1// SPDX-License-Identifier: GPL-2.0-or-later
2/*
3 * Copyright 2013, Michael (Ellerman|Neuling), IBM Corporation.
4 */
5
6#define pr_fmt(fmt)	"powernv: " fmt
7
8#include <linux/kernel.h>
9#include <linux/cpu.h>
10#include <linux/cpumask.h>
11#include <linux/device.h>
12#include <linux/gfp.h>
13#include <linux/smp.h>
14#include <linux/stop_machine.h>
15
16#include <asm/cputhreads.h>
17#include <asm/cpuidle.h>
18#include <asm/kvm_ppc.h>
19#include <asm/machdep.h>
20#include <asm/opal.h>
21#include <asm/smp.h>
22
23#include <trace/events/ipi.h>
24
25#include "subcore.h"
26#include "powernv.h"
27
28
29/*
30 * Split/unsplit procedure:
31 *
32 * A core can be in one of three states, unsplit, 2-way split, and 4-way split.
33 *
34 * The mapping to subcores_per_core is simple:
35 *
36 *  State       | subcores_per_core
37 *  ------------|------------------
38 *  Unsplit     |        1
39 *  2-way split |        2
40 *  4-way split |        4
41 *
42 * The core is split along thread boundaries, the mapping between subcores and
43 * threads is as follows:
44 *
45 *  Unsplit:
46 *          ----------------------------
47 *  Subcore |            0             |
48 *          ----------------------------
49 *  Thread  |  0  1  2  3  4  5  6  7  |
50 *          ----------------------------
51 *
52 *  2-way split:
53 *          -------------------------------------
54 *  Subcore |        0        |        1        |
55 *          -------------------------------------
56 *  Thread  |  0   1   2   3  |  4   5   6   7  |
57 *          -------------------------------------
58 *
59 *  4-way split:
60 *          -----------------------------------------
61 *  Subcore |    0    |    1    |    2    |    3    |
62 *          -----------------------------------------
63 *  Thread  |  0   1  |  2   3  |  4   5  |  6   7  |
64 *          -----------------------------------------
65 *
66 *
67 * Transitions
68 * -----------
69 *
70 * It is not possible to transition between either of the split states, the
71 * core must first be unsplit. The legal transitions are:
72 *
73 *  -----------          ---------------
74 *  |         |  <---->  | 2-way split |
75 *  |         |          ---------------
76 *  | Unsplit |
77 *  |         |          ---------------
78 *  |         |  <---->  | 4-way split |
79 *  -----------          ---------------
80 *
81 * Unsplitting
82 * -----------
83 *
84 * Unsplitting is the simpler procedure. It requires thread 0 to request the
85 * unsplit while all other threads NAP.
86 *
87 * Thread 0 clears HID0_POWER8_DYNLPARDIS (Dynamic LPAR Disable). This tells
88 * the hardware that if all threads except 0 are napping, the hardware should
89 * unsplit the core.
90 *
91 * Non-zero threads are sent to a NAP loop, they don't exit the loop until they
92 * see the core unsplit.
93 *
94 * Core 0 spins waiting for the hardware to see all the other threads napping
95 * and perform the unsplit.
96 *
97 * Once thread 0 sees the unsplit, it IPIs the secondary threads to wake them
98 * out of NAP. They will then see the core unsplit and exit the NAP loop.
99 *
100 * Splitting
101 * ---------
102 *
103 * The basic splitting procedure is fairly straight forward. However it is
104 * complicated by the fact that after the split occurs, the newly created
105 * subcores are not in a fully initialised state.
106 *
107 * Most notably the subcores do not have the correct value for SDR1, which
108 * means they must not be running in virtual mode when the split occurs. The
109 * subcores have separate timebases SPRs but these are pre-synchronised by
110 * opal.
111 *
112 * To begin with secondary threads are sent to an assembly routine. There they
113 * switch to real mode, so they are immune to the uninitialised SDR1 value.
114 * Once in real mode they indicate that they are in real mode, and spin waiting
115 * to see the core split.
116 *
117 * Thread 0 waits to see that all secondaries are in real mode, and then begins
118 * the splitting procedure. It firstly sets HID0_POWER8_DYNLPARDIS, which
119 * prevents the hardware from unsplitting. Then it sets the appropriate HID bit
120 * to request the split, and spins waiting to see that the split has happened.
121 *
122 * Concurrently the secondaries will notice the split. When they do they set up
123 * their SPRs, notably SDR1, and then they can return to virtual mode and exit
124 * the procedure.
125 */
126
127/* Initialised at boot by subcore_init() */
128static int subcores_per_core;
129
130/*
131 * Used to communicate to offline cpus that we want them to pop out of the
132 * offline loop and do a split or unsplit.
133 *
134 * 0 - no split happening
135 * 1 - unsplit in progress
136 * 2 - split to 2 in progress
137 * 4 - split to 4 in progress
138 */
139static int new_split_mode;
140
141static cpumask_var_t cpu_offline_mask;
142
143struct split_state {
144	u8 step;
145	u8 master;
146};
147
148static DEFINE_PER_CPU(struct split_state, split_state);
149
150static void wait_for_sync_step(int step)
151{
152	int i, cpu = smp_processor_id();
153
154	for (i = cpu + 1; i < cpu + threads_per_core; i++)
155		while(per_cpu(split_state, i).step < step)
156			barrier();
157
158	/* Order the wait loop vs any subsequent loads/stores. */
159	mb();
160}
161
162static void update_hid_in_slw(u64 hid0)
163{
164	u64 idle_states = pnv_get_supported_cpuidle_states();
165
166	if (idle_states & OPAL_PM_WINKLE_ENABLED) {
167		/* OPAL call to patch slw with the new HID0 value */
168		u64 cpu_pir = hard_smp_processor_id();
169
170		opal_slw_set_reg(cpu_pir, SPRN_HID0, hid0);
171	}
172}
173
174static inline void update_power8_hid0(unsigned long hid0)
175{
176	/*
177	 *  The HID0 update on Power8 should at the very least be
178	 *  preceded by a SYNC instruction followed by an ISYNC
179	 *  instruction
180	 */
181	asm volatile("sync; mtspr %0,%1; isync":: "i"(SPRN_HID0), "r"(hid0));
182}
183
184static void unsplit_core(void)
185{
186	u64 hid0, mask;
187	int i, cpu;
188
189	mask = HID0_POWER8_2LPARMODE | HID0_POWER8_4LPARMODE;
190
191	cpu = smp_processor_id();
192	if (cpu_thread_in_core(cpu) != 0) {
193		while (mfspr(SPRN_HID0) & mask)
194			power7_idle_type(PNV_THREAD_NAP);
195
196		per_cpu(split_state, cpu).step = SYNC_STEP_UNSPLIT;
197		return;
198	}
199
200	hid0 = mfspr(SPRN_HID0);
201	hid0 &= ~HID0_POWER8_DYNLPARDIS;
202	update_power8_hid0(hid0);
203	update_hid_in_slw(hid0);
204
205	while (mfspr(SPRN_HID0) & mask)
206		cpu_relax();
207
208	/* Wake secondaries out of NAP */
209	for (i = cpu + 1; i < cpu + threads_per_core; i++)
210		smp_send_reschedule(i);
211
212	wait_for_sync_step(SYNC_STEP_UNSPLIT);
213}
214
215static void split_core(int new_mode)
216{
217	struct {  u64 value; u64 mask; } split_parms[2] = {
218		{ HID0_POWER8_1TO2LPAR, HID0_POWER8_2LPARMODE },
219		{ HID0_POWER8_1TO4LPAR, HID0_POWER8_4LPARMODE }
220	};
221	int i, cpu;
222	u64 hid0;
223
224	/* Convert new_mode (2 or 4) into an index into our parms array */
225	i = (new_mode >> 1) - 1;
226	BUG_ON(i < 0 || i > 1);
227
228	cpu = smp_processor_id();
229	if (cpu_thread_in_core(cpu) != 0) {
230		split_core_secondary_loop(&per_cpu(split_state, cpu).step);
231		return;
232	}
233
234	wait_for_sync_step(SYNC_STEP_REAL_MODE);
235
236	/* Write new mode */
237	hid0  = mfspr(SPRN_HID0);
238	hid0 |= HID0_POWER8_DYNLPARDIS | split_parms[i].value;
239	update_power8_hid0(hid0);
240	update_hid_in_slw(hid0);
241
242	/* Wait for it to happen */
243	while (!(mfspr(SPRN_HID0) & split_parms[i].mask))
244		cpu_relax();
245}
246
247static void cpu_do_split(int new_mode)
248{
249	/*
250	 * At boot subcores_per_core will be 0, so we will always unsplit at
251	 * boot. In the usual case where the core is already unsplit it's a
252	 * nop, and this just ensures the kernel's notion of the mode is
253	 * consistent with the hardware.
254	 */
255	if (subcores_per_core != 1)
256		unsplit_core();
257
258	if (new_mode != 1)
259		split_core(new_mode);
260
261	mb();
262	per_cpu(split_state, smp_processor_id()).step = SYNC_STEP_FINISHED;
263}
264
265bool cpu_core_split_required(void)
266{
267	smp_rmb();
268
269	if (!new_split_mode)
270		return false;
271
272	cpu_do_split(new_split_mode);
273
274	return true;
275}
276
277void update_subcore_sibling_mask(void)
278{
279	int cpu;
280	/*
281	 * sibling mask for the first cpu. Left shift this by required bits
282	 * to get sibling mask for the rest of the cpus.
283	 */
284	int sibling_mask_first_cpu =  (1 << threads_per_subcore) - 1;
285
286	for_each_possible_cpu(cpu) {
287		int tid = cpu_thread_in_core(cpu);
288		int offset = (tid / threads_per_subcore) * threads_per_subcore;
289		int mask = sibling_mask_first_cpu << offset;
290
291		paca_ptrs[cpu]->subcore_sibling_mask = mask;
292
293	}
294}
295
296static int cpu_update_split_mode(void *data)
297{
298	int cpu, new_mode = *(int *)data;
299
300	if (this_cpu_ptr(&split_state)->master) {
301		new_split_mode = new_mode;
302		smp_wmb();
303
304		cpumask_andnot(cpu_offline_mask, cpu_present_mask,
305			       cpu_online_mask);
306
307		/* This should work even though the cpu is offline */
308		for_each_cpu(cpu, cpu_offline_mask)
309			smp_send_reschedule(cpu);
310	}
311
312	cpu_do_split(new_mode);
313
314	if (this_cpu_ptr(&split_state)->master) {
315		/* Wait for all cpus to finish before we touch subcores_per_core */
316		for_each_present_cpu(cpu) {
317			if (cpu >= setup_max_cpus)
318				break;
319
320			while(per_cpu(split_state, cpu).step < SYNC_STEP_FINISHED)
321				barrier();
322		}
323
324		new_split_mode = 0;
325
326		/* Make the new mode public */
327		subcores_per_core = new_mode;
328		threads_per_subcore = threads_per_core / subcores_per_core;
329		update_subcore_sibling_mask();
330
331		/* Make sure the new mode is written before we exit */
332		mb();
333	}
334
335	return 0;
336}
337
338static int set_subcores_per_core(int new_mode)
339{
340	struct split_state *state;
341	int cpu;
342
343	if (kvm_hv_mode_active()) {
344		pr_err("Unable to change split core mode while KVM active.\n");
345		return -EBUSY;
346	}
347
348	/*
349	 * We are only called at boot, or from the sysfs write. If that ever
350	 * changes we'll need a lock here.
351	 */
352	BUG_ON(new_mode < 1 || new_mode > 4 || new_mode == 3);
353
354	for_each_present_cpu(cpu) {
355		state = &per_cpu(split_state, cpu);
356		state->step = SYNC_STEP_INITIAL;
357		state->master = 0;
358	}
359
360	cpus_read_lock();
361
362	/* This cpu will update the globals before exiting stop machine */
363	this_cpu_ptr(&split_state)->master = 1;
364
365	/* Ensure state is consistent before we call the other cpus */
366	mb();
367
368	stop_machine_cpuslocked(cpu_update_split_mode, &new_mode,
369				cpu_online_mask);
370
371	cpus_read_unlock();
372
373	return 0;
374}
375
376static ssize_t __used store_subcores_per_core(struct device *dev,
377		struct device_attribute *attr, const char *buf,
378		size_t count)
379{
380	unsigned long val;
381	int rc;
382
383	/* We are serialised by the attribute lock */
384
385	rc = sscanf(buf, "%lx", &val);
386	if (rc != 1)
387		return -EINVAL;
388
389	switch (val) {
390	case 1:
391	case 2:
392	case 4:
393		if (subcores_per_core == val)
394			/* Nothing to do */
395			goto out;
396		break;
397	default:
398		return -EINVAL;
399	}
400
401	rc = set_subcores_per_core(val);
402	if (rc)
403		return rc;
404
405out:
406	return count;
407}
408
409static ssize_t show_subcores_per_core(struct device *dev,
410		struct device_attribute *attr, char *buf)
411{
412	return sprintf(buf, "%x\n", subcores_per_core);
413}
414
415static DEVICE_ATTR(subcores_per_core, 0644,
416		show_subcores_per_core, store_subcores_per_core);
417
418static int subcore_init(void)
419{
420	struct device *dev_root;
421	unsigned pvr_ver;
422	int rc = 0;
423
424	pvr_ver = PVR_VER(mfspr(SPRN_PVR));
425
426	if (pvr_ver != PVR_POWER8 &&
427	    pvr_ver != PVR_POWER8E &&
428	    pvr_ver != PVR_POWER8NVL &&
429	    pvr_ver != PVR_HX_C2000)
430		return 0;
431
432	/*
433	 * We need all threads in a core to be present to split/unsplit so
434         * continue only if max_cpus are aligned to threads_per_core.
435	 */
436	if (setup_max_cpus % threads_per_core)
437		return 0;
438
439	BUG_ON(!alloc_cpumask_var(&cpu_offline_mask, GFP_KERNEL));
440
441	set_subcores_per_core(1);
442
443	dev_root = bus_get_dev_root(&cpu_subsys);
444	if (dev_root) {
445		rc = device_create_file(dev_root, &dev_attr_subcores_per_core);
446		put_device(dev_root);
447	}
448	return rc;
449}
450machine_device_initcall(powernv, subcore_init);
451