1// SPDX-License-Identifier: GPL-2.0-or-later
2/*
3 * PowerNV Platform dependent EEH operations
4 *
5 * Copyright Benjamin Herrenschmidt & Gavin Shan, IBM Corporation 2013.
6 */
7
8#include <linux/atomic.h>
9#include <linux/debugfs.h>
10#include <linux/delay.h>
11#include <linux/export.h>
12#include <linux/init.h>
13#include <linux/interrupt.h>
14#include <linux/irqdomain.h>
15#include <linux/list.h>
16#include <linux/msi.h>
17#include <linux/of.h>
18#include <linux/pci.h>
19#include <linux/proc_fs.h>
20#include <linux/rbtree.h>
21#include <linux/sched.h>
22#include <linux/seq_file.h>
23#include <linux/spinlock.h>
24
25#include <asm/eeh.h>
26#include <asm/eeh_event.h>
27#include <asm/firmware.h>
28#include <asm/io.h>
29#include <asm/iommu.h>
30#include <asm/machdep.h>
31#include <asm/msi_bitmap.h>
32#include <asm/opal.h>
33#include <asm/ppc-pci.h>
34#include <asm/pnv-pci.h>
35
36#include "powernv.h"
37#include "pci.h"
38#include "../../../../drivers/pci/pci.h"
39
40static int eeh_event_irq = -EINVAL;
41
42static void pnv_pcibios_bus_add_device(struct pci_dev *pdev)
43{
44	dev_dbg(&pdev->dev, "EEH: Setting up device\n");
45	eeh_probe_device(pdev);
46}
47
48static irqreturn_t pnv_eeh_event(int irq, void *data)
49{
50	/*
51	 * We simply send a special EEH event if EEH has been
52	 * enabled. We don't care about EEH events until we've
53	 * finished processing the outstanding ones. Event processing
54	 * gets unmasked in next_error() if EEH is enabled.
55	 */
56	disable_irq_nosync(irq);
57
58	if (eeh_enabled())
59		eeh_send_failure_event(NULL);
60
61	return IRQ_HANDLED;
62}
63
64#ifdef CONFIG_DEBUG_FS
65static ssize_t pnv_eeh_ei_write(struct file *filp,
66				const char __user *user_buf,
67				size_t count, loff_t *ppos)
68{
69	struct pci_controller *hose = filp->private_data;
70	struct eeh_pe *pe;
71	int pe_no, type, func;
72	unsigned long addr, mask;
73	char buf[50];
74	int ret;
75
76	if (!eeh_ops || !eeh_ops->err_inject)
77		return -ENXIO;
78
79	/* Copy over argument buffer */
80	ret = simple_write_to_buffer(buf, sizeof(buf), ppos, user_buf, count);
81	if (!ret)
82		return -EFAULT;
83
84	/* Retrieve parameters */
85	ret = sscanf(buf, "%x:%x:%x:%lx:%lx",
86		     &pe_no, &type, &func, &addr, &mask);
87	if (ret != 5)
88		return -EINVAL;
89
90	/* Retrieve PE */
91	pe = eeh_pe_get(hose, pe_no);
92	if (!pe)
93		return -ENODEV;
94
95	/* Do error injection */
96	ret = eeh_ops->err_inject(pe, type, func, addr, mask);
97	return ret < 0 ? ret : count;
98}
99
100static const struct file_operations pnv_eeh_ei_fops = {
101	.open	= simple_open,
102	.llseek	= no_llseek,
103	.write	= pnv_eeh_ei_write,
104};
105
106static int pnv_eeh_dbgfs_set(void *data, int offset, u64 val)
107{
108	struct pci_controller *hose = data;
109	struct pnv_phb *phb = hose->private_data;
110
111	out_be64(phb->regs + offset, val);
112	return 0;
113}
114
115static int pnv_eeh_dbgfs_get(void *data, int offset, u64 *val)
116{
117	struct pci_controller *hose = data;
118	struct pnv_phb *phb = hose->private_data;
119
120	*val = in_be64(phb->regs + offset);
121	return 0;
122}
123
124#define PNV_EEH_DBGFS_ENTRY(name, reg)				\
125static int pnv_eeh_dbgfs_set_##name(void *data, u64 val)	\
126{								\
127	return pnv_eeh_dbgfs_set(data, reg, val);		\
128}								\
129								\
130static int pnv_eeh_dbgfs_get_##name(void *data, u64 *val)	\
131{								\
132	return pnv_eeh_dbgfs_get(data, reg, val);		\
133}								\
134								\
135DEFINE_SIMPLE_ATTRIBUTE(pnv_eeh_dbgfs_ops_##name,		\
136			pnv_eeh_dbgfs_get_##name,		\
137                        pnv_eeh_dbgfs_set_##name,		\
138			"0x%llx\n")
139
140PNV_EEH_DBGFS_ENTRY(outb, 0xD10);
141PNV_EEH_DBGFS_ENTRY(inbA, 0xD90);
142PNV_EEH_DBGFS_ENTRY(inbB, 0xE10);
143
144#endif /* CONFIG_DEBUG_FS */
145
146static void pnv_eeh_enable_phbs(void)
147{
148	struct pci_controller *hose;
149	struct pnv_phb *phb;
150
151	list_for_each_entry(hose, &hose_list, list_node) {
152		phb = hose->private_data;
153		/*
154		 * If EEH is enabled, we're going to rely on that.
155		 * Otherwise, we restore to conventional mechanism
156		 * to clear frozen PE during PCI config access.
157		 */
158		if (eeh_enabled())
159			phb->flags |= PNV_PHB_FLAG_EEH;
160		else
161			phb->flags &= ~PNV_PHB_FLAG_EEH;
162	}
163}
164
165/**
166 * pnv_eeh_post_init - EEH platform dependent post initialization
167 *
168 * EEH platform dependent post initialization on powernv. When
169 * the function is called, the EEH PEs and devices should have
170 * been built. If the I/O cache staff has been built, EEH is
171 * ready to supply service.
172 */
173int pnv_eeh_post_init(void)
174{
175	struct pci_controller *hose;
176	struct pnv_phb *phb;
177	int ret = 0;
178
179	eeh_show_enabled();
180
181	/* Register OPAL event notifier */
182	eeh_event_irq = opal_event_request(ilog2(OPAL_EVENT_PCI_ERROR));
183	if (eeh_event_irq < 0) {
184		pr_err("%s: Can't register OPAL event interrupt (%d)\n",
185		       __func__, eeh_event_irq);
186		return eeh_event_irq;
187	}
188
189	ret = request_irq(eeh_event_irq, pnv_eeh_event,
190			  IRQ_TYPE_LEVEL_HIGH, "opal-eeh", NULL);
191	if (ret < 0) {
192		irq_dispose_mapping(eeh_event_irq);
193		pr_err("%s: Can't request OPAL event interrupt (%d)\n",
194		       __func__, eeh_event_irq);
195		return ret;
196	}
197
198	if (!eeh_enabled())
199		disable_irq(eeh_event_irq);
200
201	pnv_eeh_enable_phbs();
202
203	list_for_each_entry(hose, &hose_list, list_node) {
204		phb = hose->private_data;
205
206		/* Create debugfs entries */
207#ifdef CONFIG_DEBUG_FS
208		if (phb->has_dbgfs || !phb->dbgfs)
209			continue;
210
211		phb->has_dbgfs = 1;
212		debugfs_create_file("err_injct", 0200,
213				    phb->dbgfs, hose,
214				    &pnv_eeh_ei_fops);
215
216		debugfs_create_file("err_injct_outbound", 0600,
217				    phb->dbgfs, hose,
218				    &pnv_eeh_dbgfs_ops_outb);
219		debugfs_create_file("err_injct_inboundA", 0600,
220				    phb->dbgfs, hose,
221				    &pnv_eeh_dbgfs_ops_inbA);
222		debugfs_create_file("err_injct_inboundB", 0600,
223				    phb->dbgfs, hose,
224				    &pnv_eeh_dbgfs_ops_inbB);
225#endif /* CONFIG_DEBUG_FS */
226	}
227
228	return ret;
229}
230
231static int pnv_eeh_find_cap(struct pci_dn *pdn, int cap)
232{
233	int pos = PCI_CAPABILITY_LIST;
234	int cnt = 48;   /* Maximal number of capabilities */
235	u32 status, id;
236
237	if (!pdn)
238		return 0;
239
240	/* Check if the device supports capabilities */
241	pnv_pci_cfg_read(pdn, PCI_STATUS, 2, &status);
242	if (!(status & PCI_STATUS_CAP_LIST))
243		return 0;
244
245	while (cnt--) {
246		pnv_pci_cfg_read(pdn, pos, 1, &pos);
247		if (pos < 0x40)
248			break;
249
250		pos &= ~3;
251		pnv_pci_cfg_read(pdn, pos + PCI_CAP_LIST_ID, 1, &id);
252		if (id == 0xff)
253			break;
254
255		/* Found */
256		if (id == cap)
257			return pos;
258
259		/* Next one */
260		pos += PCI_CAP_LIST_NEXT;
261	}
262
263	return 0;
264}
265
266static int pnv_eeh_find_ecap(struct pci_dn *pdn, int cap)
267{
268	struct eeh_dev *edev = pdn_to_eeh_dev(pdn);
269	u32 header;
270	int pos = 256, ttl = (4096 - 256) / 8;
271
272	if (!edev || !edev->pcie_cap)
273		return 0;
274	if (pnv_pci_cfg_read(pdn, pos, 4, &header) != PCIBIOS_SUCCESSFUL)
275		return 0;
276	else if (!header)
277		return 0;
278
279	while (ttl-- > 0) {
280		if (PCI_EXT_CAP_ID(header) == cap && pos)
281			return pos;
282
283		pos = PCI_EXT_CAP_NEXT(header);
284		if (pos < 256)
285			break;
286
287		if (pnv_pci_cfg_read(pdn, pos, 4, &header) != PCIBIOS_SUCCESSFUL)
288			break;
289	}
290
291	return 0;
292}
293
294static struct eeh_pe *pnv_eeh_get_upstream_pe(struct pci_dev *pdev)
295{
296	struct pci_controller *hose = pdev->bus->sysdata;
297	struct pnv_phb *phb = hose->private_data;
298	struct pci_dev *parent = pdev->bus->self;
299
300#ifdef CONFIG_PCI_IOV
301	/* for VFs we use the PF's PE as the upstream PE */
302	if (pdev->is_virtfn)
303		parent = pdev->physfn;
304#endif
305
306	/* otherwise use the PE of our parent bridge */
307	if (parent) {
308		struct pnv_ioda_pe *ioda_pe = pnv_ioda_get_pe(parent);
309
310		return eeh_pe_get(phb->hose, ioda_pe->pe_number);
311	}
312
313	return NULL;
314}
315
316/**
317 * pnv_eeh_probe - Do probe on PCI device
318 * @pdev: pci_dev to probe
319 *
320 * Create, or find the existing, eeh_dev for this pci_dev.
321 */
322static struct eeh_dev *pnv_eeh_probe(struct pci_dev *pdev)
323{
324	struct pci_dn *pdn = pci_get_pdn(pdev);
325	struct pci_controller *hose = pdn->phb;
326	struct pnv_phb *phb = hose->private_data;
327	struct eeh_dev *edev = pdn_to_eeh_dev(pdn);
328	struct eeh_pe *upstream_pe;
329	uint32_t pcie_flags;
330	int ret;
331	int config_addr = (pdn->busno << 8) | (pdn->devfn);
332
333	/*
334	 * When probing the root bridge, which doesn't have any
335	 * subordinate PCI devices. We don't have OF node for
336	 * the root bridge. So it's not reasonable to continue
337	 * the probing.
338	 */
339	if (!edev || edev->pe)
340		return NULL;
341
342	/* already configured? */
343	if (edev->pdev) {
344		pr_debug("%s: found existing edev for %04x:%02x:%02x.%01x\n",
345			__func__, hose->global_number, config_addr >> 8,
346			PCI_SLOT(config_addr), PCI_FUNC(config_addr));
347		return edev;
348	}
349
350	/* Skip for PCI-ISA bridge */
351	if ((pdev->class >> 8) == PCI_CLASS_BRIDGE_ISA)
352		return NULL;
353
354	eeh_edev_dbg(edev, "Probing device\n");
355
356	/* Initialize eeh device */
357	edev->mode	&= 0xFFFFFF00;
358	edev->pcix_cap = pnv_eeh_find_cap(pdn, PCI_CAP_ID_PCIX);
359	edev->pcie_cap = pnv_eeh_find_cap(pdn, PCI_CAP_ID_EXP);
360	edev->af_cap   = pnv_eeh_find_cap(pdn, PCI_CAP_ID_AF);
361	edev->aer_cap  = pnv_eeh_find_ecap(pdn, PCI_EXT_CAP_ID_ERR);
362	if ((pdev->class >> 8) == PCI_CLASS_BRIDGE_PCI) {
363		edev->mode |= EEH_DEV_BRIDGE;
364		if (edev->pcie_cap) {
365			pnv_pci_cfg_read(pdn, edev->pcie_cap + PCI_EXP_FLAGS,
366					 2, &pcie_flags);
367			pcie_flags = (pcie_flags & PCI_EXP_FLAGS_TYPE) >> 4;
368			if (pcie_flags == PCI_EXP_TYPE_ROOT_PORT)
369				edev->mode |= EEH_DEV_ROOT_PORT;
370			else if (pcie_flags == PCI_EXP_TYPE_DOWNSTREAM)
371				edev->mode |= EEH_DEV_DS_PORT;
372		}
373	}
374
375	edev->pe_config_addr = phb->ioda.pe_rmap[config_addr];
376
377	upstream_pe = pnv_eeh_get_upstream_pe(pdev);
378
379	/* Create PE */
380	ret = eeh_pe_tree_insert(edev, upstream_pe);
381	if (ret) {
382		eeh_edev_warn(edev, "Failed to add device to PE (code %d)\n", ret);
383		return NULL;
384	}
385
386	/*
387	 * If the PE contains any one of following adapters, the
388	 * PCI config space can't be accessed when dumping EEH log.
389	 * Otherwise, we will run into fenced PHB caused by shortage
390	 * of outbound credits in the adapter. The PCI config access
391	 * should be blocked until PE reset. MMIO access is dropped
392	 * by hardware certainly. In order to drop PCI config requests,
393	 * one more flag (EEH_PE_CFG_RESTRICTED) is introduced, which
394	 * will be checked in the backend for PE state retrieval. If
395	 * the PE becomes frozen for the first time and the flag has
396	 * been set for the PE, we will set EEH_PE_CFG_BLOCKED for
397	 * that PE to block its config space.
398	 *
399	 * Broadcom BCM5718 2-ports NICs (14e4:1656)
400	 * Broadcom Austin 4-ports NICs (14e4:1657)
401	 * Broadcom Shiner 4-ports 1G NICs (14e4:168a)
402	 * Broadcom Shiner 2-ports 10G NICs (14e4:168e)
403	 */
404	if ((pdn->vendor_id == PCI_VENDOR_ID_BROADCOM &&
405	     pdn->device_id == 0x1656) ||
406	    (pdn->vendor_id == PCI_VENDOR_ID_BROADCOM &&
407	     pdn->device_id == 0x1657) ||
408	    (pdn->vendor_id == PCI_VENDOR_ID_BROADCOM &&
409	     pdn->device_id == 0x168a) ||
410	    (pdn->vendor_id == PCI_VENDOR_ID_BROADCOM &&
411	     pdn->device_id == 0x168e))
412		edev->pe->state |= EEH_PE_CFG_RESTRICTED;
413
414	/*
415	 * Cache the PE primary bus, which can't be fetched when
416	 * full hotplug is in progress. In that case, all child
417	 * PCI devices of the PE are expected to be removed prior
418	 * to PE reset.
419	 */
420	if (!(edev->pe->state & EEH_PE_PRI_BUS)) {
421		edev->pe->bus = pci_find_bus(hose->global_number,
422					     pdn->busno);
423		if (edev->pe->bus)
424			edev->pe->state |= EEH_PE_PRI_BUS;
425	}
426
427	/*
428	 * Enable EEH explicitly so that we will do EEH check
429	 * while accessing I/O stuff
430	 */
431	if (!eeh_has_flag(EEH_ENABLED)) {
432		enable_irq(eeh_event_irq);
433		pnv_eeh_enable_phbs();
434		eeh_add_flag(EEH_ENABLED);
435	}
436
437	/* Save memory bars */
438	eeh_save_bars(edev);
439
440	eeh_edev_dbg(edev, "EEH enabled on device\n");
441
442	return edev;
443}
444
445/**
446 * pnv_eeh_set_option - Initialize EEH or MMIO/DMA reenable
447 * @pe: EEH PE
448 * @option: operation to be issued
449 *
450 * The function is used to control the EEH functionality globally.
451 * Currently, following options are support according to PAPR:
452 * Enable EEH, Disable EEH, Enable MMIO and Enable DMA
453 */
454static int pnv_eeh_set_option(struct eeh_pe *pe, int option)
455{
456	struct pci_controller *hose = pe->phb;
457	struct pnv_phb *phb = hose->private_data;
458	bool freeze_pe = false;
459	int opt;
460	s64 rc;
461
462	switch (option) {
463	case EEH_OPT_DISABLE:
464		return -EPERM;
465	case EEH_OPT_ENABLE:
466		return 0;
467	case EEH_OPT_THAW_MMIO:
468		opt = OPAL_EEH_ACTION_CLEAR_FREEZE_MMIO;
469		break;
470	case EEH_OPT_THAW_DMA:
471		opt = OPAL_EEH_ACTION_CLEAR_FREEZE_DMA;
472		break;
473	case EEH_OPT_FREEZE_PE:
474		freeze_pe = true;
475		opt = OPAL_EEH_ACTION_SET_FREEZE_ALL;
476		break;
477	default:
478		pr_warn("%s: Invalid option %d\n", __func__, option);
479		return -EINVAL;
480	}
481
482	/* Freeze master and slave PEs if PHB supports compound PEs */
483	if (freeze_pe) {
484		if (phb->freeze_pe) {
485			phb->freeze_pe(phb, pe->addr);
486			return 0;
487		}
488
489		rc = opal_pci_eeh_freeze_set(phb->opal_id, pe->addr, opt);
490		if (rc != OPAL_SUCCESS) {
491			pr_warn("%s: Failure %lld freezing PHB#%x-PE#%x\n",
492				__func__, rc, phb->hose->global_number,
493				pe->addr);
494			return -EIO;
495		}
496
497		return 0;
498	}
499
500	/* Unfreeze master and slave PEs if PHB supports */
501	if (phb->unfreeze_pe)
502		return phb->unfreeze_pe(phb, pe->addr, opt);
503
504	rc = opal_pci_eeh_freeze_clear(phb->opal_id, pe->addr, opt);
505	if (rc != OPAL_SUCCESS) {
506		pr_warn("%s: Failure %lld enable %d for PHB#%x-PE#%x\n",
507			__func__, rc, option, phb->hose->global_number,
508			pe->addr);
509		return -EIO;
510	}
511
512	return 0;
513}
514
515static void pnv_eeh_get_phb_diag(struct eeh_pe *pe)
516{
517	struct pnv_phb *phb = pe->phb->private_data;
518	s64 rc;
519
520	rc = opal_pci_get_phb_diag_data2(phb->opal_id, pe->data,
521					 phb->diag_data_size);
522	if (rc != OPAL_SUCCESS)
523		pr_warn("%s: Failure %lld getting PHB#%x diag-data\n",
524			__func__, rc, pe->phb->global_number);
525}
526
527static int pnv_eeh_get_phb_state(struct eeh_pe *pe)
528{
529	struct pnv_phb *phb = pe->phb->private_data;
530	u8 fstate = 0;
531	__be16 pcierr = 0;
532	s64 rc;
533	int result = 0;
534
535	rc = opal_pci_eeh_freeze_status(phb->opal_id,
536					pe->addr,
537					&fstate,
538					&pcierr,
539					NULL);
540	if (rc != OPAL_SUCCESS) {
541		pr_warn("%s: Failure %lld getting PHB#%x state\n",
542			__func__, rc, phb->hose->global_number);
543		return EEH_STATE_NOT_SUPPORT;
544	}
545
546	/*
547	 * Check PHB state. If the PHB is frozen for the
548	 * first time, to dump the PHB diag-data.
549	 */
550	if (be16_to_cpu(pcierr) != OPAL_EEH_PHB_ERROR) {
551		result = (EEH_STATE_MMIO_ACTIVE  |
552			  EEH_STATE_DMA_ACTIVE   |
553			  EEH_STATE_MMIO_ENABLED |
554			  EEH_STATE_DMA_ENABLED);
555	} else if (!(pe->state & EEH_PE_ISOLATED)) {
556		eeh_pe_mark_isolated(pe);
557		pnv_eeh_get_phb_diag(pe);
558
559		if (eeh_has_flag(EEH_EARLY_DUMP_LOG))
560			pnv_pci_dump_phb_diag_data(pe->phb, pe->data);
561	}
562
563	return result;
564}
565
566static int pnv_eeh_get_pe_state(struct eeh_pe *pe)
567{
568	struct pnv_phb *phb = pe->phb->private_data;
569	u8 fstate = 0;
570	__be16 pcierr = 0;
571	s64 rc;
572	int result;
573
574	/*
575	 * We don't clobber hardware frozen state until PE
576	 * reset is completed. In order to keep EEH core
577	 * moving forward, we have to return operational
578	 * state during PE reset.
579	 */
580	if (pe->state & EEH_PE_RESET) {
581		result = (EEH_STATE_MMIO_ACTIVE  |
582			  EEH_STATE_DMA_ACTIVE   |
583			  EEH_STATE_MMIO_ENABLED |
584			  EEH_STATE_DMA_ENABLED);
585		return result;
586	}
587
588	/*
589	 * Fetch PE state from hardware. If the PHB
590	 * supports compound PE, let it handle that.
591	 */
592	if (phb->get_pe_state) {
593		fstate = phb->get_pe_state(phb, pe->addr);
594	} else {
595		rc = opal_pci_eeh_freeze_status(phb->opal_id,
596						pe->addr,
597						&fstate,
598						&pcierr,
599						NULL);
600		if (rc != OPAL_SUCCESS) {
601			pr_warn("%s: Failure %lld getting PHB#%x-PE%x state\n",
602				__func__, rc, phb->hose->global_number,
603				pe->addr);
604			return EEH_STATE_NOT_SUPPORT;
605		}
606	}
607
608	/* Figure out state */
609	switch (fstate) {
610	case OPAL_EEH_STOPPED_NOT_FROZEN:
611		result = (EEH_STATE_MMIO_ACTIVE  |
612			  EEH_STATE_DMA_ACTIVE   |
613			  EEH_STATE_MMIO_ENABLED |
614			  EEH_STATE_DMA_ENABLED);
615		break;
616	case OPAL_EEH_STOPPED_MMIO_FREEZE:
617		result = (EEH_STATE_DMA_ACTIVE |
618			  EEH_STATE_DMA_ENABLED);
619		break;
620	case OPAL_EEH_STOPPED_DMA_FREEZE:
621		result = (EEH_STATE_MMIO_ACTIVE |
622			  EEH_STATE_MMIO_ENABLED);
623		break;
624	case OPAL_EEH_STOPPED_MMIO_DMA_FREEZE:
625		result = 0;
626		break;
627	case OPAL_EEH_STOPPED_RESET:
628		result = EEH_STATE_RESET_ACTIVE;
629		break;
630	case OPAL_EEH_STOPPED_TEMP_UNAVAIL:
631		result = EEH_STATE_UNAVAILABLE;
632		break;
633	case OPAL_EEH_STOPPED_PERM_UNAVAIL:
634		result = EEH_STATE_NOT_SUPPORT;
635		break;
636	default:
637		result = EEH_STATE_NOT_SUPPORT;
638		pr_warn("%s: Invalid PHB#%x-PE#%x state %x\n",
639			__func__, phb->hose->global_number,
640			pe->addr, fstate);
641	}
642
643	/*
644	 * If PHB supports compound PE, to freeze all
645	 * slave PEs for consistency.
646	 *
647	 * If the PE is switching to frozen state for the
648	 * first time, to dump the PHB diag-data.
649	 */
650	if (!(result & EEH_STATE_NOT_SUPPORT) &&
651	    !(result & EEH_STATE_UNAVAILABLE) &&
652	    !(result & EEH_STATE_MMIO_ACTIVE) &&
653	    !(result & EEH_STATE_DMA_ACTIVE)  &&
654	    !(pe->state & EEH_PE_ISOLATED)) {
655		if (phb->freeze_pe)
656			phb->freeze_pe(phb, pe->addr);
657
658		eeh_pe_mark_isolated(pe);
659		pnv_eeh_get_phb_diag(pe);
660
661		if (eeh_has_flag(EEH_EARLY_DUMP_LOG))
662			pnv_pci_dump_phb_diag_data(pe->phb, pe->data);
663	}
664
665	return result;
666}
667
668/**
669 * pnv_eeh_get_state - Retrieve PE state
670 * @pe: EEH PE
671 * @delay: delay while PE state is temporarily unavailable
672 *
673 * Retrieve the state of the specified PE. For IODA-compitable
674 * platform, it should be retrieved from IODA table. Therefore,
675 * we prefer passing down to hardware implementation to handle
676 * it.
677 */
678static int pnv_eeh_get_state(struct eeh_pe *pe, int *delay)
679{
680	int ret;
681
682	if (pe->type & EEH_PE_PHB)
683		ret = pnv_eeh_get_phb_state(pe);
684	else
685		ret = pnv_eeh_get_pe_state(pe);
686
687	if (!delay)
688		return ret;
689
690	/*
691	 * If the PE state is temporarily unavailable,
692	 * to inform the EEH core delay for default
693	 * period (1 second)
694	 */
695	*delay = 0;
696	if (ret & EEH_STATE_UNAVAILABLE)
697		*delay = 1000;
698
699	return ret;
700}
701
702static s64 pnv_eeh_poll(unsigned long id)
703{
704	s64 rc = OPAL_HARDWARE;
705
706	while (1) {
707		rc = opal_pci_poll(id);
708		if (rc <= 0)
709			break;
710
711		if (system_state < SYSTEM_RUNNING)
712			udelay(1000 * rc);
713		else
714			msleep(rc);
715	}
716
717	return rc;
718}
719
720int pnv_eeh_phb_reset(struct pci_controller *hose, int option)
721{
722	struct pnv_phb *phb = hose->private_data;
723	s64 rc = OPAL_HARDWARE;
724
725	pr_debug("%s: Reset PHB#%x, option=%d\n",
726		 __func__, hose->global_number, option);
727
728	/* Issue PHB complete reset request */
729	if (option == EEH_RESET_FUNDAMENTAL ||
730	    option == EEH_RESET_HOT)
731		rc = opal_pci_reset(phb->opal_id,
732				    OPAL_RESET_PHB_COMPLETE,
733				    OPAL_ASSERT_RESET);
734	else if (option == EEH_RESET_DEACTIVATE)
735		rc = opal_pci_reset(phb->opal_id,
736				    OPAL_RESET_PHB_COMPLETE,
737				    OPAL_DEASSERT_RESET);
738	if (rc < 0)
739		goto out;
740
741	/*
742	 * Poll state of the PHB until the request is done
743	 * successfully. The PHB reset is usually PHB complete
744	 * reset followed by hot reset on root bus. So we also
745	 * need the PCI bus settlement delay.
746	 */
747	if (rc > 0)
748		rc = pnv_eeh_poll(phb->opal_id);
749	if (option == EEH_RESET_DEACTIVATE) {
750		if (system_state < SYSTEM_RUNNING)
751			udelay(1000 * EEH_PE_RST_SETTLE_TIME);
752		else
753			msleep(EEH_PE_RST_SETTLE_TIME);
754	}
755out:
756	if (rc != OPAL_SUCCESS)
757		return -EIO;
758
759	return 0;
760}
761
762static int pnv_eeh_root_reset(struct pci_controller *hose, int option)
763{
764	struct pnv_phb *phb = hose->private_data;
765	s64 rc = OPAL_HARDWARE;
766
767	pr_debug("%s: Reset PHB#%x, option=%d\n",
768		 __func__, hose->global_number, option);
769
770	/*
771	 * During the reset deassert time, we needn't care
772	 * the reset scope because the firmware does nothing
773	 * for fundamental or hot reset during deassert phase.
774	 */
775	if (option == EEH_RESET_FUNDAMENTAL)
776		rc = opal_pci_reset(phb->opal_id,
777				    OPAL_RESET_PCI_FUNDAMENTAL,
778				    OPAL_ASSERT_RESET);
779	else if (option == EEH_RESET_HOT)
780		rc = opal_pci_reset(phb->opal_id,
781				    OPAL_RESET_PCI_HOT,
782				    OPAL_ASSERT_RESET);
783	else if (option == EEH_RESET_DEACTIVATE)
784		rc = opal_pci_reset(phb->opal_id,
785				    OPAL_RESET_PCI_HOT,
786				    OPAL_DEASSERT_RESET);
787	if (rc < 0)
788		goto out;
789
790	/* Poll state of the PHB until the request is done */
791	if (rc > 0)
792		rc = pnv_eeh_poll(phb->opal_id);
793	if (option == EEH_RESET_DEACTIVATE)
794		msleep(EEH_PE_RST_SETTLE_TIME);
795out:
796	if (rc != OPAL_SUCCESS)
797		return -EIO;
798
799	return 0;
800}
801
802static int __pnv_eeh_bridge_reset(struct pci_dev *dev, int option)
803{
804	struct pci_dn *pdn = pci_get_pdn_by_devfn(dev->bus, dev->devfn);
805	struct eeh_dev *edev = pdn_to_eeh_dev(pdn);
806	int aer = edev ? edev->aer_cap : 0;
807	u32 ctrl;
808
809	pr_debug("%s: Secondary Reset PCI bus %04x:%02x with option %d\n",
810		 __func__, pci_domain_nr(dev->bus),
811		 dev->bus->number, option);
812
813	switch (option) {
814	case EEH_RESET_FUNDAMENTAL:
815	case EEH_RESET_HOT:
816		/* Don't report linkDown event */
817		if (aer) {
818			eeh_ops->read_config(edev, aer + PCI_ERR_UNCOR_MASK,
819					     4, &ctrl);
820			ctrl |= PCI_ERR_UNC_SURPDN;
821			eeh_ops->write_config(edev, aer + PCI_ERR_UNCOR_MASK,
822					      4, ctrl);
823		}
824
825		eeh_ops->read_config(edev, PCI_BRIDGE_CONTROL, 2, &ctrl);
826		ctrl |= PCI_BRIDGE_CTL_BUS_RESET;
827		eeh_ops->write_config(edev, PCI_BRIDGE_CONTROL, 2, ctrl);
828
829		msleep(EEH_PE_RST_HOLD_TIME);
830		break;
831	case EEH_RESET_DEACTIVATE:
832		eeh_ops->read_config(edev, PCI_BRIDGE_CONTROL, 2, &ctrl);
833		ctrl &= ~PCI_BRIDGE_CTL_BUS_RESET;
834		eeh_ops->write_config(edev, PCI_BRIDGE_CONTROL, 2, ctrl);
835
836		msleep(EEH_PE_RST_SETTLE_TIME);
837
838		/* Continue reporting linkDown event */
839		if (aer) {
840			eeh_ops->read_config(edev, aer + PCI_ERR_UNCOR_MASK,
841					     4, &ctrl);
842			ctrl &= ~PCI_ERR_UNC_SURPDN;
843			eeh_ops->write_config(edev, aer + PCI_ERR_UNCOR_MASK,
844					      4, ctrl);
845		}
846
847		break;
848	}
849
850	return 0;
851}
852
853static int pnv_eeh_bridge_reset(struct pci_dev *pdev, int option)
854{
855	struct pci_controller *hose = pci_bus_to_host(pdev->bus);
856	struct pnv_phb *phb = hose->private_data;
857	struct device_node *dn = pci_device_to_OF_node(pdev);
858	uint64_t id = PCI_SLOT_ID(phb->opal_id, pci_dev_id(pdev));
859	uint8_t scope;
860	int64_t rc;
861
862	/* Hot reset to the bus if firmware cannot handle */
863	if (!dn || !of_get_property(dn, "ibm,reset-by-firmware", NULL))
864		return __pnv_eeh_bridge_reset(pdev, option);
865
866	pr_debug("%s: FW reset PCI bus %04x:%02x with option %d\n",
867		 __func__, pci_domain_nr(pdev->bus),
868		 pdev->bus->number, option);
869
870	switch (option) {
871	case EEH_RESET_FUNDAMENTAL:
872		scope = OPAL_RESET_PCI_FUNDAMENTAL;
873		break;
874	case EEH_RESET_HOT:
875		scope = OPAL_RESET_PCI_HOT;
876		break;
877	case EEH_RESET_DEACTIVATE:
878		return 0;
879	default:
880		dev_dbg(&pdev->dev, "%s: Unsupported reset %d\n",
881			__func__, option);
882		return -EINVAL;
883	}
884
885	rc = opal_pci_reset(id, scope, OPAL_ASSERT_RESET);
886	if (rc <= OPAL_SUCCESS)
887		goto out;
888
889	rc = pnv_eeh_poll(id);
890out:
891	return (rc == OPAL_SUCCESS) ? 0 : -EIO;
892}
893
894void pnv_pci_reset_secondary_bus(struct pci_dev *dev)
895{
896	struct pci_controller *hose;
897
898	if (pci_is_root_bus(dev->bus)) {
899		hose = pci_bus_to_host(dev->bus);
900		pnv_eeh_root_reset(hose, EEH_RESET_HOT);
901		pnv_eeh_root_reset(hose, EEH_RESET_DEACTIVATE);
902	} else {
903		pnv_eeh_bridge_reset(dev, EEH_RESET_HOT);
904		pnv_eeh_bridge_reset(dev, EEH_RESET_DEACTIVATE);
905	}
906}
907
908static void pnv_eeh_wait_for_pending(struct pci_dn *pdn, const char *type,
909				     int pos, u16 mask)
910{
911	struct eeh_dev *edev = pdn->edev;
912	int i, status = 0;
913
914	/* Wait for Transaction Pending bit to be cleared */
915	for (i = 0; i < 4; i++) {
916		eeh_ops->read_config(edev, pos, 2, &status);
917		if (!(status & mask))
918			return;
919
920		msleep((1 << i) * 100);
921	}
922
923	pr_warn("%s: Pending transaction while issuing %sFLR to %04x:%02x:%02x.%01x\n",
924		__func__, type,
925		pdn->phb->global_number, pdn->busno,
926		PCI_SLOT(pdn->devfn), PCI_FUNC(pdn->devfn));
927}
928
929static int pnv_eeh_do_flr(struct pci_dn *pdn, int option)
930{
931	struct eeh_dev *edev = pdn_to_eeh_dev(pdn);
932	u32 reg = 0;
933
934	if (WARN_ON(!edev->pcie_cap))
935		return -ENOTTY;
936
937	eeh_ops->read_config(edev, edev->pcie_cap + PCI_EXP_DEVCAP, 4, &reg);
938	if (!(reg & PCI_EXP_DEVCAP_FLR))
939		return -ENOTTY;
940
941	switch (option) {
942	case EEH_RESET_HOT:
943	case EEH_RESET_FUNDAMENTAL:
944		pnv_eeh_wait_for_pending(pdn, "",
945					 edev->pcie_cap + PCI_EXP_DEVSTA,
946					 PCI_EXP_DEVSTA_TRPND);
947		eeh_ops->read_config(edev, edev->pcie_cap + PCI_EXP_DEVCTL,
948				     4, &reg);
949		reg |= PCI_EXP_DEVCTL_BCR_FLR;
950		eeh_ops->write_config(edev, edev->pcie_cap + PCI_EXP_DEVCTL,
951				      4, reg);
952		msleep(EEH_PE_RST_HOLD_TIME);
953		break;
954	case EEH_RESET_DEACTIVATE:
955		eeh_ops->read_config(edev, edev->pcie_cap + PCI_EXP_DEVCTL,
956				     4, &reg);
957		reg &= ~PCI_EXP_DEVCTL_BCR_FLR;
958		eeh_ops->write_config(edev, edev->pcie_cap + PCI_EXP_DEVCTL,
959				      4, reg);
960		msleep(EEH_PE_RST_SETTLE_TIME);
961		break;
962	}
963
964	return 0;
965}
966
967static int pnv_eeh_do_af_flr(struct pci_dn *pdn, int option)
968{
969	struct eeh_dev *edev = pdn_to_eeh_dev(pdn);
970	u32 cap = 0;
971
972	if (WARN_ON(!edev->af_cap))
973		return -ENOTTY;
974
975	eeh_ops->read_config(edev, edev->af_cap + PCI_AF_CAP, 1, &cap);
976	if (!(cap & PCI_AF_CAP_TP) || !(cap & PCI_AF_CAP_FLR))
977		return -ENOTTY;
978
979	switch (option) {
980	case EEH_RESET_HOT:
981	case EEH_RESET_FUNDAMENTAL:
982		/*
983		 * Wait for Transaction Pending bit to clear. A word-aligned
984		 * test is used, so we use the control offset rather than status
985		 * and shift the test bit to match.
986		 */
987		pnv_eeh_wait_for_pending(pdn, "AF",
988					 edev->af_cap + PCI_AF_CTRL,
989					 PCI_AF_STATUS_TP << 8);
990		eeh_ops->write_config(edev, edev->af_cap + PCI_AF_CTRL,
991				      1, PCI_AF_CTRL_FLR);
992		msleep(EEH_PE_RST_HOLD_TIME);
993		break;
994	case EEH_RESET_DEACTIVATE:
995		eeh_ops->write_config(edev, edev->af_cap + PCI_AF_CTRL, 1, 0);
996		msleep(EEH_PE_RST_SETTLE_TIME);
997		break;
998	}
999
1000	return 0;
1001}
1002
1003static int pnv_eeh_reset_vf_pe(struct eeh_pe *pe, int option)
1004{
1005	struct eeh_dev *edev;
1006	struct pci_dn *pdn;
1007	int ret;
1008
1009	/* The VF PE should have only one child device */
1010	edev = list_first_entry_or_null(&pe->edevs, struct eeh_dev, entry);
1011	pdn = eeh_dev_to_pdn(edev);
1012	if (!pdn)
1013		return -ENXIO;
1014
1015	ret = pnv_eeh_do_flr(pdn, option);
1016	if (!ret)
1017		return ret;
1018
1019	return pnv_eeh_do_af_flr(pdn, option);
1020}
1021
1022/**
1023 * pnv_eeh_reset - Reset the specified PE
1024 * @pe: EEH PE
1025 * @option: reset option
1026 *
1027 * Do reset on the indicated PE. For PCI bus sensitive PE,
1028 * we need to reset the parent p2p bridge. The PHB has to
1029 * be reinitialized if the p2p bridge is root bridge. For
1030 * PCI device sensitive PE, we will try to reset the device
1031 * through FLR. For now, we don't have OPAL APIs to do HARD
1032 * reset yet, so all reset would be SOFT (HOT) reset.
1033 */
1034static int pnv_eeh_reset(struct eeh_pe *pe, int option)
1035{
1036	struct pci_controller *hose = pe->phb;
1037	struct pnv_phb *phb;
1038	struct pci_bus *bus;
1039	int64_t rc;
1040
1041	/*
1042	 * For PHB reset, we always have complete reset. For those PEs whose
1043	 * primary bus derived from root complex (root bus) or root port
1044	 * (usually bus#1), we apply hot or fundamental reset on the root port.
1045	 * For other PEs, we always have hot reset on the PE primary bus.
1046	 *
1047	 * Here, we have different design to pHyp, which always clear the
1048	 * frozen state during PE reset. However, the good idea here from
1049	 * benh is to keep frozen state before we get PE reset done completely
1050	 * (until BAR restore). With the frozen state, HW drops illegal IO
1051	 * or MMIO access, which can incur recursive frozen PE during PE
1052	 * reset. The side effect is that EEH core has to clear the frozen
1053	 * state explicitly after BAR restore.
1054	 */
1055	if (pe->type & EEH_PE_PHB)
1056		return pnv_eeh_phb_reset(hose, option);
1057
1058	/*
1059	 * The frozen PE might be caused by PAPR error injection
1060	 * registers, which are expected to be cleared after hitting
1061	 * frozen PE as stated in the hardware spec. Unfortunately,
1062	 * that's not true on P7IOC. So we have to clear it manually
1063	 * to avoid recursive EEH errors during recovery.
1064	 */
1065	phb = hose->private_data;
1066	if (phb->model == PNV_PHB_MODEL_P7IOC &&
1067	    (option == EEH_RESET_HOT ||
1068	     option == EEH_RESET_FUNDAMENTAL)) {
1069		rc = opal_pci_reset(phb->opal_id,
1070				    OPAL_RESET_PHB_ERROR,
1071				    OPAL_ASSERT_RESET);
1072		if (rc != OPAL_SUCCESS) {
1073			pr_warn("%s: Failure %lld clearing error injection registers\n",
1074				__func__, rc);
1075			return -EIO;
1076		}
1077	}
1078
1079	if (pe->type & EEH_PE_VF)
1080		return pnv_eeh_reset_vf_pe(pe, option);
1081
1082	bus = eeh_pe_bus_get(pe);
1083	if (!bus) {
1084		pr_err("%s: Cannot find PCI bus for PHB#%x-PE#%x\n",
1085			__func__, pe->phb->global_number, pe->addr);
1086		return -EIO;
1087	}
1088
1089	if (pci_is_root_bus(bus))
1090		return pnv_eeh_root_reset(hose, option);
1091
1092	/*
1093	 * For hot resets try use the generic PCI error recovery reset
1094	 * functions. These correctly handles the case where the secondary
1095	 * bus is behind a hotplug slot and it will use the slot provided
1096	 * reset methods to prevent spurious hotplug events during the reset.
1097	 *
1098	 * Fundamental resets need to be handled internally to EEH since the
1099	 * PCI core doesn't really have a concept of a fundamental reset,
1100	 * mainly because there's no standard way to generate one. Only a
1101	 * few devices require an FRESET so it should be fine.
1102	 */
1103	if (option != EEH_RESET_FUNDAMENTAL) {
1104		/*
1105		 * NB: Skiboot and pnv_eeh_bridge_reset() also no-op the
1106		 *     de-assert step. It's like the OPAL reset API was
1107		 *     poorly designed or something...
1108		 */
1109		if (option == EEH_RESET_DEACTIVATE)
1110			return 0;
1111
1112		rc = pci_bus_error_reset(bus->self);
1113		if (!rc)
1114			return 0;
1115	}
1116
1117	/* otherwise, use the generic bridge reset. this might call into FW */
1118	if (pci_is_root_bus(bus->parent))
1119		return pnv_eeh_root_reset(hose, option);
1120	return pnv_eeh_bridge_reset(bus->self, option);
1121}
1122
1123/**
1124 * pnv_eeh_get_log - Retrieve error log
1125 * @pe: EEH PE
1126 * @severity: temporary or permanent error log
1127 * @drv_log: driver log to be combined with retrieved error log
1128 * @len: length of driver log
1129 *
1130 * Retrieve the temporary or permanent error from the PE.
1131 */
1132static int pnv_eeh_get_log(struct eeh_pe *pe, int severity,
1133			   char *drv_log, unsigned long len)
1134{
1135	if (!eeh_has_flag(EEH_EARLY_DUMP_LOG))
1136		pnv_pci_dump_phb_diag_data(pe->phb, pe->data);
1137
1138	return 0;
1139}
1140
1141/**
1142 * pnv_eeh_configure_bridge - Configure PCI bridges in the indicated PE
1143 * @pe: EEH PE
1144 *
1145 * The function will be called to reconfigure the bridges included
1146 * in the specified PE so that the mulfunctional PE would be recovered
1147 * again.
1148 */
1149static int pnv_eeh_configure_bridge(struct eeh_pe *pe)
1150{
1151	return 0;
1152}
1153
1154/**
1155 * pnv_pe_err_inject - Inject specified error to the indicated PE
1156 * @pe: the indicated PE
1157 * @type: error type
1158 * @func: specific error type
1159 * @addr: address
1160 * @mask: address mask
1161 *
1162 * The routine is called to inject specified error, which is
1163 * determined by @type and @func, to the indicated PE for
1164 * testing purpose.
1165 */
1166static int pnv_eeh_err_inject(struct eeh_pe *pe, int type, int func,
1167			      unsigned long addr, unsigned long mask)
1168{
1169	struct pci_controller *hose = pe->phb;
1170	struct pnv_phb *phb = hose->private_data;
1171	s64 rc;
1172
1173	if (type != OPAL_ERR_INJECT_TYPE_IOA_BUS_ERR &&
1174	    type != OPAL_ERR_INJECT_TYPE_IOA_BUS_ERR64) {
1175		pr_warn("%s: Invalid error type %d\n",
1176			__func__, type);
1177		return -ERANGE;
1178	}
1179
1180	if (func < OPAL_ERR_INJECT_FUNC_IOA_LD_MEM_ADDR ||
1181	    func > OPAL_ERR_INJECT_FUNC_IOA_DMA_WR_TARGET) {
1182		pr_warn("%s: Invalid error function %d\n",
1183			__func__, func);
1184		return -ERANGE;
1185	}
1186
1187	/* Firmware supports error injection ? */
1188	if (!opal_check_token(OPAL_PCI_ERR_INJECT)) {
1189		pr_warn("%s: Firmware doesn't support error injection\n",
1190			__func__);
1191		return -ENXIO;
1192	}
1193
1194	/* Do error injection */
1195	rc = opal_pci_err_inject(phb->opal_id, pe->addr,
1196				 type, func, addr, mask);
1197	if (rc != OPAL_SUCCESS) {
1198		pr_warn("%s: Failure %lld injecting error "
1199			"%d-%d to PHB#%x-PE#%x\n",
1200			__func__, rc, type, func,
1201			hose->global_number, pe->addr);
1202		return -EIO;
1203	}
1204
1205	return 0;
1206}
1207
1208static inline bool pnv_eeh_cfg_blocked(struct pci_dn *pdn)
1209{
1210	struct eeh_dev *edev = pdn_to_eeh_dev(pdn);
1211
1212	if (!edev || !edev->pe)
1213		return false;
1214
1215	/*
1216	 * We will issue FLR or AF FLR to all VFs, which are contained
1217	 * in VF PE. It relies on the EEH PCI config accessors. So we
1218	 * can't block them during the window.
1219	 */
1220	if (edev->physfn && (edev->pe->state & EEH_PE_RESET))
1221		return false;
1222
1223	if (edev->pe->state & EEH_PE_CFG_BLOCKED)
1224		return true;
1225
1226	return false;
1227}
1228
1229static int pnv_eeh_read_config(struct eeh_dev *edev,
1230			       int where, int size, u32 *val)
1231{
1232	struct pci_dn *pdn = eeh_dev_to_pdn(edev);
1233
1234	if (!pdn)
1235		return PCIBIOS_DEVICE_NOT_FOUND;
1236
1237	if (pnv_eeh_cfg_blocked(pdn)) {
1238		*val = 0xFFFFFFFF;
1239		return PCIBIOS_SET_FAILED;
1240	}
1241
1242	return pnv_pci_cfg_read(pdn, where, size, val);
1243}
1244
1245static int pnv_eeh_write_config(struct eeh_dev *edev,
1246				int where, int size, u32 val)
1247{
1248	struct pci_dn *pdn = eeh_dev_to_pdn(edev);
1249
1250	if (!pdn)
1251		return PCIBIOS_DEVICE_NOT_FOUND;
1252
1253	if (pnv_eeh_cfg_blocked(pdn))
1254		return PCIBIOS_SET_FAILED;
1255
1256	return pnv_pci_cfg_write(pdn, where, size, val);
1257}
1258
1259static void pnv_eeh_dump_hub_diag_common(struct OpalIoP7IOCErrorData *data)
1260{
1261	/* GEM */
1262	if (data->gemXfir || data->gemRfir ||
1263	    data->gemRirqfir || data->gemMask || data->gemRwof)
1264		pr_info("  GEM: %016llx %016llx %016llx %016llx %016llx\n",
1265			be64_to_cpu(data->gemXfir),
1266			be64_to_cpu(data->gemRfir),
1267			be64_to_cpu(data->gemRirqfir),
1268			be64_to_cpu(data->gemMask),
1269			be64_to_cpu(data->gemRwof));
1270
1271	/* LEM */
1272	if (data->lemFir || data->lemErrMask ||
1273	    data->lemAction0 || data->lemAction1 || data->lemWof)
1274		pr_info("  LEM: %016llx %016llx %016llx %016llx %016llx\n",
1275			be64_to_cpu(data->lemFir),
1276			be64_to_cpu(data->lemErrMask),
1277			be64_to_cpu(data->lemAction0),
1278			be64_to_cpu(data->lemAction1),
1279			be64_to_cpu(data->lemWof));
1280}
1281
1282static void pnv_eeh_get_and_dump_hub_diag(struct pci_controller *hose)
1283{
1284	struct pnv_phb *phb = hose->private_data;
1285	struct OpalIoP7IOCErrorData *data =
1286		(struct OpalIoP7IOCErrorData*)phb->diag_data;
1287	long rc;
1288
1289	rc = opal_pci_get_hub_diag_data(phb->hub_id, data, sizeof(*data));
1290	if (rc != OPAL_SUCCESS) {
1291		pr_warn("%s: Failed to get HUB#%llx diag-data (%ld)\n",
1292			__func__, phb->hub_id, rc);
1293		return;
1294	}
1295
1296	switch (be16_to_cpu(data->type)) {
1297	case OPAL_P7IOC_DIAG_TYPE_RGC:
1298		pr_info("P7IOC diag-data for RGC\n\n");
1299		pnv_eeh_dump_hub_diag_common(data);
1300		if (data->rgc.rgcStatus || data->rgc.rgcLdcp)
1301			pr_info("  RGC: %016llx %016llx\n",
1302				be64_to_cpu(data->rgc.rgcStatus),
1303				be64_to_cpu(data->rgc.rgcLdcp));
1304		break;
1305	case OPAL_P7IOC_DIAG_TYPE_BI:
1306		pr_info("P7IOC diag-data for BI %s\n\n",
1307			data->bi.biDownbound ? "Downbound" : "Upbound");
1308		pnv_eeh_dump_hub_diag_common(data);
1309		if (data->bi.biLdcp0 || data->bi.biLdcp1 ||
1310		    data->bi.biLdcp2 || data->bi.biFenceStatus)
1311			pr_info("  BI:  %016llx %016llx %016llx %016llx\n",
1312				be64_to_cpu(data->bi.biLdcp0),
1313				be64_to_cpu(data->bi.biLdcp1),
1314				be64_to_cpu(data->bi.biLdcp2),
1315				be64_to_cpu(data->bi.biFenceStatus));
1316		break;
1317	case OPAL_P7IOC_DIAG_TYPE_CI:
1318		pr_info("P7IOC diag-data for CI Port %d\n\n",
1319			data->ci.ciPort);
1320		pnv_eeh_dump_hub_diag_common(data);
1321		if (data->ci.ciPortStatus || data->ci.ciPortLdcp)
1322			pr_info("  CI:  %016llx %016llx\n",
1323				be64_to_cpu(data->ci.ciPortStatus),
1324				be64_to_cpu(data->ci.ciPortLdcp));
1325		break;
1326	case OPAL_P7IOC_DIAG_TYPE_MISC:
1327		pr_info("P7IOC diag-data for MISC\n\n");
1328		pnv_eeh_dump_hub_diag_common(data);
1329		break;
1330	case OPAL_P7IOC_DIAG_TYPE_I2C:
1331		pr_info("P7IOC diag-data for I2C\n\n");
1332		pnv_eeh_dump_hub_diag_common(data);
1333		break;
1334	default:
1335		pr_warn("%s: Invalid type of HUB#%llx diag-data (%d)\n",
1336			__func__, phb->hub_id, data->type);
1337	}
1338}
1339
1340static int pnv_eeh_get_pe(struct pci_controller *hose,
1341			  u16 pe_no, struct eeh_pe **pe)
1342{
1343	struct pnv_phb *phb = hose->private_data;
1344	struct pnv_ioda_pe *pnv_pe;
1345	struct eeh_pe *dev_pe;
1346
1347	/*
1348	 * If PHB supports compound PE, to fetch
1349	 * the master PE because slave PE is invisible
1350	 * to EEH core.
1351	 */
1352	pnv_pe = &phb->ioda.pe_array[pe_no];
1353	if (pnv_pe->flags & PNV_IODA_PE_SLAVE) {
1354		pnv_pe = pnv_pe->master;
1355		WARN_ON(!pnv_pe ||
1356			!(pnv_pe->flags & PNV_IODA_PE_MASTER));
1357		pe_no = pnv_pe->pe_number;
1358	}
1359
1360	/* Find the PE according to PE# */
1361	dev_pe = eeh_pe_get(hose, pe_no);
1362	if (!dev_pe)
1363		return -EEXIST;
1364
1365	/* Freeze the (compound) PE */
1366	*pe = dev_pe;
1367	if (!(dev_pe->state & EEH_PE_ISOLATED))
1368		phb->freeze_pe(phb, pe_no);
1369
1370	/*
1371	 * At this point, we're sure the (compound) PE should
1372	 * have been frozen. However, we still need poke until
1373	 * hitting the frozen PE on top level.
1374	 */
1375	dev_pe = dev_pe->parent;
1376	while (dev_pe && !(dev_pe->type & EEH_PE_PHB)) {
1377		int ret;
1378		ret = eeh_ops->get_state(dev_pe, NULL);
1379		if (ret <= 0 || eeh_state_active(ret)) {
1380			dev_pe = dev_pe->parent;
1381			continue;
1382		}
1383
1384		/* Frozen parent PE */
1385		*pe = dev_pe;
1386		if (!(dev_pe->state & EEH_PE_ISOLATED))
1387			phb->freeze_pe(phb, dev_pe->addr);
1388
1389		/* Next one */
1390		dev_pe = dev_pe->parent;
1391	}
1392
1393	return 0;
1394}
1395
1396/**
1397 * pnv_eeh_next_error - Retrieve next EEH error to handle
1398 * @pe: Affected PE
1399 *
1400 * The function is expected to be called by EEH core while it gets
1401 * special EEH event (without binding PE). The function calls to
1402 * OPAL APIs for next error to handle. The informational error is
1403 * handled internally by platform. However, the dead IOC, dead PHB,
1404 * fenced PHB and frozen PE should be handled by EEH core eventually.
1405 */
1406static int pnv_eeh_next_error(struct eeh_pe **pe)
1407{
1408	struct pci_controller *hose;
1409	struct pnv_phb *phb;
1410	struct eeh_pe *phb_pe, *parent_pe;
1411	__be64 frozen_pe_no;
1412	__be16 err_type, severity;
1413	long rc;
1414	int state, ret = EEH_NEXT_ERR_NONE;
1415
1416	/*
1417	 * While running here, it's safe to purge the event queue. The
1418	 * event should still be masked.
1419	 */
1420	eeh_remove_event(NULL, false);
1421
1422	list_for_each_entry(hose, &hose_list, list_node) {
1423		/*
1424		 * If the subordinate PCI buses of the PHB has been
1425		 * removed or is exactly under error recovery, we
1426		 * needn't take care of it any more.
1427		 */
1428		phb = hose->private_data;
1429		phb_pe = eeh_phb_pe_get(hose);
1430		if (!phb_pe || (phb_pe->state & EEH_PE_ISOLATED))
1431			continue;
1432
1433		rc = opal_pci_next_error(phb->opal_id,
1434					 &frozen_pe_no, &err_type, &severity);
1435		if (rc != OPAL_SUCCESS) {
1436			pr_devel("%s: Invalid return value on "
1437				 "PHB#%x (0x%lx) from opal_pci_next_error",
1438				 __func__, hose->global_number, rc);
1439			continue;
1440		}
1441
1442		/* If the PHB doesn't have error, stop processing */
1443		if (be16_to_cpu(err_type) == OPAL_EEH_NO_ERROR ||
1444		    be16_to_cpu(severity) == OPAL_EEH_SEV_NO_ERROR) {
1445			pr_devel("%s: No error found on PHB#%x\n",
1446				 __func__, hose->global_number);
1447			continue;
1448		}
1449
1450		/*
1451		 * Processing the error. We're expecting the error with
1452		 * highest priority reported upon multiple errors on the
1453		 * specific PHB.
1454		 */
1455		pr_devel("%s: Error (%d, %d, %llu) on PHB#%x\n",
1456			__func__, be16_to_cpu(err_type),
1457			be16_to_cpu(severity), be64_to_cpu(frozen_pe_no),
1458			hose->global_number);
1459		switch (be16_to_cpu(err_type)) {
1460		case OPAL_EEH_IOC_ERROR:
1461			if (be16_to_cpu(severity) == OPAL_EEH_SEV_IOC_DEAD) {
1462				pr_err("EEH: dead IOC detected\n");
1463				ret = EEH_NEXT_ERR_DEAD_IOC;
1464			} else if (be16_to_cpu(severity) == OPAL_EEH_SEV_INF) {
1465				pr_info("EEH: IOC informative error "
1466					"detected\n");
1467				pnv_eeh_get_and_dump_hub_diag(hose);
1468				ret = EEH_NEXT_ERR_NONE;
1469			}
1470
1471			break;
1472		case OPAL_EEH_PHB_ERROR:
1473			if (be16_to_cpu(severity) == OPAL_EEH_SEV_PHB_DEAD) {
1474				*pe = phb_pe;
1475				pr_err("EEH: dead PHB#%x detected, "
1476				       "location: %s\n",
1477					hose->global_number,
1478					eeh_pe_loc_get(phb_pe));
1479				ret = EEH_NEXT_ERR_DEAD_PHB;
1480			} else if (be16_to_cpu(severity) ==
1481				   OPAL_EEH_SEV_PHB_FENCED) {
1482				*pe = phb_pe;
1483				pr_err("EEH: Fenced PHB#%x detected, "
1484				       "location: %s\n",
1485					hose->global_number,
1486					eeh_pe_loc_get(phb_pe));
1487				ret = EEH_NEXT_ERR_FENCED_PHB;
1488			} else if (be16_to_cpu(severity) == OPAL_EEH_SEV_INF) {
1489				pr_info("EEH: PHB#%x informative error "
1490					"detected, location: %s\n",
1491					hose->global_number,
1492					eeh_pe_loc_get(phb_pe));
1493				pnv_eeh_get_phb_diag(phb_pe);
1494				pnv_pci_dump_phb_diag_data(hose, phb_pe->data);
1495				ret = EEH_NEXT_ERR_NONE;
1496			}
1497
1498			break;
1499		case OPAL_EEH_PE_ERROR:
1500			/*
1501			 * If we can't find the corresponding PE, we
1502			 * just try to unfreeze.
1503			 */
1504			if (pnv_eeh_get_pe(hose,
1505				be64_to_cpu(frozen_pe_no), pe)) {
1506				pr_info("EEH: Clear non-existing PHB#%x-PE#%llx\n",
1507					hose->global_number, be64_to_cpu(frozen_pe_no));
1508				pr_info("EEH: PHB location: %s\n",
1509					eeh_pe_loc_get(phb_pe));
1510
1511				/* Dump PHB diag-data */
1512				rc = opal_pci_get_phb_diag_data2(phb->opal_id,
1513					phb->diag_data, phb->diag_data_size);
1514				if (rc == OPAL_SUCCESS)
1515					pnv_pci_dump_phb_diag_data(hose,
1516							phb->diag_data);
1517
1518				/* Try best to clear it */
1519				opal_pci_eeh_freeze_clear(phb->opal_id,
1520					be64_to_cpu(frozen_pe_no),
1521					OPAL_EEH_ACTION_CLEAR_FREEZE_ALL);
1522				ret = EEH_NEXT_ERR_NONE;
1523			} else if ((*pe)->state & EEH_PE_ISOLATED ||
1524				   eeh_pe_passed(*pe)) {
1525				ret = EEH_NEXT_ERR_NONE;
1526			} else {
1527				pr_err("EEH: Frozen PE#%x "
1528				       "on PHB#%x detected\n",
1529				       (*pe)->addr,
1530					(*pe)->phb->global_number);
1531				pr_err("EEH: PE location: %s, "
1532				       "PHB location: %s\n",
1533				       eeh_pe_loc_get(*pe),
1534				       eeh_pe_loc_get(phb_pe));
1535				ret = EEH_NEXT_ERR_FROZEN_PE;
1536			}
1537
1538			break;
1539		default:
1540			pr_warn("%s: Unexpected error type %d\n",
1541				__func__, be16_to_cpu(err_type));
1542		}
1543
1544		/*
1545		 * EEH core will try recover from fenced PHB or
1546		 * frozen PE. In the time for frozen PE, EEH core
1547		 * enable IO path for that before collecting logs,
1548		 * but it ruins the site. So we have to dump the
1549		 * log in advance here.
1550		 */
1551		if ((ret == EEH_NEXT_ERR_FROZEN_PE  ||
1552		    ret == EEH_NEXT_ERR_FENCED_PHB) &&
1553		    !((*pe)->state & EEH_PE_ISOLATED)) {
1554			eeh_pe_mark_isolated(*pe);
1555			pnv_eeh_get_phb_diag(*pe);
1556
1557			if (eeh_has_flag(EEH_EARLY_DUMP_LOG))
1558				pnv_pci_dump_phb_diag_data((*pe)->phb,
1559							   (*pe)->data);
1560		}
1561
1562		/*
1563		 * We probably have the frozen parent PE out there and
1564		 * we need have to handle frozen parent PE firstly.
1565		 */
1566		if (ret == EEH_NEXT_ERR_FROZEN_PE) {
1567			parent_pe = (*pe)->parent;
1568			while (parent_pe) {
1569				/* Hit the ceiling ? */
1570				if (parent_pe->type & EEH_PE_PHB)
1571					break;
1572
1573				/* Frozen parent PE ? */
1574				state = eeh_ops->get_state(parent_pe, NULL);
1575				if (state > 0 && !eeh_state_active(state))
1576					*pe = parent_pe;
1577
1578				/* Next parent level */
1579				parent_pe = parent_pe->parent;
1580			}
1581
1582			/* We possibly migrate to another PE */
1583			eeh_pe_mark_isolated(*pe);
1584		}
1585
1586		/*
1587		 * If we have no errors on the specific PHB or only
1588		 * informative error there, we continue poking it.
1589		 * Otherwise, we need actions to be taken by upper
1590		 * layer.
1591		 */
1592		if (ret > EEH_NEXT_ERR_INF)
1593			break;
1594	}
1595
1596	/* Unmask the event */
1597	if (ret == EEH_NEXT_ERR_NONE && eeh_enabled())
1598		enable_irq(eeh_event_irq);
1599
1600	return ret;
1601}
1602
1603static int pnv_eeh_restore_config(struct eeh_dev *edev)
1604{
1605	struct pnv_phb *phb;
1606	s64 ret = 0;
1607
1608	if (!edev)
1609		return -EEXIST;
1610
1611	if (edev->physfn)
1612		return 0;
1613
1614	phb = edev->controller->private_data;
1615	ret = opal_pci_reinit(phb->opal_id,
1616			      OPAL_REINIT_PCI_DEV, edev->bdfn);
1617
1618	if (ret) {
1619		pr_warn("%s: Can't reinit PCI dev 0x%x (%lld)\n",
1620			__func__, edev->bdfn, ret);
1621		return -EIO;
1622	}
1623
1624	return ret;
1625}
1626
1627static struct eeh_ops pnv_eeh_ops = {
1628	.name                   = "powernv",
1629	.probe			= pnv_eeh_probe,
1630	.set_option             = pnv_eeh_set_option,
1631	.get_state              = pnv_eeh_get_state,
1632	.reset                  = pnv_eeh_reset,
1633	.get_log                = pnv_eeh_get_log,
1634	.configure_bridge       = pnv_eeh_configure_bridge,
1635	.err_inject		= pnv_eeh_err_inject,
1636	.read_config            = pnv_eeh_read_config,
1637	.write_config           = pnv_eeh_write_config,
1638	.next_error		= pnv_eeh_next_error,
1639	.restore_config		= pnv_eeh_restore_config,
1640	.notify_resume		= NULL
1641};
1642
1643/**
1644 * eeh_powernv_init - Register platform dependent EEH operations
1645 *
1646 * EEH initialization on powernv platform. This function should be
1647 * called before any EEH related functions.
1648 */
1649static int __init eeh_powernv_init(void)
1650{
1651	int max_diag_size = PNV_PCI_DIAG_BUF_SIZE;
1652	struct pci_controller *hose;
1653	struct pnv_phb *phb;
1654	int ret = -EINVAL;
1655
1656	if (!firmware_has_feature(FW_FEATURE_OPAL)) {
1657		pr_warn("%s: OPAL is required !\n", __func__);
1658		return -EINVAL;
1659	}
1660
1661	/* Set probe mode */
1662	eeh_add_flag(EEH_PROBE_MODE_DEV);
1663
1664	/*
1665	 * P7IOC blocks PCI config access to frozen PE, but PHB3
1666	 * doesn't do that. So we have to selectively enable I/O
1667	 * prior to collecting error log.
1668	 */
1669	list_for_each_entry(hose, &hose_list, list_node) {
1670		phb = hose->private_data;
1671
1672		if (phb->model == PNV_PHB_MODEL_P7IOC)
1673			eeh_add_flag(EEH_ENABLE_IO_FOR_LOG);
1674
1675		if (phb->diag_data_size > max_diag_size)
1676			max_diag_size = phb->diag_data_size;
1677
1678		break;
1679	}
1680
1681	/*
1682	 * eeh_init() allocates the eeh_pe and its aux data buf so the
1683	 * size needs to be set before calling eeh_init().
1684	 */
1685	eeh_set_pe_aux_size(max_diag_size);
1686	ppc_md.pcibios_bus_add_device = pnv_pcibios_bus_add_device;
1687
1688	ret = eeh_init(&pnv_eeh_ops);
1689	if (!ret)
1690		pr_info("EEH: PowerNV platform initialized\n");
1691	else
1692		pr_info("EEH: Failed to initialize PowerNV platform (%d)\n", ret);
1693
1694	return ret;
1695}
1696machine_arch_initcall(powernv, eeh_powernv_init);
1697