1// SPDX-License-Identifier: GPL-2.0-or-later
2/*
3 * The file intends to implement the platform dependent EEH operations on pseries.
4 * Actually, the pseries platform is built based on RTAS heavily. That means the
5 * pseries platform dependent EEH operations will be built on RTAS calls. The functions
6 * are derived from arch/powerpc/platforms/pseries/eeh.c and necessary cleanup has
7 * been done.
8 *
9 * Copyright Benjamin Herrenschmidt & Gavin Shan, IBM Corporation 2011.
10 * Copyright IBM Corporation 2001, 2005, 2006
11 * Copyright Dave Engebretsen & Todd Inglett 2001
12 * Copyright Linas Vepstas 2005, 2006
13 */
14
15#include <linux/atomic.h>
16#include <linux/delay.h>
17#include <linux/export.h>
18#include <linux/init.h>
19#include <linux/list.h>
20#include <linux/of.h>
21#include <linux/pci.h>
22#include <linux/proc_fs.h>
23#include <linux/rbtree.h>
24#include <linux/sched.h>
25#include <linux/seq_file.h>
26#include <linux/spinlock.h>
27#include <linux/crash_dump.h>
28
29#include <asm/eeh.h>
30#include <asm/eeh_event.h>
31#include <asm/io.h>
32#include <asm/machdep.h>
33#include <asm/ppc-pci.h>
34#include <asm/rtas.h>
35
36/* RTAS tokens */
37static int ibm_set_eeh_option;
38static int ibm_set_slot_reset;
39static int ibm_read_slot_reset_state;
40static int ibm_read_slot_reset_state2;
41static int ibm_slot_error_detail;
42static int ibm_get_config_addr_info;
43static int ibm_get_config_addr_info2;
44static int ibm_configure_pe;
45
46static void pseries_eeh_init_edev(struct pci_dn *pdn);
47
48static void pseries_pcibios_bus_add_device(struct pci_dev *pdev)
49{
50	struct pci_dn *pdn = pci_get_pdn(pdev);
51
52	if (eeh_has_flag(EEH_FORCE_DISABLED))
53		return;
54
55	dev_dbg(&pdev->dev, "EEH: Setting up device\n");
56#ifdef CONFIG_PCI_IOV
57	if (pdev->is_virtfn) {
58		pdn->device_id  =  pdev->device;
59		pdn->vendor_id  =  pdev->vendor;
60		pdn->class_code =  pdev->class;
61		/*
62		 * Last allow unfreeze return code used for retrieval
63		 * by user space in eeh-sysfs to show the last command
64		 * completion from platform.
65		 */
66		pdn->last_allow_rc =  0;
67	}
68#endif
69	pseries_eeh_init_edev(pdn);
70#ifdef CONFIG_PCI_IOV
71	if (pdev->is_virtfn) {
72		/*
73		 * FIXME: This really should be handled by choosing the right
74		 *        parent PE in pseries_eeh_init_edev().
75		 */
76		struct eeh_pe *physfn_pe = pci_dev_to_eeh_dev(pdev->physfn)->pe;
77		struct eeh_dev *edev = pdn_to_eeh_dev(pdn);
78
79		edev->pe_config_addr =  (pdn->busno << 16) | (pdn->devfn << 8);
80		eeh_pe_tree_remove(edev); /* Remove as it is adding to bus pe */
81		eeh_pe_tree_insert(edev, physfn_pe);   /* Add as VF PE type */
82	}
83#endif
84	eeh_probe_device(pdev);
85}
86
87
88/**
89 * pseries_eeh_get_pe_config_addr - Find the pe_config_addr for a device
90 * @pdn: pci_dn of the input device
91 *
92 * The EEH RTAS calls use a tuple consisting of: (buid_hi, buid_lo,
93 * pe_config_addr) as a handle to a given PE. This function finds the
94 * pe_config_addr based on the device's config addr.
95 *
96 * Keep in mind that the pe_config_addr *might* be numerically identical to the
97 * device's config addr, but the two are conceptually distinct.
98 *
99 * Returns the pe_config_addr, or a negative error code.
100 */
101static int pseries_eeh_get_pe_config_addr(struct pci_dn *pdn)
102{
103	int config_addr = rtas_config_addr(pdn->busno, pdn->devfn, 0);
104	struct pci_controller *phb = pdn->phb;
105	int ret, rets[3];
106
107	if (ibm_get_config_addr_info2 != RTAS_UNKNOWN_SERVICE) {
108		/*
109		 * First of all, use function 1 to determine if this device is
110		 * part of a PE or not. ret[0] being zero indicates it's not.
111		 */
112		ret = rtas_call(ibm_get_config_addr_info2, 4, 2, rets,
113				config_addr, BUID_HI(phb->buid),
114				BUID_LO(phb->buid), 1);
115		if (ret || (rets[0] == 0))
116			return -ENOENT;
117
118		/* Retrieve the associated PE config address with function 0 */
119		ret = rtas_call(ibm_get_config_addr_info2, 4, 2, rets,
120				config_addr, BUID_HI(phb->buid),
121				BUID_LO(phb->buid), 0);
122		if (ret) {
123			pr_warn("%s: Failed to get address for PHB#%x-PE#%x\n",
124				__func__, phb->global_number, config_addr);
125			return -ENXIO;
126		}
127
128		return rets[0];
129	}
130
131	if (ibm_get_config_addr_info != RTAS_UNKNOWN_SERVICE) {
132		ret = rtas_call(ibm_get_config_addr_info, 4, 2, rets,
133				config_addr, BUID_HI(phb->buid),
134				BUID_LO(phb->buid), 0);
135		if (ret) {
136			pr_warn("%s: Failed to get address for PHB#%x-PE#%x\n",
137				__func__, phb->global_number, config_addr);
138			return -ENXIO;
139		}
140
141		return rets[0];
142	}
143
144	/*
145	 * PAPR does describe a process for finding the pe_config_addr that was
146	 * used before the ibm,get-config-addr-info calls were added. However,
147	 * I haven't found *any* systems that don't have that RTAS call
148	 * implemented. If you happen to find one that needs the old DT based
149	 * process, patches are welcome!
150	 */
151	return -ENOENT;
152}
153
154/**
155 * pseries_eeh_phb_reset - Reset the specified PHB
156 * @phb: PCI controller
157 * @config_addr: the associated config address
158 * @option: reset option
159 *
160 * Reset the specified PHB/PE
161 */
162static int pseries_eeh_phb_reset(struct pci_controller *phb, int config_addr, int option)
163{
164	int ret;
165
166	/* Reset PE through RTAS call */
167	ret = rtas_call(ibm_set_slot_reset, 4, 1, NULL,
168			config_addr, BUID_HI(phb->buid),
169			BUID_LO(phb->buid), option);
170
171	/* If fundamental-reset not supported, try hot-reset */
172	if (option == EEH_RESET_FUNDAMENTAL && ret == -8) {
173		option = EEH_RESET_HOT;
174		ret = rtas_call(ibm_set_slot_reset, 4, 1, NULL,
175				config_addr, BUID_HI(phb->buid),
176				BUID_LO(phb->buid), option);
177	}
178
179	/* We need reset hold or settlement delay */
180	if (option == EEH_RESET_FUNDAMENTAL || option == EEH_RESET_HOT)
181		msleep(EEH_PE_RST_HOLD_TIME);
182	else
183		msleep(EEH_PE_RST_SETTLE_TIME);
184
185	return ret;
186}
187
188/**
189 * pseries_eeh_phb_configure_bridge - Configure PCI bridges in the indicated PE
190 * @phb: PCI controller
191 * @config_addr: the associated config address
192 *
193 * The function will be called to reconfigure the bridges included
194 * in the specified PE so that the mulfunctional PE would be recovered
195 * again.
196 */
197static int pseries_eeh_phb_configure_bridge(struct pci_controller *phb, int config_addr)
198{
199	int ret;
200	/* Waiting 0.2s maximum before skipping configuration */
201	int max_wait = 200;
202
203	while (max_wait > 0) {
204		ret = rtas_call(ibm_configure_pe, 3, 1, NULL,
205				config_addr, BUID_HI(phb->buid),
206				BUID_LO(phb->buid));
207
208		if (!ret)
209			return ret;
210		if (ret < 0)
211			break;
212
213		/*
214		 * If RTAS returns a delay value that's above 100ms, cut it
215		 * down to 100ms in case firmware made a mistake.  For more
216		 * on how these delay values work see rtas_busy_delay_time
217		 */
218		if (ret > RTAS_EXTENDED_DELAY_MIN+2 &&
219		    ret <= RTAS_EXTENDED_DELAY_MAX)
220			ret = RTAS_EXTENDED_DELAY_MIN+2;
221
222		max_wait -= rtas_busy_delay_time(ret);
223
224		if (max_wait < 0)
225			break;
226
227		rtas_busy_delay(ret);
228	}
229
230	pr_warn("%s: Unable to configure bridge PHB#%x-PE#%x (%d)\n",
231		__func__, phb->global_number, config_addr, ret);
232	/* PAPR defines -3 as "Parameter Error" for this function: */
233	if (ret == -3)
234		return -EINVAL;
235	else
236		return -EIO;
237}
238
239/*
240 * Buffer for reporting slot-error-detail rtas calls. Its here
241 * in BSS, and not dynamically alloced, so that it ends up in
242 * RMO where RTAS can access it.
243 */
244static unsigned char slot_errbuf[RTAS_ERROR_LOG_MAX];
245static DEFINE_SPINLOCK(slot_errbuf_lock);
246static int eeh_error_buf_size;
247
248static int pseries_eeh_cap_start(struct pci_dn *pdn)
249{
250	u32 status;
251
252	if (!pdn)
253		return 0;
254
255	rtas_pci_dn_read_config(pdn, PCI_STATUS, 2, &status);
256	if (!(status & PCI_STATUS_CAP_LIST))
257		return 0;
258
259	return PCI_CAPABILITY_LIST;
260}
261
262
263static int pseries_eeh_find_cap(struct pci_dn *pdn, int cap)
264{
265	int pos = pseries_eeh_cap_start(pdn);
266	int cnt = 48;	/* Maximal number of capabilities */
267	u32 id;
268
269	if (!pos)
270		return 0;
271
272        while (cnt--) {
273		rtas_pci_dn_read_config(pdn, pos, 1, &pos);
274		if (pos < 0x40)
275			break;
276		pos &= ~3;
277		rtas_pci_dn_read_config(pdn, pos + PCI_CAP_LIST_ID, 1, &id);
278		if (id == 0xff)
279			break;
280		if (id == cap)
281			return pos;
282		pos += PCI_CAP_LIST_NEXT;
283	}
284
285	return 0;
286}
287
288static int pseries_eeh_find_ecap(struct pci_dn *pdn, int cap)
289{
290	struct eeh_dev *edev = pdn_to_eeh_dev(pdn);
291	u32 header;
292	int pos = 256;
293	int ttl = (4096 - 256) / 8;
294
295	if (!edev || !edev->pcie_cap)
296		return 0;
297	if (rtas_pci_dn_read_config(pdn, pos, 4, &header) != PCIBIOS_SUCCESSFUL)
298		return 0;
299	else if (!header)
300		return 0;
301
302	while (ttl-- > 0) {
303		if (PCI_EXT_CAP_ID(header) == cap && pos)
304			return pos;
305
306		pos = PCI_EXT_CAP_NEXT(header);
307		if (pos < 256)
308			break;
309
310		if (rtas_pci_dn_read_config(pdn, pos, 4, &header) != PCIBIOS_SUCCESSFUL)
311			break;
312	}
313
314	return 0;
315}
316
317/**
318 * pseries_eeh_pe_get_parent - Retrieve the parent PE
319 * @edev: EEH device
320 *
321 * The whole PEs existing in the system are organized as hierarchy
322 * tree. The function is used to retrieve the parent PE according
323 * to the parent EEH device.
324 */
325static struct eeh_pe *pseries_eeh_pe_get_parent(struct eeh_dev *edev)
326{
327	struct eeh_dev *parent;
328	struct pci_dn *pdn = eeh_dev_to_pdn(edev);
329
330	/*
331	 * It might have the case for the indirect parent
332	 * EEH device already having associated PE, but
333	 * the direct parent EEH device doesn't have yet.
334	 */
335	if (edev->physfn)
336		pdn = pci_get_pdn(edev->physfn);
337	else
338		pdn = pdn ? pdn->parent : NULL;
339	while (pdn) {
340		/* We're poking out of PCI territory */
341		parent = pdn_to_eeh_dev(pdn);
342		if (!parent)
343			return NULL;
344
345		if (parent->pe)
346			return parent->pe;
347
348		pdn = pdn->parent;
349	}
350
351	return NULL;
352}
353
354/**
355 * pseries_eeh_init_edev - initialise the eeh_dev and eeh_pe for a pci_dn
356 *
357 * @pdn: PCI device node
358 *
359 * When we discover a new PCI device via the device-tree we create a
360 * corresponding pci_dn and we allocate, but don't initialise, an eeh_dev.
361 * This function takes care of the initialisation and inserts the eeh_dev
362 * into the correct eeh_pe. If no eeh_pe exists we'll allocate one.
363 */
364static void pseries_eeh_init_edev(struct pci_dn *pdn)
365{
366	struct eeh_pe pe, *parent;
367	struct eeh_dev *edev;
368	u32 pcie_flags;
369	int ret;
370
371	if (WARN_ON_ONCE(!eeh_has_flag(EEH_PROBE_MODE_DEVTREE)))
372		return;
373
374	/*
375	 * Find the eeh_dev for this pdn. The storage for the eeh_dev was
376	 * allocated at the same time as the pci_dn.
377	 *
378	 * XXX: We should probably re-visit that.
379	 */
380	edev = pdn_to_eeh_dev(pdn);
381	if (!edev)
382		return;
383
384	/*
385	 * If ->pe is set then we've already probed this device. We hit
386	 * this path when a pci_dev is removed and rescanned while recovering
387	 * a PE (i.e. for devices where the driver doesn't support error
388	 * recovery).
389	 */
390	if (edev->pe)
391		return;
392
393	/* Check class/vendor/device IDs */
394	if (!pdn->vendor_id || !pdn->device_id || !pdn->class_code)
395		return;
396
397	/* Skip for PCI-ISA bridge */
398        if ((pdn->class_code >> 8) == PCI_CLASS_BRIDGE_ISA)
399		return;
400
401	eeh_edev_dbg(edev, "Probing device\n");
402
403	/*
404	 * Update class code and mode of eeh device. We need
405	 * correctly reflects that current device is root port
406	 * or PCIe switch downstream port.
407	 */
408	edev->pcix_cap = pseries_eeh_find_cap(pdn, PCI_CAP_ID_PCIX);
409	edev->pcie_cap = pseries_eeh_find_cap(pdn, PCI_CAP_ID_EXP);
410	edev->aer_cap = pseries_eeh_find_ecap(pdn, PCI_EXT_CAP_ID_ERR);
411	edev->mode &= 0xFFFFFF00;
412	if ((pdn->class_code >> 8) == PCI_CLASS_BRIDGE_PCI) {
413		edev->mode |= EEH_DEV_BRIDGE;
414		if (edev->pcie_cap) {
415			rtas_pci_dn_read_config(pdn, edev->pcie_cap + PCI_EXP_FLAGS,
416						2, &pcie_flags);
417			pcie_flags = (pcie_flags & PCI_EXP_FLAGS_TYPE) >> 4;
418			if (pcie_flags == PCI_EXP_TYPE_ROOT_PORT)
419				edev->mode |= EEH_DEV_ROOT_PORT;
420			else if (pcie_flags == PCI_EXP_TYPE_DOWNSTREAM)
421				edev->mode |= EEH_DEV_DS_PORT;
422		}
423	}
424
425	/* first up, find the pe_config_addr for the PE containing the device */
426	ret = pseries_eeh_get_pe_config_addr(pdn);
427	if (ret < 0) {
428		eeh_edev_dbg(edev, "Unable to find pe_config_addr\n");
429		goto err;
430	}
431
432	/* Try enable EEH on the fake PE */
433	memset(&pe, 0, sizeof(struct eeh_pe));
434	pe.phb = pdn->phb;
435	pe.addr = ret;
436
437	eeh_edev_dbg(edev, "Enabling EEH on device\n");
438	ret = eeh_ops->set_option(&pe, EEH_OPT_ENABLE);
439	if (ret) {
440		eeh_edev_dbg(edev, "EEH failed to enable on device (code %d)\n", ret);
441		goto err;
442	}
443
444	edev->pe_config_addr = pe.addr;
445
446	eeh_add_flag(EEH_ENABLED);
447
448	parent = pseries_eeh_pe_get_parent(edev);
449	eeh_pe_tree_insert(edev, parent);
450	eeh_save_bars(edev);
451	eeh_edev_dbg(edev, "EEH enabled for device");
452
453	return;
454
455err:
456	eeh_edev_dbg(edev, "EEH is unsupported on device (code = %d)\n", ret);
457}
458
459static struct eeh_dev *pseries_eeh_probe(struct pci_dev *pdev)
460{
461	struct eeh_dev *edev;
462	struct pci_dn *pdn;
463
464	pdn = pci_get_pdn_by_devfn(pdev->bus, pdev->devfn);
465	if (!pdn)
466		return NULL;
467
468	/*
469	 * If the system supports EEH on this device then the eeh_dev was
470	 * configured and inserted into a PE in pseries_eeh_init_edev()
471	 */
472	edev = pdn_to_eeh_dev(pdn);
473	if (!edev || !edev->pe)
474		return NULL;
475
476	return edev;
477}
478
479/**
480 * pseries_eeh_init_edev_recursive - Enable EEH for the indicated device
481 * @pdn: PCI device node
482 *
483 * This routine must be used to perform EEH initialization for the
484 * indicated PCI device that was added after system boot (e.g.
485 * hotplug, dlpar).
486 */
487void pseries_eeh_init_edev_recursive(struct pci_dn *pdn)
488{
489	struct pci_dn *n;
490
491	if (!pdn)
492		return;
493
494	list_for_each_entry(n, &pdn->child_list, list)
495		pseries_eeh_init_edev_recursive(n);
496
497	pseries_eeh_init_edev(pdn);
498}
499EXPORT_SYMBOL_GPL(pseries_eeh_init_edev_recursive);
500
501/**
502 * pseries_eeh_set_option - Initialize EEH or MMIO/DMA reenable
503 * @pe: EEH PE
504 * @option: operation to be issued
505 *
506 * The function is used to control the EEH functionality globally.
507 * Currently, following options are support according to PAPR:
508 * Enable EEH, Disable EEH, Enable MMIO and Enable DMA
509 */
510static int pseries_eeh_set_option(struct eeh_pe *pe, int option)
511{
512	int ret = 0;
513
514	/*
515	 * When we're enabling or disabling EEH functionality on
516	 * the particular PE, the PE config address is possibly
517	 * unavailable. Therefore, we have to figure it out from
518	 * the FDT node.
519	 */
520	switch (option) {
521	case EEH_OPT_DISABLE:
522	case EEH_OPT_ENABLE:
523	case EEH_OPT_THAW_MMIO:
524	case EEH_OPT_THAW_DMA:
525		break;
526	case EEH_OPT_FREEZE_PE:
527		/* Not support */
528		return 0;
529	default:
530		pr_err("%s: Invalid option %d\n", __func__, option);
531		return -EINVAL;
532	}
533
534	ret = rtas_call(ibm_set_eeh_option, 4, 1, NULL,
535			pe->addr, BUID_HI(pe->phb->buid),
536			BUID_LO(pe->phb->buid), option);
537
538	return ret;
539}
540
541/**
542 * pseries_eeh_get_state - Retrieve PE state
543 * @pe: EEH PE
544 * @delay: suggested time to wait if state is unavailable
545 *
546 * Retrieve the state of the specified PE. On RTAS compliant
547 * pseries platform, there already has one dedicated RTAS function
548 * for the purpose. It's notable that the associated PE config address
549 * might be ready when calling the function. Therefore, endeavour to
550 * use the PE config address if possible. Further more, there're 2
551 * RTAS calls for the purpose, we need to try the new one and back
552 * to the old one if the new one couldn't work properly.
553 */
554static int pseries_eeh_get_state(struct eeh_pe *pe, int *delay)
555{
556	int ret;
557	int rets[4];
558	int result;
559
560	if (ibm_read_slot_reset_state2 != RTAS_UNKNOWN_SERVICE) {
561		ret = rtas_call(ibm_read_slot_reset_state2, 3, 4, rets,
562				pe->addr, BUID_HI(pe->phb->buid),
563				BUID_LO(pe->phb->buid));
564	} else if (ibm_read_slot_reset_state != RTAS_UNKNOWN_SERVICE) {
565		/* Fake PE unavailable info */
566		rets[2] = 0;
567		ret = rtas_call(ibm_read_slot_reset_state, 3, 3, rets,
568				pe->addr, BUID_HI(pe->phb->buid),
569				BUID_LO(pe->phb->buid));
570	} else {
571		return EEH_STATE_NOT_SUPPORT;
572	}
573
574	if (ret)
575		return ret;
576
577	/* Parse the result out */
578	if (!rets[1])
579		return EEH_STATE_NOT_SUPPORT;
580
581	switch(rets[0]) {
582	case 0:
583		result = EEH_STATE_MMIO_ACTIVE |
584			 EEH_STATE_DMA_ACTIVE;
585		break;
586	case 1:
587		result = EEH_STATE_RESET_ACTIVE |
588			 EEH_STATE_MMIO_ACTIVE  |
589			 EEH_STATE_DMA_ACTIVE;
590		break;
591	case 2:
592		result = 0;
593		break;
594	case 4:
595		result = EEH_STATE_MMIO_ENABLED;
596		break;
597	case 5:
598		if (rets[2]) {
599			if (delay)
600				*delay = rets[2];
601			result = EEH_STATE_UNAVAILABLE;
602		} else {
603			result = EEH_STATE_NOT_SUPPORT;
604		}
605		break;
606	default:
607		result = EEH_STATE_NOT_SUPPORT;
608	}
609
610	return result;
611}
612
613/**
614 * pseries_eeh_reset - Reset the specified PE
615 * @pe: EEH PE
616 * @option: reset option
617 *
618 * Reset the specified PE
619 */
620static int pseries_eeh_reset(struct eeh_pe *pe, int option)
621{
622	return pseries_eeh_phb_reset(pe->phb, pe->addr, option);
623}
624
625/**
626 * pseries_eeh_get_log - Retrieve error log
627 * @pe: EEH PE
628 * @severity: temporary or permanent error log
629 * @drv_log: driver log to be combined with retrieved error log
630 * @len: length of driver log
631 *
632 * Retrieve the temporary or permanent error from the PE.
633 * Actually, the error will be retrieved through the dedicated
634 * RTAS call.
635 */
636static int pseries_eeh_get_log(struct eeh_pe *pe, int severity, char *drv_log, unsigned long len)
637{
638	unsigned long flags;
639	int ret;
640
641	spin_lock_irqsave(&slot_errbuf_lock, flags);
642	memset(slot_errbuf, 0, eeh_error_buf_size);
643
644	ret = rtas_call(ibm_slot_error_detail, 8, 1, NULL, pe->addr,
645			BUID_HI(pe->phb->buid), BUID_LO(pe->phb->buid),
646			virt_to_phys(drv_log), len,
647			virt_to_phys(slot_errbuf), eeh_error_buf_size,
648			severity);
649	if (!ret)
650		log_error(slot_errbuf, ERR_TYPE_RTAS_LOG, 0);
651	spin_unlock_irqrestore(&slot_errbuf_lock, flags);
652
653	return ret;
654}
655
656/**
657 * pseries_eeh_configure_bridge - Configure PCI bridges in the indicated PE
658 * @pe: EEH PE
659 *
660 */
661static int pseries_eeh_configure_bridge(struct eeh_pe *pe)
662{
663	return pseries_eeh_phb_configure_bridge(pe->phb, pe->addr);
664}
665
666/**
667 * pseries_eeh_read_config - Read PCI config space
668 * @edev: EEH device handle
669 * @where: PCI config space offset
670 * @size: size to read
671 * @val: return value
672 *
673 * Read config space from the speicifed device
674 */
675static int pseries_eeh_read_config(struct eeh_dev *edev, int where, int size, u32 *val)
676{
677	struct pci_dn *pdn = eeh_dev_to_pdn(edev);
678
679	return rtas_pci_dn_read_config(pdn, where, size, val);
680}
681
682/**
683 * pseries_eeh_write_config - Write PCI config space
684 * @edev: EEH device handle
685 * @where: PCI config space offset
686 * @size: size to write
687 * @val: value to be written
688 *
689 * Write config space to the specified device
690 */
691static int pseries_eeh_write_config(struct eeh_dev *edev, int where, int size, u32 val)
692{
693	struct pci_dn *pdn = eeh_dev_to_pdn(edev);
694
695	return rtas_pci_dn_write_config(pdn, where, size, val);
696}
697
698#ifdef CONFIG_PCI_IOV
699static int pseries_send_allow_unfreeze(struct pci_dn *pdn, u16 *vf_pe_array, int cur_vfs)
700{
701	int rc;
702	int ibm_allow_unfreeze = rtas_function_token(RTAS_FN_IBM_OPEN_SRIOV_ALLOW_UNFREEZE);
703	unsigned long buid, addr;
704
705	addr = rtas_config_addr(pdn->busno, pdn->devfn, 0);
706	buid = pdn->phb->buid;
707	spin_lock(&rtas_data_buf_lock);
708	memcpy(rtas_data_buf, vf_pe_array, RTAS_DATA_BUF_SIZE);
709	rc = rtas_call(ibm_allow_unfreeze, 5, 1, NULL,
710		       addr,
711		       BUID_HI(buid),
712		       BUID_LO(buid),
713		       rtas_data_buf, cur_vfs * sizeof(u16));
714	spin_unlock(&rtas_data_buf_lock);
715	if (rc)
716		pr_warn("%s: Failed to allow unfreeze for PHB#%x-PE#%lx, rc=%x\n",
717			__func__,
718			pdn->phb->global_number, addr, rc);
719	return rc;
720}
721
722static int pseries_call_allow_unfreeze(struct eeh_dev *edev)
723{
724	int cur_vfs = 0, rc = 0, vf_index, bus, devfn, vf_pe_num;
725	struct pci_dn *pdn, *tmp, *parent, *physfn_pdn;
726	u16 *vf_pe_array;
727
728	vf_pe_array = kzalloc(RTAS_DATA_BUF_SIZE, GFP_KERNEL);
729	if (!vf_pe_array)
730		return -ENOMEM;
731	if (pci_num_vf(edev->physfn ? edev->physfn : edev->pdev)) {
732		if (edev->pdev->is_physfn) {
733			cur_vfs = pci_num_vf(edev->pdev);
734			pdn = eeh_dev_to_pdn(edev);
735			parent = pdn->parent;
736			for (vf_index = 0; vf_index < cur_vfs; vf_index++)
737				vf_pe_array[vf_index] =
738					cpu_to_be16(pdn->pe_num_map[vf_index]);
739			rc = pseries_send_allow_unfreeze(pdn, vf_pe_array,
740							 cur_vfs);
741			pdn->last_allow_rc = rc;
742			for (vf_index = 0; vf_index < cur_vfs; vf_index++) {
743				list_for_each_entry_safe(pdn, tmp,
744							 &parent->child_list,
745							 list) {
746					bus = pci_iov_virtfn_bus(edev->pdev,
747								 vf_index);
748					devfn = pci_iov_virtfn_devfn(edev->pdev,
749								     vf_index);
750					if (pdn->busno != bus ||
751					    pdn->devfn != devfn)
752						continue;
753					pdn->last_allow_rc = rc;
754				}
755			}
756		} else {
757			pdn = pci_get_pdn(edev->pdev);
758			physfn_pdn = pci_get_pdn(edev->physfn);
759
760			vf_pe_num = physfn_pdn->pe_num_map[edev->vf_index];
761			vf_pe_array[0] = cpu_to_be16(vf_pe_num);
762			rc = pseries_send_allow_unfreeze(physfn_pdn,
763							 vf_pe_array, 1);
764			pdn->last_allow_rc = rc;
765		}
766	}
767
768	kfree(vf_pe_array);
769	return rc;
770}
771
772static int pseries_notify_resume(struct eeh_dev *edev)
773{
774	if (!edev)
775		return -EEXIST;
776
777	if (rtas_function_token(RTAS_FN_IBM_OPEN_SRIOV_ALLOW_UNFREEZE) == RTAS_UNKNOWN_SERVICE)
778		return -EINVAL;
779
780	if (edev->pdev->is_physfn || edev->pdev->is_virtfn)
781		return pseries_call_allow_unfreeze(edev);
782
783	return 0;
784}
785#endif
786
787static struct eeh_ops pseries_eeh_ops = {
788	.name			= "pseries",
789	.probe			= pseries_eeh_probe,
790	.set_option		= pseries_eeh_set_option,
791	.get_state		= pseries_eeh_get_state,
792	.reset			= pseries_eeh_reset,
793	.get_log		= pseries_eeh_get_log,
794	.configure_bridge       = pseries_eeh_configure_bridge,
795	.err_inject		= NULL,
796	.read_config		= pseries_eeh_read_config,
797	.write_config		= pseries_eeh_write_config,
798	.next_error		= NULL,
799	.restore_config		= NULL, /* NB: configure_bridge() does this */
800#ifdef CONFIG_PCI_IOV
801	.notify_resume		= pseries_notify_resume
802#endif
803};
804
805/**
806 * eeh_pseries_init - Register platform dependent EEH operations
807 *
808 * EEH initialization on pseries platform. This function should be
809 * called before any EEH related functions.
810 */
811static int __init eeh_pseries_init(void)
812{
813	struct pci_controller *phb;
814	struct pci_dn *pdn;
815	int ret, config_addr;
816
817	/* figure out EEH RTAS function call tokens */
818	ibm_set_eeh_option		= rtas_function_token(RTAS_FN_IBM_SET_EEH_OPTION);
819	ibm_set_slot_reset		= rtas_function_token(RTAS_FN_IBM_SET_SLOT_RESET);
820	ibm_read_slot_reset_state2	= rtas_function_token(RTAS_FN_IBM_READ_SLOT_RESET_STATE2);
821	ibm_read_slot_reset_state	= rtas_function_token(RTAS_FN_IBM_READ_SLOT_RESET_STATE);
822	ibm_slot_error_detail		= rtas_function_token(RTAS_FN_IBM_SLOT_ERROR_DETAIL);
823	ibm_get_config_addr_info2	= rtas_function_token(RTAS_FN_IBM_GET_CONFIG_ADDR_INFO2);
824	ibm_get_config_addr_info	= rtas_function_token(RTAS_FN_IBM_GET_CONFIG_ADDR_INFO);
825	ibm_configure_pe		= rtas_function_token(RTAS_FN_IBM_CONFIGURE_PE);
826
827	/*
828	 * ibm,configure-pe and ibm,configure-bridge have the same semantics,
829	 * however ibm,configure-pe can be faster.  If we can't find
830	 * ibm,configure-pe then fall back to using ibm,configure-bridge.
831	 */
832	if (ibm_configure_pe == RTAS_UNKNOWN_SERVICE)
833		ibm_configure_pe	= rtas_function_token(RTAS_FN_IBM_CONFIGURE_BRIDGE);
834
835	/*
836	 * Necessary sanity check. We needn't check "get-config-addr-info"
837	 * and its variant since the old firmware probably support address
838	 * of domain/bus/slot/function for EEH RTAS operations.
839	 */
840	if (ibm_set_eeh_option == RTAS_UNKNOWN_SERVICE		||
841	    ibm_set_slot_reset == RTAS_UNKNOWN_SERVICE		||
842	    (ibm_read_slot_reset_state2 == RTAS_UNKNOWN_SERVICE &&
843	     ibm_read_slot_reset_state == RTAS_UNKNOWN_SERVICE)	||
844	    ibm_slot_error_detail == RTAS_UNKNOWN_SERVICE	||
845	    ibm_configure_pe == RTAS_UNKNOWN_SERVICE) {
846		pr_info("EEH functionality not supported\n");
847		return -EINVAL;
848	}
849
850	/* Initialize error log size */
851	eeh_error_buf_size = rtas_get_error_log_max();
852
853	/* Set EEH probe mode */
854	eeh_add_flag(EEH_PROBE_MODE_DEVTREE | EEH_ENABLE_IO_FOR_LOG);
855
856	/* Set EEH machine dependent code */
857	ppc_md.pcibios_bus_add_device = pseries_pcibios_bus_add_device;
858
859	if (is_kdump_kernel() || reset_devices) {
860		pr_info("Issue PHB reset ...\n");
861		list_for_each_entry(phb, &hose_list, list_node) {
862			// Skip if the slot is empty
863			if (list_empty(&PCI_DN(phb->dn)->child_list))
864				continue;
865
866			pdn = list_first_entry(&PCI_DN(phb->dn)->child_list, struct pci_dn, list);
867			config_addr = pseries_eeh_get_pe_config_addr(pdn);
868
869			/* invalid PE config addr */
870			if (config_addr < 0)
871				continue;
872
873			pseries_eeh_phb_reset(phb, config_addr, EEH_RESET_FUNDAMENTAL);
874			pseries_eeh_phb_reset(phb, config_addr, EEH_RESET_DEACTIVATE);
875			pseries_eeh_phb_configure_bridge(phb, config_addr);
876		}
877	}
878
879	ret = eeh_init(&pseries_eeh_ops);
880	if (!ret)
881		pr_info("EEH: pSeries platform initialized\n");
882	else
883		pr_info("EEH: pSeries platform initialization failure (%d)\n",
884			ret);
885	return ret;
886}
887machine_arch_initcall(pseries, eeh_pseries_init);
888