1// SPDX-License-Identifier: GPL-2.0-or-later
2/*
3 * Support PCI/PCIe on PowerNV platforms
4 *
5 * Copyright 2011 Benjamin Herrenschmidt, IBM Corp.
6 */
7
8#undef DEBUG
9
10#include <linux/kernel.h>
11#include <linux/pci.h>
12#include <linux/crash_dump.h>
13#include <linux/delay.h>
14#include <linux/string.h>
15#include <linux/init.h>
16#include <linux/memblock.h>
17#include <linux/irq.h>
18#include <linux/io.h>
19#include <linux/msi.h>
20#include <linux/iommu.h>
21#include <linux/rculist.h>
22#include <linux/sizes.h>
23#include <linux/debugfs.h>
24#include <linux/of_address.h>
25#include <linux/of_irq.h>
26
27#include <asm/sections.h>
28#include <asm/io.h>
29#include <asm/pci-bridge.h>
30#include <asm/machdep.h>
31#include <asm/msi_bitmap.h>
32#include <asm/ppc-pci.h>
33#include <asm/opal.h>
34#include <asm/iommu.h>
35#include <asm/tce.h>
36#include <asm/xics.h>
37#include <asm/firmware.h>
38#include <asm/pnv-pci.h>
39#include <asm/mmzone.h>
40#include <asm/xive.h>
41
42#include <misc/cxl-base.h>
43
44#include "powernv.h"
45#include "pci.h"
46#include "../../../../drivers/pci/pci.h"
47
48/* This array is indexed with enum pnv_phb_type */
49static const char * const pnv_phb_names[] = { "IODA2", "NPU_OCAPI" };
50
51static void pnv_pci_ioda2_set_bypass(struct pnv_ioda_pe *pe, bool enable);
52static void pnv_pci_configure_bus(struct pci_bus *bus);
53
54void pe_level_printk(const struct pnv_ioda_pe *pe, const char *level,
55			    const char *fmt, ...)
56{
57	struct va_format vaf;
58	va_list args;
59	char pfix[32];
60
61	va_start(args, fmt);
62
63	vaf.fmt = fmt;
64	vaf.va = &args;
65
66	if (pe->flags & PNV_IODA_PE_DEV)
67		strscpy(pfix, dev_name(&pe->pdev->dev), sizeof(pfix));
68	else if (pe->flags & (PNV_IODA_PE_BUS | PNV_IODA_PE_BUS_ALL))
69		sprintf(pfix, "%04x:%02x     ",
70			pci_domain_nr(pe->pbus), pe->pbus->number);
71#ifdef CONFIG_PCI_IOV
72	else if (pe->flags & PNV_IODA_PE_VF)
73		sprintf(pfix, "%04x:%02x:%2x.%d",
74			pci_domain_nr(pe->parent_dev->bus),
75			(pe->rid & 0xff00) >> 8,
76			PCI_SLOT(pe->rid), PCI_FUNC(pe->rid));
77#endif /* CONFIG_PCI_IOV*/
78
79	printk("%spci %s: [PE# %.2x] %pV",
80	       level, pfix, pe->pe_number, &vaf);
81
82	va_end(args);
83}
84
85static bool pnv_iommu_bypass_disabled __read_mostly;
86static bool pci_reset_phbs __read_mostly;
87
88static int __init iommu_setup(char *str)
89{
90	if (!str)
91		return -EINVAL;
92
93	while (*str) {
94		if (!strncmp(str, "nobypass", 8)) {
95			pnv_iommu_bypass_disabled = true;
96			pr_info("PowerNV: IOMMU bypass window disabled.\n");
97			break;
98		}
99		str += strcspn(str, ",");
100		if (*str == ',')
101			str++;
102	}
103
104	return 0;
105}
106early_param("iommu", iommu_setup);
107
108static int __init pci_reset_phbs_setup(char *str)
109{
110	pci_reset_phbs = true;
111	return 0;
112}
113
114early_param("ppc_pci_reset_phbs", pci_reset_phbs_setup);
115
116static struct pnv_ioda_pe *pnv_ioda_init_pe(struct pnv_phb *phb, int pe_no)
117{
118	s64 rc;
119
120	phb->ioda.pe_array[pe_no].phb = phb;
121	phb->ioda.pe_array[pe_no].pe_number = pe_no;
122	phb->ioda.pe_array[pe_no].dma_setup_done = false;
123
124	/*
125	 * Clear the PE frozen state as it might be put into frozen state
126	 * in the last PCI remove path. It's not harmful to do so when the
127	 * PE is already in unfrozen state.
128	 */
129	rc = opal_pci_eeh_freeze_clear(phb->opal_id, pe_no,
130				       OPAL_EEH_ACTION_CLEAR_FREEZE_ALL);
131	if (rc != OPAL_SUCCESS && rc != OPAL_UNSUPPORTED)
132		pr_warn("%s: Error %lld unfreezing PHB#%x-PE#%x\n",
133			__func__, rc, phb->hose->global_number, pe_no);
134
135	return &phb->ioda.pe_array[pe_no];
136}
137
138static void pnv_ioda_reserve_pe(struct pnv_phb *phb, int pe_no)
139{
140	if (!(pe_no >= 0 && pe_no < phb->ioda.total_pe_num)) {
141		pr_warn("%s: Invalid PE %x on PHB#%x\n",
142			__func__, pe_no, phb->hose->global_number);
143		return;
144	}
145
146	mutex_lock(&phb->ioda.pe_alloc_mutex);
147	if (test_and_set_bit(pe_no, phb->ioda.pe_alloc))
148		pr_debug("%s: PE %x was reserved on PHB#%x\n",
149			 __func__, pe_no, phb->hose->global_number);
150	mutex_unlock(&phb->ioda.pe_alloc_mutex);
151
152	pnv_ioda_init_pe(phb, pe_no);
153}
154
155struct pnv_ioda_pe *pnv_ioda_alloc_pe(struct pnv_phb *phb, int count)
156{
157	struct pnv_ioda_pe *ret = NULL;
158	int run = 0, pe, i;
159
160	mutex_lock(&phb->ioda.pe_alloc_mutex);
161
162	/* scan backwards for a run of @count cleared bits */
163	for (pe = phb->ioda.total_pe_num - 1; pe >= 0; pe--) {
164		if (test_bit(pe, phb->ioda.pe_alloc)) {
165			run = 0;
166			continue;
167		}
168
169		run++;
170		if (run == count)
171			break;
172	}
173	if (run != count)
174		goto out;
175
176	for (i = pe; i < pe + count; i++) {
177		set_bit(i, phb->ioda.pe_alloc);
178		pnv_ioda_init_pe(phb, i);
179	}
180	ret = &phb->ioda.pe_array[pe];
181
182out:
183	mutex_unlock(&phb->ioda.pe_alloc_mutex);
184	return ret;
185}
186
187void pnv_ioda_free_pe(struct pnv_ioda_pe *pe)
188{
189	struct pnv_phb *phb = pe->phb;
190	unsigned int pe_num = pe->pe_number;
191
192	WARN_ON(pe->pdev);
193	memset(pe, 0, sizeof(struct pnv_ioda_pe));
194
195	mutex_lock(&phb->ioda.pe_alloc_mutex);
196	clear_bit(pe_num, phb->ioda.pe_alloc);
197	mutex_unlock(&phb->ioda.pe_alloc_mutex);
198}
199
200/* The default M64 BAR is shared by all PEs */
201static int pnv_ioda2_init_m64(struct pnv_phb *phb)
202{
203	const char *desc;
204	struct resource *r;
205	s64 rc;
206
207	/* Configure the default M64 BAR */
208	rc = opal_pci_set_phb_mem_window(phb->opal_id,
209					 OPAL_M64_WINDOW_TYPE,
210					 phb->ioda.m64_bar_idx,
211					 phb->ioda.m64_base,
212					 0, /* unused */
213					 phb->ioda.m64_size);
214	if (rc != OPAL_SUCCESS) {
215		desc = "configuring";
216		goto fail;
217	}
218
219	/* Enable the default M64 BAR */
220	rc = opal_pci_phb_mmio_enable(phb->opal_id,
221				      OPAL_M64_WINDOW_TYPE,
222				      phb->ioda.m64_bar_idx,
223				      OPAL_ENABLE_M64_SPLIT);
224	if (rc != OPAL_SUCCESS) {
225		desc = "enabling";
226		goto fail;
227	}
228
229	/*
230	 * Exclude the segments for reserved and root bus PE, which
231	 * are first or last two PEs.
232	 */
233	r = &phb->hose->mem_resources[1];
234	if (phb->ioda.reserved_pe_idx == 0)
235		r->start += (2 * phb->ioda.m64_segsize);
236	else if (phb->ioda.reserved_pe_idx == (phb->ioda.total_pe_num - 1))
237		r->end -= (2 * phb->ioda.m64_segsize);
238	else
239		pr_warn("  Cannot strip M64 segment for reserved PE#%x\n",
240			phb->ioda.reserved_pe_idx);
241
242	return 0;
243
244fail:
245	pr_warn("  Failure %lld %s M64 BAR#%d\n",
246		rc, desc, phb->ioda.m64_bar_idx);
247	opal_pci_phb_mmio_enable(phb->opal_id,
248				 OPAL_M64_WINDOW_TYPE,
249				 phb->ioda.m64_bar_idx,
250				 OPAL_DISABLE_M64);
251	return -EIO;
252}
253
254static void pnv_ioda_reserve_dev_m64_pe(struct pci_dev *pdev,
255					 unsigned long *pe_bitmap)
256{
257	struct pnv_phb *phb = pci_bus_to_pnvhb(pdev->bus);
258	struct resource *r;
259	resource_size_t base, sgsz, start, end;
260	int segno, i;
261
262	base = phb->ioda.m64_base;
263	sgsz = phb->ioda.m64_segsize;
264	for (i = 0; i <= PCI_ROM_RESOURCE; i++) {
265		r = &pdev->resource[i];
266		if (!r->parent || !pnv_pci_is_m64(phb, r))
267			continue;
268
269		start = ALIGN_DOWN(r->start - base, sgsz);
270		end = ALIGN(r->end - base, sgsz);
271		for (segno = start / sgsz; segno < end / sgsz; segno++) {
272			if (pe_bitmap)
273				set_bit(segno, pe_bitmap);
274			else
275				pnv_ioda_reserve_pe(phb, segno);
276		}
277	}
278}
279
280static void pnv_ioda_reserve_m64_pe(struct pci_bus *bus,
281				    unsigned long *pe_bitmap,
282				    bool all)
283{
284	struct pci_dev *pdev;
285
286	list_for_each_entry(pdev, &bus->devices, bus_list) {
287		pnv_ioda_reserve_dev_m64_pe(pdev, pe_bitmap);
288
289		if (all && pdev->subordinate)
290			pnv_ioda_reserve_m64_pe(pdev->subordinate,
291						pe_bitmap, all);
292	}
293}
294
295static struct pnv_ioda_pe *pnv_ioda_pick_m64_pe(struct pci_bus *bus, bool all)
296{
297	struct pnv_phb *phb = pci_bus_to_pnvhb(bus);
298	struct pnv_ioda_pe *master_pe, *pe;
299	unsigned long size, *pe_alloc;
300	int i;
301
302	/* Root bus shouldn't use M64 */
303	if (pci_is_root_bus(bus))
304		return NULL;
305
306	/* Allocate bitmap */
307	size = ALIGN(phb->ioda.total_pe_num / 8, sizeof(unsigned long));
308	pe_alloc = kzalloc(size, GFP_KERNEL);
309	if (!pe_alloc) {
310		pr_warn("%s: Out of memory !\n",
311			__func__);
312		return NULL;
313	}
314
315	/* Figure out reserved PE numbers by the PE */
316	pnv_ioda_reserve_m64_pe(bus, pe_alloc, all);
317
318	/*
319	 * the current bus might not own M64 window and that's all
320	 * contributed by its child buses. For the case, we needn't
321	 * pick M64 dependent PE#.
322	 */
323	if (bitmap_empty(pe_alloc, phb->ioda.total_pe_num)) {
324		kfree(pe_alloc);
325		return NULL;
326	}
327
328	/*
329	 * Figure out the master PE and put all slave PEs to master
330	 * PE's list to form compound PE.
331	 */
332	master_pe = NULL;
333	i = -1;
334	while ((i = find_next_bit(pe_alloc, phb->ioda.total_pe_num, i + 1)) <
335		phb->ioda.total_pe_num) {
336		pe = &phb->ioda.pe_array[i];
337
338		phb->ioda.m64_segmap[pe->pe_number] = pe->pe_number;
339		if (!master_pe) {
340			pe->flags |= PNV_IODA_PE_MASTER;
341			INIT_LIST_HEAD(&pe->slaves);
342			master_pe = pe;
343		} else {
344			pe->flags |= PNV_IODA_PE_SLAVE;
345			pe->master = master_pe;
346			list_add_tail(&pe->list, &master_pe->slaves);
347		}
348	}
349
350	kfree(pe_alloc);
351	return master_pe;
352}
353
354static void __init pnv_ioda_parse_m64_window(struct pnv_phb *phb)
355{
356	struct pci_controller *hose = phb->hose;
357	struct device_node *dn = hose->dn;
358	struct resource *res;
359	u32 m64_range[2], i;
360	const __be32 *r;
361	u64 pci_addr;
362
363	if (phb->type != PNV_PHB_IODA2) {
364		pr_info("  Not support M64 window\n");
365		return;
366	}
367
368	if (!firmware_has_feature(FW_FEATURE_OPAL)) {
369		pr_info("  Firmware too old to support M64 window\n");
370		return;
371	}
372
373	r = of_get_property(dn, "ibm,opal-m64-window", NULL);
374	if (!r) {
375		pr_info("  No <ibm,opal-m64-window> on %pOF\n",
376			dn);
377		return;
378	}
379
380	/*
381	 * Find the available M64 BAR range and pickup the last one for
382	 * covering the whole 64-bits space. We support only one range.
383	 */
384	if (of_property_read_u32_array(dn, "ibm,opal-available-m64-ranges",
385				       m64_range, 2)) {
386		/* In absence of the property, assume 0..15 */
387		m64_range[0] = 0;
388		m64_range[1] = 16;
389	}
390	/* We only support 64 bits in our allocator */
391	if (m64_range[1] > 63) {
392		pr_warn("%s: Limiting M64 range to 63 (from %d) on PHB#%x\n",
393			__func__, m64_range[1], phb->hose->global_number);
394		m64_range[1] = 63;
395	}
396	/* Empty range, no m64 */
397	if (m64_range[1] <= m64_range[0]) {
398		pr_warn("%s: M64 empty, disabling M64 usage on PHB#%x\n",
399			__func__, phb->hose->global_number);
400		return;
401	}
402
403	/* Configure M64 informations */
404	res = &hose->mem_resources[1];
405	res->name = dn->full_name;
406	res->start = of_translate_address(dn, r + 2);
407	res->end = res->start + of_read_number(r + 4, 2) - 1;
408	res->flags = (IORESOURCE_MEM | IORESOURCE_MEM_64 | IORESOURCE_PREFETCH);
409	pci_addr = of_read_number(r, 2);
410	hose->mem_offset[1] = res->start - pci_addr;
411
412	phb->ioda.m64_size = resource_size(res);
413	phb->ioda.m64_segsize = phb->ioda.m64_size / phb->ioda.total_pe_num;
414	phb->ioda.m64_base = pci_addr;
415
416	/* This lines up nicely with the display from processing OF ranges */
417	pr_info(" MEM 0x%016llx..0x%016llx -> 0x%016llx (M64 #%d..%d)\n",
418		res->start, res->end, pci_addr, m64_range[0],
419		m64_range[0] + m64_range[1] - 1);
420
421	/* Mark all M64 used up by default */
422	phb->ioda.m64_bar_alloc = (unsigned long)-1;
423
424	/* Use last M64 BAR to cover M64 window */
425	m64_range[1]--;
426	phb->ioda.m64_bar_idx = m64_range[0] + m64_range[1];
427
428	pr_info(" Using M64 #%d as default window\n", phb->ioda.m64_bar_idx);
429
430	/* Mark remaining ones free */
431	for (i = m64_range[0]; i < m64_range[1]; i++)
432		clear_bit(i, &phb->ioda.m64_bar_alloc);
433
434	/*
435	 * Setup init functions for M64 based on IODA version, IODA3 uses
436	 * the IODA2 code.
437	 */
438	phb->init_m64 = pnv_ioda2_init_m64;
439}
440
441static void pnv_ioda_freeze_pe(struct pnv_phb *phb, int pe_no)
442{
443	struct pnv_ioda_pe *pe = &phb->ioda.pe_array[pe_no];
444	struct pnv_ioda_pe *slave;
445	s64 rc;
446
447	/* Fetch master PE */
448	if (pe->flags & PNV_IODA_PE_SLAVE) {
449		pe = pe->master;
450		if (WARN_ON(!pe || !(pe->flags & PNV_IODA_PE_MASTER)))
451			return;
452
453		pe_no = pe->pe_number;
454	}
455
456	/* Freeze master PE */
457	rc = opal_pci_eeh_freeze_set(phb->opal_id,
458				     pe_no,
459				     OPAL_EEH_ACTION_SET_FREEZE_ALL);
460	if (rc != OPAL_SUCCESS) {
461		pr_warn("%s: Failure %lld freezing PHB#%x-PE#%x\n",
462			__func__, rc, phb->hose->global_number, pe_no);
463		return;
464	}
465
466	/* Freeze slave PEs */
467	if (!(pe->flags & PNV_IODA_PE_MASTER))
468		return;
469
470	list_for_each_entry(slave, &pe->slaves, list) {
471		rc = opal_pci_eeh_freeze_set(phb->opal_id,
472					     slave->pe_number,
473					     OPAL_EEH_ACTION_SET_FREEZE_ALL);
474		if (rc != OPAL_SUCCESS)
475			pr_warn("%s: Failure %lld freezing PHB#%x-PE#%x\n",
476				__func__, rc, phb->hose->global_number,
477				slave->pe_number);
478	}
479}
480
481static int pnv_ioda_unfreeze_pe(struct pnv_phb *phb, int pe_no, int opt)
482{
483	struct pnv_ioda_pe *pe, *slave;
484	s64 rc;
485
486	/* Find master PE */
487	pe = &phb->ioda.pe_array[pe_no];
488	if (pe->flags & PNV_IODA_PE_SLAVE) {
489		pe = pe->master;
490		WARN_ON(!pe || !(pe->flags & PNV_IODA_PE_MASTER));
491		pe_no = pe->pe_number;
492	}
493
494	/* Clear frozen state for master PE */
495	rc = opal_pci_eeh_freeze_clear(phb->opal_id, pe_no, opt);
496	if (rc != OPAL_SUCCESS) {
497		pr_warn("%s: Failure %lld clear %d on PHB#%x-PE#%x\n",
498			__func__, rc, opt, phb->hose->global_number, pe_no);
499		return -EIO;
500	}
501
502	if (!(pe->flags & PNV_IODA_PE_MASTER))
503		return 0;
504
505	/* Clear frozen state for slave PEs */
506	list_for_each_entry(slave, &pe->slaves, list) {
507		rc = opal_pci_eeh_freeze_clear(phb->opal_id,
508					     slave->pe_number,
509					     opt);
510		if (rc != OPAL_SUCCESS) {
511			pr_warn("%s: Failure %lld clear %d on PHB#%x-PE#%x\n",
512				__func__, rc, opt, phb->hose->global_number,
513				slave->pe_number);
514			return -EIO;
515		}
516	}
517
518	return 0;
519}
520
521static int pnv_ioda_get_pe_state(struct pnv_phb *phb, int pe_no)
522{
523	struct pnv_ioda_pe *slave, *pe;
524	u8 fstate = 0, state;
525	__be16 pcierr = 0;
526	s64 rc;
527
528	/* Sanity check on PE number */
529	if (pe_no < 0 || pe_no >= phb->ioda.total_pe_num)
530		return OPAL_EEH_STOPPED_PERM_UNAVAIL;
531
532	/*
533	 * Fetch the master PE and the PE instance might be
534	 * not initialized yet.
535	 */
536	pe = &phb->ioda.pe_array[pe_no];
537	if (pe->flags & PNV_IODA_PE_SLAVE) {
538		pe = pe->master;
539		WARN_ON(!pe || !(pe->flags & PNV_IODA_PE_MASTER));
540		pe_no = pe->pe_number;
541	}
542
543	/* Check the master PE */
544	rc = opal_pci_eeh_freeze_status(phb->opal_id, pe_no,
545					&state, &pcierr, NULL);
546	if (rc != OPAL_SUCCESS) {
547		pr_warn("%s: Failure %lld getting "
548			"PHB#%x-PE#%x state\n",
549			__func__, rc,
550			phb->hose->global_number, pe_no);
551		return OPAL_EEH_STOPPED_TEMP_UNAVAIL;
552	}
553
554	/* Check the slave PE */
555	if (!(pe->flags & PNV_IODA_PE_MASTER))
556		return state;
557
558	list_for_each_entry(slave, &pe->slaves, list) {
559		rc = opal_pci_eeh_freeze_status(phb->opal_id,
560						slave->pe_number,
561						&fstate,
562						&pcierr,
563						NULL);
564		if (rc != OPAL_SUCCESS) {
565			pr_warn("%s: Failure %lld getting "
566				"PHB#%x-PE#%x state\n",
567				__func__, rc,
568				phb->hose->global_number, slave->pe_number);
569			return OPAL_EEH_STOPPED_TEMP_UNAVAIL;
570		}
571
572		/*
573		 * Override the result based on the ascending
574		 * priority.
575		 */
576		if (fstate > state)
577			state = fstate;
578	}
579
580	return state;
581}
582
583struct pnv_ioda_pe *pnv_pci_bdfn_to_pe(struct pnv_phb *phb, u16 bdfn)
584{
585	int pe_number = phb->ioda.pe_rmap[bdfn];
586
587	if (pe_number == IODA_INVALID_PE)
588		return NULL;
589
590	return &phb->ioda.pe_array[pe_number];
591}
592
593struct pnv_ioda_pe *pnv_ioda_get_pe(struct pci_dev *dev)
594{
595	struct pnv_phb *phb = pci_bus_to_pnvhb(dev->bus);
596	struct pci_dn *pdn = pci_get_pdn(dev);
597
598	if (!pdn)
599		return NULL;
600	if (pdn->pe_number == IODA_INVALID_PE)
601		return NULL;
602	return &phb->ioda.pe_array[pdn->pe_number];
603}
604
605static int pnv_ioda_set_one_peltv(struct pnv_phb *phb,
606				  struct pnv_ioda_pe *parent,
607				  struct pnv_ioda_pe *child,
608				  bool is_add)
609{
610	const char *desc = is_add ? "adding" : "removing";
611	uint8_t op = is_add ? OPAL_ADD_PE_TO_DOMAIN :
612			      OPAL_REMOVE_PE_FROM_DOMAIN;
613	struct pnv_ioda_pe *slave;
614	long rc;
615
616	/* Parent PE affects child PE */
617	rc = opal_pci_set_peltv(phb->opal_id, parent->pe_number,
618				child->pe_number, op);
619	if (rc != OPAL_SUCCESS) {
620		pe_warn(child, "OPAL error %ld %s to parent PELTV\n",
621			rc, desc);
622		return -ENXIO;
623	}
624
625	if (!(child->flags & PNV_IODA_PE_MASTER))
626		return 0;
627
628	/* Compound case: parent PE affects slave PEs */
629	list_for_each_entry(slave, &child->slaves, list) {
630		rc = opal_pci_set_peltv(phb->opal_id, parent->pe_number,
631					slave->pe_number, op);
632		if (rc != OPAL_SUCCESS) {
633			pe_warn(slave, "OPAL error %ld %s to parent PELTV\n",
634				rc, desc);
635			return -ENXIO;
636		}
637	}
638
639	return 0;
640}
641
642static int pnv_ioda_set_peltv(struct pnv_phb *phb,
643			      struct pnv_ioda_pe *pe,
644			      bool is_add)
645{
646	struct pnv_ioda_pe *slave;
647	struct pci_dev *pdev = NULL;
648	int ret;
649
650	/*
651	 * Clear PE frozen state. If it's master PE, we need
652	 * clear slave PE frozen state as well.
653	 */
654	if (is_add) {
655		opal_pci_eeh_freeze_clear(phb->opal_id, pe->pe_number,
656					  OPAL_EEH_ACTION_CLEAR_FREEZE_ALL);
657		if (pe->flags & PNV_IODA_PE_MASTER) {
658			list_for_each_entry(slave, &pe->slaves, list)
659				opal_pci_eeh_freeze_clear(phb->opal_id,
660							  slave->pe_number,
661							  OPAL_EEH_ACTION_CLEAR_FREEZE_ALL);
662		}
663	}
664
665	/*
666	 * Associate PE in PELT. We need add the PE into the
667	 * corresponding PELT-V as well. Otherwise, the error
668	 * originated from the PE might contribute to other
669	 * PEs.
670	 */
671	ret = pnv_ioda_set_one_peltv(phb, pe, pe, is_add);
672	if (ret)
673		return ret;
674
675	/* For compound PEs, any one affects all of them */
676	if (pe->flags & PNV_IODA_PE_MASTER) {
677		list_for_each_entry(slave, &pe->slaves, list) {
678			ret = pnv_ioda_set_one_peltv(phb, slave, pe, is_add);
679			if (ret)
680				return ret;
681		}
682	}
683
684	if (pe->flags & (PNV_IODA_PE_BUS_ALL | PNV_IODA_PE_BUS))
685		pdev = pe->pbus->self;
686	else if (pe->flags & PNV_IODA_PE_DEV)
687		pdev = pe->pdev->bus->self;
688#ifdef CONFIG_PCI_IOV
689	else if (pe->flags & PNV_IODA_PE_VF)
690		pdev = pe->parent_dev;
691#endif /* CONFIG_PCI_IOV */
692	while (pdev) {
693		struct pci_dn *pdn = pci_get_pdn(pdev);
694		struct pnv_ioda_pe *parent;
695
696		if (pdn && pdn->pe_number != IODA_INVALID_PE) {
697			parent = &phb->ioda.pe_array[pdn->pe_number];
698			ret = pnv_ioda_set_one_peltv(phb, parent, pe, is_add);
699			if (ret)
700				return ret;
701		}
702
703		pdev = pdev->bus->self;
704	}
705
706	return 0;
707}
708
709static void pnv_ioda_unset_peltv(struct pnv_phb *phb,
710				 struct pnv_ioda_pe *pe,
711				 struct pci_dev *parent)
712{
713	int64_t rc;
714
715	while (parent) {
716		struct pci_dn *pdn = pci_get_pdn(parent);
717
718		if (pdn && pdn->pe_number != IODA_INVALID_PE) {
719			rc = opal_pci_set_peltv(phb->opal_id, pdn->pe_number,
720						pe->pe_number,
721						OPAL_REMOVE_PE_FROM_DOMAIN);
722			/* XXX What to do in case of error ? */
723		}
724		parent = parent->bus->self;
725	}
726
727	opal_pci_eeh_freeze_clear(phb->opal_id, pe->pe_number,
728				  OPAL_EEH_ACTION_CLEAR_FREEZE_ALL);
729
730	/* Disassociate PE in PELT */
731	rc = opal_pci_set_peltv(phb->opal_id, pe->pe_number,
732				pe->pe_number, OPAL_REMOVE_PE_FROM_DOMAIN);
733	if (rc)
734		pe_warn(pe, "OPAL error %lld remove self from PELTV\n", rc);
735}
736
737int pnv_ioda_deconfigure_pe(struct pnv_phb *phb, struct pnv_ioda_pe *pe)
738{
739	struct pci_dev *parent;
740	uint8_t bcomp, dcomp, fcomp;
741	int64_t rc;
742	long rid_end, rid;
743
744	/* Currently, we just deconfigure VF PE. Bus PE will always there.*/
745	if (pe->pbus) {
746		int count;
747
748		dcomp = OPAL_IGNORE_RID_DEVICE_NUMBER;
749		fcomp = OPAL_IGNORE_RID_FUNCTION_NUMBER;
750		parent = pe->pbus->self;
751		if (pe->flags & PNV_IODA_PE_BUS_ALL)
752			count = resource_size(&pe->pbus->busn_res);
753		else
754			count = 1;
755
756		switch(count) {
757		case  1: bcomp = OpalPciBusAll;         break;
758		case  2: bcomp = OpalPciBus7Bits;       break;
759		case  4: bcomp = OpalPciBus6Bits;       break;
760		case  8: bcomp = OpalPciBus5Bits;       break;
761		case 16: bcomp = OpalPciBus4Bits;       break;
762		case 32: bcomp = OpalPciBus3Bits;       break;
763		default:
764			dev_err(&pe->pbus->dev, "Number of subordinate buses %d unsupported\n",
765			        count);
766			/* Do an exact match only */
767			bcomp = OpalPciBusAll;
768		}
769		rid_end = pe->rid + (count << 8);
770	} else {
771#ifdef CONFIG_PCI_IOV
772		if (pe->flags & PNV_IODA_PE_VF)
773			parent = pe->parent_dev;
774		else
775#endif
776			parent = pe->pdev->bus->self;
777		bcomp = OpalPciBusAll;
778		dcomp = OPAL_COMPARE_RID_DEVICE_NUMBER;
779		fcomp = OPAL_COMPARE_RID_FUNCTION_NUMBER;
780		rid_end = pe->rid + 1;
781	}
782
783	/* Clear the reverse map */
784	for (rid = pe->rid; rid < rid_end; rid++)
785		phb->ioda.pe_rmap[rid] = IODA_INVALID_PE;
786
787	/*
788	 * Release from all parents PELT-V. NPUs don't have a PELTV
789	 * table
790	 */
791	if (phb->type != PNV_PHB_NPU_OCAPI)
792		pnv_ioda_unset_peltv(phb, pe, parent);
793
794	rc = opal_pci_set_pe(phb->opal_id, pe->pe_number, pe->rid,
795			     bcomp, dcomp, fcomp, OPAL_UNMAP_PE);
796	if (rc)
797		pe_err(pe, "OPAL error %lld trying to setup PELT table\n", rc);
798
799	pe->pbus = NULL;
800	pe->pdev = NULL;
801#ifdef CONFIG_PCI_IOV
802	pe->parent_dev = NULL;
803#endif
804
805	return 0;
806}
807
808int pnv_ioda_configure_pe(struct pnv_phb *phb, struct pnv_ioda_pe *pe)
809{
810	uint8_t bcomp, dcomp, fcomp;
811	long rc, rid_end, rid;
812
813	/* Bus validation ? */
814	if (pe->pbus) {
815		int count;
816
817		dcomp = OPAL_IGNORE_RID_DEVICE_NUMBER;
818		fcomp = OPAL_IGNORE_RID_FUNCTION_NUMBER;
819		if (pe->flags & PNV_IODA_PE_BUS_ALL)
820			count = resource_size(&pe->pbus->busn_res);
821		else
822			count = 1;
823
824		switch(count) {
825		case  1: bcomp = OpalPciBusAll;		break;
826		case  2: bcomp = OpalPciBus7Bits;	break;
827		case  4: bcomp = OpalPciBus6Bits;	break;
828		case  8: bcomp = OpalPciBus5Bits;	break;
829		case 16: bcomp = OpalPciBus4Bits;	break;
830		case 32: bcomp = OpalPciBus3Bits;	break;
831		default:
832			dev_err(&pe->pbus->dev, "Number of subordinate buses %d unsupported\n",
833			        count);
834			/* Do an exact match only */
835			bcomp = OpalPciBusAll;
836		}
837		rid_end = pe->rid + (count << 8);
838	} else {
839		bcomp = OpalPciBusAll;
840		dcomp = OPAL_COMPARE_RID_DEVICE_NUMBER;
841		fcomp = OPAL_COMPARE_RID_FUNCTION_NUMBER;
842		rid_end = pe->rid + 1;
843	}
844
845	/*
846	 * Associate PE in PELT. We need add the PE into the
847	 * corresponding PELT-V as well. Otherwise, the error
848	 * originated from the PE might contribute to other
849	 * PEs.
850	 */
851	rc = opal_pci_set_pe(phb->opal_id, pe->pe_number, pe->rid,
852			     bcomp, dcomp, fcomp, OPAL_MAP_PE);
853	if (rc) {
854		pe_err(pe, "OPAL error %ld trying to setup PELT table\n", rc);
855		return -ENXIO;
856	}
857
858	/*
859	 * Configure PELTV. NPUs don't have a PELTV table so skip
860	 * configuration on them.
861	 */
862	if (phb->type != PNV_PHB_NPU_OCAPI)
863		pnv_ioda_set_peltv(phb, pe, true);
864
865	/* Setup reverse map */
866	for (rid = pe->rid; rid < rid_end; rid++)
867		phb->ioda.pe_rmap[rid] = pe->pe_number;
868
869	pe->mve_number = 0;
870
871	return 0;
872}
873
874static struct pnv_ioda_pe *pnv_ioda_setup_dev_PE(struct pci_dev *dev)
875{
876	struct pnv_phb *phb = pci_bus_to_pnvhb(dev->bus);
877	struct pci_dn *pdn = pci_get_pdn(dev);
878	struct pnv_ioda_pe *pe;
879
880	if (!pdn) {
881		pr_err("%s: Device tree node not associated properly\n",
882			   pci_name(dev));
883		return NULL;
884	}
885	if (pdn->pe_number != IODA_INVALID_PE)
886		return NULL;
887
888	pe = pnv_ioda_alloc_pe(phb, 1);
889	if (!pe) {
890		pr_warn("%s: Not enough PE# available, disabling device\n",
891			pci_name(dev));
892		return NULL;
893	}
894
895	/* NOTE: We don't get a reference for the pointer in the PE
896	 * data structure, both the device and PE structures should be
897	 * destroyed at the same time.
898	 *
899	 * At some point we want to remove the PDN completely anyways
900	 */
901	pdn->pe_number = pe->pe_number;
902	pe->flags = PNV_IODA_PE_DEV;
903	pe->pdev = dev;
904	pe->pbus = NULL;
905	pe->mve_number = -1;
906	pe->rid = dev->bus->number << 8 | pdn->devfn;
907	pe->device_count++;
908
909	pe_info(pe, "Associated device to PE\n");
910
911	if (pnv_ioda_configure_pe(phb, pe)) {
912		/* XXX What do we do here ? */
913		pnv_ioda_free_pe(pe);
914		pdn->pe_number = IODA_INVALID_PE;
915		pe->pdev = NULL;
916		return NULL;
917	}
918
919	/* Put PE to the list */
920	mutex_lock(&phb->ioda.pe_list_mutex);
921	list_add_tail(&pe->list, &phb->ioda.pe_list);
922	mutex_unlock(&phb->ioda.pe_list_mutex);
923	return pe;
924}
925
926/*
927 * There're 2 types of PCI bus sensitive PEs: One that is compromised of
928 * single PCI bus. Another one that contains the primary PCI bus and its
929 * subordinate PCI devices and buses. The second type of PE is normally
930 * orgiriated by PCIe-to-PCI bridge or PLX switch downstream ports.
931 */
932static struct pnv_ioda_pe *pnv_ioda_setup_bus_PE(struct pci_bus *bus, bool all)
933{
934	struct pnv_phb *phb = pci_bus_to_pnvhb(bus);
935	struct pnv_ioda_pe *pe = NULL;
936	unsigned int pe_num;
937
938	/*
939	 * In partial hotplug case, the PE instance might be still alive.
940	 * We should reuse it instead of allocating a new one.
941	 */
942	pe_num = phb->ioda.pe_rmap[bus->number << 8];
943	if (WARN_ON(pe_num != IODA_INVALID_PE)) {
944		pe = &phb->ioda.pe_array[pe_num];
945		return NULL;
946	}
947
948	/* PE number for root bus should have been reserved */
949	if (pci_is_root_bus(bus))
950		pe = &phb->ioda.pe_array[phb->ioda.root_pe_idx];
951
952	/* Check if PE is determined by M64 */
953	if (!pe)
954		pe = pnv_ioda_pick_m64_pe(bus, all);
955
956	/* The PE number isn't pinned by M64 */
957	if (!pe)
958		pe = pnv_ioda_alloc_pe(phb, 1);
959
960	if (!pe) {
961		pr_warn("%s: Not enough PE# available for PCI bus %04x:%02x\n",
962			__func__, pci_domain_nr(bus), bus->number);
963		return NULL;
964	}
965
966	pe->flags |= (all ? PNV_IODA_PE_BUS_ALL : PNV_IODA_PE_BUS);
967	pe->pbus = bus;
968	pe->pdev = NULL;
969	pe->mve_number = -1;
970	pe->rid = bus->busn_res.start << 8;
971
972	if (all)
973		pe_info(pe, "Secondary bus %pad..%pad associated with PE#%x\n",
974			&bus->busn_res.start, &bus->busn_res.end,
975			pe->pe_number);
976	else
977		pe_info(pe, "Secondary bus %pad associated with PE#%x\n",
978			&bus->busn_res.start, pe->pe_number);
979
980	if (pnv_ioda_configure_pe(phb, pe)) {
981		/* XXX What do we do here ? */
982		pnv_ioda_free_pe(pe);
983		pe->pbus = NULL;
984		return NULL;
985	}
986
987	/* Put PE to the list */
988	list_add_tail(&pe->list, &phb->ioda.pe_list);
989
990	return pe;
991}
992
993static void pnv_pci_ioda_dma_dev_setup(struct pci_dev *pdev)
994{
995	struct pnv_phb *phb = pci_bus_to_pnvhb(pdev->bus);
996	struct pci_dn *pdn = pci_get_pdn(pdev);
997	struct pnv_ioda_pe *pe;
998
999	/* Check if the BDFN for this device is associated with a PE yet */
1000	pe = pnv_pci_bdfn_to_pe(phb, pci_dev_id(pdev));
1001	if (!pe) {
1002		/* VF PEs should be pre-configured in pnv_pci_sriov_enable() */
1003		if (WARN_ON(pdev->is_virtfn))
1004			return;
1005
1006		pnv_pci_configure_bus(pdev->bus);
1007		pe = pnv_pci_bdfn_to_pe(phb, pci_dev_id(pdev));
1008		pci_info(pdev, "Configured PE#%x\n", pe ? pe->pe_number : 0xfffff);
1009
1010
1011		/*
1012		 * If we can't setup the IODA PE something has gone horribly
1013		 * wrong and we can't enable DMA for the device.
1014		 */
1015		if (WARN_ON(!pe))
1016			return;
1017	} else {
1018		pci_info(pdev, "Added to existing PE#%x\n", pe->pe_number);
1019	}
1020
1021	/*
1022	 * We assume that bridges *probably* don't need to do any DMA so we can
1023	 * skip allocating a TCE table, etc unless we get a non-bridge device.
1024	 */
1025	if (!pe->dma_setup_done && !pci_is_bridge(pdev)) {
1026		switch (phb->type) {
1027		case PNV_PHB_IODA2:
1028			pnv_pci_ioda2_setup_dma_pe(phb, pe);
1029			break;
1030		default:
1031			pr_warn("%s: No DMA for PHB#%x (type %d)\n",
1032				__func__, phb->hose->global_number, phb->type);
1033		}
1034	}
1035
1036	if (pdn)
1037		pdn->pe_number = pe->pe_number;
1038	pe->device_count++;
1039
1040	WARN_ON(get_dma_ops(&pdev->dev) != &dma_iommu_ops);
1041	pdev->dev.archdata.dma_offset = pe->tce_bypass_base;
1042	set_iommu_table_base(&pdev->dev, pe->table_group.tables[0]);
1043
1044	/* PEs with a DMA weight of zero won't have a group */
1045	if (pe->table_group.group)
1046		iommu_add_device(&pe->table_group, &pdev->dev);
1047}
1048
1049/*
1050 * Reconfigure TVE#0 to be usable as 64-bit DMA space.
1051 *
1052 * The first 4GB of virtual memory for a PE is reserved for 32-bit accesses.
1053 * Devices can only access more than that if bit 59 of the PCI address is set
1054 * by hardware, which indicates TVE#1 should be used instead of TVE#0.
1055 * Many PCI devices are not capable of addressing that many bits, and as a
1056 * result are limited to the 4GB of virtual memory made available to 32-bit
1057 * devices in TVE#0.
1058 *
1059 * In order to work around this, reconfigure TVE#0 to be suitable for 64-bit
1060 * devices by configuring the virtual memory past the first 4GB inaccessible
1061 * by 64-bit DMAs.  This should only be used by devices that want more than
1062 * 4GB, and only on PEs that have no 32-bit devices.
1063 *
1064 * Currently this will only work on PHB3 (POWER8).
1065 */
1066static int pnv_pci_ioda_dma_64bit_bypass(struct pnv_ioda_pe *pe)
1067{
1068	u64 window_size, table_size, tce_count, addr;
1069	struct page *table_pages;
1070	u64 tce_order = 28; /* 256MB TCEs */
1071	__be64 *tces;
1072	s64 rc;
1073
1074	/*
1075	 * Window size needs to be a power of two, but needs to account for
1076	 * shifting memory by the 4GB offset required to skip 32bit space.
1077	 */
1078	window_size = roundup_pow_of_two(memory_hotplug_max() + (1ULL << 32));
1079	tce_count = window_size >> tce_order;
1080	table_size = tce_count << 3;
1081
1082	if (table_size < PAGE_SIZE)
1083		table_size = PAGE_SIZE;
1084
1085	table_pages = alloc_pages_node(pe->phb->hose->node, GFP_KERNEL,
1086				       get_order(table_size));
1087	if (!table_pages)
1088		goto err;
1089
1090	tces = page_address(table_pages);
1091	if (!tces)
1092		goto err;
1093
1094	memset(tces, 0, table_size);
1095
1096	for (addr = 0; addr < memory_hotplug_max(); addr += (1 << tce_order)) {
1097		tces[(addr + (1ULL << 32)) >> tce_order] =
1098			cpu_to_be64(addr | TCE_PCI_READ | TCE_PCI_WRITE);
1099	}
1100
1101	rc = opal_pci_map_pe_dma_window(pe->phb->opal_id,
1102					pe->pe_number,
1103					/* reconfigure window 0 */
1104					(pe->pe_number << 1) + 0,
1105					1,
1106					__pa(tces),
1107					table_size,
1108					1 << tce_order);
1109	if (rc == OPAL_SUCCESS) {
1110		pe_info(pe, "Using 64-bit DMA iommu bypass (through TVE#0)\n");
1111		return 0;
1112	}
1113err:
1114	pe_err(pe, "Error configuring 64-bit DMA bypass\n");
1115	return -EIO;
1116}
1117
1118static bool pnv_pci_ioda_iommu_bypass_supported(struct pci_dev *pdev,
1119		u64 dma_mask)
1120{
1121	struct pnv_phb *phb = pci_bus_to_pnvhb(pdev->bus);
1122	struct pci_dn *pdn = pci_get_pdn(pdev);
1123	struct pnv_ioda_pe *pe;
1124
1125	if (WARN_ON(!pdn || pdn->pe_number == IODA_INVALID_PE))
1126		return false;
1127
1128	pe = &phb->ioda.pe_array[pdn->pe_number];
1129	if (pe->tce_bypass_enabled) {
1130		u64 top = pe->tce_bypass_base + memblock_end_of_DRAM() - 1;
1131		if (dma_mask >= top)
1132			return true;
1133	}
1134
1135	/*
1136	 * If the device can't set the TCE bypass bit but still wants
1137	 * to access 4GB or more, on PHB3 we can reconfigure TVE#0 to
1138	 * bypass the 32-bit region and be usable for 64-bit DMAs.
1139	 * The device needs to be able to address all of this space.
1140	 */
1141	if (dma_mask >> 32 &&
1142	    dma_mask > (memory_hotplug_max() + (1ULL << 32)) &&
1143	    /* pe->pdev should be set if it's a single device, pe->pbus if not */
1144	    (pe->device_count == 1 || !pe->pbus) &&
1145	    phb->model == PNV_PHB_MODEL_PHB3) {
1146		/* Configure the bypass mode */
1147		s64 rc = pnv_pci_ioda_dma_64bit_bypass(pe);
1148		if (rc)
1149			return false;
1150		/* 4GB offset bypasses 32-bit space */
1151		pdev->dev.archdata.dma_offset = (1ULL << 32);
1152		return true;
1153	}
1154
1155	return false;
1156}
1157
1158static inline __be64 __iomem *pnv_ioda_get_inval_reg(struct pnv_phb *phb)
1159{
1160	return phb->regs + 0x210;
1161}
1162
1163#ifdef CONFIG_IOMMU_API
1164/* Common for IODA1 and IODA2 */
1165static int pnv_ioda_tce_xchg_no_kill(struct iommu_table *tbl, long index,
1166		unsigned long *hpa, enum dma_data_direction *direction)
1167{
1168	return pnv_tce_xchg(tbl, index, hpa, direction);
1169}
1170#endif
1171
1172#define PHB3_TCE_KILL_INVAL_ALL		PPC_BIT(0)
1173#define PHB3_TCE_KILL_INVAL_PE		PPC_BIT(1)
1174#define PHB3_TCE_KILL_INVAL_ONE		PPC_BIT(2)
1175
1176static inline void pnv_pci_phb3_tce_invalidate_pe(struct pnv_ioda_pe *pe)
1177{
1178	/* 01xb - invalidate TCEs that match the specified PE# */
1179	__be64 __iomem *invalidate = pnv_ioda_get_inval_reg(pe->phb);
1180	unsigned long val = PHB3_TCE_KILL_INVAL_PE | (pe->pe_number & 0xFF);
1181
1182	mb(); /* Ensure above stores are visible */
1183	__raw_writeq_be(val, invalidate);
1184}
1185
1186static void pnv_pci_phb3_tce_invalidate(struct pnv_ioda_pe *pe,
1187					unsigned shift, unsigned long index,
1188					unsigned long npages)
1189{
1190	__be64 __iomem *invalidate = pnv_ioda_get_inval_reg(pe->phb);
1191	unsigned long start, end, inc;
1192
1193	/* We'll invalidate DMA address in PE scope */
1194	start = PHB3_TCE_KILL_INVAL_ONE;
1195	start |= (pe->pe_number & 0xFF);
1196	end = start;
1197
1198	/* Figure out the start, end and step */
1199	start |= (index << shift);
1200	end |= ((index + npages - 1) << shift);
1201	inc = (0x1ull << shift);
1202	mb();
1203
1204	while (start <= end) {
1205		__raw_writeq_be(start, invalidate);
1206		start += inc;
1207	}
1208}
1209
1210static inline void pnv_pci_ioda2_tce_invalidate_pe(struct pnv_ioda_pe *pe)
1211{
1212	struct pnv_phb *phb = pe->phb;
1213
1214	if (phb->model == PNV_PHB_MODEL_PHB3 && phb->regs)
1215		pnv_pci_phb3_tce_invalidate_pe(pe);
1216	else
1217		opal_pci_tce_kill(phb->opal_id, OPAL_PCI_TCE_KILL_PE,
1218				  pe->pe_number, 0, 0, 0);
1219}
1220
1221static void pnv_pci_ioda2_tce_invalidate(struct iommu_table *tbl,
1222		unsigned long index, unsigned long npages)
1223{
1224	struct iommu_table_group_link *tgl;
1225
1226	list_for_each_entry_lockless(tgl, &tbl->it_group_list, next) {
1227		struct pnv_ioda_pe *pe = container_of(tgl->table_group,
1228				struct pnv_ioda_pe, table_group);
1229		struct pnv_phb *phb = pe->phb;
1230		unsigned int shift = tbl->it_page_shift;
1231
1232		if (phb->model == PNV_PHB_MODEL_PHB3 && phb->regs)
1233			pnv_pci_phb3_tce_invalidate(pe, shift,
1234						    index, npages);
1235		else
1236			opal_pci_tce_kill(phb->opal_id,
1237					  OPAL_PCI_TCE_KILL_PAGES,
1238					  pe->pe_number, 1u << shift,
1239					  index << shift, npages);
1240	}
1241}
1242
1243static int pnv_ioda2_tce_build(struct iommu_table *tbl, long index,
1244		long npages, unsigned long uaddr,
1245		enum dma_data_direction direction,
1246		unsigned long attrs)
1247{
1248	int ret = pnv_tce_build(tbl, index, npages, uaddr, direction,
1249			attrs);
1250
1251	if (!ret)
1252		pnv_pci_ioda2_tce_invalidate(tbl, index, npages);
1253
1254	return ret;
1255}
1256
1257static void pnv_ioda2_tce_free(struct iommu_table *tbl, long index,
1258		long npages)
1259{
1260	pnv_tce_free(tbl, index, npages);
1261
1262	pnv_pci_ioda2_tce_invalidate(tbl, index, npages);
1263}
1264
1265static struct iommu_table_ops pnv_ioda2_iommu_ops = {
1266	.set = pnv_ioda2_tce_build,
1267#ifdef CONFIG_IOMMU_API
1268	.xchg_no_kill = pnv_ioda_tce_xchg_no_kill,
1269	.tce_kill = pnv_pci_ioda2_tce_invalidate,
1270	.useraddrptr = pnv_tce_useraddrptr,
1271#endif
1272	.clear = pnv_ioda2_tce_free,
1273	.get = pnv_tce_get,
1274	.free = pnv_pci_ioda2_table_free_pages,
1275};
1276
1277static long pnv_pci_ioda2_set_window(struct iommu_table_group *table_group,
1278		int num, struct iommu_table *tbl)
1279{
1280	struct pnv_ioda_pe *pe = container_of(table_group, struct pnv_ioda_pe,
1281			table_group);
1282	struct pnv_phb *phb = pe->phb;
1283	int64_t rc;
1284	const unsigned long size = tbl->it_indirect_levels ?
1285			tbl->it_level_size : tbl->it_size;
1286	const __u64 start_addr = tbl->it_offset << tbl->it_page_shift;
1287	const __u64 win_size = tbl->it_size << tbl->it_page_shift;
1288
1289	pe_info(pe, "Setting up window#%d %llx..%llx pg=%lx\n",
1290		num, start_addr, start_addr + win_size - 1,
1291		IOMMU_PAGE_SIZE(tbl));
1292
1293	/*
1294	 * Map TCE table through TVT. The TVE index is the PE number
1295	 * shifted by 1 bit for 32-bits DMA space.
1296	 */
1297	rc = opal_pci_map_pe_dma_window(phb->opal_id,
1298			pe->pe_number,
1299			(pe->pe_number << 1) + num,
1300			tbl->it_indirect_levels + 1,
1301			__pa(tbl->it_base),
1302			size << 3,
1303			IOMMU_PAGE_SIZE(tbl));
1304	if (rc) {
1305		pe_err(pe, "Failed to configure TCE table, err %lld\n", rc);
1306		return rc;
1307	}
1308
1309	pnv_pci_link_table_and_group(phb->hose->node, num,
1310			tbl, &pe->table_group);
1311	pnv_pci_ioda2_tce_invalidate_pe(pe);
1312
1313	return 0;
1314}
1315
1316static void pnv_pci_ioda2_set_bypass(struct pnv_ioda_pe *pe, bool enable)
1317{
1318	uint16_t window_id = (pe->pe_number << 1 ) + 1;
1319	int64_t rc;
1320
1321	pe_info(pe, "%sabling 64-bit DMA bypass\n", enable ? "En" : "Dis");
1322	if (enable) {
1323		phys_addr_t top = memblock_end_of_DRAM();
1324
1325		top = roundup_pow_of_two(top);
1326		rc = opal_pci_map_pe_dma_window_real(pe->phb->opal_id,
1327						     pe->pe_number,
1328						     window_id,
1329						     pe->tce_bypass_base,
1330						     top);
1331	} else {
1332		rc = opal_pci_map_pe_dma_window_real(pe->phb->opal_id,
1333						     pe->pe_number,
1334						     window_id,
1335						     pe->tce_bypass_base,
1336						     0);
1337	}
1338	if (rc)
1339		pe_err(pe, "OPAL error %lld configuring bypass window\n", rc);
1340	else
1341		pe->tce_bypass_enabled = enable;
1342}
1343
1344static long pnv_pci_ioda2_create_table(struct iommu_table_group *table_group,
1345		int num, __u32 page_shift, __u64 window_size, __u32 levels,
1346		bool alloc_userspace_copy, struct iommu_table **ptbl)
1347{
1348	struct pnv_ioda_pe *pe = container_of(table_group, struct pnv_ioda_pe,
1349			table_group);
1350	int nid = pe->phb->hose->node;
1351	__u64 bus_offset = num ? pe->tce_bypass_base : table_group->tce32_start;
1352	long ret;
1353	struct iommu_table *tbl;
1354
1355	tbl = pnv_pci_table_alloc(nid);
1356	if (!tbl)
1357		return -ENOMEM;
1358
1359	tbl->it_ops = &pnv_ioda2_iommu_ops;
1360
1361	ret = pnv_pci_ioda2_table_alloc_pages(nid,
1362			bus_offset, page_shift, window_size,
1363			levels, alloc_userspace_copy, tbl);
1364	if (ret) {
1365		iommu_tce_table_put(tbl);
1366		return ret;
1367	}
1368
1369	*ptbl = tbl;
1370
1371	return 0;
1372}
1373
1374static long pnv_pci_ioda2_setup_default_config(struct pnv_ioda_pe *pe)
1375{
1376	struct iommu_table *tbl = NULL;
1377	long rc;
1378	unsigned long res_start, res_end;
1379
1380	/*
1381	 * crashkernel= specifies the kdump kernel's maximum memory at
1382	 * some offset and there is no guaranteed the result is a power
1383	 * of 2, which will cause errors later.
1384	 */
1385	const u64 max_memory = __rounddown_pow_of_two(memory_hotplug_max());
1386
1387	/*
1388	 * In memory constrained environments, e.g. kdump kernel, the
1389	 * DMA window can be larger than available memory, which will
1390	 * cause errors later.
1391	 */
1392	const u64 maxblock = 1UL << (PAGE_SHIFT + MAX_PAGE_ORDER);
1393
1394	/*
1395	 * We create the default window as big as we can. The constraint is
1396	 * the max order of allocation possible. The TCE table is likely to
1397	 * end up being multilevel and with on-demand allocation in place,
1398	 * the initial use is not going to be huge as the default window aims
1399	 * to support crippled devices (i.e. not fully 64bit DMAble) only.
1400	 */
1401	/* iommu_table::it_map uses 1 bit per IOMMU page, hence 8 */
1402	const u64 window_size = min((maxblock * 8) << PAGE_SHIFT, max_memory);
1403	/* Each TCE level cannot exceed maxblock so go multilevel if needed */
1404	unsigned long tces_order = ilog2(window_size >> PAGE_SHIFT);
1405	unsigned long tcelevel_order = ilog2(maxblock >> 3);
1406	unsigned int levels = tces_order / tcelevel_order;
1407
1408	if (tces_order % tcelevel_order)
1409		levels += 1;
1410	/*
1411	 * We try to stick to default levels (which is >1 at the moment) in
1412	 * order to save memory by relying on on-demain TCE level allocation.
1413	 */
1414	levels = max_t(unsigned int, levels, POWERNV_IOMMU_DEFAULT_LEVELS);
1415
1416	rc = pnv_pci_ioda2_create_table(&pe->table_group, 0, PAGE_SHIFT,
1417			window_size, levels, false, &tbl);
1418	if (rc) {
1419		pe_err(pe, "Failed to create 32-bit TCE table, err %ld",
1420				rc);
1421		return rc;
1422	}
1423
1424	/* We use top part of 32bit space for MMIO so exclude it from DMA */
1425	res_start = 0;
1426	res_end = 0;
1427	if (window_size > pe->phb->ioda.m32_pci_base) {
1428		res_start = pe->phb->ioda.m32_pci_base >> tbl->it_page_shift;
1429		res_end = min(window_size, SZ_4G) >> tbl->it_page_shift;
1430	}
1431
1432	tbl->it_index = (pe->phb->hose->global_number << 16) | pe->pe_number;
1433	if (iommu_init_table(tbl, pe->phb->hose->node, res_start, res_end))
1434		rc = pnv_pci_ioda2_set_window(&pe->table_group, 0, tbl);
1435	else
1436		rc = -ENOMEM;
1437	if (rc) {
1438		pe_err(pe, "Failed to configure 32-bit TCE table, err %ld\n", rc);
1439		iommu_tce_table_put(tbl);
1440		tbl = NULL; /* This clears iommu_table_base below */
1441	}
1442	if (!pnv_iommu_bypass_disabled)
1443		pnv_pci_ioda2_set_bypass(pe, true);
1444
1445	/*
1446	 * Set table base for the case of IOMMU DMA use. Usually this is done
1447	 * from dma_dev_setup() which is not called when a device is returned
1448	 * from VFIO so do it here.
1449	 */
1450	if (pe->pdev)
1451		set_iommu_table_base(&pe->pdev->dev, tbl);
1452
1453	return 0;
1454}
1455
1456static long pnv_pci_ioda2_unset_window(struct iommu_table_group *table_group,
1457		int num)
1458{
1459	struct pnv_ioda_pe *pe = container_of(table_group, struct pnv_ioda_pe,
1460			table_group);
1461	struct pnv_phb *phb = pe->phb;
1462	long ret;
1463
1464	pe_info(pe, "Removing DMA window #%d\n", num);
1465
1466	ret = opal_pci_map_pe_dma_window(phb->opal_id, pe->pe_number,
1467			(pe->pe_number << 1) + num,
1468			0/* levels */, 0/* table address */,
1469			0/* table size */, 0/* page size */);
1470	if (ret)
1471		pe_warn(pe, "Unmapping failed, ret = %ld\n", ret);
1472	else
1473		pnv_pci_ioda2_tce_invalidate_pe(pe);
1474
1475	pnv_pci_unlink_table_and_group(table_group->tables[num], table_group);
1476
1477	return ret;
1478}
1479
1480#ifdef CONFIG_IOMMU_API
1481unsigned long pnv_pci_ioda2_get_table_size(__u32 page_shift,
1482		__u64 window_size, __u32 levels)
1483{
1484	unsigned long bytes = 0;
1485	const unsigned window_shift = ilog2(window_size);
1486	unsigned entries_shift = window_shift - page_shift;
1487	unsigned table_shift = entries_shift + 3;
1488	unsigned long tce_table_size = max(0x1000UL, 1UL << table_shift);
1489	unsigned long direct_table_size;
1490
1491	if (!levels || (levels > POWERNV_IOMMU_MAX_LEVELS) ||
1492			!is_power_of_2(window_size))
1493		return 0;
1494
1495	/* Calculate a direct table size from window_size and levels */
1496	entries_shift = (entries_shift + levels - 1) / levels;
1497	table_shift = entries_shift + 3;
1498	table_shift = max_t(unsigned, table_shift, PAGE_SHIFT);
1499	direct_table_size =  1UL << table_shift;
1500
1501	for ( ; levels; --levels) {
1502		bytes += ALIGN(tce_table_size, direct_table_size);
1503
1504		tce_table_size /= direct_table_size;
1505		tce_table_size <<= 3;
1506		tce_table_size = max_t(unsigned long,
1507				tce_table_size, direct_table_size);
1508	}
1509
1510	return bytes + bytes; /* one for HW table, one for userspace copy */
1511}
1512
1513static long pnv_pci_ioda2_create_table_userspace(
1514		struct iommu_table_group *table_group,
1515		int num, __u32 page_shift, __u64 window_size, __u32 levels,
1516		struct iommu_table **ptbl)
1517{
1518	long ret = pnv_pci_ioda2_create_table(table_group,
1519			num, page_shift, window_size, levels, true, ptbl);
1520
1521	if (!ret)
1522		(*ptbl)->it_allocated_size = pnv_pci_ioda2_get_table_size(
1523				page_shift, window_size, levels);
1524	return ret;
1525}
1526
1527static void pnv_ioda_setup_bus_dma(struct pnv_ioda_pe *pe, struct pci_bus *bus)
1528{
1529	struct pci_dev *dev;
1530
1531	list_for_each_entry(dev, &bus->devices, bus_list) {
1532		set_iommu_table_base(&dev->dev, pe->table_group.tables[0]);
1533		dev->dev.archdata.dma_offset = pe->tce_bypass_base;
1534
1535		if ((pe->flags & PNV_IODA_PE_BUS_ALL) && dev->subordinate)
1536			pnv_ioda_setup_bus_dma(pe, dev->subordinate);
1537	}
1538}
1539
1540static long pnv_ioda2_take_ownership(struct iommu_table_group *table_group)
1541{
1542	struct pnv_ioda_pe *pe = container_of(table_group, struct pnv_ioda_pe,
1543						table_group);
1544	/* Store @tbl as pnv_pci_ioda2_unset_window() resets it */
1545	struct iommu_table *tbl = pe->table_group.tables[0];
1546
1547	/*
1548	 * iommu_ops transfers the ownership per a device and we mode
1549	 * the group ownership with the first device in the group.
1550	 */
1551	if (!tbl)
1552		return 0;
1553
1554	pnv_pci_ioda2_set_bypass(pe, false);
1555	pnv_pci_ioda2_unset_window(&pe->table_group, 0);
1556	if (pe->pbus)
1557		pnv_ioda_setup_bus_dma(pe, pe->pbus);
1558	else if (pe->pdev)
1559		set_iommu_table_base(&pe->pdev->dev, NULL);
1560	iommu_tce_table_put(tbl);
1561
1562	return 0;
1563}
1564
1565static void pnv_ioda2_release_ownership(struct iommu_table_group *table_group)
1566{
1567	struct pnv_ioda_pe *pe = container_of(table_group, struct pnv_ioda_pe,
1568						table_group);
1569
1570	/* See the comment about iommu_ops above */
1571	if (pe->table_group.tables[0])
1572		return;
1573	pnv_pci_ioda2_setup_default_config(pe);
1574	if (pe->pbus)
1575		pnv_ioda_setup_bus_dma(pe, pe->pbus);
1576}
1577
1578static struct iommu_table_group_ops pnv_pci_ioda2_ops = {
1579	.get_table_size = pnv_pci_ioda2_get_table_size,
1580	.create_table = pnv_pci_ioda2_create_table_userspace,
1581	.set_window = pnv_pci_ioda2_set_window,
1582	.unset_window = pnv_pci_ioda2_unset_window,
1583	.take_ownership = pnv_ioda2_take_ownership,
1584	.release_ownership = pnv_ioda2_release_ownership,
1585};
1586#endif
1587
1588void pnv_pci_ioda2_setup_dma_pe(struct pnv_phb *phb,
1589				struct pnv_ioda_pe *pe)
1590{
1591	int64_t rc;
1592
1593	/* TVE #1 is selected by PCI address bit 59 */
1594	pe->tce_bypass_base = 1ull << 59;
1595
1596	/* The PE will reserve all possible 32-bits space */
1597	pe_info(pe, "Setting up 32-bit TCE table at 0..%08x\n",
1598		phb->ioda.m32_pci_base);
1599
1600	/* Setup linux iommu table */
1601	pe->table_group.tce32_start = 0;
1602	pe->table_group.tce32_size = phb->ioda.m32_pci_base;
1603	pe->table_group.max_dynamic_windows_supported =
1604			IOMMU_TABLE_GROUP_MAX_TABLES;
1605	pe->table_group.max_levels = POWERNV_IOMMU_MAX_LEVELS;
1606	pe->table_group.pgsizes = pnv_ioda_parse_tce_sizes(phb);
1607
1608	rc = pnv_pci_ioda2_setup_default_config(pe);
1609	if (rc)
1610		return;
1611
1612#ifdef CONFIG_IOMMU_API
1613	pe->table_group.ops = &pnv_pci_ioda2_ops;
1614	iommu_register_group(&pe->table_group, phb->hose->global_number,
1615			     pe->pe_number);
1616#endif
1617	pe->dma_setup_done = true;
1618}
1619
1620/*
1621 * Called from KVM in real mode to EOI passthru interrupts. The ICP
1622 * EOI is handled directly in KVM in kvmppc_deliver_irq_passthru().
1623 *
1624 * The IRQ data is mapped in the PCI-MSI domain and the EOI OPAL call
1625 * needs an HW IRQ number mapped in the XICS IRQ domain. The HW IRQ
1626 * numbers of the in-the-middle MSI domain are vector numbers and it's
1627 * good enough for OPAL. Use that.
1628 */
1629int64_t pnv_opal_pci_msi_eoi(struct irq_data *d)
1630{
1631	struct pci_controller *hose = irq_data_get_irq_chip_data(d->parent_data);
1632	struct pnv_phb *phb = hose->private_data;
1633
1634	return opal_pci_msi_eoi(phb->opal_id, d->parent_data->hwirq);
1635}
1636
1637/*
1638 * The IRQ data is mapped in the XICS domain, with OPAL HW IRQ numbers
1639 */
1640static void pnv_ioda2_msi_eoi(struct irq_data *d)
1641{
1642	int64_t rc;
1643	unsigned int hw_irq = (unsigned int)irqd_to_hwirq(d);
1644	struct pci_controller *hose = irq_data_get_irq_chip_data(d);
1645	struct pnv_phb *phb = hose->private_data;
1646
1647	rc = opal_pci_msi_eoi(phb->opal_id, hw_irq);
1648	WARN_ON_ONCE(rc);
1649
1650	icp_native_eoi(d);
1651}
1652
1653/* P8/CXL only */
1654void pnv_set_msi_irq_chip(struct pnv_phb *phb, unsigned int virq)
1655{
1656	struct irq_data *idata;
1657	struct irq_chip *ichip;
1658
1659	/* The MSI EOI OPAL call is only needed on PHB3 */
1660	if (phb->model != PNV_PHB_MODEL_PHB3)
1661		return;
1662
1663	if (!phb->ioda.irq_chip_init) {
1664		/*
1665		 * First time we setup an MSI IRQ, we need to setup the
1666		 * corresponding IRQ chip to route correctly.
1667		 */
1668		idata = irq_get_irq_data(virq);
1669		ichip = irq_data_get_irq_chip(idata);
1670		phb->ioda.irq_chip_init = 1;
1671		phb->ioda.irq_chip = *ichip;
1672		phb->ioda.irq_chip.irq_eoi = pnv_ioda2_msi_eoi;
1673	}
1674	irq_set_chip(virq, &phb->ioda.irq_chip);
1675	irq_set_chip_data(virq, phb->hose);
1676}
1677
1678static struct irq_chip pnv_pci_msi_irq_chip;
1679
1680/*
1681 * Returns true iff chip is something that we could call
1682 * pnv_opal_pci_msi_eoi for.
1683 */
1684bool is_pnv_opal_msi(struct irq_chip *chip)
1685{
1686	return chip == &pnv_pci_msi_irq_chip;
1687}
1688EXPORT_SYMBOL_GPL(is_pnv_opal_msi);
1689
1690static int __pnv_pci_ioda_msi_setup(struct pnv_phb *phb, struct pci_dev *dev,
1691				    unsigned int xive_num,
1692				    unsigned int is_64, struct msi_msg *msg)
1693{
1694	struct pnv_ioda_pe *pe = pnv_ioda_get_pe(dev);
1695	__be32 data;
1696	int rc;
1697
1698	dev_dbg(&dev->dev, "%s: setup %s-bit MSI for vector #%d\n", __func__,
1699		is_64 ? "64" : "32", xive_num);
1700
1701	/* No PE assigned ? bail out ... no MSI for you ! */
1702	if (pe == NULL)
1703		return -ENXIO;
1704
1705	/* Check if we have an MVE */
1706	if (pe->mve_number < 0)
1707		return -ENXIO;
1708
1709	/* Force 32-bit MSI on some broken devices */
1710	if (dev->no_64bit_msi)
1711		is_64 = 0;
1712
1713	/* Assign XIVE to PE */
1714	rc = opal_pci_set_xive_pe(phb->opal_id, pe->pe_number, xive_num);
1715	if (rc) {
1716		pr_warn("%s: OPAL error %d setting XIVE %d PE\n",
1717			pci_name(dev), rc, xive_num);
1718		return -EIO;
1719	}
1720
1721	if (is_64) {
1722		__be64 addr64;
1723
1724		rc = opal_get_msi_64(phb->opal_id, pe->mve_number, xive_num, 1,
1725				     &addr64, &data);
1726		if (rc) {
1727			pr_warn("%s: OPAL error %d getting 64-bit MSI data\n",
1728				pci_name(dev), rc);
1729			return -EIO;
1730		}
1731		msg->address_hi = be64_to_cpu(addr64) >> 32;
1732		msg->address_lo = be64_to_cpu(addr64) & 0xfffffffful;
1733	} else {
1734		__be32 addr32;
1735
1736		rc = opal_get_msi_32(phb->opal_id, pe->mve_number, xive_num, 1,
1737				     &addr32, &data);
1738		if (rc) {
1739			pr_warn("%s: OPAL error %d getting 32-bit MSI data\n",
1740				pci_name(dev), rc);
1741			return -EIO;
1742		}
1743		msg->address_hi = 0;
1744		msg->address_lo = be32_to_cpu(addr32);
1745	}
1746	msg->data = be32_to_cpu(data);
1747
1748	return 0;
1749}
1750
1751/*
1752 * The msi_free() op is called before irq_domain_free_irqs_top() when
1753 * the handler data is still available. Use that to clear the XIVE
1754 * controller.
1755 */
1756static void pnv_msi_ops_msi_free(struct irq_domain *domain,
1757				 struct msi_domain_info *info,
1758				 unsigned int irq)
1759{
1760	if (xive_enabled())
1761		xive_irq_free_data(irq);
1762}
1763
1764static struct msi_domain_ops pnv_pci_msi_domain_ops = {
1765	.msi_free	= pnv_msi_ops_msi_free,
1766};
1767
1768static void pnv_msi_shutdown(struct irq_data *d)
1769{
1770	d = d->parent_data;
1771	if (d->chip->irq_shutdown)
1772		d->chip->irq_shutdown(d);
1773}
1774
1775static void pnv_msi_mask(struct irq_data *d)
1776{
1777	pci_msi_mask_irq(d);
1778	irq_chip_mask_parent(d);
1779}
1780
1781static void pnv_msi_unmask(struct irq_data *d)
1782{
1783	pci_msi_unmask_irq(d);
1784	irq_chip_unmask_parent(d);
1785}
1786
1787static struct irq_chip pnv_pci_msi_irq_chip = {
1788	.name		= "PNV-PCI-MSI",
1789	.irq_shutdown	= pnv_msi_shutdown,
1790	.irq_mask	= pnv_msi_mask,
1791	.irq_unmask	= pnv_msi_unmask,
1792	.irq_eoi	= irq_chip_eoi_parent,
1793};
1794
1795static struct msi_domain_info pnv_msi_domain_info = {
1796	.flags = (MSI_FLAG_USE_DEF_DOM_OPS | MSI_FLAG_USE_DEF_CHIP_OPS |
1797		  MSI_FLAG_MULTI_PCI_MSI  | MSI_FLAG_PCI_MSIX),
1798	.ops   = &pnv_pci_msi_domain_ops,
1799	.chip  = &pnv_pci_msi_irq_chip,
1800};
1801
1802static void pnv_msi_compose_msg(struct irq_data *d, struct msi_msg *msg)
1803{
1804	struct msi_desc *entry = irq_data_get_msi_desc(d);
1805	struct pci_dev *pdev = msi_desc_to_pci_dev(entry);
1806	struct pci_controller *hose = irq_data_get_irq_chip_data(d);
1807	struct pnv_phb *phb = hose->private_data;
1808	int rc;
1809
1810	rc = __pnv_pci_ioda_msi_setup(phb, pdev, d->hwirq,
1811				      entry->pci.msi_attrib.is_64, msg);
1812	if (rc)
1813		dev_err(&pdev->dev, "Failed to setup %s-bit MSI #%ld : %d\n",
1814			entry->pci.msi_attrib.is_64 ? "64" : "32", d->hwirq, rc);
1815}
1816
1817/*
1818 * The IRQ data is mapped in the MSI domain in which HW IRQ numbers
1819 * correspond to vector numbers.
1820 */
1821static void pnv_msi_eoi(struct irq_data *d)
1822{
1823	struct pci_controller *hose = irq_data_get_irq_chip_data(d);
1824	struct pnv_phb *phb = hose->private_data;
1825
1826	if (phb->model == PNV_PHB_MODEL_PHB3) {
1827		/*
1828		 * The EOI OPAL call takes an OPAL HW IRQ number but
1829		 * since it is translated into a vector number in
1830		 * OPAL, use that directly.
1831		 */
1832		WARN_ON_ONCE(opal_pci_msi_eoi(phb->opal_id, d->hwirq));
1833	}
1834
1835	irq_chip_eoi_parent(d);
1836}
1837
1838static struct irq_chip pnv_msi_irq_chip = {
1839	.name			= "PNV-MSI",
1840	.irq_shutdown		= pnv_msi_shutdown,
1841	.irq_mask		= irq_chip_mask_parent,
1842	.irq_unmask		= irq_chip_unmask_parent,
1843	.irq_eoi		= pnv_msi_eoi,
1844	.irq_set_affinity	= irq_chip_set_affinity_parent,
1845	.irq_compose_msi_msg	= pnv_msi_compose_msg,
1846};
1847
1848static int pnv_irq_parent_domain_alloc(struct irq_domain *domain,
1849				       unsigned int virq, int hwirq)
1850{
1851	struct irq_fwspec parent_fwspec;
1852	int ret;
1853
1854	parent_fwspec.fwnode = domain->parent->fwnode;
1855	parent_fwspec.param_count = 2;
1856	parent_fwspec.param[0] = hwirq;
1857	parent_fwspec.param[1] = IRQ_TYPE_EDGE_RISING;
1858
1859	ret = irq_domain_alloc_irqs_parent(domain, virq, 1, &parent_fwspec);
1860	if (ret)
1861		return ret;
1862
1863	return 0;
1864}
1865
1866static int pnv_irq_domain_alloc(struct irq_domain *domain, unsigned int virq,
1867				unsigned int nr_irqs, void *arg)
1868{
1869	struct pci_controller *hose = domain->host_data;
1870	struct pnv_phb *phb = hose->private_data;
1871	msi_alloc_info_t *info = arg;
1872	struct pci_dev *pdev = msi_desc_to_pci_dev(info->desc);
1873	int hwirq;
1874	int i, ret;
1875
1876	hwirq = msi_bitmap_alloc_hwirqs(&phb->msi_bmp, nr_irqs);
1877	if (hwirq < 0) {
1878		dev_warn(&pdev->dev, "failed to find a free MSI\n");
1879		return -ENOSPC;
1880	}
1881
1882	dev_dbg(&pdev->dev, "%s bridge %pOF %d/%x #%d\n", __func__,
1883		hose->dn, virq, hwirq, nr_irqs);
1884
1885	for (i = 0; i < nr_irqs; i++) {
1886		ret = pnv_irq_parent_domain_alloc(domain, virq + i,
1887						  phb->msi_base + hwirq + i);
1888		if (ret)
1889			goto out;
1890
1891		irq_domain_set_hwirq_and_chip(domain, virq + i, hwirq + i,
1892					      &pnv_msi_irq_chip, hose);
1893	}
1894
1895	return 0;
1896
1897out:
1898	irq_domain_free_irqs_parent(domain, virq, i - 1);
1899	msi_bitmap_free_hwirqs(&phb->msi_bmp, hwirq, nr_irqs);
1900	return ret;
1901}
1902
1903static void pnv_irq_domain_free(struct irq_domain *domain, unsigned int virq,
1904				unsigned int nr_irqs)
1905{
1906	struct irq_data *d = irq_domain_get_irq_data(domain, virq);
1907	struct pci_controller *hose = irq_data_get_irq_chip_data(d);
1908	struct pnv_phb *phb = hose->private_data;
1909
1910	pr_debug("%s bridge %pOF %d/%lx #%d\n", __func__, hose->dn,
1911		 virq, d->hwirq, nr_irqs);
1912
1913	msi_bitmap_free_hwirqs(&phb->msi_bmp, d->hwirq, nr_irqs);
1914	/* XIVE domain is cleared through ->msi_free() */
1915}
1916
1917static const struct irq_domain_ops pnv_irq_domain_ops = {
1918	.alloc  = pnv_irq_domain_alloc,
1919	.free   = pnv_irq_domain_free,
1920};
1921
1922static int __init pnv_msi_allocate_domains(struct pci_controller *hose, unsigned int count)
1923{
1924	struct pnv_phb *phb = hose->private_data;
1925	struct irq_domain *parent = irq_get_default_host();
1926
1927	hose->fwnode = irq_domain_alloc_named_id_fwnode("PNV-MSI", phb->opal_id);
1928	if (!hose->fwnode)
1929		return -ENOMEM;
1930
1931	hose->dev_domain = irq_domain_create_hierarchy(parent, 0, count,
1932						       hose->fwnode,
1933						       &pnv_irq_domain_ops, hose);
1934	if (!hose->dev_domain) {
1935		pr_err("PCI: failed to create IRQ domain bridge %pOF (domain %d)\n",
1936		       hose->dn, hose->global_number);
1937		irq_domain_free_fwnode(hose->fwnode);
1938		return -ENOMEM;
1939	}
1940
1941	hose->msi_domain = pci_msi_create_irq_domain(of_node_to_fwnode(hose->dn),
1942						     &pnv_msi_domain_info,
1943						     hose->dev_domain);
1944	if (!hose->msi_domain) {
1945		pr_err("PCI: failed to create MSI IRQ domain bridge %pOF (domain %d)\n",
1946		       hose->dn, hose->global_number);
1947		irq_domain_free_fwnode(hose->fwnode);
1948		irq_domain_remove(hose->dev_domain);
1949		return -ENOMEM;
1950	}
1951
1952	return 0;
1953}
1954
1955static void __init pnv_pci_init_ioda_msis(struct pnv_phb *phb)
1956{
1957	unsigned int count;
1958	const __be32 *prop = of_get_property(phb->hose->dn,
1959					     "ibm,opal-msi-ranges", NULL);
1960	if (!prop) {
1961		/* BML Fallback */
1962		prop = of_get_property(phb->hose->dn, "msi-ranges", NULL);
1963	}
1964	if (!prop)
1965		return;
1966
1967	phb->msi_base = be32_to_cpup(prop);
1968	count = be32_to_cpup(prop + 1);
1969	if (msi_bitmap_alloc(&phb->msi_bmp, count, phb->hose->dn)) {
1970		pr_err("PCI %d: Failed to allocate MSI bitmap !\n",
1971		       phb->hose->global_number);
1972		return;
1973	}
1974
1975	pr_info("  Allocated bitmap for %d MSIs (base IRQ 0x%x)\n",
1976		count, phb->msi_base);
1977
1978	pnv_msi_allocate_domains(phb->hose, count);
1979}
1980
1981static void pnv_ioda_setup_pe_res(struct pnv_ioda_pe *pe,
1982				  struct resource *res)
1983{
1984	struct pnv_phb *phb = pe->phb;
1985	struct pci_bus_region region;
1986	int index;
1987	int64_t rc;
1988
1989	if (!res || !res->flags || res->start > res->end ||
1990	    res->flags & IORESOURCE_UNSET)
1991		return;
1992
1993	if (res->flags & IORESOURCE_IO) {
1994		region.start = res->start - phb->ioda.io_pci_base;
1995		region.end   = res->end - phb->ioda.io_pci_base;
1996		index = region.start / phb->ioda.io_segsize;
1997
1998		while (index < phb->ioda.total_pe_num &&
1999		       region.start <= region.end) {
2000			phb->ioda.io_segmap[index] = pe->pe_number;
2001			rc = opal_pci_map_pe_mmio_window(phb->opal_id,
2002				pe->pe_number, OPAL_IO_WINDOW_TYPE, 0, index);
2003			if (rc != OPAL_SUCCESS) {
2004				pr_err("%s: Error %lld mapping IO segment#%d to PE#%x\n",
2005				       __func__, rc, index, pe->pe_number);
2006				break;
2007			}
2008
2009			region.start += phb->ioda.io_segsize;
2010			index++;
2011		}
2012	} else if ((res->flags & IORESOURCE_MEM) &&
2013		   !pnv_pci_is_m64(phb, res)) {
2014		region.start = res->start -
2015			       phb->hose->mem_offset[0] -
2016			       phb->ioda.m32_pci_base;
2017		region.end   = res->end -
2018			       phb->hose->mem_offset[0] -
2019			       phb->ioda.m32_pci_base;
2020		index = region.start / phb->ioda.m32_segsize;
2021
2022		while (index < phb->ioda.total_pe_num &&
2023		       region.start <= region.end) {
2024			phb->ioda.m32_segmap[index] = pe->pe_number;
2025			rc = opal_pci_map_pe_mmio_window(phb->opal_id,
2026				pe->pe_number, OPAL_M32_WINDOW_TYPE, 0, index);
2027			if (rc != OPAL_SUCCESS) {
2028				pr_err("%s: Error %lld mapping M32 segment#%d to PE#%x",
2029				       __func__, rc, index, pe->pe_number);
2030				break;
2031			}
2032
2033			region.start += phb->ioda.m32_segsize;
2034			index++;
2035		}
2036	}
2037}
2038
2039/*
2040 * This function is supposed to be called on basis of PE from top
2041 * to bottom style. So the I/O or MMIO segment assigned to
2042 * parent PE could be overridden by its child PEs if necessary.
2043 */
2044static void pnv_ioda_setup_pe_seg(struct pnv_ioda_pe *pe)
2045{
2046	struct pci_dev *pdev;
2047	int i;
2048
2049	/*
2050	 * NOTE: We only care PCI bus based PE for now. For PCI
2051	 * device based PE, for example SRIOV sensitive VF should
2052	 * be figured out later.
2053	 */
2054	BUG_ON(!(pe->flags & (PNV_IODA_PE_BUS | PNV_IODA_PE_BUS_ALL)));
2055
2056	list_for_each_entry(pdev, &pe->pbus->devices, bus_list) {
2057		for (i = 0; i <= PCI_ROM_RESOURCE; i++)
2058			pnv_ioda_setup_pe_res(pe, &pdev->resource[i]);
2059
2060		/*
2061		 * If the PE contains all subordinate PCI buses, the
2062		 * windows of the child bridges should be mapped to
2063		 * the PE as well.
2064		 */
2065		if (!(pe->flags & PNV_IODA_PE_BUS_ALL) || !pci_is_bridge(pdev))
2066			continue;
2067		for (i = 0; i < PCI_BRIDGE_RESOURCE_NUM; i++)
2068			pnv_ioda_setup_pe_res(pe,
2069				&pdev->resource[PCI_BRIDGE_RESOURCES + i]);
2070	}
2071}
2072
2073#ifdef CONFIG_DEBUG_FS
2074static int pnv_pci_diag_data_set(void *data, u64 val)
2075{
2076	struct pnv_phb *phb = data;
2077	s64 ret;
2078
2079	/* Retrieve the diag data from firmware */
2080	ret = opal_pci_get_phb_diag_data2(phb->opal_id, phb->diag_data,
2081					  phb->diag_data_size);
2082	if (ret != OPAL_SUCCESS)
2083		return -EIO;
2084
2085	/* Print the diag data to the kernel log */
2086	pnv_pci_dump_phb_diag_data(phb->hose, phb->diag_data);
2087	return 0;
2088}
2089
2090DEFINE_DEBUGFS_ATTRIBUTE(pnv_pci_diag_data_fops, NULL, pnv_pci_diag_data_set,
2091			 "%llu\n");
2092
2093static int pnv_pci_ioda_pe_dump(void *data, u64 val)
2094{
2095	struct pnv_phb *phb = data;
2096	int pe_num;
2097
2098	for (pe_num = 0; pe_num < phb->ioda.total_pe_num; pe_num++) {
2099		struct pnv_ioda_pe *pe = &phb->ioda.pe_array[pe_num];
2100
2101		if (!test_bit(pe_num, phb->ioda.pe_alloc))
2102			continue;
2103
2104		pe_warn(pe, "rid: %04x dev count: %2d flags: %s%s%s%s%s%s\n",
2105			pe->rid, pe->device_count,
2106			(pe->flags & PNV_IODA_PE_DEV) ? "dev " : "",
2107			(pe->flags & PNV_IODA_PE_BUS) ? "bus " : "",
2108			(pe->flags & PNV_IODA_PE_BUS_ALL) ? "all " : "",
2109			(pe->flags & PNV_IODA_PE_MASTER) ? "master " : "",
2110			(pe->flags & PNV_IODA_PE_SLAVE) ? "slave " : "",
2111			(pe->flags & PNV_IODA_PE_VF) ? "vf " : "");
2112	}
2113
2114	return 0;
2115}
2116
2117DEFINE_DEBUGFS_ATTRIBUTE(pnv_pci_ioda_pe_dump_fops, NULL,
2118			 pnv_pci_ioda_pe_dump, "%llu\n");
2119
2120#endif /* CONFIG_DEBUG_FS */
2121
2122static void pnv_pci_ioda_create_dbgfs(void)
2123{
2124#ifdef CONFIG_DEBUG_FS
2125	struct pci_controller *hose, *tmp;
2126	struct pnv_phb *phb;
2127	char name[16];
2128
2129	list_for_each_entry_safe(hose, tmp, &hose_list, list_node) {
2130		phb = hose->private_data;
2131
2132		sprintf(name, "PCI%04x", hose->global_number);
2133		phb->dbgfs = debugfs_create_dir(name, arch_debugfs_dir);
2134
2135		debugfs_create_file_unsafe("dump_diag_regs", 0200, phb->dbgfs,
2136					   phb, &pnv_pci_diag_data_fops);
2137		debugfs_create_file_unsafe("dump_ioda_pe_state", 0200, phb->dbgfs,
2138					   phb, &pnv_pci_ioda_pe_dump_fops);
2139	}
2140#endif /* CONFIG_DEBUG_FS */
2141}
2142
2143static void pnv_pci_enable_bridge(struct pci_bus *bus)
2144{
2145	struct pci_dev *dev = bus->self;
2146	struct pci_bus *child;
2147
2148	/* Empty bus ? bail */
2149	if (list_empty(&bus->devices))
2150		return;
2151
2152	/*
2153	 * If there's a bridge associated with that bus enable it. This works
2154	 * around races in the generic code if the enabling is done during
2155	 * parallel probing. This can be removed once those races have been
2156	 * fixed.
2157	 */
2158	if (dev) {
2159		int rc = pci_enable_device(dev);
2160		if (rc)
2161			pci_err(dev, "Error enabling bridge (%d)\n", rc);
2162		pci_set_master(dev);
2163	}
2164
2165	/* Perform the same to child busses */
2166	list_for_each_entry(child, &bus->children, node)
2167		pnv_pci_enable_bridge(child);
2168}
2169
2170static void pnv_pci_enable_bridges(void)
2171{
2172	struct pci_controller *hose;
2173
2174	list_for_each_entry(hose, &hose_list, list_node)
2175		pnv_pci_enable_bridge(hose->bus);
2176}
2177
2178static void pnv_pci_ioda_fixup(void)
2179{
2180	pnv_pci_ioda_create_dbgfs();
2181
2182	pnv_pci_enable_bridges();
2183
2184#ifdef CONFIG_EEH
2185	pnv_eeh_post_init();
2186#endif
2187}
2188
2189/*
2190 * Returns the alignment for I/O or memory windows for P2P
2191 * bridges. That actually depends on how PEs are segmented.
2192 * For now, we return I/O or M32 segment size for PE sensitive
2193 * P2P bridges. Otherwise, the default values (4KiB for I/O,
2194 * 1MiB for memory) will be returned.
2195 *
2196 * The current PCI bus might be put into one PE, which was
2197 * create against the parent PCI bridge. For that case, we
2198 * needn't enlarge the alignment so that we can save some
2199 * resources.
2200 */
2201static resource_size_t pnv_pci_window_alignment(struct pci_bus *bus,
2202						unsigned long type)
2203{
2204	struct pnv_phb *phb = pci_bus_to_pnvhb(bus);
2205	int num_pci_bridges = 0;
2206	struct pci_dev *bridge;
2207
2208	bridge = bus->self;
2209	while (bridge) {
2210		if (pci_pcie_type(bridge) == PCI_EXP_TYPE_PCI_BRIDGE) {
2211			num_pci_bridges++;
2212			if (num_pci_bridges >= 2)
2213				return 1;
2214		}
2215
2216		bridge = bridge->bus->self;
2217	}
2218
2219	/*
2220	 * We fall back to M32 if M64 isn't supported. We enforce the M64
2221	 * alignment for any 64-bit resource, PCIe doesn't care and
2222	 * bridges only do 64-bit prefetchable anyway.
2223	 */
2224	if (phb->ioda.m64_segsize && pnv_pci_is_m64_flags(type))
2225		return phb->ioda.m64_segsize;
2226	if (type & IORESOURCE_MEM)
2227		return phb->ioda.m32_segsize;
2228
2229	return phb->ioda.io_segsize;
2230}
2231
2232/*
2233 * We are updating root port or the upstream port of the
2234 * bridge behind the root port with PHB's windows in order
2235 * to accommodate the changes on required resources during
2236 * PCI (slot) hotplug, which is connected to either root
2237 * port or the downstream ports of PCIe switch behind the
2238 * root port.
2239 */
2240static void pnv_pci_fixup_bridge_resources(struct pci_bus *bus,
2241					   unsigned long type)
2242{
2243	struct pci_controller *hose = pci_bus_to_host(bus);
2244	struct pnv_phb *phb = hose->private_data;
2245	struct pci_dev *bridge = bus->self;
2246	struct resource *r, *w;
2247	bool msi_region = false;
2248	int i;
2249
2250	/* Check if we need apply fixup to the bridge's windows */
2251	if (!pci_is_root_bus(bridge->bus) &&
2252	    !pci_is_root_bus(bridge->bus->self->bus))
2253		return;
2254
2255	/* Fixup the resources */
2256	for (i = 0; i < PCI_BRIDGE_RESOURCE_NUM; i++) {
2257		r = &bridge->resource[PCI_BRIDGE_RESOURCES + i];
2258		if (!r->flags || !r->parent)
2259			continue;
2260
2261		w = NULL;
2262		if (r->flags & type & IORESOURCE_IO)
2263			w = &hose->io_resource;
2264		else if (pnv_pci_is_m64(phb, r) &&
2265			 (type & IORESOURCE_PREFETCH) &&
2266			 phb->ioda.m64_segsize)
2267			w = &hose->mem_resources[1];
2268		else if (r->flags & type & IORESOURCE_MEM) {
2269			w = &hose->mem_resources[0];
2270			msi_region = true;
2271		}
2272
2273		r->start = w->start;
2274		r->end = w->end;
2275
2276		/* The 64KB 32-bits MSI region shouldn't be included in
2277		 * the 32-bits bridge window. Otherwise, we can see strange
2278		 * issues. One of them is EEH error observed on Garrison.
2279		 *
2280		 * Exclude top 1MB region which is the minimal alignment of
2281		 * 32-bits bridge window.
2282		 */
2283		if (msi_region) {
2284			r->end += 0x10000;
2285			r->end -= 0x100000;
2286		}
2287	}
2288}
2289
2290static void pnv_pci_configure_bus(struct pci_bus *bus)
2291{
2292	struct pci_dev *bridge = bus->self;
2293	struct pnv_ioda_pe *pe;
2294	bool all = (bridge && pci_pcie_type(bridge) == PCI_EXP_TYPE_PCI_BRIDGE);
2295
2296	dev_info(&bus->dev, "Configuring PE for bus\n");
2297
2298	/* Don't assign PE to PCI bus, which doesn't have subordinate devices */
2299	if (WARN_ON(list_empty(&bus->devices)))
2300		return;
2301
2302	/* Reserve PEs according to used M64 resources */
2303	pnv_ioda_reserve_m64_pe(bus, NULL, all);
2304
2305	/*
2306	 * Assign PE. We might run here because of partial hotplug.
2307	 * For the case, we just pick up the existing PE and should
2308	 * not allocate resources again.
2309	 */
2310	pe = pnv_ioda_setup_bus_PE(bus, all);
2311	if (!pe)
2312		return;
2313
2314	pnv_ioda_setup_pe_seg(pe);
2315}
2316
2317static resource_size_t pnv_pci_default_alignment(void)
2318{
2319	return PAGE_SIZE;
2320}
2321
2322/* Prevent enabling devices for which we couldn't properly
2323 * assign a PE
2324 */
2325static bool pnv_pci_enable_device_hook(struct pci_dev *dev)
2326{
2327	struct pci_dn *pdn;
2328
2329	pdn = pci_get_pdn(dev);
2330	if (!pdn || pdn->pe_number == IODA_INVALID_PE) {
2331		pci_err(dev, "pci_enable_device() blocked, no PE assigned.\n");
2332		return false;
2333	}
2334
2335	return true;
2336}
2337
2338static bool pnv_ocapi_enable_device_hook(struct pci_dev *dev)
2339{
2340	struct pci_dn *pdn;
2341	struct pnv_ioda_pe *pe;
2342
2343	pdn = pci_get_pdn(dev);
2344	if (!pdn)
2345		return false;
2346
2347	if (pdn->pe_number == IODA_INVALID_PE) {
2348		pe = pnv_ioda_setup_dev_PE(dev);
2349		if (!pe)
2350			return false;
2351	}
2352	return true;
2353}
2354
2355void pnv_pci_ioda2_release_pe_dma(struct pnv_ioda_pe *pe)
2356{
2357	struct iommu_table *tbl = pe->table_group.tables[0];
2358	int64_t rc;
2359
2360	if (!pe->dma_setup_done)
2361		return;
2362
2363	rc = pnv_pci_ioda2_unset_window(&pe->table_group, 0);
2364	if (rc)
2365		pe_warn(pe, "OPAL error %lld release DMA window\n", rc);
2366
2367	pnv_pci_ioda2_set_bypass(pe, false);
2368	if (pe->table_group.group) {
2369		iommu_group_put(pe->table_group.group);
2370		WARN_ON(pe->table_group.group);
2371	}
2372
2373	iommu_tce_table_put(tbl);
2374}
2375
2376static void pnv_ioda_free_pe_seg(struct pnv_ioda_pe *pe,
2377				 unsigned short win,
2378				 unsigned int *map)
2379{
2380	struct pnv_phb *phb = pe->phb;
2381	int idx;
2382	int64_t rc;
2383
2384	for (idx = 0; idx < phb->ioda.total_pe_num; idx++) {
2385		if (map[idx] != pe->pe_number)
2386			continue;
2387
2388		rc = opal_pci_map_pe_mmio_window(phb->opal_id,
2389				phb->ioda.reserved_pe_idx, win, 0, idx);
2390
2391		if (rc != OPAL_SUCCESS)
2392			pe_warn(pe, "Error %lld unmapping (%d) segment#%d\n",
2393				rc, win, idx);
2394
2395		map[idx] = IODA_INVALID_PE;
2396	}
2397}
2398
2399static void pnv_ioda_release_pe_seg(struct pnv_ioda_pe *pe)
2400{
2401	struct pnv_phb *phb = pe->phb;
2402
2403	if (phb->type == PNV_PHB_IODA2) {
2404		pnv_ioda_free_pe_seg(pe, OPAL_M32_WINDOW_TYPE,
2405				     phb->ioda.m32_segmap);
2406	}
2407}
2408
2409static void pnv_ioda_release_pe(struct pnv_ioda_pe *pe)
2410{
2411	struct pnv_phb *phb = pe->phb;
2412	struct pnv_ioda_pe *slave, *tmp;
2413
2414	pe_info(pe, "Releasing PE\n");
2415
2416	mutex_lock(&phb->ioda.pe_list_mutex);
2417	list_del(&pe->list);
2418	mutex_unlock(&phb->ioda.pe_list_mutex);
2419
2420	switch (phb->type) {
2421	case PNV_PHB_IODA2:
2422		pnv_pci_ioda2_release_pe_dma(pe);
2423		break;
2424	case PNV_PHB_NPU_OCAPI:
2425		break;
2426	default:
2427		WARN_ON(1);
2428	}
2429
2430	pnv_ioda_release_pe_seg(pe);
2431	pnv_ioda_deconfigure_pe(pe->phb, pe);
2432
2433	/* Release slave PEs in the compound PE */
2434	if (pe->flags & PNV_IODA_PE_MASTER) {
2435		list_for_each_entry_safe(slave, tmp, &pe->slaves, list) {
2436			list_del(&slave->list);
2437			pnv_ioda_free_pe(slave);
2438		}
2439	}
2440
2441	/*
2442	 * The PE for root bus can be removed because of hotplug in EEH
2443	 * recovery for fenced PHB error. We need to mark the PE dead so
2444	 * that it can be populated again in PCI hot add path. The PE
2445	 * shouldn't be destroyed as it's the global reserved resource.
2446	 */
2447	if (phb->ioda.root_pe_idx == pe->pe_number)
2448		return;
2449
2450	pnv_ioda_free_pe(pe);
2451}
2452
2453static void pnv_pci_release_device(struct pci_dev *pdev)
2454{
2455	struct pnv_phb *phb = pci_bus_to_pnvhb(pdev->bus);
2456	struct pci_dn *pdn = pci_get_pdn(pdev);
2457	struct pnv_ioda_pe *pe;
2458
2459	/* The VF PE state is torn down when sriov_disable() is called */
2460	if (pdev->is_virtfn)
2461		return;
2462
2463	if (!pdn || pdn->pe_number == IODA_INVALID_PE)
2464		return;
2465
2466#ifdef CONFIG_PCI_IOV
2467	/*
2468	 * FIXME: Try move this to sriov_disable(). It's here since we allocate
2469	 * the iov state at probe time since we need to fiddle with the IOV
2470	 * resources.
2471	 */
2472	if (pdev->is_physfn)
2473		kfree(pdev->dev.archdata.iov_data);
2474#endif
2475
2476	/*
2477	 * PCI hotplug can happen as part of EEH error recovery. The @pdn
2478	 * isn't removed and added afterwards in this scenario. We should
2479	 * set the PE number in @pdn to an invalid one. Otherwise, the PE's
2480	 * device count is decreased on removing devices while failing to
2481	 * be increased on adding devices. It leads to unbalanced PE's device
2482	 * count and eventually make normal PCI hotplug path broken.
2483	 */
2484	pe = &phb->ioda.pe_array[pdn->pe_number];
2485	pdn->pe_number = IODA_INVALID_PE;
2486
2487	WARN_ON(--pe->device_count < 0);
2488	if (pe->device_count == 0)
2489		pnv_ioda_release_pe(pe);
2490}
2491
2492static void pnv_pci_ioda_shutdown(struct pci_controller *hose)
2493{
2494	struct pnv_phb *phb = hose->private_data;
2495
2496	opal_pci_reset(phb->opal_id, OPAL_RESET_PCI_IODA_TABLE,
2497		       OPAL_ASSERT_RESET);
2498}
2499
2500static void pnv_pci_ioda_dma_bus_setup(struct pci_bus *bus)
2501{
2502	struct pnv_phb *phb = pci_bus_to_pnvhb(bus);
2503	struct pnv_ioda_pe *pe;
2504
2505	list_for_each_entry(pe, &phb->ioda.pe_list, list) {
2506		if (!(pe->flags & (PNV_IODA_PE_BUS | PNV_IODA_PE_BUS_ALL)))
2507			continue;
2508
2509		if (!pe->pbus)
2510			continue;
2511
2512		if (bus->number == ((pe->rid >> 8) & 0xFF)) {
2513			pe->pbus = bus;
2514			break;
2515		}
2516	}
2517}
2518
2519#ifdef CONFIG_IOMMU_API
2520static struct iommu_group *pnv_pci_device_group(struct pci_controller *hose,
2521						struct pci_dev *pdev)
2522{
2523	struct pnv_phb *phb = hose->private_data;
2524	struct pnv_ioda_pe *pe;
2525
2526	if (WARN_ON(!phb))
2527		return ERR_PTR(-ENODEV);
2528
2529	pe = pnv_pci_bdfn_to_pe(phb, pci_dev_id(pdev));
2530	if (!pe)
2531		return ERR_PTR(-ENODEV);
2532
2533	if (!pe->table_group.group)
2534		return ERR_PTR(-ENODEV);
2535
2536	return iommu_group_ref_get(pe->table_group.group);
2537}
2538#endif
2539
2540static const struct pci_controller_ops pnv_pci_ioda_controller_ops = {
2541	.dma_dev_setup		= pnv_pci_ioda_dma_dev_setup,
2542	.dma_bus_setup		= pnv_pci_ioda_dma_bus_setup,
2543	.iommu_bypass_supported	= pnv_pci_ioda_iommu_bypass_supported,
2544	.enable_device_hook	= pnv_pci_enable_device_hook,
2545	.release_device		= pnv_pci_release_device,
2546	.window_alignment	= pnv_pci_window_alignment,
2547	.setup_bridge		= pnv_pci_fixup_bridge_resources,
2548	.reset_secondary_bus	= pnv_pci_reset_secondary_bus,
2549	.shutdown		= pnv_pci_ioda_shutdown,
2550#ifdef CONFIG_IOMMU_API
2551	.device_group		= pnv_pci_device_group,
2552#endif
2553};
2554
2555static const struct pci_controller_ops pnv_npu_ocapi_ioda_controller_ops = {
2556	.enable_device_hook	= pnv_ocapi_enable_device_hook,
2557	.release_device		= pnv_pci_release_device,
2558	.window_alignment	= pnv_pci_window_alignment,
2559	.reset_secondary_bus	= pnv_pci_reset_secondary_bus,
2560	.shutdown		= pnv_pci_ioda_shutdown,
2561};
2562
2563static void __init pnv_pci_init_ioda_phb(struct device_node *np,
2564					 u64 hub_id, int ioda_type)
2565{
2566	struct pci_controller *hose;
2567	struct pnv_phb *phb;
2568	unsigned long size, m64map_off, m32map_off, pemap_off;
2569	struct pnv_ioda_pe *root_pe;
2570	struct resource r;
2571	const __be64 *prop64;
2572	const __be32 *prop32;
2573	int len;
2574	unsigned int segno;
2575	u64 phb_id;
2576	void *aux;
2577	long rc;
2578
2579	if (!of_device_is_available(np))
2580		return;
2581
2582	pr_info("Initializing %s PHB (%pOF)\n",	pnv_phb_names[ioda_type], np);
2583
2584	prop64 = of_get_property(np, "ibm,opal-phbid", NULL);
2585	if (!prop64) {
2586		pr_err("  Missing \"ibm,opal-phbid\" property !\n");
2587		return;
2588	}
2589	phb_id = be64_to_cpup(prop64);
2590	pr_debug("  PHB-ID  : 0x%016llx\n", phb_id);
2591
2592	phb = kzalloc(sizeof(*phb), GFP_KERNEL);
2593	if (!phb)
2594		panic("%s: Failed to allocate %zu bytes\n", __func__,
2595		      sizeof(*phb));
2596
2597	/* Allocate PCI controller */
2598	phb->hose = hose = pcibios_alloc_controller(np);
2599	if (!phb->hose) {
2600		pr_err("  Can't allocate PCI controller for %pOF\n",
2601		       np);
2602		memblock_free(phb, sizeof(struct pnv_phb));
2603		return;
2604	}
2605
2606	spin_lock_init(&phb->lock);
2607	prop32 = of_get_property(np, "bus-range", &len);
2608	if (prop32 && len == 8) {
2609		hose->first_busno = be32_to_cpu(prop32[0]);
2610		hose->last_busno = be32_to_cpu(prop32[1]);
2611	} else {
2612		pr_warn("  Broken <bus-range> on %pOF\n", np);
2613		hose->first_busno = 0;
2614		hose->last_busno = 0xff;
2615	}
2616	hose->private_data = phb;
2617	phb->hub_id = hub_id;
2618	phb->opal_id = phb_id;
2619	phb->type = ioda_type;
2620	mutex_init(&phb->ioda.pe_alloc_mutex);
2621
2622	/* Detect specific models for error handling */
2623	if (of_device_is_compatible(np, "ibm,p7ioc-pciex"))
2624		phb->model = PNV_PHB_MODEL_P7IOC;
2625	else if (of_device_is_compatible(np, "ibm,power8-pciex"))
2626		phb->model = PNV_PHB_MODEL_PHB3;
2627	else
2628		phb->model = PNV_PHB_MODEL_UNKNOWN;
2629
2630	/* Initialize diagnostic data buffer */
2631	prop32 = of_get_property(np, "ibm,phb-diag-data-size", NULL);
2632	if (prop32)
2633		phb->diag_data_size = be32_to_cpup(prop32);
2634	else
2635		phb->diag_data_size = PNV_PCI_DIAG_BUF_SIZE;
2636
2637	phb->diag_data = kzalloc(phb->diag_data_size, GFP_KERNEL);
2638	if (!phb->diag_data)
2639		panic("%s: Failed to allocate %u bytes\n", __func__,
2640		      phb->diag_data_size);
2641
2642	/* Parse 32-bit and IO ranges (if any) */
2643	pci_process_bridge_OF_ranges(hose, np, !hose->global_number);
2644
2645	/* Get registers */
2646	if (!of_address_to_resource(np, 0, &r)) {
2647		phb->regs_phys = r.start;
2648		phb->regs = ioremap(r.start, resource_size(&r));
2649		if (phb->regs == NULL)
2650			pr_err("  Failed to map registers !\n");
2651	}
2652
2653	/* Initialize more IODA stuff */
2654	phb->ioda.total_pe_num = 1;
2655	prop32 = of_get_property(np, "ibm,opal-num-pes", NULL);
2656	if (prop32)
2657		phb->ioda.total_pe_num = be32_to_cpup(prop32);
2658	prop32 = of_get_property(np, "ibm,opal-reserved-pe", NULL);
2659	if (prop32)
2660		phb->ioda.reserved_pe_idx = be32_to_cpup(prop32);
2661
2662	/* Invalidate RID to PE# mapping */
2663	for (segno = 0; segno < ARRAY_SIZE(phb->ioda.pe_rmap); segno++)
2664		phb->ioda.pe_rmap[segno] = IODA_INVALID_PE;
2665
2666	/* Parse 64-bit MMIO range */
2667	pnv_ioda_parse_m64_window(phb);
2668
2669	phb->ioda.m32_size = resource_size(&hose->mem_resources[0]);
2670	/* FW Has already off top 64k of M32 space (MSI space) */
2671	phb->ioda.m32_size += 0x10000;
2672
2673	phb->ioda.m32_segsize = phb->ioda.m32_size / phb->ioda.total_pe_num;
2674	phb->ioda.m32_pci_base = hose->mem_resources[0].start - hose->mem_offset[0];
2675	phb->ioda.io_size = hose->pci_io_size;
2676	phb->ioda.io_segsize = phb->ioda.io_size / phb->ioda.total_pe_num;
2677	phb->ioda.io_pci_base = 0; /* XXX calculate this ? */
2678
2679	/* Allocate aux data & arrays. We don't have IO ports on PHB3 */
2680	size = ALIGN(max_t(unsigned, phb->ioda.total_pe_num, 8) / 8,
2681			sizeof(unsigned long));
2682	m64map_off = size;
2683	size += phb->ioda.total_pe_num * sizeof(phb->ioda.m64_segmap[0]);
2684	m32map_off = size;
2685	size += phb->ioda.total_pe_num * sizeof(phb->ioda.m32_segmap[0]);
2686	pemap_off = size;
2687	size += phb->ioda.total_pe_num * sizeof(struct pnv_ioda_pe);
2688	aux = kzalloc(size, GFP_KERNEL);
2689	if (!aux)
2690		panic("%s: Failed to allocate %lu bytes\n", __func__, size);
2691
2692	phb->ioda.pe_alloc = aux;
2693	phb->ioda.m64_segmap = aux + m64map_off;
2694	phb->ioda.m32_segmap = aux + m32map_off;
2695	for (segno = 0; segno < phb->ioda.total_pe_num; segno++) {
2696		phb->ioda.m64_segmap[segno] = IODA_INVALID_PE;
2697		phb->ioda.m32_segmap[segno] = IODA_INVALID_PE;
2698	}
2699	phb->ioda.pe_array = aux + pemap_off;
2700
2701	/*
2702	 * Choose PE number for root bus, which shouldn't have
2703	 * M64 resources consumed by its child devices. To pick
2704	 * the PE number adjacent to the reserved one if possible.
2705	 */
2706	pnv_ioda_reserve_pe(phb, phb->ioda.reserved_pe_idx);
2707	if (phb->ioda.reserved_pe_idx == 0) {
2708		phb->ioda.root_pe_idx = 1;
2709		pnv_ioda_reserve_pe(phb, phb->ioda.root_pe_idx);
2710	} else if (phb->ioda.reserved_pe_idx == (phb->ioda.total_pe_num - 1)) {
2711		phb->ioda.root_pe_idx = phb->ioda.reserved_pe_idx - 1;
2712		pnv_ioda_reserve_pe(phb, phb->ioda.root_pe_idx);
2713	} else {
2714		/* otherwise just allocate one */
2715		root_pe = pnv_ioda_alloc_pe(phb, 1);
2716		phb->ioda.root_pe_idx = root_pe->pe_number;
2717	}
2718
2719	INIT_LIST_HEAD(&phb->ioda.pe_list);
2720	mutex_init(&phb->ioda.pe_list_mutex);
2721
2722#if 0 /* We should really do that ... */
2723	rc = opal_pci_set_phb_mem_window(opal->phb_id,
2724					 window_type,
2725					 window_num,
2726					 starting_real_address,
2727					 starting_pci_address,
2728					 segment_size);
2729#endif
2730
2731	pr_info("  %03d (%03d) PE's M32: 0x%x [segment=0x%x]\n",
2732		phb->ioda.total_pe_num, phb->ioda.reserved_pe_idx,
2733		phb->ioda.m32_size, phb->ioda.m32_segsize);
2734	if (phb->ioda.m64_size)
2735		pr_info("                 M64: 0x%lx [segment=0x%lx]\n",
2736			phb->ioda.m64_size, phb->ioda.m64_segsize);
2737	if (phb->ioda.io_size)
2738		pr_info("                  IO: 0x%x [segment=0x%x]\n",
2739			phb->ioda.io_size, phb->ioda.io_segsize);
2740
2741
2742	phb->hose->ops = &pnv_pci_ops;
2743	phb->get_pe_state = pnv_ioda_get_pe_state;
2744	phb->freeze_pe = pnv_ioda_freeze_pe;
2745	phb->unfreeze_pe = pnv_ioda_unfreeze_pe;
2746
2747	/* Setup MSI support */
2748	pnv_pci_init_ioda_msis(phb);
2749
2750	/*
2751	 * We pass the PCI probe flag PCI_REASSIGN_ALL_RSRC here
2752	 * to let the PCI core do resource assignment. It's supposed
2753	 * that the PCI core will do correct I/O and MMIO alignment
2754	 * for the P2P bridge bars so that each PCI bus (excluding
2755	 * the child P2P bridges) can form individual PE.
2756	 */
2757	ppc_md.pcibios_fixup = pnv_pci_ioda_fixup;
2758
2759	switch (phb->type) {
2760	case PNV_PHB_NPU_OCAPI:
2761		hose->controller_ops = pnv_npu_ocapi_ioda_controller_ops;
2762		break;
2763	default:
2764		hose->controller_ops = pnv_pci_ioda_controller_ops;
2765	}
2766
2767	ppc_md.pcibios_default_alignment = pnv_pci_default_alignment;
2768
2769#ifdef CONFIG_PCI_IOV
2770	ppc_md.pcibios_fixup_sriov = pnv_pci_ioda_fixup_iov;
2771	ppc_md.pcibios_iov_resource_alignment = pnv_pci_iov_resource_alignment;
2772	ppc_md.pcibios_sriov_enable = pnv_pcibios_sriov_enable;
2773	ppc_md.pcibios_sriov_disable = pnv_pcibios_sriov_disable;
2774#endif
2775
2776	pci_add_flags(PCI_REASSIGN_ALL_RSRC);
2777
2778	/* Reset IODA tables to a clean state */
2779	rc = opal_pci_reset(phb_id, OPAL_RESET_PCI_IODA_TABLE, OPAL_ASSERT_RESET);
2780	if (rc)
2781		pr_warn("  OPAL Error %ld performing IODA table reset !\n", rc);
2782
2783	/*
2784	 * If we're running in kdump kernel, the previous kernel never
2785	 * shutdown PCI devices correctly. We already got IODA table
2786	 * cleaned out. So we have to issue PHB reset to stop all PCI
2787	 * transactions from previous kernel. The ppc_pci_reset_phbs
2788	 * kernel parameter will force this reset too. Additionally,
2789	 * if the IODA reset above failed then use a bigger hammer.
2790	 * This can happen if we get a PHB fatal error in very early
2791	 * boot.
2792	 */
2793	if (is_kdump_kernel() || pci_reset_phbs || rc) {
2794		pr_info("  Issue PHB reset ...\n");
2795		pnv_eeh_phb_reset(hose, EEH_RESET_FUNDAMENTAL);
2796		pnv_eeh_phb_reset(hose, EEH_RESET_DEACTIVATE);
2797	}
2798
2799	/* Remove M64 resource if we can't configure it successfully */
2800	if (!phb->init_m64 || phb->init_m64(phb))
2801		hose->mem_resources[1].flags = 0;
2802
2803	/* create pci_dn's for DT nodes under this PHB */
2804	pci_devs_phb_init_dynamic(hose);
2805}
2806
2807void __init pnv_pci_init_ioda2_phb(struct device_node *np)
2808{
2809	pnv_pci_init_ioda_phb(np, 0, PNV_PHB_IODA2);
2810}
2811
2812void __init pnv_pci_init_npu2_opencapi_phb(struct device_node *np)
2813{
2814	pnv_pci_init_ioda_phb(np, 0, PNV_PHB_NPU_OCAPI);
2815}
2816
2817static void pnv_npu2_opencapi_cfg_size_fixup(struct pci_dev *dev)
2818{
2819	struct pnv_phb *phb = pci_bus_to_pnvhb(dev->bus);
2820
2821	if (!machine_is(powernv))
2822		return;
2823
2824	if (phb->type == PNV_PHB_NPU_OCAPI)
2825		dev->cfg_size = PCI_CFG_SPACE_EXP_SIZE;
2826}
2827DECLARE_PCI_FIXUP_EARLY(PCI_ANY_ID, PCI_ANY_ID, pnv_npu2_opencapi_cfg_size_fixup);
2828