240
241	cpu = pcpu - pcpu_devices;
242	lc = lowcore_ptr[cpu];
243	nodat_stack = lc->nodat_stack - STACK_INIT_OFFSET;
244	async_stack = lc->async_stack - STACK_INIT_OFFSET;
245	mcck_stack = lc->mcck_stack - STACK_INIT_OFFSET;
246	pcpu_sigp_retry(pcpu, SIGP_SET_PREFIX, 0);
247	lowcore_ptr[cpu] = NULL;
248	abs_lowcore_unmap(cpu);
249	nmi_free_mcesa(&lc->mcesad);
250	stack_free(async_stack);
251	stack_free(mcck_stack);
252	free_pages(nodat_stack, THREAD_SIZE_ORDER);
253	free_pages((unsigned long) lc, LC_ORDER);
254}
255
256static void pcpu_prepare_secondary(struct pcpu *pcpu, int cpu)
257{
258	struct lowcore *lc, *abs_lc;
259
260	lc = lowcore_ptr[cpu];
261	cpumask_set_cpu(cpu, &init_mm.context.cpu_attach_mask);
262	cpumask_set_cpu(cpu, mm_cpumask(&init_mm));
263	lc->cpu_nr = cpu;
264	lc->restart_flags = RESTART_FLAG_CTLREGS;
265	lc->spinlock_lockval = arch_spin_lockval(cpu);
266	lc->spinlock_index = 0;
267	lc->percpu_offset = __per_cpu_offset[cpu];
268	lc->kernel_asce = S390_lowcore.kernel_asce;
269	lc->user_asce = s390_invalid_asce;
270	lc->machine_flags = S390_lowcore.machine_flags;
271	lc->user_timer = lc->system_timer =
272		lc->steal_timer = lc->avg_steal_timer = 0;
273	abs_lc = get_abs_lowcore();
274	memcpy(lc->cregs_save_area, abs_lc->cregs_save_area, sizeof(lc->cregs_save_area));
275	put_abs_lowcore(abs_lc);
276	lc->cregs_save_area[1] = lc->kernel_asce;
277	lc->cregs_save_area[7] = lc->user_asce;
278	save_access_regs((unsigned int *) lc->access_regs_save_area);
279	arch_spin_lock_setup(cpu);
280}
281
282static void pcpu_attach_task(struct pcpu *pcpu, struct task_struct *tsk)
283{
284	struct lowcore *lc;
285	int cpu;
286
287	cpu = pcpu - pcpu_devices;
288	lc = lowcore_ptr[cpu];
289	lc->kernel_stack = (unsigned long)task_stack_page(tsk) + STACK_INIT_OFFSET;
290	lc->current_task = (unsigned long)tsk;
291	lc->lpp = LPP_MAGIC;
292	lc->current_pid = tsk->pid;
293	lc->user_timer = tsk->thread.user_timer;
294	lc->guest_timer = tsk->thread.guest_timer;
295	lc->system_timer = tsk->thread.system_timer;
296	lc->hardirq_timer = tsk->thread.hardirq_timer;
297	lc->softirq_timer = tsk->thread.softirq_timer;
298	lc->steal_timer = 0;
299}
300
301static void pcpu_start_fn(struct pcpu *pcpu, void (*func)(void *), void *data)
302{
303	struct lowcore *lc;
304	int cpu;
305
306	cpu = pcpu - pcpu_devices;
307	lc = lowcore_ptr[cpu];
308	lc->restart_stack = lc->kernel_stack;
309	lc->restart_fn = (unsigned long) func;
310	lc->restart_data = (unsigned long) data;
311	lc->restart_source = -1U;
312	pcpu_sigp_retry(pcpu, SIGP_RESTART, 0);
313}
314
315typedef void (pcpu_delegate_fn)(void *);
316
317/*
318 * Call function via PSW restart on pcpu and stop the current cpu.
319 */
320static void __pcpu_delegate(pcpu_delegate_fn *func, void *data)
321{
322	func(data);	/* should not return */
323}
324
325static void pcpu_delegate(struct pcpu *pcpu,
326			  pcpu_delegate_fn *func,
327			  void *data, unsigned long stack)
328{
329	struct lowcore *lc, *abs_lc;
330	unsigned int source_cpu;
331
332	lc = lowcore_ptr[pcpu - pcpu_devices];
333	source_cpu = stap();
334
335	if (pcpu->address == source_cpu) {
336		call_on_stack(2, stack, void, __pcpu_delegate,
337			      pcpu_delegate_fn *, func, void *, data);
338	}
339	/* Stop target cpu (if func returns this stops the current cpu). */
340	pcpu_sigp_retry(pcpu, SIGP_STOP, 0);
341	pcpu_sigp_retry(pcpu, SIGP_CPU_RESET, 0);
342	/* Restart func on the target cpu and stop the current cpu. */
343	if (lc) {
344		lc->restart_stack = stack;
345		lc->restart_fn = (unsigned long)func;
346		lc->restart_data = (unsigned long)data;
347		lc->restart_source = source_cpu;
348	} else {
349		abs_lc = get_abs_lowcore();
350		abs_lc->restart_stack = stack;
351		abs_lc->restart_fn = (unsigned long)func;
352		abs_lc->restart_data = (unsigned long)data;
353		abs_lc->restart_source = source_cpu;
354		put_abs_lowcore(abs_lc);
355	}
356	asm volatile(
357		"0:	sigp	0,%0,%2	# sigp restart to target cpu\n"
358		"	brc	2,0b	# busy, try again\n"
359		"1:	sigp	0,%1,%3	# sigp stop to current cpu\n"
360		"	brc	2,1b	# busy, try again\n"
361		: : "d" (pcpu->address), "d" (source_cpu),
362		    "K" (SIGP_RESTART), "K" (SIGP_STOP)
363		: "0", "1", "cc");
364	for (;;) ;
365}
366
367/*
368 * Enable additional logical cpus for multi-threading.
369 */
370static int pcpu_set_smt(unsigned int mtid)
371{
372	int cc;
373
374	if (smp_cpu_mtid == mtid)
375		return 0;
376	cc = __pcpu_sigp(0, SIGP_SET_MULTI_THREADING, mtid, NULL);
377	if (cc == 0) {
378		smp_cpu_mtid = mtid;
379		smp_cpu_mt_shift = 0;
380		while (smp_cpu_mtid >= (1U << smp_cpu_mt_shift))
381			smp_cpu_mt_shift++;
382		pcpu_devices[0].address = stap();
383	}
384	return cc;
385}
386
387/*
388 * Call function on an online CPU.
389 */
390void smp_call_online_cpu(void (*func)(void *), void *data)
391{
392	struct pcpu *pcpu;
393
394	/* Use the current cpu if it is online. */
395	pcpu = pcpu_find_address(cpu_online_mask, stap());
396	if (!pcpu)
397		/* Use the first online cpu. */
398		pcpu = pcpu_devices + cpumask_first(cpu_online_mask);
399	pcpu_delegate(pcpu, func, data, (unsigned long) restart_stack);
400}
401
402/*
403 * Call function on the ipl CPU.
404 */
405void smp_call_ipl_cpu(void (*func)(void *), void *data)
406{
407	struct lowcore *lc = lowcore_ptr[0];
408
409	if (pcpu_devices[0].address == stap())
410		lc = &S390_lowcore;
411
412	pcpu_delegate(&pcpu_devices[0], func, data,
413		      lc->nodat_stack);
414}
415
416int smp_find_processor_id(u16 address)
417{
418	int cpu;
419
420	for_each_present_cpu(cpu)
421		if (pcpu_devices[cpu].address == address)
422			return cpu;
423	return -1;
424}
425
426void schedule_mcck_handler(void)
427{
428	pcpu_ec_call(pcpu_devices + smp_processor_id(), ec_mcck_pending);
429}
430
431bool notrace arch_vcpu_is_preempted(int cpu)
432{
433	if (test_cpu_flag_of(CIF_ENABLED_WAIT, cpu))
434		return false;
435	if (pcpu_running(pcpu_devices + cpu))
436		return false;
437	return true;
438}
439EXPORT_SYMBOL(arch_vcpu_is_preempted);
440
441void notrace smp_yield_cpu(int cpu)
442{
443	if (!MACHINE_HAS_DIAG9C)
444		return;
445	diag_stat_inc_norecursion(DIAG_STAT_X09C);
446	asm volatile("diag %0,0,0x9c"
447		     : : "d" (pcpu_devices[cpu].address));
448}
449EXPORT_SYMBOL_GPL(smp_yield_cpu);
450
451/*
452 * Send cpus emergency shutdown signal. This gives the cpus the
453 * opportunity to complete outstanding interrupts.
454 */
455void notrace smp_emergency_stop(void)
456{
457	static arch_spinlock_t lock = __ARCH_SPIN_LOCK_UNLOCKED;
458	static cpumask_t cpumask;
459	u64 end;
460	int cpu;
461
462	arch_spin_lock(&lock);
463	cpumask_copy(&cpumask, cpu_online_mask);
464	cpumask_clear_cpu(smp_processor_id(), &cpumask);
465
466	end = get_tod_clock() + (1000000UL << 12);
467	for_each_cpu(cpu, &cpumask) {
468		struct pcpu *pcpu = pcpu_devices + cpu;
469		set_bit(ec_stop_cpu, &pcpu->ec_mask);
470		while (__pcpu_sigp(pcpu->address, SIGP_EMERGENCY_SIGNAL,
471				   0, NULL) == SIGP_CC_BUSY &&
472		       get_tod_clock() < end)
473			cpu_relax();
474	}
475	while (get_tod_clock() < end) {
476		for_each_cpu(cpu, &cpumask)
477			if (pcpu_stopped(pcpu_devices + cpu))
478				cpumask_clear_cpu(cpu, &cpumask);
479		if (cpumask_empty(&cpumask))
480			break;
481		cpu_relax();
482	}
483	arch_spin_unlock(&lock);
484}
485NOKPROBE_SYMBOL(smp_emergency_stop);
486
487/*
488 * Stop all cpus but the current one.
489 */
490void smp_send_stop(void)
491{
492	int cpu;
493
494	/* Disable all interrupts/machine checks */
495	__load_psw_mask(PSW_KERNEL_BITS);
496	trace_hardirqs_off();
497
498	debug_set_critical();
499
500	if (oops_in_progress)
501		smp_emergency_stop();
502
503	/* stop all processors */
504	for_each_online_cpu(cpu) {
505		if (cpu == smp_processor_id())
506			continue;
507		pcpu_sigp_retry(pcpu_devices + cpu, SIGP_STOP, 0);
508		while (!pcpu_stopped(pcpu_devices + cpu))
509			cpu_relax();
510	}
511}
512
513/*
514 * This is the main routine where commands issued by other
515 * cpus are handled.
516 */
517static void smp_handle_ext_call(void)
518{
519	unsigned long bits;
520
521	/* handle bit signal external calls */
522	bits = xchg(&pcpu_devices[smp_processor_id()].ec_mask, 0);
523	if (test_bit(ec_stop_cpu, &bits))
524		smp_stop_cpu();
525	if (test_bit(ec_schedule, &bits))
526		scheduler_ipi();
527	if (test_bit(ec_call_function_single, &bits))
528		generic_smp_call_function_single_interrupt();
529	if (test_bit(ec_mcck_pending, &bits))
530		s390_handle_mcck();
531	if (test_bit(ec_irq_work, &bits))
532		irq_work_run();
533}
534
535static void do_ext_call_interrupt(struct ext_code ext_code,
536				  unsigned int param32, unsigned long param64)
537{
538	inc_irq_stat(ext_code.code == 0x1202 ? IRQEXT_EXC : IRQEXT_EMS);
539	smp_handle_ext_call();
540}
541
542void arch_send_call_function_ipi_mask(const struct cpumask *mask)
543{
544	int cpu;
545
546	for_each_cpu(cpu, mask)
547		pcpu_ec_call(pcpu_devices + cpu, ec_call_function_single);
548}
549
550void arch_send_call_function_single_ipi(int cpu)
551{
552	pcpu_ec_call(pcpu_devices + cpu, ec_call_function_single);
553}
554
555/*
556 * this function sends a 'reschedule' IPI to another CPU.
557 * it goes straight through and wastes no time serializing
558 * anything. Worst case is that we lose a reschedule ...
559 */
560void arch_smp_send_reschedule(int cpu)
561{
562	pcpu_ec_call(pcpu_devices + cpu, ec_schedule);
563}
564
565#ifdef CONFIG_IRQ_WORK
566void arch_irq_work_raise(void)
567{
568	pcpu_ec_call(pcpu_devices + smp_processor_id(), ec_irq_work);
569}
570#endif
571
572#ifdef CONFIG_CRASH_DUMP
573
574int smp_store_status(int cpu)
575{
576	struct lowcore *lc;
577	struct pcpu *pcpu;
578	unsigned long pa;
579
580	pcpu = pcpu_devices + cpu;
581	lc = lowcore_ptr[cpu];
582	pa = __pa(&lc->floating_pt_save_area);
583	if (__pcpu_sigp_relax(pcpu->address, SIGP_STORE_STATUS_AT_ADDRESS,
584			      pa) != SIGP_CC_ORDER_CODE_ACCEPTED)
585		return -EIO;
586	if (!cpu_has_vx() && !MACHINE_HAS_GS)
587		return 0;
588	pa = lc->mcesad & MCESA_ORIGIN_MASK;
589	if (MACHINE_HAS_GS)
590		pa |= lc->mcesad & MCESA_LC_MASK;
591	if (__pcpu_sigp_relax(pcpu->address, SIGP_STORE_ADDITIONAL_STATUS,
592			      pa) != SIGP_CC_ORDER_CODE_ACCEPTED)
593		return -EIO;
594	return 0;
595}
596
597/*
598 * Collect CPU state of the previous, crashed system.
599 * There are four cases:
600 * 1) standard zfcp/nvme dump
601 *    condition: OLDMEM_BASE == NULL && is_ipl_type_dump() == true
602 *    The state for all CPUs except the boot CPU needs to be collected
603 *    with sigp stop-and-store-status. The boot CPU state is located in
604 *    the absolute lowcore of the memory stored in the HSA. The zcore code
605 *    will copy the boot CPU state from the HSA.
606 * 2) stand-alone kdump for SCSI/NVMe (zfcp/nvme dump with swapped memory)
607 *    condition: OLDMEM_BASE != NULL && is_ipl_type_dump() == true
608 *    The state for all CPUs except the boot CPU needs to be collected
609 *    with sigp stop-and-store-status. The firmware or the boot-loader
610 *    stored the registers of the boot CPU in the absolute lowcore in the
611 *    memory of the old system.
612 * 3) kdump and the old kernel did not store the CPU state,
613 *    or stand-alone kdump for DASD
614 *    condition: OLDMEM_BASE != NULL && !is_kdump_kernel()
615 *    The state for all CPUs except the boot CPU needs to be collected
616 *    with sigp stop-and-store-status. The kexec code or the boot-loader
617 *    stored the registers of the boot CPU in the memory of the old system.
618 * 4) kdump and the old kernel stored the CPU state
619 *    condition: OLDMEM_BASE != NULL && is_kdump_kernel()
620 *    This case does not exist for s390 anymore, setup_arch explicitly
621 *    deactivates the elfcorehdr= kernel parameter
622 */
623static bool dump_available(void)
624{
625	return oldmem_data.start || is_ipl_type_dump();
626}
627
628void __init smp_save_dump_ipl_cpu(void)
629{
630	struct save_area *sa;
631	void *regs;
632
633	if (!dump_available())
634		return;
635	sa = save_area_alloc(true);
636	regs = memblock_alloc(512, 8);
637	if (!sa || !regs)
638		panic("could not allocate memory for boot CPU save area\n");
639	copy_oldmem_kernel(regs, __LC_FPREGS_SAVE_AREA, 512);
640	save_area_add_regs(sa, regs);
641	memblock_free(regs, 512);
642	if (cpu_has_vx())
643		save_area_add_vxrs(sa, boot_cpu_vector_save_area);
644}
645
646void __init smp_save_dump_secondary_cpus(void)
647{
648	int addr, boot_cpu_addr, max_cpu_addr;
649	struct save_area *sa;
650	void *page;
651
652	if (!dump_available())
653		return;
654	/* Allocate a page as dumping area for the store status sigps */
655	page = memblock_alloc_low(PAGE_SIZE, PAGE_SIZE);
656	if (!page)
657		panic("ERROR: Failed to allocate %lx bytes below %lx\n",
658		      PAGE_SIZE, 1UL << 31);
659
660	/* Set multi-threading state to the previous system. */
661	pcpu_set_smt(sclp.mtid_prev);
662	boot_cpu_addr = stap();
663	max_cpu_addr = SCLP_MAX_CORES << sclp.mtid_prev;
664	for (addr = 0; addr <= max_cpu_addr; addr++) {
665		if (addr == boot_cpu_addr)
666			continue;
667		if (__pcpu_sigp_relax(addr, SIGP_SENSE, 0) ==
668		    SIGP_CC_NOT_OPERATIONAL)
669			continue;
670		sa = save_area_alloc(false);
671		if (!sa)
672			panic("could not allocate memory for save area\n");
673		__pcpu_sigp_relax(addr, SIGP_STORE_STATUS_AT_ADDRESS, __pa(page));
674		save_area_add_regs(sa, page);
675		if (cpu_has_vx()) {
676			__pcpu_sigp_relax(addr, SIGP_STORE_ADDITIONAL_STATUS, __pa(page));
677			save_area_add_vxrs(sa, page);
678		}
679	}
680	memblock_free(page, PAGE_SIZE);
681	diag_amode31_ops.diag308_reset();
682	pcpu_set_smt(0);
683}
684#endif /* CONFIG_CRASH_DUMP */
685
686void smp_cpu_set_polarization(int cpu, int val)
687{
688	pcpu_devices[cpu].polarization = val;
689}
690
691int smp_cpu_get_polarization(int cpu)
692{
693	return pcpu_devices[cpu].polarization;
694}
695
696int smp_cpu_get_cpu_address(int cpu)
697{
698	return pcpu_devices[cpu].address;
699}
700
701static void __ref smp_get_core_info(struct sclp_core_info *info, int early)
702{
703	static int use_sigp_detection;
704	int address;
705
706	if (use_sigp_detection || sclp_get_core_info(info, early)) {
707		use_sigp_detection = 1;
708		for (address = 0;
709		     address < (SCLP_MAX_CORES << smp_cpu_mt_shift);
710		     address += (1U << smp_cpu_mt_shift)) {
711			if (__pcpu_sigp_relax(address, SIGP_SENSE, 0) ==
712			    SIGP_CC_NOT_OPERATIONAL)
713				continue;
714			info->core[info->configured].core_id =
715				address >> smp_cpu_mt_shift;
716			info->configured++;
717		}
718		info->combined = info->configured;
719	}
720}
721
722static int smp_add_present_cpu(int cpu);
723
724static int smp_add_core(struct sclp_core_entry *core, cpumask_t *avail,
725			bool configured, bool early)
726{
727	struct pcpu *pcpu;
728	int cpu, nr, i;
729	u16 address;
730
731	nr = 0;
732	if (sclp.has_core_type && core->type != boot_core_type)
733		return nr;
734	cpu = cpumask_first(avail);
735	address = core->core_id << smp_cpu_mt_shift;
736	for (i = 0; (i <= smp_cpu_mtid) && (cpu < nr_cpu_ids); i++) {
737		if (pcpu_find_address(cpu_present_mask, address + i))
738			continue;
739		pcpu = pcpu_devices + cpu;
740		pcpu->address = address + i;
741		if (configured)
742			pcpu->state = CPU_STATE_CONFIGURED;
743		else
744			pcpu->state = CPU_STATE_STANDBY;
745		smp_cpu_set_polarization(cpu, POLARIZATION_UNKNOWN);
746		set_cpu_present(cpu, true);
747		if (!early && smp_add_present_cpu(cpu) != 0)
748			set_cpu_present(cpu, false);
749		else
750			nr++;
751		cpumask_clear_cpu(cpu, avail);
752		cpu = cpumask_next(cpu, avail);
753	}
754	return nr;
755}
756
757static int __smp_rescan_cpus(struct sclp_core_info *info, bool early)
758{
759	struct sclp_core_entry *core;
760	static cpumask_t avail;
761	bool configured;
762	u16 core_id;
763	int nr, i;
764
765	cpus_read_lock();
766	mutex_lock(&smp_cpu_state_mutex);
767	nr = 0;
768	cpumask_xor(&avail, cpu_possible_mask, cpu_present_mask);
769	/*
770	 * Add IPL core first (which got logical CPU number 0) to make sure
771	 * that all SMT threads get subsequent logical CPU numbers.
772	 */
773	if (early) {
774		core_id = pcpu_devices[0].address >> smp_cpu_mt_shift;
775		for (i = 0; i < info->configured; i++) {
776			core = &info->core[i];
777			if (core->core_id == core_id) {
778				nr += smp_add_core(core, &avail, true, early);
779				break;
780			}
781		}
782	}
783	for (i = 0; i < info->combined; i++) {
784		configured = i < info->configured;
785		nr += smp_add_core(&info->core[i], &avail, configured, early);
786	}
787	mutex_unlock(&smp_cpu_state_mutex);
788	cpus_read_unlock();
789	return nr;
790}
791
792void __init smp_detect_cpus(void)
793{
794	unsigned int cpu, mtid, c_cpus, s_cpus;
795	struct sclp_core_info *info;
796	u16 address;
797
798	/* Get CPU information */
799	info = memblock_alloc(sizeof(*info), 8);
800	if (!info)
801		panic("%s: Failed to allocate %zu bytes align=0x%x\n",
802		      __func__, sizeof(*info), 8);
803	smp_get_core_info(info, 1);
804	/* Find boot CPU type */
805	if (sclp.has_core_type) {
806		address = stap();
807		for (cpu = 0; cpu < info->combined; cpu++)
808			if (info->core[cpu].core_id == address) {
809				/* The boot cpu dictates the cpu type. */
810				boot_core_type = info->core[cpu].type;
811				break;
812			}
813		if (cpu >= info->combined)
814			panic("Could not find boot CPU type");
815	}
816
817	/* Set multi-threading state for the current system */
818	mtid = boot_core_type ? sclp.mtid : sclp.mtid_cp;
819	mtid = (mtid < smp_max_threads) ? mtid : smp_max_threads - 1;
820	pcpu_set_smt(mtid);
821
822	/* Print number of CPUs */
823	c_cpus = s_cpus = 0;
824	for (cpu = 0; cpu < info->combined; cpu++) {
825		if (sclp.has_core_type &&
826		    info->core[cpu].type != boot_core_type)
827			continue;
828		if (cpu < info->configured)
829			c_cpus += smp_cpu_mtid + 1;
830		else
831			s_cpus += smp_cpu_mtid + 1;
832	}
833	pr_info("%d configured CPUs, %d standby CPUs\n", c_cpus, s_cpus);
834
835	/* Add CPUs present at boot */
836	__smp_rescan_cpus(info, true);
837	memblock_free(info, sizeof(*info));
838}
839
840/*
841 *	Activate a secondary processor.
842 */
843static void smp_start_secondary(void *cpuvoid)
844{
845	int cpu = raw_smp_processor_id();
846
847	S390_lowcore.last_update_clock = get_tod_clock();
848	S390_lowcore.restart_stack = (unsigned long)restart_stack;
849	S390_lowcore.restart_fn = (unsigned long)do_restart;
850	S390_lowcore.restart_data = 0;
851	S390_lowcore.restart_source = -1U;
852	S390_lowcore.restart_flags = 0;
853	restore_access_regs(S390_lowcore.access_regs_save_area);
854	cpu_init();
855	rcutree_report_cpu_starting(cpu);
856	init_cpu_timer();
857	vtime_init();
858	vdso_getcpu_init();
859	pfault_init();
860	cpumask_set_cpu(cpu, &cpu_setup_mask);
861	update_cpu_masks();
862	notify_cpu_starting(cpu);
863	if (topology_cpu_dedicated(cpu))
864		set_cpu_flag(CIF_DEDICATED_CPU);
865	else
866		clear_cpu_flag(CIF_DEDICATED_CPU);
867	set_cpu_online(cpu, true);
868	inc_irq_stat(CPU_RST);
869	local_irq_enable();
870	cpu_startup_entry(CPUHP_AP_ONLINE_IDLE);
871}
872
873/* Upping and downing of CPUs */
874int __cpu_up(unsigned int cpu, struct task_struct *tidle)
875{
876	struct pcpu *pcpu = pcpu_devices + cpu;
877	int rc;
878
879	if (pcpu->state != CPU_STATE_CONFIGURED)
880		return -EIO;
881	if (pcpu_sigp_retry(pcpu, SIGP_INITIAL_CPU_RESET, 0) !=
882	    SIGP_CC_ORDER_CODE_ACCEPTED)
883		return -EIO;
884
885	rc = pcpu_alloc_lowcore(pcpu, cpu);
886	if (rc)
887		return rc;
888	/*
889	 * Make sure global control register contents do not change
890	 * until new CPU has initialized control registers.
891	 */
892	system_ctlreg_lock();
893	pcpu_prepare_secondary(pcpu, cpu);
894	pcpu_attach_task(pcpu, tidle);
895	pcpu_start_fn(pcpu, smp_start_secondary, NULL);
896	/* Wait until cpu puts itself in the online & active maps */
897	while (!cpu_online(cpu))
898		cpu_relax();
899	system_ctlreg_unlock();
900	return 0;
901}
902
903static unsigned int setup_possible_cpus __initdata;
904
905static int __init _setup_possible_cpus(char *s)
906{
907	get_option(&s, &setup_possible_cpus);
908	return 0;
909}
910early_param("possible_cpus", _setup_possible_cpus);
911
912int __cpu_disable(void)
913{
914	struct ctlreg cregs[16];
915	int cpu;
916
917	/* Handle possible pending IPIs */
918	smp_handle_ext_call();
919	cpu = smp_processor_id();
920	set_cpu_online(cpu, false);
921	cpumask_clear_cpu(cpu, &cpu_setup_mask);
922	update_cpu_masks();
923	/* Disable pseudo page faults on this cpu. */
924	pfault_fini();
925	/* Disable interrupt sources via control register. */
926	__local_ctl_store(0, 15, cregs);
927	cregs[0].val  &= ~0x0000ee70UL;	/* disable all external interrupts */
928	cregs[6].val  &= ~0xff000000UL;	/* disable all I/O interrupts */
929	cregs[14].val &= ~0x1f000000UL;	/* disable most machine checks */
930	__local_ctl_load(0, 15, cregs);
931	clear_cpu_flag(CIF_NOHZ_DELAY);
932	return 0;
933}
934
935void __cpu_die(unsigned int cpu)
936{
937	struct pcpu *pcpu;
938
939	/* Wait until target cpu is down */
940	pcpu = pcpu_devices + cpu;
941	while (!pcpu_stopped(pcpu))
942		cpu_relax();
943	pcpu_free_lowcore(pcpu);
944	cpumask_clear_cpu(cpu, mm_cpumask(&init_mm));
945	cpumask_clear_cpu(cpu, &init_mm.context.cpu_attach_mask);
946}
947
948void __noreturn cpu_die(void)
949{
950	idle_task_exit();
951	pcpu_sigp_retry(pcpu_devices + smp_processor_id(), SIGP_STOP, 0);
952	for (;;) ;
953}
954
955void __init smp_fill_possible_mask(void)
956{
957	unsigned int possible, sclp_max, cpu;
958
959	sclp_max = max(sclp.mtid, sclp.mtid_cp) + 1;
960	sclp_max = min(smp_max_threads, sclp_max);
961	sclp_max = (sclp.max_cores * sclp_max) ?: nr_cpu_ids;
962	possible = setup_possible_cpus ?: nr_cpu_ids;
963	possible = min(possible, sclp_max);
964	for (cpu = 0; cpu < possible && cpu < nr_cpu_ids; cpu++)
965		set_cpu_possible(cpu, true);
966}
967
968void __init smp_prepare_cpus(unsigned int max_cpus)
969{
970	if (register_external_irq(EXT_IRQ_EMERGENCY_SIG, do_ext_call_interrupt))
971		panic("Couldn't request external interrupt 0x1201");
972	system_ctl_set_bit(0, 14);
973	if (register_external_irq(EXT_IRQ_EXTERNAL_CALL, do_ext_call_interrupt))
974		panic("Couldn't request external interrupt 0x1202");
975	system_ctl_set_bit(0, 13);
976}
977
978void __init smp_prepare_boot_cpu(void)
979{
980	struct pcpu *pcpu = pcpu_devices;
981
982	WARN_ON(!cpu_present(0) || !cpu_online(0));
983	pcpu->state = CPU_STATE_CONFIGURED;
984	S390_lowcore.percpu_offset = __per_cpu_offset[0];
985	smp_cpu_set_polarization(0, POLARIZATION_UNKNOWN);
986}
987
988void __init smp_setup_processor_id(void)
989{
990	pcpu_devices[0].address = stap();
991	S390_lowcore.cpu_nr = 0;
992	S390_lowcore.spinlock_lockval = arch_spin_lockval(0);
993	S390_lowcore.spinlock_index = 0;
994}
995
996/*
997 * the frequency of the profiling timer can be changed
998 * by writing a multiplier value into /proc/profile.
999 *
1000 * usually you want to run this on all CPUs ;)
1001 */
1002int setup_profiling_timer(unsigned int multiplier)
1003{
1004	return 0;
1005}
1006
1007static ssize_t cpu_configure_show(struct device *dev,
1008				  struct device_attribute *attr, char *buf)
1009{
1010	ssize_t count;
1011
1012	mutex_lock(&smp_cpu_state_mutex);
1013	count = sprintf(buf, "%d\n", pcpu_devices[dev->id].state);
1014	mutex_unlock(&smp_cpu_state_mutex);
1015	return count;
1016}
1017
1018static ssize_t cpu_configure_store(struct device *dev,
1019				   struct device_attribute *attr,
1020				   const char *buf, size_t count)
1021{
1022	struct pcpu *pcpu;
1023	int cpu, val, rc, i;
1024	char delim;
1025
1026	if (sscanf(buf, "%d %c", &val, &delim) != 1)
1027		return -EINVAL;
1028	if (val != 0 && val != 1)
1029		return -EINVAL;
1030	cpus_read_lock();
1031	mutex_lock(&smp_cpu_state_mutex);
1032	rc = -EBUSY;
1033	/* disallow configuration changes of online cpus */
1034	cpu = dev->id;
1035	cpu = smp_get_base_cpu(cpu);
1036	for (i = 0; i <= smp_cpu_mtid; i++)
1037		if (cpu_online(cpu + i))
1038			goto out;
1039	pcpu = pcpu_devices + cpu;
1040	rc = 0;
1041	switch (val) {
1042	case 0:
1043		if (pcpu->state != CPU_STATE_CONFIGURED)
1044			break;
1045		rc = sclp_core_deconfigure(pcpu->address >> smp_cpu_mt_shift);
1046		if (rc)
1047			break;
1048		for (i = 0; i <= smp_cpu_mtid; i++) {
1049			if (cpu + i >= nr_cpu_ids || !cpu_present(cpu + i))
1050				continue;
1051			pcpu[i].state = CPU_STATE_STANDBY;
1052			smp_cpu_set_polarization(cpu + i,
1053						 POLARIZATION_UNKNOWN);
1054		}
1055		topology_expect_change();
1056		break;
1057	case 1:
1058		if (pcpu->state != CPU_STATE_STANDBY)
1059			break;
1060		rc = sclp_core_configure(pcpu->address >> smp_cpu_mt_shift);
1061		if (rc)
1062			break;
1063		for (i = 0; i <= smp_cpu_mtid; i++) {
1064			if (cpu + i >= nr_cpu_ids || !cpu_present(cpu + i))
1065				continue;
1066			pcpu[i].state = CPU_STATE_CONFIGURED;
1067			smp_cpu_set_polarization(cpu + i,
1068						 POLARIZATION_UNKNOWN);
1069		}
1070		topology_expect_change();
1071		break;
1072	default:
1073		break;
1074	}
1075out:
1076	mutex_unlock(&smp_cpu_state_mutex);
1077	cpus_read_unlock();
1078	return rc ? rc : count;
1079}
1080static DEVICE_ATTR(configure, 0644, cpu_configure_show, cpu_configure_store);
1081
1082static ssize_t show_cpu_address(struct device *dev,
1083				struct device_attribute *attr, char *buf)
1084{
1085	return sprintf(buf, "%d\n", pcpu_devices[dev->id].address);
1086}
1087static DEVICE_ATTR(address, 0444, show_cpu_address, NULL);
1088
1089static struct attribute *cpu_common_attrs[] = {
1090	&dev_attr_configure.attr,
1091	&dev_attr_address.attr,
1092	NULL,
1093};
1094
1095static struct attribute_group cpu_common_attr_group = {
1096	.attrs = cpu_common_attrs,
1097};
1098
1099static struct attribute *cpu_online_attrs[] = {
1100	&dev_attr_idle_count.attr,
1101	&dev_attr_idle_time_us.attr,
1102	NULL,
1103};
1104
1105static struct attribute_group cpu_online_attr_group = {
1106	.attrs = cpu_online_attrs,
1107};
1108
1109static int smp_cpu_online(unsigned int cpu)
1110{
1111	struct device *s = &per_cpu(cpu_device, cpu)->dev;
1112
1113	return sysfs_create_group(&s->kobj, &cpu_online_attr_group);
1114}
1115
1116static int smp_cpu_pre_down(unsigned int cpu)
1117{
1118	struct device *s = &per_cpu(cpu_device, cpu)->dev;
1119
1120	sysfs_remove_group(&s->kobj, &cpu_online_attr_group);
1121	return 0;
1122}
1123
1124static int smp_add_present_cpu(int cpu)
1125{
1126	struct device *s;
1127	struct cpu *c;
1128	int rc;
1129
1130	c = kzalloc(sizeof(*c), GFP_KERNEL);
1131	if (!c)
1132		return -ENOMEM;
1133	per_cpu(cpu_device, cpu) = c;
1134	s = &c->dev;
1135	c->hotpluggable = !!cpu;
1136	rc = register_cpu(c, cpu);
1137	if (rc)
1138		goto out;
1139	rc = sysfs_create_group(&s->kobj, &cpu_common_attr_group);
1140	if (rc)
1141		goto out_cpu;
1142	rc = topology_cpu_init(c);
1143	if (rc)
1144		goto out_topology;
1145	return 0;
1146
1147out_topology:
1148	sysfs_remove_group(&s->kobj, &cpu_common_attr_group);
1149out_cpu:
1150	unregister_cpu(c);
1151out:
1152	return rc;
1153}
1154
1155int __ref smp_rescan_cpus(void)
1156{
1157	struct sclp_core_info *info;
1158	int nr;
1159
1160	info = kzalloc(sizeof(*info), GFP_KERNEL);
1161	if (!info)
1162		return -ENOMEM;
1163	smp_get_core_info(info, 0);
1164	nr = __smp_rescan_cpus(info, false);
1165	kfree(info);
1166	if (nr)
1167		topology_schedule_update();
1168	return 0;
1169}
1170
1171static ssize_t __ref rescan_store(struct device *dev,
1172				  struct device_attribute *attr,
1173				  const char *buf,
1174				  size_t count)
1175{
1176	int rc;
1177
1178	rc = lock_device_hotplug_sysfs();
1179	if (rc)
1180		return rc;
1181	rc = smp_rescan_cpus();
1182	unlock_device_hotplug();
1183	return rc ? rc : count;
1184}
1185static DEVICE_ATTR_WO(rescan);
1186
1187static int __init s390_smp_init(void)
1188{
1189	struct device *dev_root;
1190	int cpu, rc = 0;
1191
1192	dev_root = bus_get_dev_root(&cpu_subsys);
1193	if (dev_root) {
1194		rc = device_create_file(dev_root, &dev_attr_rescan);
1195		put_device(dev_root);
1196		if (rc)
1197			return rc;
1198	}
1199
1200	for_each_present_cpu(cpu) {
1201		rc = smp_add_present_cpu(cpu);
1202		if (rc)
1203			goto out;
1204	}
1205
1206	rc = cpuhp_setup_state(CPUHP_AP_ONLINE_DYN, "s390/smp:online",
1207			       smp_cpu_online, smp_cpu_pre_down);
1208	rc = rc <= 0 ? rc : 0;
1209out:
1210	return rc;
1211}
1212subsys_initcall(s390_smp_init);
1213