1// SPDX-License-Identifier: GPL-2.0-or-later
2
3#include <linux/kernel.h>
4#include <linux/ioport.h>
5#include <linux/bitmap.h>
6#include <linux/pci.h>
7
8#include <asm/opal.h>
9
10#include "pci.h"
11
12/*
13 * The majority of the complexity in supporting SR-IOV on PowerNV comes from
14 * the need to put the MMIO space for each VF into a separate PE. Internally
15 * the PHB maps MMIO addresses to a specific PE using the "Memory BAR Table".
16 * The MBT historically only applied to the 64bit MMIO window of the PHB
17 * so it's common to see it referred to as the "M64BT".
18 *
19 * An MBT entry stores the mapped range as an <base>,<mask> pair. This forces
20 * the address range that we want to map to be power-of-two sized and aligned.
21 * For conventional PCI devices this isn't really an issue since PCI device BARs
22 * have the same requirement.
23 *
24 * For a SR-IOV BAR things are a little more awkward since size and alignment
25 * are not coupled. The alignment is set based on the per-VF BAR size, but
26 * the total BAR area is: number-of-vfs * per-vf-size. The number of VFs
27 * isn't necessarily a power of two, so neither is the total size. To fix that
28 * we need to finesse (read: hack) the Linux BAR allocator so that it will
29 * allocate the SR-IOV BARs in a way that lets us map them using the MBT.
30 *
31 * The changes to size and alignment that we need to do depend on the "mode"
32 * of MBT entry that we use. We only support SR-IOV on PHB3 (IODA2) and above,
33 * so as a baseline we can assume that we have the following BAR modes
34 * available:
35 *
36 *   NB: $PE_COUNT is the number of PEs that the PHB supports.
37 *
38 * a) A segmented BAR that splits the mapped range into $PE_COUNT equally sized
39 *    segments. The n'th segment is mapped to the n'th PE.
40 * b) An un-segmented BAR that maps the whole address range to a specific PE.
41 *
42 *
43 * We prefer to use mode a) since it only requires one MBT entry per SR-IOV BAR
44 * For comparison b) requires one entry per-VF per-BAR, or:
45 * (num-vfs * num-sriov-bars) in total. To use a) we need the size of each segment
46 * to equal the size of the per-VF BAR area. So:
47 *
48 *	new_size = per-vf-size * number-of-PEs
49 *
50 * The alignment for the SR-IOV BAR also needs to be changed from per-vf-size
51 * to "new_size", calculated above. Implementing this is a convoluted process
52 * which requires several hooks in the PCI core:
53 *
54 * 1. In pcibios_device_add() we call pnv_pci_ioda_fixup_iov().
55 *
56 *    At this point the device has been probed and the device's BARs are sized,
57 *    but no resource allocations have been done. The SR-IOV BARs are sized
58 *    based on the maximum number of VFs supported by the device and we need
59 *    to increase that to new_size.
60 *
61 * 2. Later, when Linux actually assigns resources it tries to make the resource
62 *    allocations for each PCI bus as compact as possible. As a part of that it
63 *    sorts the BARs on a bus by their required alignment, which is calculated
64 *    using pci_resource_alignment().
65 *
66 *    For IOV resources this goes:
67 *    pci_resource_alignment()
68 *        pci_sriov_resource_alignment()
69 *            pcibios_sriov_resource_alignment()
70 *                pnv_pci_iov_resource_alignment()
71 *
72 *    Our hook overrides the default alignment, equal to the per-vf-size, with
73 *    new_size computed above.
74 *
75 * 3. When userspace enables VFs for a device:
76 *
77 *    sriov_enable()
78 *       pcibios_sriov_enable()
79 *           pnv_pcibios_sriov_enable()
80 *
81 *    This is where we actually allocate PE numbers for each VF and setup the
82 *    MBT mapping for each SR-IOV BAR. In steps 1) and 2) we setup an "arena"
83 *    where each MBT segment is equal in size to the VF BAR so we can shift
84 *    around the actual SR-IOV BAR location within this arena. We need this
85 *    ability because the PE space is shared by all devices on the same PHB.
86 *    When using mode a) described above segment 0 in maps to PE#0 which might
87 *    be already being used by another device on the PHB.
88 *
89 *    As a result we need allocate a contigious range of PE numbers, then shift
90 *    the address programmed into the SR-IOV BAR of the PF so that the address
91 *    of VF0 matches up with the segment corresponding to the first allocated
92 *    PE number. This is handled in pnv_pci_vf_resource_shift().
93 *
94 *    Once all that is done we return to the PCI core which then enables VFs,
95 *    scans them and creates pci_devs for each. The init process for a VF is
96 *    largely the same as a normal device, but the VF is inserted into the IODA
97 *    PE that we allocated for it rather than the PE associated with the bus.
98 *
99 * 4. When userspace disables VFs we unwind the above in
100 *    pnv_pcibios_sriov_disable(). Fortunately this is relatively simple since
101 *    we don't need to validate anything, just tear down the mappings and
102 *    move SR-IOV resource back to its "proper" location.
103 *
104 * That's how mode a) works. In theory mode b) (single PE mapping) is less work
105 * since we can map each individual VF with a separate BAR. However, there's a
106 * few limitations:
107 *
108 * 1) For IODA2 mode b) has a minimum alignment requirement of 32MB. This makes
109 *    it only usable for devices with very large per-VF BARs. Such devices are
110 *    similar to Big Foot. They definitely exist, but I've never seen one.
111 *
112 * 2) The number of MBT entries that we have is limited. PHB3 and PHB4 only
113 *    16 total and some are needed for. Most SR-IOV capable network cards can support
114 *    more than 16 VFs on each port.
115 *
116 * We use b) when using a) would use more than 1/4 of the entire 64 bit MMIO
117 * window of the PHB.
118 *
119 *
120 *
121 * PHB4 (IODA3) added a few new features that would be useful for SR-IOV. It
122 * allowed the MBT to map 32bit MMIO space in addition to 64bit which allows
123 * us to support SR-IOV BARs in the 32bit MMIO window. This is useful since
124 * the Linux BAR allocation will place any BAR marked as non-prefetchable into
125 * the non-prefetchable bridge window, which is 32bit only. It also added two
126 * new modes:
127 *
128 * c) A segmented BAR similar to a), but each segment can be individually
129 *    mapped to any PE. This is matches how the 32bit MMIO window worked on
130 *    IODA1&2.
131 *
132 * d) A segmented BAR with 8, 64, or 128 segments. This works similarly to a),
133 *    but with fewer segments and configurable base PE.
134 *
135 *    i.e. The n'th segment maps to the (n + base)'th PE.
136 *
137 *    The base PE is also required to be a multiple of the window size.
138 *
139 * Unfortunately, the OPAL API doesn't currently (as of skiboot v6.6) allow us
140 * to exploit any of the IODA3 features.
141 */
142
143static void pnv_pci_ioda_fixup_iov_resources(struct pci_dev *pdev)
144{
145	struct pnv_phb *phb = pci_bus_to_pnvhb(pdev->bus);
146	struct resource *res;
147	int i;
148	resource_size_t vf_bar_sz;
149	struct pnv_iov_data *iov;
150	int mul;
151
152	iov = kzalloc(sizeof(*iov), GFP_KERNEL);
153	if (!iov)
154		goto disable_iov;
155	pdev->dev.archdata.iov_data = iov;
156	mul = phb->ioda.total_pe_num;
157
158	for (i = 0; i < PCI_SRIOV_NUM_BARS; i++) {
159		res = &pdev->resource[i + PCI_IOV_RESOURCES];
160		if (!res->flags || res->parent)
161			continue;
162		if (!pnv_pci_is_m64_flags(res->flags)) {
163			dev_warn(&pdev->dev, "Don't support SR-IOV with non M64 VF BAR%d: %pR. \n",
164				 i, res);
165			goto disable_iov;
166		}
167
168		vf_bar_sz = pci_iov_resource_size(pdev, i + PCI_IOV_RESOURCES);
169
170		/*
171		 * Generally, one segmented M64 BAR maps one IOV BAR. However,
172		 * if a VF BAR is too large we end up wasting a lot of space.
173		 * If each VF needs more than 1/4 of the default m64 segment
174		 * then each VF BAR should be mapped in single-PE mode to reduce
175		 * the amount of space required. This does however limit the
176		 * number of VFs we can support.
177		 *
178		 * The 1/4 limit is arbitrary and can be tweaked.
179		 */
180		if (vf_bar_sz > (phb->ioda.m64_segsize >> 2)) {
181			/*
182			 * On PHB3, the minimum size alignment of M64 BAR in
183			 * single mode is 32MB. If this VF BAR is smaller than
184			 * 32MB, but still too large for a segmented window
185			 * then we can't map it and need to disable SR-IOV for
186			 * this device.
187			 */
188			if (vf_bar_sz < SZ_32M) {
189				pci_err(pdev, "VF BAR%d: %pR can't be mapped in single PE mode\n",
190					i, res);
191				goto disable_iov;
192			}
193
194			iov->m64_single_mode[i] = true;
195			continue;
196		}
197
198		/*
199		 * This BAR can be mapped with one segmented window, so adjust
200		 * te resource size to accommodate.
201		 */
202		pci_dbg(pdev, " Fixing VF BAR%d: %pR to\n", i, res);
203		res->end = res->start + vf_bar_sz * mul - 1;
204		pci_dbg(pdev, "                       %pR\n", res);
205
206		pci_info(pdev, "VF BAR%d: %pR (expanded to %d VFs for PE alignment)",
207			 i, res, mul);
208
209		iov->need_shift = true;
210	}
211
212	return;
213
214disable_iov:
215	/* Save ourselves some MMIO space by disabling the unusable BARs */
216	for (i = 0; i < PCI_SRIOV_NUM_BARS; i++) {
217		res = &pdev->resource[i + PCI_IOV_RESOURCES];
218		res->flags = 0;
219		res->end = res->start - 1;
220	}
221
222	pdev->dev.archdata.iov_data = NULL;
223	kfree(iov);
224}
225
226void pnv_pci_ioda_fixup_iov(struct pci_dev *pdev)
227{
228	if (pdev->is_virtfn) {
229		struct pnv_ioda_pe *pe = pnv_ioda_get_pe(pdev);
230
231		/*
232		 * VF PEs are single-device PEs so their pdev pointer needs to
233		 * be set. The pdev doesn't exist when the PE is allocated (in
234		 * (pcibios_sriov_enable()) so we fix it up here.
235		 */
236		pe->pdev = pdev;
237		WARN_ON(!(pe->flags & PNV_IODA_PE_VF));
238	} else if (pdev->is_physfn) {
239		/*
240		 * For PFs adjust their allocated IOV resources to match what
241		 * the PHB can support using it's M64 BAR table.
242		 */
243		pnv_pci_ioda_fixup_iov_resources(pdev);
244	}
245}
246
247resource_size_t pnv_pci_iov_resource_alignment(struct pci_dev *pdev,
248						      int resno)
249{
250	resource_size_t align = pci_iov_resource_size(pdev, resno);
251	struct pnv_phb *phb = pci_bus_to_pnvhb(pdev->bus);
252	struct pnv_iov_data *iov = pnv_iov_get(pdev);
253
254	/*
255	 * iov can be null if we have an SR-IOV device with IOV BAR that can't
256	 * be placed in the m64 space (i.e. The BAR is 32bit or non-prefetch).
257	 * In that case we don't allow VFs to be enabled since one of their
258	 * BARs would not be placed in the correct PE.
259	 */
260	if (!iov)
261		return align;
262
263	/*
264	 * If we're using single mode then we can just use the native VF BAR
265	 * alignment. We validated that it's possible to use a single PE
266	 * window above when we did the fixup.
267	 */
268	if (iov->m64_single_mode[resno - PCI_IOV_RESOURCES])
269		return align;
270
271	/*
272	 * On PowerNV platform, IOV BAR is mapped by M64 BAR to enable the
273	 * SR-IOV. While from hardware perspective, the range mapped by M64
274	 * BAR should be size aligned.
275	 *
276	 * This function returns the total IOV BAR size if M64 BAR is in
277	 * Shared PE mode or just VF BAR size if not.
278	 * If the M64 BAR is in Single PE mode, return the VF BAR size or
279	 * M64 segment size if IOV BAR size is less.
280	 */
281	return phb->ioda.total_pe_num * align;
282}
283
284static int pnv_pci_vf_release_m64(struct pci_dev *pdev, u16 num_vfs)
285{
286	struct pnv_iov_data   *iov;
287	struct pnv_phb        *phb;
288	int window_id;
289
290	phb = pci_bus_to_pnvhb(pdev->bus);
291	iov = pnv_iov_get(pdev);
292
293	for_each_set_bit(window_id, iov->used_m64_bar_mask, MAX_M64_BARS) {
294		opal_pci_phb_mmio_enable(phb->opal_id,
295					 OPAL_M64_WINDOW_TYPE,
296					 window_id,
297					 0);
298
299		clear_bit(window_id, &phb->ioda.m64_bar_alloc);
300	}
301
302	return 0;
303}
304
305
306/*
307 * PHB3 and beyond support segmented windows. The window's address range
308 * is subdivided into phb->ioda.total_pe_num segments and there's a 1-1
309 * mapping between PEs and segments.
310 */
311static int64_t pnv_ioda_map_m64_segmented(struct pnv_phb *phb,
312					  int window_id,
313					  resource_size_t start,
314					  resource_size_t size)
315{
316	int64_t rc;
317
318	rc = opal_pci_set_phb_mem_window(phb->opal_id,
319					 OPAL_M64_WINDOW_TYPE,
320					 window_id,
321					 start,
322					 0, /* unused */
323					 size);
324	if (rc)
325		goto out;
326
327	rc = opal_pci_phb_mmio_enable(phb->opal_id,
328				      OPAL_M64_WINDOW_TYPE,
329				      window_id,
330				      OPAL_ENABLE_M64_SPLIT);
331out:
332	if (rc)
333		pr_err("Failed to map M64 window #%d: %lld\n", window_id, rc);
334
335	return rc;
336}
337
338static int64_t pnv_ioda_map_m64_single(struct pnv_phb *phb,
339				       int pe_num,
340				       int window_id,
341				       resource_size_t start,
342				       resource_size_t size)
343{
344	int64_t rc;
345
346	/*
347	 * The API for setting up m64 mmio windows seems to have been designed
348	 * with P7-IOC in mind. For that chip each M64 BAR (window) had a fixed
349	 * split of 8 equally sized segments each of which could individually
350	 * assigned to a PE.
351	 *
352	 * The problem with this is that the API doesn't have any way to
353	 * communicate the number of segments we want on a BAR. This wasn't
354	 * a problem for p7-ioc since you didn't have a choice, but the
355	 * single PE windows added in PHB3 don't map cleanly to this API.
356	 *
357	 * As a result we've got this slightly awkward process where we
358	 * call opal_pci_map_pe_mmio_window() to put the single in single
359	 * PE mode, and set the PE for the window before setting the address
360	 * bounds. We need to do it this way because the single PE windows
361	 * for PHB3 have different alignment requirements on PHB3.
362	 */
363	rc = opal_pci_map_pe_mmio_window(phb->opal_id,
364					 pe_num,
365					 OPAL_M64_WINDOW_TYPE,
366					 window_id,
367					 0);
368	if (rc)
369		goto out;
370
371	/*
372	 * NB: In single PE mode the window needs to be aligned to 32MB
373	 */
374	rc = opal_pci_set_phb_mem_window(phb->opal_id,
375					 OPAL_M64_WINDOW_TYPE,
376					 window_id,
377					 start,
378					 0, /* ignored by FW, m64 is 1-1 */
379					 size);
380	if (rc)
381		goto out;
382
383	/*
384	 * Now actually enable it. We specified the BAR should be in "non-split"
385	 * mode so FW will validate that the BAR is in single PE mode.
386	 */
387	rc = opal_pci_phb_mmio_enable(phb->opal_id,
388				      OPAL_M64_WINDOW_TYPE,
389				      window_id,
390				      OPAL_ENABLE_M64_NON_SPLIT);
391out:
392	if (rc)
393		pr_err("Error mapping single PE BAR\n");
394
395	return rc;
396}
397
398static int pnv_pci_alloc_m64_bar(struct pnv_phb *phb, struct pnv_iov_data *iov)
399{
400	int win;
401
402	do {
403		win = find_next_zero_bit(&phb->ioda.m64_bar_alloc,
404				phb->ioda.m64_bar_idx + 1, 0);
405
406		if (win >= phb->ioda.m64_bar_idx + 1)
407			return -1;
408	} while (test_and_set_bit(win, &phb->ioda.m64_bar_alloc));
409
410	set_bit(win, iov->used_m64_bar_mask);
411
412	return win;
413}
414
415static int pnv_pci_vf_assign_m64(struct pci_dev *pdev, u16 num_vfs)
416{
417	struct pnv_iov_data   *iov;
418	struct pnv_phb        *phb;
419	int                    win;
420	struct resource       *res;
421	int                    i, j;
422	int64_t                rc;
423	resource_size_t        size, start;
424	int                    base_pe_num;
425
426	phb = pci_bus_to_pnvhb(pdev->bus);
427	iov = pnv_iov_get(pdev);
428
429	for (i = 0; i < PCI_SRIOV_NUM_BARS; i++) {
430		res = &pdev->resource[i + PCI_IOV_RESOURCES];
431		if (!res->flags || !res->parent)
432			continue;
433
434		/* don't need single mode? map everything in one go! */
435		if (!iov->m64_single_mode[i]) {
436			win = pnv_pci_alloc_m64_bar(phb, iov);
437			if (win < 0)
438				goto m64_failed;
439
440			size = resource_size(res);
441			start = res->start;
442
443			rc = pnv_ioda_map_m64_segmented(phb, win, start, size);
444			if (rc)
445				goto m64_failed;
446
447			continue;
448		}
449
450		/* otherwise map each VF with single PE BARs */
451		size = pci_iov_resource_size(pdev, PCI_IOV_RESOURCES + i);
452		base_pe_num = iov->vf_pe_arr[0].pe_number;
453
454		for (j = 0; j < num_vfs; j++) {
455			win = pnv_pci_alloc_m64_bar(phb, iov);
456			if (win < 0)
457				goto m64_failed;
458
459			start = res->start + size * j;
460			rc = pnv_ioda_map_m64_single(phb, win,
461						     base_pe_num + j,
462						     start,
463						     size);
464			if (rc)
465				goto m64_failed;
466		}
467	}
468	return 0;
469
470m64_failed:
471	pnv_pci_vf_release_m64(pdev, num_vfs);
472	return -EBUSY;
473}
474
475static void pnv_ioda_release_vf_PE(struct pci_dev *pdev)
476{
477	struct pnv_phb        *phb;
478	struct pnv_ioda_pe    *pe, *pe_n;
479
480	phb = pci_bus_to_pnvhb(pdev->bus);
481
482	if (!pdev->is_physfn)
483		return;
484
485	/* FIXME: Use pnv_ioda_release_pe()? */
486	list_for_each_entry_safe(pe, pe_n, &phb->ioda.pe_list, list) {
487		if (pe->parent_dev != pdev)
488			continue;
489
490		pnv_pci_ioda2_release_pe_dma(pe);
491
492		/* Remove from list */
493		mutex_lock(&phb->ioda.pe_list_mutex);
494		list_del(&pe->list);
495		mutex_unlock(&phb->ioda.pe_list_mutex);
496
497		pnv_ioda_deconfigure_pe(phb, pe);
498
499		pnv_ioda_free_pe(pe);
500	}
501}
502
503static int pnv_pci_vf_resource_shift(struct pci_dev *dev, int offset)
504{
505	struct resource *res, res2;
506	struct pnv_iov_data *iov;
507	resource_size_t size;
508	u16 num_vfs;
509	int i;
510
511	if (!dev->is_physfn)
512		return -EINVAL;
513	iov = pnv_iov_get(dev);
514
515	/*
516	 * "offset" is in VFs.  The M64 windows are sized so that when they
517	 * are segmented, each segment is the same size as the IOV BAR.
518	 * Each segment is in a separate PE, and the high order bits of the
519	 * address are the PE number.  Therefore, each VF's BAR is in a
520	 * separate PE, and changing the IOV BAR start address changes the
521	 * range of PEs the VFs are in.
522	 */
523	num_vfs = iov->num_vfs;
524	for (i = 0; i < PCI_SRIOV_NUM_BARS; i++) {
525		res = &dev->resource[i + PCI_IOV_RESOURCES];
526		if (!res->flags || !res->parent)
527			continue;
528		if (iov->m64_single_mode[i])
529			continue;
530
531		/*
532		 * The actual IOV BAR range is determined by the start address
533		 * and the actual size for num_vfs VFs BAR.  This check is to
534		 * make sure that after shifting, the range will not overlap
535		 * with another device.
536		 */
537		size = pci_iov_resource_size(dev, i + PCI_IOV_RESOURCES);
538		res2.flags = res->flags;
539		res2.start = res->start + (size * offset);
540		res2.end = res2.start + (size * num_vfs) - 1;
541
542		if (res2.end > res->end) {
543			dev_err(&dev->dev, "VF BAR%d: %pR would extend past %pR (trying to enable %d VFs shifted by %d)\n",
544				i, &res2, res, num_vfs, offset);
545			return -EBUSY;
546		}
547	}
548
549	/*
550	 * Since M64 BAR shares segments among all possible 256 PEs,
551	 * we have to shift the beginning of PF IOV BAR to make it start from
552	 * the segment which belongs to the PE number assigned to the first VF.
553	 * This creates a "hole" in the /proc/iomem which could be used for
554	 * allocating other resources so we reserve this area below and
555	 * release when IOV is released.
556	 */
557	for (i = 0; i < PCI_SRIOV_NUM_BARS; i++) {
558		res = &dev->resource[i + PCI_IOV_RESOURCES];
559		if (!res->flags || !res->parent)
560			continue;
561		if (iov->m64_single_mode[i])
562			continue;
563
564		size = pci_iov_resource_size(dev, i + PCI_IOV_RESOURCES);
565		res2 = *res;
566		res->start += size * offset;
567
568		dev_info(&dev->dev, "VF BAR%d: %pR shifted to %pR (%sabling %d VFs shifted by %d)\n",
569			 i, &res2, res, (offset > 0) ? "En" : "Dis",
570			 num_vfs, offset);
571
572		if (offset < 0) {
573			devm_release_resource(&dev->dev, &iov->holes[i]);
574			memset(&iov->holes[i], 0, sizeof(iov->holes[i]));
575		}
576
577		pci_update_resource(dev, i + PCI_IOV_RESOURCES);
578
579		if (offset > 0) {
580			iov->holes[i].start = res2.start;
581			iov->holes[i].end = res2.start + size * offset - 1;
582			iov->holes[i].flags = IORESOURCE_BUS;
583			iov->holes[i].name = "pnv_iov_reserved";
584			devm_request_resource(&dev->dev, res->parent,
585					&iov->holes[i]);
586		}
587	}
588	return 0;
589}
590
591static void pnv_pci_sriov_disable(struct pci_dev *pdev)
592{
593	u16                    num_vfs, base_pe;
594	struct pnv_iov_data   *iov;
595
596	iov = pnv_iov_get(pdev);
597	if (WARN_ON(!iov))
598		return;
599
600	num_vfs = iov->num_vfs;
601	base_pe = iov->vf_pe_arr[0].pe_number;
602
603	/* Release VF PEs */
604	pnv_ioda_release_vf_PE(pdev);
605
606	/* Un-shift the IOV BARs if we need to */
607	if (iov->need_shift)
608		pnv_pci_vf_resource_shift(pdev, -base_pe);
609
610	/* Release M64 windows */
611	pnv_pci_vf_release_m64(pdev, num_vfs);
612}
613
614static void pnv_ioda_setup_vf_PE(struct pci_dev *pdev, u16 num_vfs)
615{
616	struct pnv_phb        *phb;
617	struct pnv_ioda_pe    *pe;
618	int                    pe_num;
619	u16                    vf_index;
620	struct pnv_iov_data   *iov;
621	struct pci_dn         *pdn;
622
623	if (!pdev->is_physfn)
624		return;
625
626	phb = pci_bus_to_pnvhb(pdev->bus);
627	pdn = pci_get_pdn(pdev);
628	iov = pnv_iov_get(pdev);
629
630	/* Reserve PE for each VF */
631	for (vf_index = 0; vf_index < num_vfs; vf_index++) {
632		int vf_devfn = pci_iov_virtfn_devfn(pdev, vf_index);
633		int vf_bus = pci_iov_virtfn_bus(pdev, vf_index);
634		struct pci_dn *vf_pdn;
635
636		pe = &iov->vf_pe_arr[vf_index];
637		pe->phb = phb;
638		pe->flags = PNV_IODA_PE_VF;
639		pe->pbus = NULL;
640		pe->parent_dev = pdev;
641		pe->mve_number = -1;
642		pe->rid = (vf_bus << 8) | vf_devfn;
643
644		pe_num = pe->pe_number;
645		pe_info(pe, "VF %04d:%02d:%02d.%d associated with PE#%x\n",
646			pci_domain_nr(pdev->bus), pdev->bus->number,
647			PCI_SLOT(vf_devfn), PCI_FUNC(vf_devfn), pe_num);
648
649		if (pnv_ioda_configure_pe(phb, pe)) {
650			/* XXX What do we do here ? */
651			pnv_ioda_free_pe(pe);
652			pe->pdev = NULL;
653			continue;
654		}
655
656		/* Put PE to the list */
657		mutex_lock(&phb->ioda.pe_list_mutex);
658		list_add_tail(&pe->list, &phb->ioda.pe_list);
659		mutex_unlock(&phb->ioda.pe_list_mutex);
660
661		/* associate this pe to it's pdn */
662		list_for_each_entry(vf_pdn, &pdn->parent->child_list, list) {
663			if (vf_pdn->busno == vf_bus &&
664			    vf_pdn->devfn == vf_devfn) {
665				vf_pdn->pe_number = pe_num;
666				break;
667			}
668		}
669
670		pnv_pci_ioda2_setup_dma_pe(phb, pe);
671	}
672}
673
674static int pnv_pci_sriov_enable(struct pci_dev *pdev, u16 num_vfs)
675{
676	struct pnv_ioda_pe    *base_pe;
677	struct pnv_iov_data   *iov;
678	struct pnv_phb        *phb;
679	int                    ret;
680	u16                    i;
681
682	phb = pci_bus_to_pnvhb(pdev->bus);
683	iov = pnv_iov_get(pdev);
684
685	/*
686	 * There's a calls to IODA2 PE setup code littered throughout. We could
687	 * probably fix that, but we'd still have problems due to the
688	 * restriction inherent on IODA1 PHBs.
689	 *
690	 * NB: We class IODA3 as IODA2 since they're very similar.
691	 */
692	if (phb->type != PNV_PHB_IODA2) {
693		pci_err(pdev, "SR-IOV is not supported on this PHB\n");
694		return -ENXIO;
695	}
696
697	if (!iov) {
698		dev_info(&pdev->dev, "don't support this SRIOV device with non 64bit-prefetchable IOV BAR\n");
699		return -ENOSPC;
700	}
701
702	/* allocate a contiguous block of PEs for our VFs */
703	base_pe = pnv_ioda_alloc_pe(phb, num_vfs);
704	if (!base_pe) {
705		pci_err(pdev, "Unable to allocate PEs for %d VFs\n", num_vfs);
706		return -EBUSY;
707	}
708
709	iov->vf_pe_arr = base_pe;
710	iov->num_vfs = num_vfs;
711
712	/* Assign M64 window accordingly */
713	ret = pnv_pci_vf_assign_m64(pdev, num_vfs);
714	if (ret) {
715		dev_info(&pdev->dev, "Not enough M64 window resources\n");
716		goto m64_failed;
717	}
718
719	/*
720	 * When using one M64 BAR to map one IOV BAR, we need to shift
721	 * the IOV BAR according to the PE# allocated to the VFs.
722	 * Otherwise, the PE# for the VF will conflict with others.
723	 */
724	if (iov->need_shift) {
725		ret = pnv_pci_vf_resource_shift(pdev, base_pe->pe_number);
726		if (ret)
727			goto shift_failed;
728	}
729
730	/* Setup VF PEs */
731	pnv_ioda_setup_vf_PE(pdev, num_vfs);
732
733	return 0;
734
735shift_failed:
736	pnv_pci_vf_release_m64(pdev, num_vfs);
737
738m64_failed:
739	for (i = 0; i < num_vfs; i++)
740		pnv_ioda_free_pe(&iov->vf_pe_arr[i]);
741
742	return ret;
743}
744
745int pnv_pcibios_sriov_disable(struct pci_dev *pdev)
746{
747	pnv_pci_sriov_disable(pdev);
748
749	/* Release PCI data */
750	remove_sriov_vf_pdns(pdev);
751	return 0;
752}
753
754int pnv_pcibios_sriov_enable(struct pci_dev *pdev, u16 num_vfs)
755{
756	/* Allocate PCI data */
757	add_sriov_vf_pdns(pdev);
758
759	return pnv_pci_sriov_enable(pdev, num_vfs);
760}
761