1// SPDX-License-Identifier: GPL-2.0-or-later
2/*
3 * PowerNV LPC bus handling.
4 *
5 * Copyright 2013 IBM Corp.
6 */
7
8#include <linux/kernel.h>
9#include <linux/of.h>
10#include <linux/bug.h>
11#include <linux/io.h>
12#include <linux/slab.h>
13#include <linux/debugfs.h>
14
15#include <asm/machdep.h>
16#include <asm/firmware.h>
17#include <asm/opal.h>
18#include <asm/prom.h>
19#include <linux/uaccess.h>
20#include <asm/isa-bridge.h>
21
22static int opal_lpc_chip_id = -1;
23
24static u8 opal_lpc_inb(unsigned long port)
25{
26	int64_t rc;
27	__be32 data;
28
29	if (opal_lpc_chip_id < 0 || port > 0xffff)
30		return 0xff;
31	rc = opal_lpc_read(opal_lpc_chip_id, OPAL_LPC_IO, port, &data, 1);
32	return rc ? 0xff : be32_to_cpu(data);
33}
34
35static __le16 __opal_lpc_inw(unsigned long port)
36{
37	int64_t rc;
38	__be32 data;
39
40	if (opal_lpc_chip_id < 0 || port > 0xfffe)
41		return 0xffff;
42	if (port & 1)
43		return (__le16)opal_lpc_inb(port) << 8 | opal_lpc_inb(port + 1);
44	rc = opal_lpc_read(opal_lpc_chip_id, OPAL_LPC_IO, port, &data, 2);
45	return rc ? 0xffff : be32_to_cpu(data);
46}
47static u16 opal_lpc_inw(unsigned long port)
48{
49	return le16_to_cpu(__opal_lpc_inw(port));
50}
51
52static __le32 __opal_lpc_inl(unsigned long port)
53{
54	int64_t rc;
55	__be32 data;
56
57	if (opal_lpc_chip_id < 0 || port > 0xfffc)
58		return 0xffffffff;
59	if (port & 3)
60		return (__le32)opal_lpc_inb(port    ) << 24 |
61		       (__le32)opal_lpc_inb(port + 1) << 16 |
62		       (__le32)opal_lpc_inb(port + 2) <<  8 |
63			       opal_lpc_inb(port + 3);
64	rc = opal_lpc_read(opal_lpc_chip_id, OPAL_LPC_IO, port, &data, 4);
65	return rc ? 0xffffffff : be32_to_cpu(data);
66}
67
68static u32 opal_lpc_inl(unsigned long port)
69{
70	return le32_to_cpu(__opal_lpc_inl(port));
71}
72
73static void opal_lpc_outb(u8 val, unsigned long port)
74{
75	if (opal_lpc_chip_id < 0 || port > 0xffff)
76		return;
77	opal_lpc_write(opal_lpc_chip_id, OPAL_LPC_IO, port, val, 1);
78}
79
80static void __opal_lpc_outw(__le16 val, unsigned long port)
81{
82	if (opal_lpc_chip_id < 0 || port > 0xfffe)
83		return;
84	if (port & 1) {
85		opal_lpc_outb(val >> 8, port);
86		opal_lpc_outb(val     , port + 1);
87		return;
88	}
89	opal_lpc_write(opal_lpc_chip_id, OPAL_LPC_IO, port, val, 2);
90}
91
92static void opal_lpc_outw(u16 val, unsigned long port)
93{
94	__opal_lpc_outw(cpu_to_le16(val), port);
95}
96
97static void __opal_lpc_outl(__le32 val, unsigned long port)
98{
99	if (opal_lpc_chip_id < 0 || port > 0xfffc)
100		return;
101	if (port & 3) {
102		opal_lpc_outb(val >> 24, port);
103		opal_lpc_outb(val >> 16, port + 1);
104		opal_lpc_outb(val >>  8, port + 2);
105		opal_lpc_outb(val      , port + 3);
106		return;
107	}
108	opal_lpc_write(opal_lpc_chip_id, OPAL_LPC_IO, port, val, 4);
109}
110
111static void opal_lpc_outl(u32 val, unsigned long port)
112{
113	__opal_lpc_outl(cpu_to_le32(val), port);
114}
115
116static void opal_lpc_insb(unsigned long p, void *b, unsigned long c)
117{
118	u8 *ptr = b;
119
120	while(c--)
121		*(ptr++) = opal_lpc_inb(p);
122}
123
124static void opal_lpc_insw(unsigned long p, void *b, unsigned long c)
125{
126	__le16 *ptr = b;
127
128	while(c--)
129		*(ptr++) = __opal_lpc_inw(p);
130}
131
132static void opal_lpc_insl(unsigned long p, void *b, unsigned long c)
133{
134	__le32 *ptr = b;
135
136	while(c--)
137		*(ptr++) = __opal_lpc_inl(p);
138}
139
140static void opal_lpc_outsb(unsigned long p, const void *b, unsigned long c)
141{
142	const u8 *ptr = b;
143
144	while(c--)
145		opal_lpc_outb(*(ptr++), p);
146}
147
148static void opal_lpc_outsw(unsigned long p, const void *b, unsigned long c)
149{
150	const __le16 *ptr = b;
151
152	while(c--)
153		__opal_lpc_outw(*(ptr++), p);
154}
155
156static void opal_lpc_outsl(unsigned long p, const void *b, unsigned long c)
157{
158	const __le32 *ptr = b;
159
160	while(c--)
161		__opal_lpc_outl(*(ptr++), p);
162}
163
164static const struct ppc_pci_io opal_lpc_io = {
165	.inb	= opal_lpc_inb,
166	.inw	= opal_lpc_inw,
167	.inl	= opal_lpc_inl,
168	.outb	= opal_lpc_outb,
169	.outw	= opal_lpc_outw,
170	.outl	= opal_lpc_outl,
171	.insb	= opal_lpc_insb,
172	.insw	= opal_lpc_insw,
173	.insl	= opal_lpc_insl,
174	.outsb	= opal_lpc_outsb,
175	.outsw	= opal_lpc_outsw,
176	.outsl	= opal_lpc_outsl,
177};
178
179#ifdef CONFIG_DEBUG_FS
180struct lpc_debugfs_entry {
181	enum OpalLPCAddressType lpc_type;
182};
183
184static ssize_t lpc_debug_read(struct file *filp, char __user *ubuf,
185			      size_t count, loff_t *ppos)
186{
187	struct lpc_debugfs_entry *lpc = filp->private_data;
188	u32 data, pos, len, todo;
189	int rc;
190
191	if (!access_ok(ubuf, count))
192		return -EFAULT;
193
194	todo = count;
195	while (todo) {
196		pos = *ppos;
197
198		/*
199		 * Select access size based on count and alignment and
200		 * access type. IO and MEM only support byte accesses,
201		 * FW supports all 3.
202		 */
203		len = 1;
204		if (lpc->lpc_type == OPAL_LPC_FW) {
205			if (todo > 3 && (pos & 3) == 0)
206				len = 4;
207			else if (todo > 1 && (pos & 1) == 0)
208				len = 2;
209		}
210		rc = opal_lpc_read(opal_lpc_chip_id, lpc->lpc_type, pos,
211				   &data, len);
212		if (rc)
213			return -ENXIO;
214
215		/*
216		 * Now there is some trickery with the data returned by OPAL
217		 * as it's the desired data right justified in a 32-bit BE
218		 * word.
219		 *
220		 * This is a very bad interface and I'm to blame for it :-(
221		 *
222		 * So we can't just apply a 32-bit swap to what comes from OPAL,
223		 * because user space expects the *bytes* to be in their proper
224		 * respective positions (ie, LPC position).
225		 *
226		 * So what we really want to do here is to shift data right
227		 * appropriately on a LE kernel.
228		 *
229		 * IE. If the LPC transaction has bytes B0, B1, B2 and B3 in that
230		 * order, we have in memory written to by OPAL at the "data"
231		 * pointer:
232		 *
233		 *               Bytes:      OPAL "data"   LE "data"
234		 *   32-bit:   B0 B1 B2 B3   B0B1B2B3      B3B2B1B0
235		 *   16-bit:   B0 B1         0000B0B1      B1B00000
236		 *    8-bit:   B0            000000B0      B0000000
237		 *
238		 * So a BE kernel will have the leftmost of the above in the MSB
239		 * and rightmost in the LSB and can just then "cast" the u32 "data"
240		 * down to the appropriate quantity and write it.
241		 *
242		 * However, an LE kernel can't. It doesn't need to swap because a
243		 * load from data followed by a store to user are going to preserve
244		 * the byte ordering which is the wire byte order which is what the
245		 * user wants, but in order to "crop" to the right size, we need to
246		 * shift right first.
247		 */
248		switch(len) {
249		case 4:
250			rc = __put_user((u32)data, (u32 __user *)ubuf);
251			break;
252		case 2:
253#ifdef __LITTLE_ENDIAN__
254			data >>= 16;
255#endif
256			rc = __put_user((u16)data, (u16 __user *)ubuf);
257			break;
258		default:
259#ifdef __LITTLE_ENDIAN__
260			data >>= 24;
261#endif
262			rc = __put_user((u8)data, (u8 __user *)ubuf);
263			break;
264		}
265		if (rc)
266			return -EFAULT;
267		*ppos += len;
268		ubuf += len;
269		todo -= len;
270	}
271
272	return count;
273}
274
275static ssize_t lpc_debug_write(struct file *filp, const char __user *ubuf,
276			       size_t count, loff_t *ppos)
277{
278	struct lpc_debugfs_entry *lpc = filp->private_data;
279	u32 data, pos, len, todo;
280	int rc;
281
282	if (!access_ok(ubuf, count))
283		return -EFAULT;
284
285	todo = count;
286	while (todo) {
287		pos = *ppos;
288
289		/*
290		 * Select access size based on count and alignment and
291		 * access type. IO and MEM only support byte acceses,
292		 * FW supports all 3.
293		 */
294		len = 1;
295		if (lpc->lpc_type == OPAL_LPC_FW) {
296			if (todo > 3 && (pos & 3) == 0)
297				len = 4;
298			else if (todo > 1 && (pos & 1) == 0)
299				len = 2;
300		}
301
302		/*
303		 * Similarly to the read case, we have some trickery here but
304		 * it's different to handle. We need to pass the value to OPAL in
305		 * a register whose layout depends on the access size. We want
306		 * to reproduce the memory layout of the user, however we aren't
307		 * doing a load from user and a store to another memory location
308		 * which would achieve that. Here we pass the value to OPAL via
309		 * a register which is expected to contain the "BE" interpretation
310		 * of the byte sequence. IE: for a 32-bit access, byte 0 should be
311		 * in the MSB. So here we *do* need to byteswap on LE.
312		 *
313		 *           User bytes:    LE "data"  OPAL "data"
314		 *  32-bit:  B0 B1 B2 B3    B3B2B1B0   B0B1B2B3
315		 *  16-bit:  B0 B1          0000B1B0   0000B0B1
316		 *   8-bit:  B0             000000B0   000000B0
317		 */
318		switch(len) {
319		case 4:
320			rc = __get_user(data, (u32 __user *)ubuf);
321			data = cpu_to_be32(data);
322			break;
323		case 2:
324			rc = __get_user(data, (u16 __user *)ubuf);
325			data = cpu_to_be16(data);
326			break;
327		default:
328			rc = __get_user(data, (u8 __user *)ubuf);
329			break;
330		}
331		if (rc)
332			return -EFAULT;
333
334		rc = opal_lpc_write(opal_lpc_chip_id, lpc->lpc_type, pos,
335				    data, len);
336		if (rc)
337			return -ENXIO;
338		*ppos += len;
339		ubuf += len;
340		todo -= len;
341	}
342
343	return count;
344}
345
346static const struct file_operations lpc_fops = {
347	.read =		lpc_debug_read,
348	.write =	lpc_debug_write,
349	.open =		simple_open,
350	.llseek =	default_llseek,
351};
352
353static int opal_lpc_debugfs_create_type(struct dentry *folder,
354					const char *fname,
355					enum OpalLPCAddressType type)
356{
357	struct lpc_debugfs_entry *entry;
358	entry = kzalloc(sizeof(*entry), GFP_KERNEL);
359	if (!entry)
360		return -ENOMEM;
361	entry->lpc_type = type;
362	debugfs_create_file(fname, 0600, folder, entry, &lpc_fops);
363	return 0;
364}
365
366static int opal_lpc_init_debugfs(void)
367{
368	struct dentry *root;
369	int rc = 0;
370
371	if (opal_lpc_chip_id < 0)
372		return -ENODEV;
373
374	root = debugfs_create_dir("lpc", arch_debugfs_dir);
375
376	rc |= opal_lpc_debugfs_create_type(root, "io", OPAL_LPC_IO);
377	rc |= opal_lpc_debugfs_create_type(root, "mem", OPAL_LPC_MEM);
378	rc |= opal_lpc_debugfs_create_type(root, "fw", OPAL_LPC_FW);
379	return rc;
380}
381machine_device_initcall(powernv, opal_lpc_init_debugfs);
382#endif  /* CONFIG_DEBUG_FS */
383
384void __init opal_lpc_init(void)
385{
386	struct device_node *np;
387
388	/*
389	 * Look for a Power8 LPC bus tagged as "primary",
390	 * we currently support only one though the OPAL APIs
391	 * support any number.
392	 */
393	for_each_compatible_node(np, NULL, "ibm,power8-lpc") {
394		if (!of_device_is_available(np))
395			continue;
396		if (!of_get_property(np, "primary", NULL))
397			continue;
398		opal_lpc_chip_id = of_get_ibm_chip_id(np);
399		of_node_put(np);
400		break;
401	}
402	if (opal_lpc_chip_id < 0)
403		return;
404
405	/* Does it support direct mapping ? */
406	if (of_property_present(np, "ranges")) {
407		pr_info("OPAL: Found memory mapped LPC bus on chip %d\n",
408			opal_lpc_chip_id);
409		isa_bridge_init_non_pci(np);
410	} else {
411		pr_info("OPAL: Found non-mapped LPC bus on chip %d\n",
412			opal_lpc_chip_id);
413
414		/* Setup special IO ops */
415		ppc_pci_io = opal_lpc_io;
416		isa_io_special = true;
417	}
418}
419