1/* SPDX-License-Identifier: GPL-2.0 */
2/*
3 *  S390 version
4 *    Copyright IBM Corp. 1999, 2000
5 *    Author(s): Hartmut Penner (hp@de.ibm.com)
6 *               Ulrich Weigand (weigand@de.ibm.com)
7 *               Martin Schwidefsky (schwidefsky@de.ibm.com)
8 *
9 *  Derived from "include/asm-i386/pgtable.h"
10 */
11
12#ifndef _ASM_S390_PGTABLE_H
13#define _ASM_S390_PGTABLE_H
14
15#include <linux/sched.h>
16#include <linux/mm_types.h>
17#include <linux/page-flags.h>
18#include <linux/radix-tree.h>
19#include <linux/atomic.h>
20#include <asm/sections.h>
21#include <asm/ctlreg.h>
22#include <asm/bug.h>
23#include <asm/page.h>
24#include <asm/uv.h>
25
26extern pgd_t swapper_pg_dir[];
27extern pgd_t invalid_pg_dir[];
28extern void paging_init(void);
29extern struct ctlreg s390_invalid_asce;
30
31enum {
32	PG_DIRECT_MAP_4K = 0,
33	PG_DIRECT_MAP_1M,
34	PG_DIRECT_MAP_2G,
35	PG_DIRECT_MAP_MAX
36};
37
38extern atomic_long_t __bootdata_preserved(direct_pages_count[PG_DIRECT_MAP_MAX]);
39
40static inline void update_page_count(int level, long count)
41{
42	if (IS_ENABLED(CONFIG_PROC_FS))
43		atomic_long_add(count, &direct_pages_count[level]);
44}
45
46/*
47 * The S390 doesn't have any external MMU info: the kernel page
48 * tables contain all the necessary information.
49 */
50#define update_mmu_cache(vma, address, ptep)     do { } while (0)
51#define update_mmu_cache_range(vmf, vma, addr, ptep, nr) do { } while (0)
52#define update_mmu_cache_pmd(vma, address, ptep) do { } while (0)
53
54/*
55 * ZERO_PAGE is a global shared page that is always zero; used
56 * for zero-mapped memory areas etc..
57 */
58
59extern unsigned long empty_zero_page;
60extern unsigned long zero_page_mask;
61
62#define ZERO_PAGE(vaddr) \
63	(virt_to_page((void *)(empty_zero_page + \
64	 (((unsigned long)(vaddr)) &zero_page_mask))))
65#define __HAVE_COLOR_ZERO_PAGE
66
67/* TODO: s390 cannot support io_remap_pfn_range... */
68
69#define pte_ERROR(e) \
70	pr_err("%s:%d: bad pte %016lx.\n", __FILE__, __LINE__, pte_val(e))
71#define pmd_ERROR(e) \
72	pr_err("%s:%d: bad pmd %016lx.\n", __FILE__, __LINE__, pmd_val(e))
73#define pud_ERROR(e) \
74	pr_err("%s:%d: bad pud %016lx.\n", __FILE__, __LINE__, pud_val(e))
75#define p4d_ERROR(e) \
76	pr_err("%s:%d: bad p4d %016lx.\n", __FILE__, __LINE__, p4d_val(e))
77#define pgd_ERROR(e) \
78	pr_err("%s:%d: bad pgd %016lx.\n", __FILE__, __LINE__, pgd_val(e))
79
80/*
81 * The vmalloc and module area will always be on the topmost area of the
82 * kernel mapping. 512GB are reserved for vmalloc by default.
83 * At the top of the vmalloc area a 2GB area is reserved where modules
84 * will reside. That makes sure that inter module branches always
85 * happen without trampolines and in addition the placement within a
86 * 2GB frame is branch prediction unit friendly.
87 */
88extern unsigned long __bootdata_preserved(VMALLOC_START);
89extern unsigned long __bootdata_preserved(VMALLOC_END);
90#define VMALLOC_DEFAULT_SIZE	((512UL << 30) - MODULES_LEN)
91extern struct page *__bootdata_preserved(vmemmap);
92extern unsigned long __bootdata_preserved(vmemmap_size);
93
94extern unsigned long __bootdata_preserved(MODULES_VADDR);
95extern unsigned long __bootdata_preserved(MODULES_END);
96#define MODULES_VADDR	MODULES_VADDR
97#define MODULES_END	MODULES_END
98#define MODULES_LEN	(1UL << 31)
99
100static inline int is_module_addr(void *addr)
101{
102	BUILD_BUG_ON(MODULES_LEN > (1UL << 31));
103	if (addr < (void *)MODULES_VADDR)
104		return 0;
105	if (addr > (void *)MODULES_END)
106		return 0;
107	return 1;
108}
109
110/*
111 * A 64 bit pagetable entry of S390 has following format:
112 * |			 PFRA			      |0IPC|  OS  |
113 * 0000000000111111111122222222223333333333444444444455555555556666
114 * 0123456789012345678901234567890123456789012345678901234567890123
115 *
116 * I Page-Invalid Bit:    Page is not available for address-translation
117 * P Page-Protection Bit: Store access not possible for page
118 * C Change-bit override: HW is not required to set change bit
119 *
120 * A 64 bit segmenttable entry of S390 has following format:
121 * |        P-table origin                              |      TT
122 * 0000000000111111111122222222223333333333444444444455555555556666
123 * 0123456789012345678901234567890123456789012345678901234567890123
124 *
125 * I Segment-Invalid Bit:    Segment is not available for address-translation
126 * C Common-Segment Bit:     Segment is not private (PoP 3-30)
127 * P Page-Protection Bit: Store access not possible for page
128 * TT Type 00
129 *
130 * A 64 bit region table entry of S390 has following format:
131 * |        S-table origin                             |   TF  TTTL
132 * 0000000000111111111122222222223333333333444444444455555555556666
133 * 0123456789012345678901234567890123456789012345678901234567890123
134 *
135 * I Segment-Invalid Bit:    Segment is not available for address-translation
136 * TT Type 01
137 * TF
138 * TL Table length
139 *
140 * The 64 bit regiontable origin of S390 has following format:
141 * |      region table origon                          |       DTTL
142 * 0000000000111111111122222222223333333333444444444455555555556666
143 * 0123456789012345678901234567890123456789012345678901234567890123
144 *
145 * X Space-Switch event:
146 * G Segment-Invalid Bit:
147 * P Private-Space Bit:
148 * S Storage-Alteration:
149 * R Real space
150 * TL Table-Length:
151 *
152 * A storage key has the following format:
153 * | ACC |F|R|C|0|
154 *  0   3 4 5 6 7
155 * ACC: access key
156 * F  : fetch protection bit
157 * R  : referenced bit
158 * C  : changed bit
159 */
160
161/* Hardware bits in the page table entry */
162#define _PAGE_NOEXEC	0x100		/* HW no-execute bit  */
163#define _PAGE_PROTECT	0x200		/* HW read-only bit  */
164#define _PAGE_INVALID	0x400		/* HW invalid bit    */
165#define _PAGE_LARGE	0x800		/* Bit to mark a large pte */
166
167/* Software bits in the page table entry */
168#define _PAGE_PRESENT	0x001		/* SW pte present bit */
169#define _PAGE_YOUNG	0x004		/* SW pte young bit */
170#define _PAGE_DIRTY	0x008		/* SW pte dirty bit */
171#define _PAGE_READ	0x010		/* SW pte read bit */
172#define _PAGE_WRITE	0x020		/* SW pte write bit */
173#define _PAGE_SPECIAL	0x040		/* SW associated with special page */
174#define _PAGE_UNUSED	0x080		/* SW bit for pgste usage state */
175
176#ifdef CONFIG_MEM_SOFT_DIRTY
177#define _PAGE_SOFT_DIRTY 0x002		/* SW pte soft dirty bit */
178#else
179#define _PAGE_SOFT_DIRTY 0x000
180#endif
181
182#define _PAGE_SW_BITS	0xffUL		/* All SW bits */
183
184#define _PAGE_SWP_EXCLUSIVE _PAGE_LARGE	/* SW pte exclusive swap bit */
185
186/* Set of bits not changed in pte_modify */
187#define _PAGE_CHG_MASK		(PAGE_MASK | _PAGE_SPECIAL | _PAGE_DIRTY | \
188				 _PAGE_YOUNG | _PAGE_SOFT_DIRTY)
189
190/*
191 * Mask of bits that must not be changed with RDP. Allow only _PAGE_PROTECT
192 * HW bit and all SW bits.
193 */
194#define _PAGE_RDP_MASK		~(_PAGE_PROTECT | _PAGE_SW_BITS)
195
196/*
197 * handle_pte_fault uses pte_present and pte_none to find out the pte type
198 * WITHOUT holding the page table lock. The _PAGE_PRESENT bit is used to
199 * distinguish present from not-present ptes. It is changed only with the page
200 * table lock held.
201 *
202 * The following table gives the different possible bit combinations for
203 * the pte hardware and software bits in the last 12 bits of a pte
204 * (. unassigned bit, x don't care, t swap type):
205 *
206 *				842100000000
207 *				000084210000
208 *				000000008421
209 *				.IR.uswrdy.p
210 * empty			.10.00000000
211 * swap				.11..ttttt.0
212 * prot-none, clean, old	.11.xx0000.1
213 * prot-none, clean, young	.11.xx0001.1
214 * prot-none, dirty, old	.11.xx0010.1
215 * prot-none, dirty, young	.11.xx0011.1
216 * read-only, clean, old	.11.xx0100.1
217 * read-only, clean, young	.01.xx0101.1
218 * read-only, dirty, old	.11.xx0110.1
219 * read-only, dirty, young	.01.xx0111.1
220 * read-write, clean, old	.11.xx1100.1
221 * read-write, clean, young	.01.xx1101.1
222 * read-write, dirty, old	.10.xx1110.1
223 * read-write, dirty, young	.00.xx1111.1
224 * HW-bits: R read-only, I invalid
225 * SW-bits: p present, y young, d dirty, r read, w write, s special,
226 *	    u unused, l large
227 *
228 * pte_none    is true for the bit pattern .10.00000000, pte == 0x400
229 * pte_swap    is true for the bit pattern .11..ooooo.0, (pte & 0x201) == 0x200
230 * pte_present is true for the bit pattern .xx.xxxxxx.1, (pte & 0x001) == 0x001
231 */
232
233/* Bits in the segment/region table address-space-control-element */
234#define _ASCE_ORIGIN		~0xfffUL/* region/segment table origin	    */
235#define _ASCE_PRIVATE_SPACE	0x100	/* private space control	    */
236#define _ASCE_ALT_EVENT		0x80	/* storage alteration event control */
237#define _ASCE_SPACE_SWITCH	0x40	/* space switch event		    */
238#define _ASCE_REAL_SPACE	0x20	/* real space control		    */
239#define _ASCE_TYPE_MASK		0x0c	/* asce table type mask		    */
240#define _ASCE_TYPE_REGION1	0x0c	/* region first table type	    */
241#define _ASCE_TYPE_REGION2	0x08	/* region second table type	    */
242#define _ASCE_TYPE_REGION3	0x04	/* region third table type	    */
243#define _ASCE_TYPE_SEGMENT	0x00	/* segment table type		    */
244#define _ASCE_TABLE_LENGTH	0x03	/* region table length		    */
245
246/* Bits in the region table entry */
247#define _REGION_ENTRY_ORIGIN	~0xfffUL/* region/segment table origin	    */
248#define _REGION_ENTRY_PROTECT	0x200	/* region protection bit	    */
249#define _REGION_ENTRY_NOEXEC	0x100	/* region no-execute bit	    */
250#define _REGION_ENTRY_OFFSET	0xc0	/* region table offset		    */
251#define _REGION_ENTRY_INVALID	0x20	/* invalid region table entry	    */
252#define _REGION_ENTRY_TYPE_MASK	0x0c	/* region table type mask	    */
253#define _REGION_ENTRY_TYPE_R1	0x0c	/* region first table type	    */
254#define _REGION_ENTRY_TYPE_R2	0x08	/* region second table type	    */
255#define _REGION_ENTRY_TYPE_R3	0x04	/* region third table type	    */
256#define _REGION_ENTRY_LENGTH	0x03	/* region third length		    */
257
258#define _REGION1_ENTRY		(_REGION_ENTRY_TYPE_R1 | _REGION_ENTRY_LENGTH)
259#define _REGION1_ENTRY_EMPTY	(_REGION_ENTRY_TYPE_R1 | _REGION_ENTRY_INVALID)
260#define _REGION2_ENTRY		(_REGION_ENTRY_TYPE_R2 | _REGION_ENTRY_LENGTH)
261#define _REGION2_ENTRY_EMPTY	(_REGION_ENTRY_TYPE_R2 | _REGION_ENTRY_INVALID)
262#define _REGION3_ENTRY		(_REGION_ENTRY_TYPE_R3 | _REGION_ENTRY_LENGTH)
263#define _REGION3_ENTRY_EMPTY	(_REGION_ENTRY_TYPE_R3 | _REGION_ENTRY_INVALID)
264
265#define _REGION3_ENTRY_ORIGIN_LARGE ~0x7fffffffUL /* large page address	     */
266#define _REGION3_ENTRY_DIRTY	0x2000	/* SW region dirty bit */
267#define _REGION3_ENTRY_YOUNG	0x1000	/* SW region young bit */
268#define _REGION3_ENTRY_LARGE	0x0400	/* RTTE-format control, large page  */
269#define _REGION3_ENTRY_READ	0x0002	/* SW region read bit */
270#define _REGION3_ENTRY_WRITE	0x0001	/* SW region write bit */
271
272#ifdef CONFIG_MEM_SOFT_DIRTY
273#define _REGION3_ENTRY_SOFT_DIRTY 0x4000 /* SW region soft dirty bit */
274#else
275#define _REGION3_ENTRY_SOFT_DIRTY 0x0000 /* SW region soft dirty bit */
276#endif
277
278#define _REGION_ENTRY_BITS	 0xfffffffffffff22fUL
279
280/* Bits in the segment table entry */
281#define _SEGMENT_ENTRY_BITS			0xfffffffffffffe33UL
282#define _SEGMENT_ENTRY_HARDWARE_BITS		0xfffffffffffffe30UL
283#define _SEGMENT_ENTRY_HARDWARE_BITS_LARGE	0xfffffffffff00730UL
284#define _SEGMENT_ENTRY_ORIGIN_LARGE ~0xfffffUL /* large page address	    */
285#define _SEGMENT_ENTRY_ORIGIN	~0x7ffUL/* page table origin		    */
286#define _SEGMENT_ENTRY_PROTECT	0x200	/* segment protection bit	    */
287#define _SEGMENT_ENTRY_NOEXEC	0x100	/* segment no-execute bit	    */
288#define _SEGMENT_ENTRY_INVALID	0x20	/* invalid segment table entry	    */
289#define _SEGMENT_ENTRY_TYPE_MASK 0x0c	/* segment table type mask	    */
290
291#define _SEGMENT_ENTRY		(0)
292#define _SEGMENT_ENTRY_EMPTY	(_SEGMENT_ENTRY_INVALID)
293
294#define _SEGMENT_ENTRY_DIRTY	0x2000	/* SW segment dirty bit */
295#define _SEGMENT_ENTRY_YOUNG	0x1000	/* SW segment young bit */
296#define _SEGMENT_ENTRY_LARGE	0x0400	/* STE-format control, large page */
297#define _SEGMENT_ENTRY_WRITE	0x0002	/* SW segment write bit */
298#define _SEGMENT_ENTRY_READ	0x0001	/* SW segment read bit */
299
300#ifdef CONFIG_MEM_SOFT_DIRTY
301#define _SEGMENT_ENTRY_SOFT_DIRTY 0x4000 /* SW segment soft dirty bit */
302#else
303#define _SEGMENT_ENTRY_SOFT_DIRTY 0x0000 /* SW segment soft dirty bit */
304#endif
305
306#define _CRST_ENTRIES	2048	/* number of region/segment table entries */
307#define _PAGE_ENTRIES	256	/* number of page table entries	*/
308
309#define _CRST_TABLE_SIZE (_CRST_ENTRIES * 8)
310#define _PAGE_TABLE_SIZE (_PAGE_ENTRIES * 8)
311
312#define _REGION1_SHIFT	53
313#define _REGION2_SHIFT	42
314#define _REGION3_SHIFT	31
315#define _SEGMENT_SHIFT	20
316
317#define _REGION1_INDEX	(0x7ffUL << _REGION1_SHIFT)
318#define _REGION2_INDEX	(0x7ffUL << _REGION2_SHIFT)
319#define _REGION3_INDEX	(0x7ffUL << _REGION3_SHIFT)
320#define _SEGMENT_INDEX	(0x7ffUL << _SEGMENT_SHIFT)
321#define _PAGE_INDEX	(0xffUL  << _PAGE_SHIFT)
322
323#define _REGION1_SIZE	(1UL << _REGION1_SHIFT)
324#define _REGION2_SIZE	(1UL << _REGION2_SHIFT)
325#define _REGION3_SIZE	(1UL << _REGION3_SHIFT)
326#define _SEGMENT_SIZE	(1UL << _SEGMENT_SHIFT)
327
328#define _REGION1_MASK	(~(_REGION1_SIZE - 1))
329#define _REGION2_MASK	(~(_REGION2_SIZE - 1))
330#define _REGION3_MASK	(~(_REGION3_SIZE - 1))
331#define _SEGMENT_MASK	(~(_SEGMENT_SIZE - 1))
332
333#define PMD_SHIFT	_SEGMENT_SHIFT
334#define PUD_SHIFT	_REGION3_SHIFT
335#define P4D_SHIFT	_REGION2_SHIFT
336#define PGDIR_SHIFT	_REGION1_SHIFT
337
338#define PMD_SIZE	_SEGMENT_SIZE
339#define PUD_SIZE	_REGION3_SIZE
340#define P4D_SIZE	_REGION2_SIZE
341#define PGDIR_SIZE	_REGION1_SIZE
342
343#define PMD_MASK	_SEGMENT_MASK
344#define PUD_MASK	_REGION3_MASK
345#define P4D_MASK	_REGION2_MASK
346#define PGDIR_MASK	_REGION1_MASK
347
348#define PTRS_PER_PTE	_PAGE_ENTRIES
349#define PTRS_PER_PMD	_CRST_ENTRIES
350#define PTRS_PER_PUD	_CRST_ENTRIES
351#define PTRS_PER_P4D	_CRST_ENTRIES
352#define PTRS_PER_PGD	_CRST_ENTRIES
353
354/*
355 * Segment table and region3 table entry encoding
356 * (R = read-only, I = invalid, y = young bit):
357 *				dy..R...I...wr
358 * prot-none, clean, old	00..1...1...00
359 * prot-none, clean, young	01..1...1...00
360 * prot-none, dirty, old	10..1...1...00
361 * prot-none, dirty, young	11..1...1...00
362 * read-only, clean, old	00..1...1...01
363 * read-only, clean, young	01..1...0...01
364 * read-only, dirty, old	10..1...1...01
365 * read-only, dirty, young	11..1...0...01
366 * read-write, clean, old	00..1...1...11
367 * read-write, clean, young	01..1...0...11
368 * read-write, dirty, old	10..0...1...11
369 * read-write, dirty, young	11..0...0...11
370 * The segment table origin is used to distinguish empty (origin==0) from
371 * read-write, old segment table entries (origin!=0)
372 * HW-bits: R read-only, I invalid
373 * SW-bits: y young, d dirty, r read, w write
374 */
375
376/* Page status table bits for virtualization */
377#define PGSTE_ACC_BITS	0xf000000000000000UL
378#define PGSTE_FP_BIT	0x0800000000000000UL
379#define PGSTE_PCL_BIT	0x0080000000000000UL
380#define PGSTE_HR_BIT	0x0040000000000000UL
381#define PGSTE_HC_BIT	0x0020000000000000UL
382#define PGSTE_GR_BIT	0x0004000000000000UL
383#define PGSTE_GC_BIT	0x0002000000000000UL
384#define PGSTE_UC_BIT	0x0000800000000000UL	/* user dirty (migration) */
385#define PGSTE_IN_BIT	0x0000400000000000UL	/* IPTE notify bit */
386#define PGSTE_VSIE_BIT	0x0000200000000000UL	/* ref'd in a shadow table */
387
388/* Guest Page State used for virtualization */
389#define _PGSTE_GPS_ZERO			0x0000000080000000UL
390#define _PGSTE_GPS_NODAT		0x0000000040000000UL
391#define _PGSTE_GPS_USAGE_MASK		0x0000000003000000UL
392#define _PGSTE_GPS_USAGE_STABLE		0x0000000000000000UL
393#define _PGSTE_GPS_USAGE_UNUSED		0x0000000001000000UL
394#define _PGSTE_GPS_USAGE_POT_VOLATILE	0x0000000002000000UL
395#define _PGSTE_GPS_USAGE_VOLATILE	_PGSTE_GPS_USAGE_MASK
396
397/*
398 * A user page table pointer has the space-switch-event bit, the
399 * private-space-control bit and the storage-alteration-event-control
400 * bit set. A kernel page table pointer doesn't need them.
401 */
402#define _ASCE_USER_BITS		(_ASCE_SPACE_SWITCH | _ASCE_PRIVATE_SPACE | \
403				 _ASCE_ALT_EVENT)
404
405/*
406 * Page protection definitions.
407 */
408#define PAGE_NONE	__pgprot(_PAGE_PRESENT | _PAGE_INVALID | _PAGE_PROTECT)
409#define PAGE_RO		__pgprot(_PAGE_PRESENT | _PAGE_READ | \
410				 _PAGE_NOEXEC  | _PAGE_INVALID | _PAGE_PROTECT)
411#define PAGE_RX		__pgprot(_PAGE_PRESENT | _PAGE_READ | \
412				 _PAGE_INVALID | _PAGE_PROTECT)
413#define PAGE_RW		__pgprot(_PAGE_PRESENT | _PAGE_READ | _PAGE_WRITE | \
414				 _PAGE_NOEXEC  | _PAGE_INVALID | _PAGE_PROTECT)
415#define PAGE_RWX	__pgprot(_PAGE_PRESENT | _PAGE_READ | _PAGE_WRITE | \
416				 _PAGE_INVALID | _PAGE_PROTECT)
417
418#define PAGE_SHARED	__pgprot(_PAGE_PRESENT | _PAGE_READ | _PAGE_WRITE | \
419				 _PAGE_YOUNG | _PAGE_DIRTY | _PAGE_NOEXEC)
420#define PAGE_KERNEL	__pgprot(_PAGE_PRESENT | _PAGE_READ | _PAGE_WRITE | \
421				 _PAGE_YOUNG | _PAGE_DIRTY | _PAGE_NOEXEC)
422#define PAGE_KERNEL_RO	__pgprot(_PAGE_PRESENT | _PAGE_READ | _PAGE_YOUNG | \
423				 _PAGE_PROTECT | _PAGE_NOEXEC)
424#define PAGE_KERNEL_EXEC __pgprot(_PAGE_PRESENT | _PAGE_READ | _PAGE_WRITE | \
425				  _PAGE_YOUNG |	_PAGE_DIRTY)
426
427/*
428 * On s390 the page table entry has an invalid bit and a read-only bit.
429 * Read permission implies execute permission and write permission
430 * implies read permission.
431 */
432         /*xwr*/
433
434/*
435 * Segment entry (large page) protection definitions.
436 */
437#define SEGMENT_NONE	__pgprot(_SEGMENT_ENTRY_INVALID | \
438				 _SEGMENT_ENTRY_PROTECT)
439#define SEGMENT_RO	__pgprot(_SEGMENT_ENTRY_PROTECT | \
440				 _SEGMENT_ENTRY_READ | \
441				 _SEGMENT_ENTRY_NOEXEC)
442#define SEGMENT_RX	__pgprot(_SEGMENT_ENTRY_PROTECT | \
443				 _SEGMENT_ENTRY_READ)
444#define SEGMENT_RW	__pgprot(_SEGMENT_ENTRY_READ | \
445				 _SEGMENT_ENTRY_WRITE | \
446				 _SEGMENT_ENTRY_NOEXEC)
447#define SEGMENT_RWX	__pgprot(_SEGMENT_ENTRY_READ | \
448				 _SEGMENT_ENTRY_WRITE)
449#define SEGMENT_KERNEL	__pgprot(_SEGMENT_ENTRY |	\
450				 _SEGMENT_ENTRY_LARGE |	\
451				 _SEGMENT_ENTRY_READ |	\
452				 _SEGMENT_ENTRY_WRITE | \
453				 _SEGMENT_ENTRY_YOUNG | \
454				 _SEGMENT_ENTRY_DIRTY | \
455				 _SEGMENT_ENTRY_NOEXEC)
456#define SEGMENT_KERNEL_RO __pgprot(_SEGMENT_ENTRY |	\
457				 _SEGMENT_ENTRY_LARGE |	\
458				 _SEGMENT_ENTRY_READ |	\
459				 _SEGMENT_ENTRY_YOUNG |	\
460				 _SEGMENT_ENTRY_PROTECT | \
461				 _SEGMENT_ENTRY_NOEXEC)
462#define SEGMENT_KERNEL_EXEC __pgprot(_SEGMENT_ENTRY |	\
463				 _SEGMENT_ENTRY_LARGE |	\
464				 _SEGMENT_ENTRY_READ |	\
465				 _SEGMENT_ENTRY_WRITE | \
466				 _SEGMENT_ENTRY_YOUNG |	\
467				 _SEGMENT_ENTRY_DIRTY)
468
469/*
470 * Region3 entry (large page) protection definitions.
471 */
472
473#define REGION3_KERNEL	__pgprot(_REGION_ENTRY_TYPE_R3 | \
474				 _REGION3_ENTRY_LARGE |	 \
475				 _REGION3_ENTRY_READ |	 \
476				 _REGION3_ENTRY_WRITE |	 \
477				 _REGION3_ENTRY_YOUNG |	 \
478				 _REGION3_ENTRY_DIRTY | \
479				 _REGION_ENTRY_NOEXEC)
480#define REGION3_KERNEL_RO __pgprot(_REGION_ENTRY_TYPE_R3 | \
481				   _REGION3_ENTRY_LARGE |  \
482				   _REGION3_ENTRY_READ |   \
483				   _REGION3_ENTRY_YOUNG |  \
484				   _REGION_ENTRY_PROTECT | \
485				   _REGION_ENTRY_NOEXEC)
486#define REGION3_KERNEL_EXEC __pgprot(_REGION_ENTRY_TYPE_R3 | \
487				 _REGION3_ENTRY_LARGE |	 \
488				 _REGION3_ENTRY_READ |	 \
489				 _REGION3_ENTRY_WRITE |	 \
490				 _REGION3_ENTRY_YOUNG |	 \
491				 _REGION3_ENTRY_DIRTY)
492
493static inline bool mm_p4d_folded(struct mm_struct *mm)
494{
495	return mm->context.asce_limit <= _REGION1_SIZE;
496}
497#define mm_p4d_folded(mm) mm_p4d_folded(mm)
498
499static inline bool mm_pud_folded(struct mm_struct *mm)
500{
501	return mm->context.asce_limit <= _REGION2_SIZE;
502}
503#define mm_pud_folded(mm) mm_pud_folded(mm)
504
505static inline bool mm_pmd_folded(struct mm_struct *mm)
506{
507	return mm->context.asce_limit <= _REGION3_SIZE;
508}
509#define mm_pmd_folded(mm) mm_pmd_folded(mm)
510
511static inline int mm_has_pgste(struct mm_struct *mm)
512{
513#ifdef CONFIG_PGSTE
514	if (unlikely(mm->context.has_pgste))
515		return 1;
516#endif
517	return 0;
518}
519
520static inline int mm_is_protected(struct mm_struct *mm)
521{
522#ifdef CONFIG_PGSTE
523	if (unlikely(atomic_read(&mm->context.protected_count)))
524		return 1;
525#endif
526	return 0;
527}
528
529static inline int mm_alloc_pgste(struct mm_struct *mm)
530{
531#ifdef CONFIG_PGSTE
532	if (unlikely(mm->context.alloc_pgste))
533		return 1;
534#endif
535	return 0;
536}
537
538static inline pte_t clear_pte_bit(pte_t pte, pgprot_t prot)
539{
540	return __pte(pte_val(pte) & ~pgprot_val(prot));
541}
542
543static inline pte_t set_pte_bit(pte_t pte, pgprot_t prot)
544{
545	return __pte(pte_val(pte) | pgprot_val(prot));
546}
547
548static inline pmd_t clear_pmd_bit(pmd_t pmd, pgprot_t prot)
549{
550	return __pmd(pmd_val(pmd) & ~pgprot_val(prot));
551}
552
553static inline pmd_t set_pmd_bit(pmd_t pmd, pgprot_t prot)
554{
555	return __pmd(pmd_val(pmd) | pgprot_val(prot));
556}
557
558static inline pud_t clear_pud_bit(pud_t pud, pgprot_t prot)
559{
560	return __pud(pud_val(pud) & ~pgprot_val(prot));
561}
562
563static inline pud_t set_pud_bit(pud_t pud, pgprot_t prot)
564{
565	return __pud(pud_val(pud) | pgprot_val(prot));
566}
567
568/*
569 * In the case that a guest uses storage keys
570 * faults should no longer be backed by zero pages
571 */
572#define mm_forbids_zeropage mm_has_pgste
573static inline int mm_uses_skeys(struct mm_struct *mm)
574{
575#ifdef CONFIG_PGSTE
576	if (mm->context.uses_skeys)
577		return 1;
578#endif
579	return 0;
580}
581
582static inline void csp(unsigned int *ptr, unsigned int old, unsigned int new)
583{
584	union register_pair r1 = { .even = old, .odd = new, };
585	unsigned long address = (unsigned long)ptr | 1;
586
587	asm volatile(
588		"	csp	%[r1],%[address]"
589		: [r1] "+&d" (r1.pair), "+m" (*ptr)
590		: [address] "d" (address)
591		: "cc");
592}
593
594static inline void cspg(unsigned long *ptr, unsigned long old, unsigned long new)
595{
596	union register_pair r1 = { .even = old, .odd = new, };
597	unsigned long address = (unsigned long)ptr | 1;
598
599	asm volatile(
600		"	cspg	%[r1],%[address]"
601		: [r1] "+&d" (r1.pair), "+m" (*ptr)
602		: [address] "d" (address)
603		: "cc");
604}
605
606#define CRDTE_DTT_PAGE		0x00UL
607#define CRDTE_DTT_SEGMENT	0x10UL
608#define CRDTE_DTT_REGION3	0x14UL
609#define CRDTE_DTT_REGION2	0x18UL
610#define CRDTE_DTT_REGION1	0x1cUL
611
612static inline void crdte(unsigned long old, unsigned long new,
613			 unsigned long *table, unsigned long dtt,
614			 unsigned long address, unsigned long asce)
615{
616	union register_pair r1 = { .even = old, .odd = new, };
617	union register_pair r2 = { .even = __pa(table) | dtt, .odd = address, };
618
619	asm volatile(".insn rrf,0xb98f0000,%[r1],%[r2],%[asce],0"
620		     : [r1] "+&d" (r1.pair)
621		     : [r2] "d" (r2.pair), [asce] "a" (asce)
622		     : "memory", "cc");
623}
624
625/*
626 * pgd/p4d/pud/pmd/pte query functions
627 */
628static inline int pgd_folded(pgd_t pgd)
629{
630	return (pgd_val(pgd) & _REGION_ENTRY_TYPE_MASK) < _REGION_ENTRY_TYPE_R1;
631}
632
633static inline int pgd_present(pgd_t pgd)
634{
635	if (pgd_folded(pgd))
636		return 1;
637	return (pgd_val(pgd) & _REGION_ENTRY_ORIGIN) != 0UL;
638}
639
640static inline int pgd_none(pgd_t pgd)
641{
642	if (pgd_folded(pgd))
643		return 0;
644	return (pgd_val(pgd) & _REGION_ENTRY_INVALID) != 0UL;
645}
646
647static inline int pgd_bad(pgd_t pgd)
648{
649	if ((pgd_val(pgd) & _REGION_ENTRY_TYPE_MASK) < _REGION_ENTRY_TYPE_R1)
650		return 0;
651	return (pgd_val(pgd) & ~_REGION_ENTRY_BITS) != 0;
652}
653
654static inline unsigned long pgd_pfn(pgd_t pgd)
655{
656	unsigned long origin_mask;
657
658	origin_mask = _REGION_ENTRY_ORIGIN;
659	return (pgd_val(pgd) & origin_mask) >> PAGE_SHIFT;
660}
661
662static inline int p4d_folded(p4d_t p4d)
663{
664	return (p4d_val(p4d) & _REGION_ENTRY_TYPE_MASK) < _REGION_ENTRY_TYPE_R2;
665}
666
667static inline int p4d_present(p4d_t p4d)
668{
669	if (p4d_folded(p4d))
670		return 1;
671	return (p4d_val(p4d) & _REGION_ENTRY_ORIGIN) != 0UL;
672}
673
674static inline int p4d_none(p4d_t p4d)
675{
676	if (p4d_folded(p4d))
677		return 0;
678	return p4d_val(p4d) == _REGION2_ENTRY_EMPTY;
679}
680
681static inline unsigned long p4d_pfn(p4d_t p4d)
682{
683	unsigned long origin_mask;
684
685	origin_mask = _REGION_ENTRY_ORIGIN;
686	return (p4d_val(p4d) & origin_mask) >> PAGE_SHIFT;
687}
688
689static inline int pud_folded(pud_t pud)
690{
691	return (pud_val(pud) & _REGION_ENTRY_TYPE_MASK) < _REGION_ENTRY_TYPE_R3;
692}
693
694static inline int pud_present(pud_t pud)
695{
696	if (pud_folded(pud))
697		return 1;
698	return (pud_val(pud) & _REGION_ENTRY_ORIGIN) != 0UL;
699}
700
701static inline int pud_none(pud_t pud)
702{
703	if (pud_folded(pud))
704		return 0;
705	return pud_val(pud) == _REGION3_ENTRY_EMPTY;
706}
707
708#define pud_leaf pud_leaf
709static inline bool pud_leaf(pud_t pud)
710{
711	if ((pud_val(pud) & _REGION_ENTRY_TYPE_MASK) != _REGION_ENTRY_TYPE_R3)
712		return 0;
713	return !!(pud_val(pud) & _REGION3_ENTRY_LARGE);
714}
715
716#define pmd_leaf pmd_leaf
717static inline bool pmd_leaf(pmd_t pmd)
718{
719	return (pmd_val(pmd) & _SEGMENT_ENTRY_LARGE) != 0;
720}
721
722static inline int pmd_bad(pmd_t pmd)
723{
724	if ((pmd_val(pmd) & _SEGMENT_ENTRY_TYPE_MASK) > 0 || pmd_leaf(pmd))
725		return 1;
726	return (pmd_val(pmd) & ~_SEGMENT_ENTRY_BITS) != 0;
727}
728
729static inline int pud_bad(pud_t pud)
730{
731	unsigned long type = pud_val(pud) & _REGION_ENTRY_TYPE_MASK;
732
733	if (type > _REGION_ENTRY_TYPE_R3 || pud_leaf(pud))
734		return 1;
735	if (type < _REGION_ENTRY_TYPE_R3)
736		return 0;
737	return (pud_val(pud) & ~_REGION_ENTRY_BITS) != 0;
738}
739
740static inline int p4d_bad(p4d_t p4d)
741{
742	unsigned long type = p4d_val(p4d) & _REGION_ENTRY_TYPE_MASK;
743
744	if (type > _REGION_ENTRY_TYPE_R2)
745		return 1;
746	if (type < _REGION_ENTRY_TYPE_R2)
747		return 0;
748	return (p4d_val(p4d) & ~_REGION_ENTRY_BITS) != 0;
749}
750
751static inline int pmd_present(pmd_t pmd)
752{
753	return pmd_val(pmd) != _SEGMENT_ENTRY_EMPTY;
754}
755
756static inline int pmd_none(pmd_t pmd)
757{
758	return pmd_val(pmd) == _SEGMENT_ENTRY_EMPTY;
759}
760
761#define pmd_write pmd_write
762static inline int pmd_write(pmd_t pmd)
763{
764	return (pmd_val(pmd) & _SEGMENT_ENTRY_WRITE) != 0;
765}
766
767#define pud_write pud_write
768static inline int pud_write(pud_t pud)
769{
770	return (pud_val(pud) & _REGION3_ENTRY_WRITE) != 0;
771}
772
773#define pmd_dirty pmd_dirty
774static inline int pmd_dirty(pmd_t pmd)
775{
776	return (pmd_val(pmd) & _SEGMENT_ENTRY_DIRTY) != 0;
777}
778
779#define pmd_young pmd_young
780static inline int pmd_young(pmd_t pmd)
781{
782	return (pmd_val(pmd) & _SEGMENT_ENTRY_YOUNG) != 0;
783}
784
785static inline int pte_present(pte_t pte)
786{
787	/* Bit pattern: (pte & 0x001) == 0x001 */
788	return (pte_val(pte) & _PAGE_PRESENT) != 0;
789}
790
791static inline int pte_none(pte_t pte)
792{
793	/* Bit pattern: pte == 0x400 */
794	return pte_val(pte) == _PAGE_INVALID;
795}
796
797static inline int pte_swap(pte_t pte)
798{
799	/* Bit pattern: (pte & 0x201) == 0x200 */
800	return (pte_val(pte) & (_PAGE_PROTECT | _PAGE_PRESENT))
801		== _PAGE_PROTECT;
802}
803
804static inline int pte_special(pte_t pte)
805{
806	return (pte_val(pte) & _PAGE_SPECIAL);
807}
808
809#define __HAVE_ARCH_PTE_SAME
810static inline int pte_same(pte_t a, pte_t b)
811{
812	return pte_val(a) == pte_val(b);
813}
814
815#ifdef CONFIG_NUMA_BALANCING
816static inline int pte_protnone(pte_t pte)
817{
818	return pte_present(pte) && !(pte_val(pte) & _PAGE_READ);
819}
820
821static inline int pmd_protnone(pmd_t pmd)
822{
823	/* pmd_leaf(pmd) implies pmd_present(pmd) */
824	return pmd_leaf(pmd) && !(pmd_val(pmd) & _SEGMENT_ENTRY_READ);
825}
826#endif
827
828static inline int pte_swp_exclusive(pte_t pte)
829{
830	return pte_val(pte) & _PAGE_SWP_EXCLUSIVE;
831}
832
833static inline pte_t pte_swp_mkexclusive(pte_t pte)
834{
835	return set_pte_bit(pte, __pgprot(_PAGE_SWP_EXCLUSIVE));
836}
837
838static inline pte_t pte_swp_clear_exclusive(pte_t pte)
839{
840	return clear_pte_bit(pte, __pgprot(_PAGE_SWP_EXCLUSIVE));
841}
842
843static inline int pte_soft_dirty(pte_t pte)
844{
845	return pte_val(pte) & _PAGE_SOFT_DIRTY;
846}
847#define pte_swp_soft_dirty pte_soft_dirty
848
849static inline pte_t pte_mksoft_dirty(pte_t pte)
850{
851	return set_pte_bit(pte, __pgprot(_PAGE_SOFT_DIRTY));
852}
853#define pte_swp_mksoft_dirty pte_mksoft_dirty
854
855static inline pte_t pte_clear_soft_dirty(pte_t pte)
856{
857	return clear_pte_bit(pte, __pgprot(_PAGE_SOFT_DIRTY));
858}
859#define pte_swp_clear_soft_dirty pte_clear_soft_dirty
860
861static inline int pmd_soft_dirty(pmd_t pmd)
862{
863	return pmd_val(pmd) & _SEGMENT_ENTRY_SOFT_DIRTY;
864}
865
866static inline pmd_t pmd_mksoft_dirty(pmd_t pmd)
867{
868	return set_pmd_bit(pmd, __pgprot(_SEGMENT_ENTRY_SOFT_DIRTY));
869}
870
871static inline pmd_t pmd_clear_soft_dirty(pmd_t pmd)
872{
873	return clear_pmd_bit(pmd, __pgprot(_SEGMENT_ENTRY_SOFT_DIRTY));
874}
875
876/*
877 * query functions pte_write/pte_dirty/pte_young only work if
878 * pte_present() is true. Undefined behaviour if not..
879 */
880static inline int pte_write(pte_t pte)
881{
882	return (pte_val(pte) & _PAGE_WRITE) != 0;
883}
884
885static inline int pte_dirty(pte_t pte)
886{
887	return (pte_val(pte) & _PAGE_DIRTY) != 0;
888}
889
890static inline int pte_young(pte_t pte)
891{
892	return (pte_val(pte) & _PAGE_YOUNG) != 0;
893}
894
895#define __HAVE_ARCH_PTE_UNUSED
896static inline int pte_unused(pte_t pte)
897{
898	return pte_val(pte) & _PAGE_UNUSED;
899}
900
901/*
902 * Extract the pgprot value from the given pte while at the same time making it
903 * usable for kernel address space mappings where fault driven dirty and
904 * young/old accounting is not supported, i.e _PAGE_PROTECT and _PAGE_INVALID
905 * must not be set.
906 */
907static inline pgprot_t pte_pgprot(pte_t pte)
908{
909	unsigned long pte_flags = pte_val(pte) & _PAGE_CHG_MASK;
910
911	if (pte_write(pte))
912		pte_flags |= pgprot_val(PAGE_KERNEL);
913	else
914		pte_flags |= pgprot_val(PAGE_KERNEL_RO);
915	pte_flags |= pte_val(pte) & mio_wb_bit_mask;
916
917	return __pgprot(pte_flags);
918}
919
920/*
921 * pgd/pmd/pte modification functions
922 */
923
924static inline void set_pgd(pgd_t *pgdp, pgd_t pgd)
925{
926	WRITE_ONCE(*pgdp, pgd);
927}
928
929static inline void set_p4d(p4d_t *p4dp, p4d_t p4d)
930{
931	WRITE_ONCE(*p4dp, p4d);
932}
933
934static inline void set_pud(pud_t *pudp, pud_t pud)
935{
936	WRITE_ONCE(*pudp, pud);
937}
938
939static inline void set_pmd(pmd_t *pmdp, pmd_t pmd)
940{
941	WRITE_ONCE(*pmdp, pmd);
942}
943
944static inline void set_pte(pte_t *ptep, pte_t pte)
945{
946	WRITE_ONCE(*ptep, pte);
947}
948
949static inline void pgd_clear(pgd_t *pgd)
950{
951	if ((pgd_val(*pgd) & _REGION_ENTRY_TYPE_MASK) == _REGION_ENTRY_TYPE_R1)
952		set_pgd(pgd, __pgd(_REGION1_ENTRY_EMPTY));
953}
954
955static inline void p4d_clear(p4d_t *p4d)
956{
957	if ((p4d_val(*p4d) & _REGION_ENTRY_TYPE_MASK) == _REGION_ENTRY_TYPE_R2)
958		set_p4d(p4d, __p4d(_REGION2_ENTRY_EMPTY));
959}
960
961static inline void pud_clear(pud_t *pud)
962{
963	if ((pud_val(*pud) & _REGION_ENTRY_TYPE_MASK) == _REGION_ENTRY_TYPE_R3)
964		set_pud(pud, __pud(_REGION3_ENTRY_EMPTY));
965}
966
967static inline void pmd_clear(pmd_t *pmdp)
968{
969	set_pmd(pmdp, __pmd(_SEGMENT_ENTRY_EMPTY));
970}
971
972static inline void pte_clear(struct mm_struct *mm, unsigned long addr, pte_t *ptep)
973{
974	set_pte(ptep, __pte(_PAGE_INVALID));
975}
976
977/*
978 * The following pte modification functions only work if
979 * pte_present() is true. Undefined behaviour if not..
980 */
981static inline pte_t pte_modify(pte_t pte, pgprot_t newprot)
982{
983	pte = clear_pte_bit(pte, __pgprot(~_PAGE_CHG_MASK));
984	pte = set_pte_bit(pte, newprot);
985	/*
986	 * newprot for PAGE_NONE, PAGE_RO, PAGE_RX, PAGE_RW and PAGE_RWX
987	 * has the invalid bit set, clear it again for readable, young pages
988	 */
989	if ((pte_val(pte) & _PAGE_YOUNG) && (pte_val(pte) & _PAGE_READ))
990		pte = clear_pte_bit(pte, __pgprot(_PAGE_INVALID));
991	/*
992	 * newprot for PAGE_RO, PAGE_RX, PAGE_RW and PAGE_RWX has the page
993	 * protection bit set, clear it again for writable, dirty pages
994	 */
995	if ((pte_val(pte) & _PAGE_DIRTY) && (pte_val(pte) & _PAGE_WRITE))
996		pte = clear_pte_bit(pte, __pgprot(_PAGE_PROTECT));
997	return pte;
998}
999
1000static inline pte_t pte_wrprotect(pte_t pte)
1001{
1002	pte = clear_pte_bit(pte, __pgprot(_PAGE_WRITE));
1003	return set_pte_bit(pte, __pgprot(_PAGE_PROTECT));
1004}
1005
1006static inline pte_t pte_mkwrite_novma(pte_t pte)
1007{
1008	pte = set_pte_bit(pte, __pgprot(_PAGE_WRITE));
1009	if (pte_val(pte) & _PAGE_DIRTY)
1010		pte = clear_pte_bit(pte, __pgprot(_PAGE_PROTECT));
1011	return pte;
1012}
1013
1014static inline pte_t pte_mkclean(pte_t pte)
1015{
1016	pte = clear_pte_bit(pte, __pgprot(_PAGE_DIRTY));
1017	return set_pte_bit(pte, __pgprot(_PAGE_PROTECT));
1018}
1019
1020static inline pte_t pte_mkdirty(pte_t pte)
1021{
1022	pte = set_pte_bit(pte, __pgprot(_PAGE_DIRTY | _PAGE_SOFT_DIRTY));
1023	if (pte_val(pte) & _PAGE_WRITE)
1024		pte = clear_pte_bit(pte, __pgprot(_PAGE_PROTECT));
1025	return pte;
1026}
1027
1028static inline pte_t pte_mkold(pte_t pte)
1029{
1030	pte = clear_pte_bit(pte, __pgprot(_PAGE_YOUNG));
1031	return set_pte_bit(pte, __pgprot(_PAGE_INVALID));
1032}
1033
1034static inline pte_t pte_mkyoung(pte_t pte)
1035{
1036	pte = set_pte_bit(pte, __pgprot(_PAGE_YOUNG));
1037	if (pte_val(pte) & _PAGE_READ)
1038		pte = clear_pte_bit(pte, __pgprot(_PAGE_INVALID));
1039	return pte;
1040}
1041
1042static inline pte_t pte_mkspecial(pte_t pte)
1043{
1044	return set_pte_bit(pte, __pgprot(_PAGE_SPECIAL));
1045}
1046
1047#ifdef CONFIG_HUGETLB_PAGE
1048static inline pte_t pte_mkhuge(pte_t pte)
1049{
1050	return set_pte_bit(pte, __pgprot(_PAGE_LARGE));
1051}
1052#endif
1053
1054#define IPTE_GLOBAL	0
1055#define	IPTE_LOCAL	1
1056
1057#define IPTE_NODAT	0x400
1058#define IPTE_GUEST_ASCE	0x800
1059
1060static __always_inline void __ptep_rdp(unsigned long addr, pte_t *ptep,
1061				       unsigned long opt, unsigned long asce,
1062				       int local)
1063{
1064	unsigned long pto;
1065
1066	pto = __pa(ptep) & ~(PTRS_PER_PTE * sizeof(pte_t) - 1);
1067	asm volatile(".insn rrf,0xb98b0000,%[r1],%[r2],%[asce],%[m4]"
1068		     : "+m" (*ptep)
1069		     : [r1] "a" (pto), [r2] "a" ((addr & PAGE_MASK) | opt),
1070		       [asce] "a" (asce), [m4] "i" (local));
1071}
1072
1073static __always_inline void __ptep_ipte(unsigned long address, pte_t *ptep,
1074					unsigned long opt, unsigned long asce,
1075					int local)
1076{
1077	unsigned long pto = __pa(ptep);
1078
1079	if (__builtin_constant_p(opt) && opt == 0) {
1080		/* Invalidation + TLB flush for the pte */
1081		asm volatile(
1082			"	ipte	%[r1],%[r2],0,%[m4]"
1083			: "+m" (*ptep) : [r1] "a" (pto), [r2] "a" (address),
1084			  [m4] "i" (local));
1085		return;
1086	}
1087
1088	/* Invalidate ptes with options + TLB flush of the ptes */
1089	opt = opt | (asce & _ASCE_ORIGIN);
1090	asm volatile(
1091		"	ipte	%[r1],%[r2],%[r3],%[m4]"
1092		: [r2] "+a" (address), [r3] "+a" (opt)
1093		: [r1] "a" (pto), [m4] "i" (local) : "memory");
1094}
1095
1096static __always_inline void __ptep_ipte_range(unsigned long address, int nr,
1097					      pte_t *ptep, int local)
1098{
1099	unsigned long pto = __pa(ptep);
1100
1101	/* Invalidate a range of ptes + TLB flush of the ptes */
1102	do {
1103		asm volatile(
1104			"	ipte %[r1],%[r2],%[r3],%[m4]"
1105			: [r2] "+a" (address), [r3] "+a" (nr)
1106			: [r1] "a" (pto), [m4] "i" (local) : "memory");
1107	} while (nr != 255);
1108}
1109
1110/*
1111 * This is hard to understand. ptep_get_and_clear and ptep_clear_flush
1112 * both clear the TLB for the unmapped pte. The reason is that
1113 * ptep_get_and_clear is used in common code (e.g. change_pte_range)
1114 * to modify an active pte. The sequence is
1115 *   1) ptep_get_and_clear
1116 *   2) set_pte_at
1117 *   3) flush_tlb_range
1118 * On s390 the tlb needs to get flushed with the modification of the pte
1119 * if the pte is active. The only way how this can be implemented is to
1120 * have ptep_get_and_clear do the tlb flush. In exchange flush_tlb_range
1121 * is a nop.
1122 */
1123pte_t ptep_xchg_direct(struct mm_struct *, unsigned long, pte_t *, pte_t);
1124pte_t ptep_xchg_lazy(struct mm_struct *, unsigned long, pte_t *, pte_t);
1125
1126#define __HAVE_ARCH_PTEP_TEST_AND_CLEAR_YOUNG
1127static inline int ptep_test_and_clear_young(struct vm_area_struct *vma,
1128					    unsigned long addr, pte_t *ptep)
1129{
1130	pte_t pte = *ptep;
1131
1132	pte = ptep_xchg_direct(vma->vm_mm, addr, ptep, pte_mkold(pte));
1133	return pte_young(pte);
1134}
1135
1136#define __HAVE_ARCH_PTEP_CLEAR_YOUNG_FLUSH
1137static inline int ptep_clear_flush_young(struct vm_area_struct *vma,
1138					 unsigned long address, pte_t *ptep)
1139{
1140	return ptep_test_and_clear_young(vma, address, ptep);
1141}
1142
1143#define __HAVE_ARCH_PTEP_GET_AND_CLEAR
1144static inline pte_t ptep_get_and_clear(struct mm_struct *mm,
1145				       unsigned long addr, pte_t *ptep)
1146{
1147	pte_t res;
1148
1149	res = ptep_xchg_lazy(mm, addr, ptep, __pte(_PAGE_INVALID));
1150	/* At this point the reference through the mapping is still present */
1151	if (mm_is_protected(mm) && pte_present(res))
1152		uv_convert_owned_from_secure(pte_val(res) & PAGE_MASK);
1153	return res;
1154}
1155
1156#define __HAVE_ARCH_PTEP_MODIFY_PROT_TRANSACTION
1157pte_t ptep_modify_prot_start(struct vm_area_struct *, unsigned long, pte_t *);
1158void ptep_modify_prot_commit(struct vm_area_struct *, unsigned long,
1159			     pte_t *, pte_t, pte_t);
1160
1161#define __HAVE_ARCH_PTEP_CLEAR_FLUSH
1162static inline pte_t ptep_clear_flush(struct vm_area_struct *vma,
1163				     unsigned long addr, pte_t *ptep)
1164{
1165	pte_t res;
1166
1167	res = ptep_xchg_direct(vma->vm_mm, addr, ptep, __pte(_PAGE_INVALID));
1168	/* At this point the reference through the mapping is still present */
1169	if (mm_is_protected(vma->vm_mm) && pte_present(res))
1170		uv_convert_owned_from_secure(pte_val(res) & PAGE_MASK);
1171	return res;
1172}
1173
1174/*
1175 * The batched pte unmap code uses ptep_get_and_clear_full to clear the
1176 * ptes. Here an optimization is possible. tlb_gather_mmu flushes all
1177 * tlbs of an mm if it can guarantee that the ptes of the mm_struct
1178 * cannot be accessed while the batched unmap is running. In this case
1179 * full==1 and a simple pte_clear is enough. See tlb.h.
1180 */
1181#define __HAVE_ARCH_PTEP_GET_AND_CLEAR_FULL
1182static inline pte_t ptep_get_and_clear_full(struct mm_struct *mm,
1183					    unsigned long addr,
1184					    pte_t *ptep, int full)
1185{
1186	pte_t res;
1187
1188	if (full) {
1189		res = *ptep;
1190		set_pte(ptep, __pte(_PAGE_INVALID));
1191	} else {
1192		res = ptep_xchg_lazy(mm, addr, ptep, __pte(_PAGE_INVALID));
1193	}
1194	/* Nothing to do */
1195	if (!mm_is_protected(mm) || !pte_present(res))
1196		return res;
1197	/*
1198	 * At this point the reference through the mapping is still present.
1199	 * The notifier should have destroyed all protected vCPUs at this
1200	 * point, so the destroy should be successful.
1201	 */
1202	if (full && !uv_destroy_owned_page(pte_val(res) & PAGE_MASK))
1203		return res;
1204	/*
1205	 * If something went wrong and the page could not be destroyed, or
1206	 * if this is not a mm teardown, the slower export is used as
1207	 * fallback instead.
1208	 */
1209	uv_convert_owned_from_secure(pte_val(res) & PAGE_MASK);
1210	return res;
1211}
1212
1213#define __HAVE_ARCH_PTEP_SET_WRPROTECT
1214static inline void ptep_set_wrprotect(struct mm_struct *mm,
1215				      unsigned long addr, pte_t *ptep)
1216{
1217	pte_t pte = *ptep;
1218
1219	if (pte_write(pte))
1220		ptep_xchg_lazy(mm, addr, ptep, pte_wrprotect(pte));
1221}
1222
1223/*
1224 * Check if PTEs only differ in _PAGE_PROTECT HW bit, but also allow SW PTE
1225 * bits in the comparison. Those might change e.g. because of dirty and young
1226 * tracking.
1227 */
1228static inline int pte_allow_rdp(pte_t old, pte_t new)
1229{
1230	/*
1231	 * Only allow changes from RO to RW
1232	 */
1233	if (!(pte_val(old) & _PAGE_PROTECT) || pte_val(new) & _PAGE_PROTECT)
1234		return 0;
1235
1236	return (pte_val(old) & _PAGE_RDP_MASK) == (pte_val(new) & _PAGE_RDP_MASK);
1237}
1238
1239static inline void flush_tlb_fix_spurious_fault(struct vm_area_struct *vma,
1240						unsigned long address,
1241						pte_t *ptep)
1242{
1243	/*
1244	 * RDP might not have propagated the PTE protection reset to all CPUs,
1245	 * so there could be spurious TLB protection faults.
1246	 * NOTE: This will also be called when a racing pagetable update on
1247	 * another thread already installed the correct PTE. Both cases cannot
1248	 * really be distinguished.
1249	 * Therefore, only do the local TLB flush when RDP can be used, and the
1250	 * PTE does not have _PAGE_PROTECT set, to avoid unnecessary overhead.
1251	 * A local RDP can be used to do the flush.
1252	 */
1253	if (MACHINE_HAS_RDP && !(pte_val(*ptep) & _PAGE_PROTECT))
1254		__ptep_rdp(address, ptep, 0, 0, 1);
1255}
1256#define flush_tlb_fix_spurious_fault flush_tlb_fix_spurious_fault
1257
1258void ptep_reset_dat_prot(struct mm_struct *mm, unsigned long addr, pte_t *ptep,
1259			 pte_t new);
1260
1261#define __HAVE_ARCH_PTEP_SET_ACCESS_FLAGS
1262static inline int ptep_set_access_flags(struct vm_area_struct *vma,
1263					unsigned long addr, pte_t *ptep,
1264					pte_t entry, int dirty)
1265{
1266	if (pte_same(*ptep, entry))
1267		return 0;
1268	if (MACHINE_HAS_RDP && !mm_has_pgste(vma->vm_mm) && pte_allow_rdp(*ptep, entry))
1269		ptep_reset_dat_prot(vma->vm_mm, addr, ptep, entry);
1270	else
1271		ptep_xchg_direct(vma->vm_mm, addr, ptep, entry);
1272	return 1;
1273}
1274
1275/*
1276 * Additional functions to handle KVM guest page tables
1277 */
1278void ptep_set_pte_at(struct mm_struct *mm, unsigned long addr,
1279		     pte_t *ptep, pte_t entry);
1280void ptep_set_notify(struct mm_struct *mm, unsigned long addr, pte_t *ptep);
1281void ptep_notify(struct mm_struct *mm, unsigned long addr,
1282		 pte_t *ptep, unsigned long bits);
1283int ptep_force_prot(struct mm_struct *mm, unsigned long gaddr,
1284		    pte_t *ptep, int prot, unsigned long bit);
1285void ptep_zap_unused(struct mm_struct *mm, unsigned long addr,
1286		     pte_t *ptep , int reset);
1287void ptep_zap_key(struct mm_struct *mm, unsigned long addr, pte_t *ptep);
1288int ptep_shadow_pte(struct mm_struct *mm, unsigned long saddr,
1289		    pte_t *sptep, pte_t *tptep, pte_t pte);
1290void ptep_unshadow_pte(struct mm_struct *mm, unsigned long saddr, pte_t *ptep);
1291
1292bool ptep_test_and_clear_uc(struct mm_struct *mm, unsigned long address,
1293			    pte_t *ptep);
1294int set_guest_storage_key(struct mm_struct *mm, unsigned long addr,
1295			  unsigned char key, bool nq);
1296int cond_set_guest_storage_key(struct mm_struct *mm, unsigned long addr,
1297			       unsigned char key, unsigned char *oldkey,
1298			       bool nq, bool mr, bool mc);
1299int reset_guest_reference_bit(struct mm_struct *mm, unsigned long addr);
1300int get_guest_storage_key(struct mm_struct *mm, unsigned long addr,
1301			  unsigned char *key);
1302
1303int set_pgste_bits(struct mm_struct *mm, unsigned long addr,
1304				unsigned long bits, unsigned long value);
1305int get_pgste(struct mm_struct *mm, unsigned long hva, unsigned long *pgstep);
1306int pgste_perform_essa(struct mm_struct *mm, unsigned long hva, int orc,
1307			unsigned long *oldpte, unsigned long *oldpgste);
1308void gmap_pmdp_csp(struct mm_struct *mm, unsigned long vmaddr);
1309void gmap_pmdp_invalidate(struct mm_struct *mm, unsigned long vmaddr);
1310void gmap_pmdp_idte_local(struct mm_struct *mm, unsigned long vmaddr);
1311void gmap_pmdp_idte_global(struct mm_struct *mm, unsigned long vmaddr);
1312
1313#define pgprot_writecombine	pgprot_writecombine
1314pgprot_t pgprot_writecombine(pgprot_t prot);
1315
1316#define pgprot_writethrough	pgprot_writethrough
1317pgprot_t pgprot_writethrough(pgprot_t prot);
1318
1319#define PFN_PTE_SHIFT		PAGE_SHIFT
1320
1321/*
1322 * Set multiple PTEs to consecutive pages with a single call.  All PTEs
1323 * are within the same folio, PMD and VMA.
1324 */
1325static inline void set_ptes(struct mm_struct *mm, unsigned long addr,
1326			      pte_t *ptep, pte_t entry, unsigned int nr)
1327{
1328	if (pte_present(entry))
1329		entry = clear_pte_bit(entry, __pgprot(_PAGE_UNUSED));
1330	if (mm_has_pgste(mm)) {
1331		for (;;) {
1332			ptep_set_pte_at(mm, addr, ptep, entry);
1333			if (--nr == 0)
1334				break;
1335			ptep++;
1336			entry = __pte(pte_val(entry) + PAGE_SIZE);
1337			addr += PAGE_SIZE;
1338		}
1339	} else {
1340		for (;;) {
1341			set_pte(ptep, entry);
1342			if (--nr == 0)
1343				break;
1344			ptep++;
1345			entry = __pte(pte_val(entry) + PAGE_SIZE);
1346		}
1347	}
1348}
1349#define set_ptes set_ptes
1350
1351/*
1352 * Conversion functions: convert a page and protection to a page entry,
1353 * and a page entry and page directory to the page they refer to.
1354 */
1355static inline pte_t mk_pte_phys(unsigned long physpage, pgprot_t pgprot)
1356{
1357	pte_t __pte;
1358
1359	__pte = __pte(physpage | pgprot_val(pgprot));
1360	if (!MACHINE_HAS_NX)
1361		__pte = clear_pte_bit(__pte, __pgprot(_PAGE_NOEXEC));
1362	return pte_mkyoung(__pte);
1363}
1364
1365static inline pte_t mk_pte(struct page *page, pgprot_t pgprot)
1366{
1367	unsigned long physpage = page_to_phys(page);
1368	pte_t __pte = mk_pte_phys(physpage, pgprot);
1369
1370	if (pte_write(__pte) && PageDirty(page))
1371		__pte = pte_mkdirty(__pte);
1372	return __pte;
1373}
1374
1375#define pgd_index(address) (((address) >> PGDIR_SHIFT) & (PTRS_PER_PGD-1))
1376#define p4d_index(address) (((address) >> P4D_SHIFT) & (PTRS_PER_P4D-1))
1377#define pud_index(address) (((address) >> PUD_SHIFT) & (PTRS_PER_PUD-1))
1378#define pmd_index(address) (((address) >> PMD_SHIFT) & (PTRS_PER_PMD-1))
1379
1380#define p4d_deref(pud) ((unsigned long)__va(p4d_val(pud) & _REGION_ENTRY_ORIGIN))
1381#define pgd_deref(pgd) ((unsigned long)__va(pgd_val(pgd) & _REGION_ENTRY_ORIGIN))
1382
1383static inline unsigned long pmd_deref(pmd_t pmd)
1384{
1385	unsigned long origin_mask;
1386
1387	origin_mask = _SEGMENT_ENTRY_ORIGIN;
1388	if (pmd_leaf(pmd))
1389		origin_mask = _SEGMENT_ENTRY_ORIGIN_LARGE;
1390	return (unsigned long)__va(pmd_val(pmd) & origin_mask);
1391}
1392
1393static inline unsigned long pmd_pfn(pmd_t pmd)
1394{
1395	return __pa(pmd_deref(pmd)) >> PAGE_SHIFT;
1396}
1397
1398static inline unsigned long pud_deref(pud_t pud)
1399{
1400	unsigned long origin_mask;
1401
1402	origin_mask = _REGION_ENTRY_ORIGIN;
1403	if (pud_leaf(pud))
1404		origin_mask = _REGION3_ENTRY_ORIGIN_LARGE;
1405	return (unsigned long)__va(pud_val(pud) & origin_mask);
1406}
1407
1408static inline unsigned long pud_pfn(pud_t pud)
1409{
1410	return __pa(pud_deref(pud)) >> PAGE_SHIFT;
1411}
1412
1413/*
1414 * The pgd_offset function *always* adds the index for the top-level
1415 * region/segment table. This is done to get a sequence like the
1416 * following to work:
1417 *	pgdp = pgd_offset(current->mm, addr);
1418 *	pgd = READ_ONCE(*pgdp);
1419 *	p4dp = p4d_offset(&pgd, addr);
1420 *	...
1421 * The subsequent p4d_offset, pud_offset and pmd_offset functions
1422 * only add an index if they dereferenced the pointer.
1423 */
1424static inline pgd_t *pgd_offset_raw(pgd_t *pgd, unsigned long address)
1425{
1426	unsigned long rste;
1427	unsigned int shift;
1428
1429	/* Get the first entry of the top level table */
1430	rste = pgd_val(*pgd);
1431	/* Pick up the shift from the table type of the first entry */
1432	shift = ((rste & _REGION_ENTRY_TYPE_MASK) >> 2) * 11 + 20;
1433	return pgd + ((address >> shift) & (PTRS_PER_PGD - 1));
1434}
1435
1436#define pgd_offset(mm, address) pgd_offset_raw(READ_ONCE((mm)->pgd), address)
1437
1438static inline p4d_t *p4d_offset_lockless(pgd_t *pgdp, pgd_t pgd, unsigned long address)
1439{
1440	if ((pgd_val(pgd) & _REGION_ENTRY_TYPE_MASK) >= _REGION_ENTRY_TYPE_R1)
1441		return (p4d_t *) pgd_deref(pgd) + p4d_index(address);
1442	return (p4d_t *) pgdp;
1443}
1444#define p4d_offset_lockless p4d_offset_lockless
1445
1446static inline p4d_t *p4d_offset(pgd_t *pgdp, unsigned long address)
1447{
1448	return p4d_offset_lockless(pgdp, *pgdp, address);
1449}
1450
1451static inline pud_t *pud_offset_lockless(p4d_t *p4dp, p4d_t p4d, unsigned long address)
1452{
1453	if ((p4d_val(p4d) & _REGION_ENTRY_TYPE_MASK) >= _REGION_ENTRY_TYPE_R2)
1454		return (pud_t *) p4d_deref(p4d) + pud_index(address);
1455	return (pud_t *) p4dp;
1456}
1457#define pud_offset_lockless pud_offset_lockless
1458
1459static inline pud_t *pud_offset(p4d_t *p4dp, unsigned long address)
1460{
1461	return pud_offset_lockless(p4dp, *p4dp, address);
1462}
1463#define pud_offset pud_offset
1464
1465static inline pmd_t *pmd_offset_lockless(pud_t *pudp, pud_t pud, unsigned long address)
1466{
1467	if ((pud_val(pud) & _REGION_ENTRY_TYPE_MASK) >= _REGION_ENTRY_TYPE_R3)
1468		return (pmd_t *) pud_deref(pud) + pmd_index(address);
1469	return (pmd_t *) pudp;
1470}
1471#define pmd_offset_lockless pmd_offset_lockless
1472
1473static inline pmd_t *pmd_offset(pud_t *pudp, unsigned long address)
1474{
1475	return pmd_offset_lockless(pudp, *pudp, address);
1476}
1477#define pmd_offset pmd_offset
1478
1479static inline unsigned long pmd_page_vaddr(pmd_t pmd)
1480{
1481	return (unsigned long) pmd_deref(pmd);
1482}
1483
1484static inline bool gup_fast_permitted(unsigned long start, unsigned long end)
1485{
1486	return end <= current->mm->context.asce_limit;
1487}
1488#define gup_fast_permitted gup_fast_permitted
1489
1490#define pfn_pte(pfn, pgprot)	mk_pte_phys(((pfn) << PAGE_SHIFT), (pgprot))
1491#define pte_pfn(x) (pte_val(x) >> PAGE_SHIFT)
1492#define pte_page(x) pfn_to_page(pte_pfn(x))
1493
1494#define pmd_page(pmd) pfn_to_page(pmd_pfn(pmd))
1495#define pud_page(pud) pfn_to_page(pud_pfn(pud))
1496#define p4d_page(p4d) pfn_to_page(p4d_pfn(p4d))
1497#define pgd_page(pgd) pfn_to_page(pgd_pfn(pgd))
1498
1499static inline pmd_t pmd_wrprotect(pmd_t pmd)
1500{
1501	pmd = clear_pmd_bit(pmd, __pgprot(_SEGMENT_ENTRY_WRITE));
1502	return set_pmd_bit(pmd, __pgprot(_SEGMENT_ENTRY_PROTECT));
1503}
1504
1505static inline pmd_t pmd_mkwrite_novma(pmd_t pmd)
1506{
1507	pmd = set_pmd_bit(pmd, __pgprot(_SEGMENT_ENTRY_WRITE));
1508	if (pmd_val(pmd) & _SEGMENT_ENTRY_DIRTY)
1509		pmd = clear_pmd_bit(pmd, __pgprot(_SEGMENT_ENTRY_PROTECT));
1510	return pmd;
1511}
1512
1513static inline pmd_t pmd_mkclean(pmd_t pmd)
1514{
1515	pmd = clear_pmd_bit(pmd, __pgprot(_SEGMENT_ENTRY_DIRTY));
1516	return set_pmd_bit(pmd, __pgprot(_SEGMENT_ENTRY_PROTECT));
1517}
1518
1519static inline pmd_t pmd_mkdirty(pmd_t pmd)
1520{
1521	pmd = set_pmd_bit(pmd, __pgprot(_SEGMENT_ENTRY_DIRTY | _SEGMENT_ENTRY_SOFT_DIRTY));
1522	if (pmd_val(pmd) & _SEGMENT_ENTRY_WRITE)
1523		pmd = clear_pmd_bit(pmd, __pgprot(_SEGMENT_ENTRY_PROTECT));
1524	return pmd;
1525}
1526
1527static inline pud_t pud_wrprotect(pud_t pud)
1528{
1529	pud = clear_pud_bit(pud, __pgprot(_REGION3_ENTRY_WRITE));
1530	return set_pud_bit(pud, __pgprot(_REGION_ENTRY_PROTECT));
1531}
1532
1533static inline pud_t pud_mkwrite(pud_t pud)
1534{
1535	pud = set_pud_bit(pud, __pgprot(_REGION3_ENTRY_WRITE));
1536	if (pud_val(pud) & _REGION3_ENTRY_DIRTY)
1537		pud = clear_pud_bit(pud, __pgprot(_REGION_ENTRY_PROTECT));
1538	return pud;
1539}
1540
1541static inline pud_t pud_mkclean(pud_t pud)
1542{
1543	pud = clear_pud_bit(pud, __pgprot(_REGION3_ENTRY_DIRTY));
1544	return set_pud_bit(pud, __pgprot(_REGION_ENTRY_PROTECT));
1545}
1546
1547static inline pud_t pud_mkdirty(pud_t pud)
1548{
1549	pud = set_pud_bit(pud, __pgprot(_REGION3_ENTRY_DIRTY | _REGION3_ENTRY_SOFT_DIRTY));
1550	if (pud_val(pud) & _REGION3_ENTRY_WRITE)
1551		pud = clear_pud_bit(pud, __pgprot(_REGION_ENTRY_PROTECT));
1552	return pud;
1553}
1554
1555#if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLB_PAGE)
1556static inline unsigned long massage_pgprot_pmd(pgprot_t pgprot)
1557{
1558	/*
1559	 * pgprot is PAGE_NONE, PAGE_RO, PAGE_RX, PAGE_RW or PAGE_RWX
1560	 * (see __Pxxx / __Sxxx). Convert to segment table entry format.
1561	 */
1562	if (pgprot_val(pgprot) == pgprot_val(PAGE_NONE))
1563		return pgprot_val(SEGMENT_NONE);
1564	if (pgprot_val(pgprot) == pgprot_val(PAGE_RO))
1565		return pgprot_val(SEGMENT_RO);
1566	if (pgprot_val(pgprot) == pgprot_val(PAGE_RX))
1567		return pgprot_val(SEGMENT_RX);
1568	if (pgprot_val(pgprot) == pgprot_val(PAGE_RW))
1569		return pgprot_val(SEGMENT_RW);
1570	return pgprot_val(SEGMENT_RWX);
1571}
1572
1573static inline pmd_t pmd_mkyoung(pmd_t pmd)
1574{
1575	pmd = set_pmd_bit(pmd, __pgprot(_SEGMENT_ENTRY_YOUNG));
1576	if (pmd_val(pmd) & _SEGMENT_ENTRY_READ)
1577		pmd = clear_pmd_bit(pmd, __pgprot(_SEGMENT_ENTRY_INVALID));
1578	return pmd;
1579}
1580
1581static inline pmd_t pmd_mkold(pmd_t pmd)
1582{
1583	pmd = clear_pmd_bit(pmd, __pgprot(_SEGMENT_ENTRY_YOUNG));
1584	return set_pmd_bit(pmd, __pgprot(_SEGMENT_ENTRY_INVALID));
1585}
1586
1587static inline pmd_t pmd_modify(pmd_t pmd, pgprot_t newprot)
1588{
1589	unsigned long mask;
1590
1591	mask  = _SEGMENT_ENTRY_ORIGIN_LARGE;
1592	mask |= _SEGMENT_ENTRY_DIRTY;
1593	mask |= _SEGMENT_ENTRY_YOUNG;
1594	mask |=	_SEGMENT_ENTRY_LARGE;
1595	mask |= _SEGMENT_ENTRY_SOFT_DIRTY;
1596	pmd = __pmd(pmd_val(pmd) & mask);
1597	pmd = set_pmd_bit(pmd, __pgprot(massage_pgprot_pmd(newprot)));
1598	if (!(pmd_val(pmd) & _SEGMENT_ENTRY_DIRTY))
1599		pmd = set_pmd_bit(pmd, __pgprot(_SEGMENT_ENTRY_PROTECT));
1600	if (!(pmd_val(pmd) & _SEGMENT_ENTRY_YOUNG))
1601		pmd = set_pmd_bit(pmd, __pgprot(_SEGMENT_ENTRY_INVALID));
1602	return pmd;
1603}
1604
1605static inline pmd_t mk_pmd_phys(unsigned long physpage, pgprot_t pgprot)
1606{
1607	return __pmd(physpage + massage_pgprot_pmd(pgprot));
1608}
1609
1610#endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLB_PAGE */
1611
1612static inline void __pmdp_csp(pmd_t *pmdp)
1613{
1614	csp((unsigned int *)pmdp + 1, pmd_val(*pmdp),
1615	    pmd_val(*pmdp) | _SEGMENT_ENTRY_INVALID);
1616}
1617
1618#define IDTE_GLOBAL	0
1619#define IDTE_LOCAL	1
1620
1621#define IDTE_PTOA	0x0800
1622#define IDTE_NODAT	0x1000
1623#define IDTE_GUEST_ASCE	0x2000
1624
1625static __always_inline void __pmdp_idte(unsigned long addr, pmd_t *pmdp,
1626					unsigned long opt, unsigned long asce,
1627					int local)
1628{
1629	unsigned long sto;
1630
1631	sto = __pa(pmdp) - pmd_index(addr) * sizeof(pmd_t);
1632	if (__builtin_constant_p(opt) && opt == 0) {
1633		/* flush without guest asce */
1634		asm volatile(
1635			"	idte	%[r1],0,%[r2],%[m4]"
1636			: "+m" (*pmdp)
1637			: [r1] "a" (sto), [r2] "a" ((addr & HPAGE_MASK)),
1638			  [m4] "i" (local)
1639			: "cc" );
1640	} else {
1641		/* flush with guest asce */
1642		asm volatile(
1643			"	idte	%[r1],%[r3],%[r2],%[m4]"
1644			: "+m" (*pmdp)
1645			: [r1] "a" (sto), [r2] "a" ((addr & HPAGE_MASK) | opt),
1646			  [r3] "a" (asce), [m4] "i" (local)
1647			: "cc" );
1648	}
1649}
1650
1651static __always_inline void __pudp_idte(unsigned long addr, pud_t *pudp,
1652					unsigned long opt, unsigned long asce,
1653					int local)
1654{
1655	unsigned long r3o;
1656
1657	r3o = __pa(pudp) - pud_index(addr) * sizeof(pud_t);
1658	r3o |= _ASCE_TYPE_REGION3;
1659	if (__builtin_constant_p(opt) && opt == 0) {
1660		/* flush without guest asce */
1661		asm volatile(
1662			"	idte	%[r1],0,%[r2],%[m4]"
1663			: "+m" (*pudp)
1664			: [r1] "a" (r3o), [r2] "a" ((addr & PUD_MASK)),
1665			  [m4] "i" (local)
1666			: "cc");
1667	} else {
1668		/* flush with guest asce */
1669		asm volatile(
1670			"	idte	%[r1],%[r3],%[r2],%[m4]"
1671			: "+m" (*pudp)
1672			: [r1] "a" (r3o), [r2] "a" ((addr & PUD_MASK) | opt),
1673			  [r3] "a" (asce), [m4] "i" (local)
1674			: "cc" );
1675	}
1676}
1677
1678pmd_t pmdp_xchg_direct(struct mm_struct *, unsigned long, pmd_t *, pmd_t);
1679pmd_t pmdp_xchg_lazy(struct mm_struct *, unsigned long, pmd_t *, pmd_t);
1680pud_t pudp_xchg_direct(struct mm_struct *, unsigned long, pud_t *, pud_t);
1681
1682#ifdef CONFIG_TRANSPARENT_HUGEPAGE
1683
1684#define __HAVE_ARCH_PGTABLE_DEPOSIT
1685void pgtable_trans_huge_deposit(struct mm_struct *mm, pmd_t *pmdp,
1686				pgtable_t pgtable);
1687
1688#define __HAVE_ARCH_PGTABLE_WITHDRAW
1689pgtable_t pgtable_trans_huge_withdraw(struct mm_struct *mm, pmd_t *pmdp);
1690
1691#define  __HAVE_ARCH_PMDP_SET_ACCESS_FLAGS
1692static inline int pmdp_set_access_flags(struct vm_area_struct *vma,
1693					unsigned long addr, pmd_t *pmdp,
1694					pmd_t entry, int dirty)
1695{
1696	VM_BUG_ON(addr & ~HPAGE_MASK);
1697
1698	entry = pmd_mkyoung(entry);
1699	if (dirty)
1700		entry = pmd_mkdirty(entry);
1701	if (pmd_val(*pmdp) == pmd_val(entry))
1702		return 0;
1703	pmdp_xchg_direct(vma->vm_mm, addr, pmdp, entry);
1704	return 1;
1705}
1706
1707#define __HAVE_ARCH_PMDP_TEST_AND_CLEAR_YOUNG
1708static inline int pmdp_test_and_clear_young(struct vm_area_struct *vma,
1709					    unsigned long addr, pmd_t *pmdp)
1710{
1711	pmd_t pmd = *pmdp;
1712
1713	pmd = pmdp_xchg_direct(vma->vm_mm, addr, pmdp, pmd_mkold(pmd));
1714	return pmd_young(pmd);
1715}
1716
1717#define __HAVE_ARCH_PMDP_CLEAR_YOUNG_FLUSH
1718static inline int pmdp_clear_flush_young(struct vm_area_struct *vma,
1719					 unsigned long addr, pmd_t *pmdp)
1720{
1721	VM_BUG_ON(addr & ~HPAGE_MASK);
1722	return pmdp_test_and_clear_young(vma, addr, pmdp);
1723}
1724
1725static inline void set_pmd_at(struct mm_struct *mm, unsigned long addr,
1726			      pmd_t *pmdp, pmd_t entry)
1727{
1728	if (!MACHINE_HAS_NX)
1729		entry = clear_pmd_bit(entry, __pgprot(_SEGMENT_ENTRY_NOEXEC));
1730	set_pmd(pmdp, entry);
1731}
1732
1733static inline pmd_t pmd_mkhuge(pmd_t pmd)
1734{
1735	pmd = set_pmd_bit(pmd, __pgprot(_SEGMENT_ENTRY_LARGE));
1736	pmd = set_pmd_bit(pmd, __pgprot(_SEGMENT_ENTRY_YOUNG));
1737	return set_pmd_bit(pmd, __pgprot(_SEGMENT_ENTRY_PROTECT));
1738}
1739
1740#define __HAVE_ARCH_PMDP_HUGE_GET_AND_CLEAR
1741static inline pmd_t pmdp_huge_get_and_clear(struct mm_struct *mm,
1742					    unsigned long addr, pmd_t *pmdp)
1743{
1744	return pmdp_xchg_direct(mm, addr, pmdp, __pmd(_SEGMENT_ENTRY_EMPTY));
1745}
1746
1747#define __HAVE_ARCH_PMDP_HUGE_GET_AND_CLEAR_FULL
1748static inline pmd_t pmdp_huge_get_and_clear_full(struct vm_area_struct *vma,
1749						 unsigned long addr,
1750						 pmd_t *pmdp, int full)
1751{
1752	if (full) {
1753		pmd_t pmd = *pmdp;
1754		set_pmd(pmdp, __pmd(_SEGMENT_ENTRY_EMPTY));
1755		return pmd;
1756	}
1757	return pmdp_xchg_lazy(vma->vm_mm, addr, pmdp, __pmd(_SEGMENT_ENTRY_EMPTY));
1758}
1759
1760#define __HAVE_ARCH_PMDP_HUGE_CLEAR_FLUSH
1761static inline pmd_t pmdp_huge_clear_flush(struct vm_area_struct *vma,
1762					  unsigned long addr, pmd_t *pmdp)
1763{
1764	return pmdp_huge_get_and_clear(vma->vm_mm, addr, pmdp);
1765}
1766
1767#define __HAVE_ARCH_PMDP_INVALIDATE
1768static inline pmd_t pmdp_invalidate(struct vm_area_struct *vma,
1769				   unsigned long addr, pmd_t *pmdp)
1770{
1771	pmd_t pmd = __pmd(pmd_val(*pmdp) | _SEGMENT_ENTRY_INVALID);
1772
1773	return pmdp_xchg_direct(vma->vm_mm, addr, pmdp, pmd);
1774}
1775
1776#define __HAVE_ARCH_PMDP_SET_WRPROTECT
1777static inline void pmdp_set_wrprotect(struct mm_struct *mm,
1778				      unsigned long addr, pmd_t *pmdp)
1779{
1780	pmd_t pmd = *pmdp;
1781
1782	if (pmd_write(pmd))
1783		pmd = pmdp_xchg_lazy(mm, addr, pmdp, pmd_wrprotect(pmd));
1784}
1785
1786static inline pmd_t pmdp_collapse_flush(struct vm_area_struct *vma,
1787					unsigned long address,
1788					pmd_t *pmdp)
1789{
1790	return pmdp_huge_get_and_clear(vma->vm_mm, address, pmdp);
1791}
1792#define pmdp_collapse_flush pmdp_collapse_flush
1793
1794#define pfn_pmd(pfn, pgprot)	mk_pmd_phys(((pfn) << PAGE_SHIFT), (pgprot))
1795#define mk_pmd(page, pgprot)	pfn_pmd(page_to_pfn(page), (pgprot))
1796
1797static inline int pmd_trans_huge(pmd_t pmd)
1798{
1799	return pmd_val(pmd) & _SEGMENT_ENTRY_LARGE;
1800}
1801
1802#define has_transparent_hugepage has_transparent_hugepage
1803static inline int has_transparent_hugepage(void)
1804{
1805	return MACHINE_HAS_EDAT1 ? 1 : 0;
1806}
1807#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
1808
1809/*
1810 * 64 bit swap entry format:
1811 * A page-table entry has some bits we have to treat in a special way.
1812 * Bits 54 and 63 are used to indicate the page type. Bit 53 marks the pte
1813 * as invalid.
1814 * A swap pte is indicated by bit pattern (pte & 0x201) == 0x200
1815 * |			  offset			|E11XX|type |S0|
1816 * |0000000000111111111122222222223333333333444444444455|55555|55566|66|
1817 * |0123456789012345678901234567890123456789012345678901|23456|78901|23|
1818 *
1819 * Bits 0-51 store the offset.
1820 * Bit 52 (E) is used to remember PG_anon_exclusive.
1821 * Bits 57-61 store the type.
1822 * Bit 62 (S) is used for softdirty tracking.
1823 * Bits 55 and 56 (X) are unused.
1824 */
1825
1826#define __SWP_OFFSET_MASK	((1UL << 52) - 1)
1827#define __SWP_OFFSET_SHIFT	12
1828#define __SWP_TYPE_MASK		((1UL << 5) - 1)
1829#define __SWP_TYPE_SHIFT	2
1830
1831static inline pte_t mk_swap_pte(unsigned long type, unsigned long offset)
1832{
1833	unsigned long pteval;
1834
1835	pteval = _PAGE_INVALID | _PAGE_PROTECT;
1836	pteval |= (offset & __SWP_OFFSET_MASK) << __SWP_OFFSET_SHIFT;
1837	pteval |= (type & __SWP_TYPE_MASK) << __SWP_TYPE_SHIFT;
1838	return __pte(pteval);
1839}
1840
1841static inline unsigned long __swp_type(swp_entry_t entry)
1842{
1843	return (entry.val >> __SWP_TYPE_SHIFT) & __SWP_TYPE_MASK;
1844}
1845
1846static inline unsigned long __swp_offset(swp_entry_t entry)
1847{
1848	return (entry.val >> __SWP_OFFSET_SHIFT) & __SWP_OFFSET_MASK;
1849}
1850
1851static inline swp_entry_t __swp_entry(unsigned long type, unsigned long offset)
1852{
1853	return (swp_entry_t) { pte_val(mk_swap_pte(type, offset)) };
1854}
1855
1856#define __pte_to_swp_entry(pte)	((swp_entry_t) { pte_val(pte) })
1857#define __swp_entry_to_pte(x)	((pte_t) { (x).val })
1858
1859extern int vmem_add_mapping(unsigned long start, unsigned long size);
1860extern void vmem_remove_mapping(unsigned long start, unsigned long size);
1861extern int __vmem_map_4k_page(unsigned long addr, unsigned long phys, pgprot_t prot, bool alloc);
1862extern int vmem_map_4k_page(unsigned long addr, unsigned long phys, pgprot_t prot);
1863extern void vmem_unmap_4k_page(unsigned long addr);
1864extern pte_t *vmem_get_alloc_pte(unsigned long addr, bool alloc);
1865extern int s390_enable_sie(void);
1866extern int s390_enable_skey(void);
1867extern void s390_reset_cmma(struct mm_struct *mm);
1868
1869/* s390 has a private copy of get unmapped area to deal with cache synonyms */
1870#define HAVE_ARCH_UNMAPPED_AREA
1871#define HAVE_ARCH_UNMAPPED_AREA_TOPDOWN
1872
1873#define pmd_pgtable(pmd) \
1874	((pgtable_t)__va(pmd_val(pmd) & -sizeof(pte_t)*PTRS_PER_PTE))
1875
1876#endif /* _S390_PAGE_H */
1877