1// SPDX-License-Identifier: GPL-2.0-or-later
2/* sched.c - SPU scheduler.
3 *
4 * Copyright (C) IBM 2005
5 * Author: Mark Nutter <mnutter@us.ibm.com>
6 *
7 * 2006-03-31	NUMA domains added.
8 */
9
10#undef DEBUG
11
12#include <linux/errno.h>
13#include <linux/sched/signal.h>
14#include <linux/sched/loadavg.h>
15#include <linux/sched/rt.h>
16#include <linux/kernel.h>
17#include <linux/mm.h>
18#include <linux/slab.h>
19#include <linux/completion.h>
20#include <linux/vmalloc.h>
21#include <linux/smp.h>
22#include <linux/stddef.h>
23#include <linux/unistd.h>
24#include <linux/numa.h>
25#include <linux/mutex.h>
26#include <linux/notifier.h>
27#include <linux/kthread.h>
28#include <linux/pid_namespace.h>
29#include <linux/proc_fs.h>
30#include <linux/seq_file.h>
31
32#include <asm/io.h>
33#include <asm/mmu_context.h>
34#include <asm/spu.h>
35#include <asm/spu_csa.h>
36#include <asm/spu_priv1.h>
37#include "spufs.h"
38#define CREATE_TRACE_POINTS
39#include "sputrace.h"
40
41struct spu_prio_array {
42	DECLARE_BITMAP(bitmap, MAX_PRIO);
43	struct list_head runq[MAX_PRIO];
44	spinlock_t runq_lock;
45	int nr_waiting;
46};
47
48static unsigned long spu_avenrun[3];
49static struct spu_prio_array *spu_prio;
50static struct task_struct *spusched_task;
51static struct timer_list spusched_timer;
52static struct timer_list spuloadavg_timer;
53
54/*
55 * Priority of a normal, non-rt, non-niced'd process (aka nice level 0).
56 */
57#define NORMAL_PRIO		120
58
59/*
60 * Frequency of the spu scheduler tick.  By default we do one SPU scheduler
61 * tick for every 10 CPU scheduler ticks.
62 */
63#define SPUSCHED_TICK		(10)
64
65/*
66 * These are the 'tuning knobs' of the scheduler:
67 *
68 * Minimum timeslice is 5 msecs (or 1 spu scheduler tick, whichever is
69 * larger), default timeslice is 100 msecs, maximum timeslice is 800 msecs.
70 */
71#define MIN_SPU_TIMESLICE	max(5 * HZ / (1000 * SPUSCHED_TICK), 1)
72#define DEF_SPU_TIMESLICE	(100 * HZ / (1000 * SPUSCHED_TICK))
73
74#define SCALE_PRIO(x, prio) \
75	max(x * (MAX_PRIO - prio) / (NICE_WIDTH / 2), MIN_SPU_TIMESLICE)
76
77/*
78 * scale user-nice values [ -20 ... 0 ... 19 ] to time slice values:
79 * [800ms ... 100ms ... 5ms]
80 *
81 * The higher a thread's priority, the bigger timeslices
82 * it gets during one round of execution. But even the lowest
83 * priority thread gets MIN_TIMESLICE worth of execution time.
84 */
85void spu_set_timeslice(struct spu_context *ctx)
86{
87	if (ctx->prio < NORMAL_PRIO)
88		ctx->time_slice = SCALE_PRIO(DEF_SPU_TIMESLICE * 4, ctx->prio);
89	else
90		ctx->time_slice = SCALE_PRIO(DEF_SPU_TIMESLICE, ctx->prio);
91}
92
93/*
94 * Update scheduling information from the owning thread.
95 */
96void __spu_update_sched_info(struct spu_context *ctx)
97{
98	/*
99	 * assert that the context is not on the runqueue, so it is safe
100	 * to change its scheduling parameters.
101	 */
102	BUG_ON(!list_empty(&ctx->rq));
103
104	/*
105	 * 32-Bit assignments are atomic on powerpc, and we don't care about
106	 * memory ordering here because retrieving the controlling thread is
107	 * per definition racy.
108	 */
109	ctx->tid = current->pid;
110
111	/*
112	 * We do our own priority calculations, so we normally want
113	 * ->static_prio to start with. Unfortunately this field
114	 * contains junk for threads with a realtime scheduling
115	 * policy so we have to look at ->prio in this case.
116	 */
117	if (rt_prio(current->prio))
118		ctx->prio = current->prio;
119	else
120		ctx->prio = current->static_prio;
121	ctx->policy = current->policy;
122
123	/*
124	 * TO DO: the context may be loaded, so we may need to activate
125	 * it again on a different node. But it shouldn't hurt anything
126	 * to update its parameters, because we know that the scheduler
127	 * is not actively looking at this field, since it is not on the
128	 * runqueue. The context will be rescheduled on the proper node
129	 * if it is timesliced or preempted.
130	 */
131	cpumask_copy(&ctx->cpus_allowed, current->cpus_ptr);
132
133	/* Save the current cpu id for spu interrupt routing. */
134	ctx->last_ran = raw_smp_processor_id();
135}
136
137void spu_update_sched_info(struct spu_context *ctx)
138{
139	int node;
140
141	if (ctx->state == SPU_STATE_RUNNABLE) {
142		node = ctx->spu->node;
143
144		/*
145		 * Take list_mutex to sync with find_victim().
146		 */
147		mutex_lock(&cbe_spu_info[node].list_mutex);
148		__spu_update_sched_info(ctx);
149		mutex_unlock(&cbe_spu_info[node].list_mutex);
150	} else {
151		__spu_update_sched_info(ctx);
152	}
153}
154
155static int __node_allowed(struct spu_context *ctx, int node)
156{
157	if (nr_cpus_node(node)) {
158		const struct cpumask *mask = cpumask_of_node(node);
159
160		if (cpumask_intersects(mask, &ctx->cpus_allowed))
161			return 1;
162	}
163
164	return 0;
165}
166
167static int node_allowed(struct spu_context *ctx, int node)
168{
169	int rval;
170
171	spin_lock(&spu_prio->runq_lock);
172	rval = __node_allowed(ctx, node);
173	spin_unlock(&spu_prio->runq_lock);
174
175	return rval;
176}
177
178void do_notify_spus_active(void)
179{
180	int node;
181
182	/*
183	 * Wake up the active spu_contexts.
184	 */
185	for_each_online_node(node) {
186		struct spu *spu;
187
188		mutex_lock(&cbe_spu_info[node].list_mutex);
189		list_for_each_entry(spu, &cbe_spu_info[node].spus, cbe_list) {
190			if (spu->alloc_state != SPU_FREE) {
191				struct spu_context *ctx = spu->ctx;
192				set_bit(SPU_SCHED_NOTIFY_ACTIVE,
193					&ctx->sched_flags);
194				mb();
195				wake_up_all(&ctx->stop_wq);
196			}
197		}
198		mutex_unlock(&cbe_spu_info[node].list_mutex);
199	}
200}
201
202/**
203 * spu_bind_context - bind spu context to physical spu
204 * @spu:	physical spu to bind to
205 * @ctx:	context to bind
206 */
207static void spu_bind_context(struct spu *spu, struct spu_context *ctx)
208{
209	spu_context_trace(spu_bind_context__enter, ctx, spu);
210
211	spuctx_switch_state(ctx, SPU_UTIL_SYSTEM);
212
213	if (ctx->flags & SPU_CREATE_NOSCHED)
214		atomic_inc(&cbe_spu_info[spu->node].reserved_spus);
215
216	ctx->stats.slb_flt_base = spu->stats.slb_flt;
217	ctx->stats.class2_intr_base = spu->stats.class2_intr;
218
219	spu_associate_mm(spu, ctx->owner);
220
221	spin_lock_irq(&spu->register_lock);
222	spu->ctx = ctx;
223	spu->flags = 0;
224	ctx->spu = spu;
225	ctx->ops = &spu_hw_ops;
226	spu->pid = current->pid;
227	spu->tgid = current->tgid;
228	spu->ibox_callback = spufs_ibox_callback;
229	spu->wbox_callback = spufs_wbox_callback;
230	spu->stop_callback = spufs_stop_callback;
231	spu->mfc_callback = spufs_mfc_callback;
232	spin_unlock_irq(&spu->register_lock);
233
234	spu_unmap_mappings(ctx);
235
236	spu_switch_log_notify(spu, ctx, SWITCH_LOG_START, 0);
237	spu_restore(&ctx->csa, spu);
238	spu->timestamp = jiffies;
239	ctx->state = SPU_STATE_RUNNABLE;
240
241	spuctx_switch_state(ctx, SPU_UTIL_USER);
242}
243
244/*
245 * Must be used with the list_mutex held.
246 */
247static inline int sched_spu(struct spu *spu)
248{
249	BUG_ON(!mutex_is_locked(&cbe_spu_info[spu->node].list_mutex));
250
251	return (!spu->ctx || !(spu->ctx->flags & SPU_CREATE_NOSCHED));
252}
253
254static void aff_merge_remaining_ctxs(struct spu_gang *gang)
255{
256	struct spu_context *ctx;
257
258	list_for_each_entry(ctx, &gang->aff_list_head, aff_list) {
259		if (list_empty(&ctx->aff_list))
260			list_add(&ctx->aff_list, &gang->aff_list_head);
261	}
262	gang->aff_flags |= AFF_MERGED;
263}
264
265static void aff_set_offsets(struct spu_gang *gang)
266{
267	struct spu_context *ctx;
268	int offset;
269
270	offset = -1;
271	list_for_each_entry_reverse(ctx, &gang->aff_ref_ctx->aff_list,
272								aff_list) {
273		if (&ctx->aff_list == &gang->aff_list_head)
274			break;
275		ctx->aff_offset = offset--;
276	}
277
278	offset = 0;
279	list_for_each_entry(ctx, gang->aff_ref_ctx->aff_list.prev, aff_list) {
280		if (&ctx->aff_list == &gang->aff_list_head)
281			break;
282		ctx->aff_offset = offset++;
283	}
284
285	gang->aff_flags |= AFF_OFFSETS_SET;
286}
287
288static struct spu *aff_ref_location(struct spu_context *ctx, int mem_aff,
289		 int group_size, int lowest_offset)
290{
291	struct spu *spu;
292	int node, n;
293
294	/*
295	 * TODO: A better algorithm could be used to find a good spu to be
296	 *       used as reference location for the ctxs chain.
297	 */
298	node = cpu_to_node(raw_smp_processor_id());
299	for (n = 0; n < MAX_NUMNODES; n++, node++) {
300		/*
301		 * "available_spus" counts how many spus are not potentially
302		 * going to be used by other affinity gangs whose reference
303		 * context is already in place. Although this code seeks to
304		 * avoid having affinity gangs with a summed amount of
305		 * contexts bigger than the amount of spus in the node,
306		 * this may happen sporadically. In this case, available_spus
307		 * becomes negative, which is harmless.
308		 */
309		int available_spus;
310
311		node = (node < MAX_NUMNODES) ? node : 0;
312		if (!node_allowed(ctx, node))
313			continue;
314
315		available_spus = 0;
316		mutex_lock(&cbe_spu_info[node].list_mutex);
317		list_for_each_entry(spu, &cbe_spu_info[node].spus, cbe_list) {
318			if (spu->ctx && spu->ctx->gang && !spu->ctx->aff_offset
319					&& spu->ctx->gang->aff_ref_spu)
320				available_spus -= spu->ctx->gang->contexts;
321			available_spus++;
322		}
323		if (available_spus < ctx->gang->contexts) {
324			mutex_unlock(&cbe_spu_info[node].list_mutex);
325			continue;
326		}
327
328		list_for_each_entry(spu, &cbe_spu_info[node].spus, cbe_list) {
329			if ((!mem_aff || spu->has_mem_affinity) &&
330							sched_spu(spu)) {
331				mutex_unlock(&cbe_spu_info[node].list_mutex);
332				return spu;
333			}
334		}
335		mutex_unlock(&cbe_spu_info[node].list_mutex);
336	}
337	return NULL;
338}
339
340static void aff_set_ref_point_location(struct spu_gang *gang)
341{
342	int mem_aff, gs, lowest_offset;
343	struct spu_context *tmp, *ctx;
344
345	mem_aff = gang->aff_ref_ctx->flags & SPU_CREATE_AFFINITY_MEM;
346	lowest_offset = 0;
347	gs = 0;
348
349	list_for_each_entry(tmp, &gang->aff_list_head, aff_list)
350		gs++;
351
352	list_for_each_entry_reverse(ctx, &gang->aff_ref_ctx->aff_list,
353								aff_list) {
354		if (&ctx->aff_list == &gang->aff_list_head)
355			break;
356		lowest_offset = ctx->aff_offset;
357	}
358
359	gang->aff_ref_spu = aff_ref_location(gang->aff_ref_ctx, mem_aff, gs,
360							lowest_offset);
361}
362
363static struct spu *ctx_location(struct spu *ref, int offset, int node)
364{
365	struct spu *spu;
366
367	spu = NULL;
368	if (offset >= 0) {
369		list_for_each_entry(spu, ref->aff_list.prev, aff_list) {
370			BUG_ON(spu->node != node);
371			if (offset == 0)
372				break;
373			if (sched_spu(spu))
374				offset--;
375		}
376	} else {
377		list_for_each_entry_reverse(spu, ref->aff_list.next, aff_list) {
378			BUG_ON(spu->node != node);
379			if (offset == 0)
380				break;
381			if (sched_spu(spu))
382				offset++;
383		}
384	}
385
386	return spu;
387}
388
389/*
390 * affinity_check is called each time a context is going to be scheduled.
391 * It returns the spu ptr on which the context must run.
392 */
393static int has_affinity(struct spu_context *ctx)
394{
395	struct spu_gang *gang = ctx->gang;
396
397	if (list_empty(&ctx->aff_list))
398		return 0;
399
400	if (atomic_read(&ctx->gang->aff_sched_count) == 0)
401		ctx->gang->aff_ref_spu = NULL;
402
403	if (!gang->aff_ref_spu) {
404		if (!(gang->aff_flags & AFF_MERGED))
405			aff_merge_remaining_ctxs(gang);
406		if (!(gang->aff_flags & AFF_OFFSETS_SET))
407			aff_set_offsets(gang);
408		aff_set_ref_point_location(gang);
409	}
410
411	return gang->aff_ref_spu != NULL;
412}
413
414/**
415 * spu_unbind_context - unbind spu context from physical spu
416 * @spu:	physical spu to unbind from
417 * @ctx:	context to unbind
418 */
419static void spu_unbind_context(struct spu *spu, struct spu_context *ctx)
420{
421	u32 status;
422
423	spu_context_trace(spu_unbind_context__enter, ctx, spu);
424
425	spuctx_switch_state(ctx, SPU_UTIL_SYSTEM);
426
427 	if (spu->ctx->flags & SPU_CREATE_NOSCHED)
428		atomic_dec(&cbe_spu_info[spu->node].reserved_spus);
429
430	if (ctx->gang)
431		/*
432		 * If ctx->gang->aff_sched_count is positive, SPU affinity is
433		 * being considered in this gang. Using atomic_dec_if_positive
434		 * allow us to skip an explicit check for affinity in this gang
435		 */
436		atomic_dec_if_positive(&ctx->gang->aff_sched_count);
437
438	spu_unmap_mappings(ctx);
439	spu_save(&ctx->csa, spu);
440	spu_switch_log_notify(spu, ctx, SWITCH_LOG_STOP, 0);
441
442	spin_lock_irq(&spu->register_lock);
443	spu->timestamp = jiffies;
444	ctx->state = SPU_STATE_SAVED;
445	spu->ibox_callback = NULL;
446	spu->wbox_callback = NULL;
447	spu->stop_callback = NULL;
448	spu->mfc_callback = NULL;
449	spu->pid = 0;
450	spu->tgid = 0;
451	ctx->ops = &spu_backing_ops;
452	spu->flags = 0;
453	spu->ctx = NULL;
454	spin_unlock_irq(&spu->register_lock);
455
456	spu_associate_mm(spu, NULL);
457
458	ctx->stats.slb_flt +=
459		(spu->stats.slb_flt - ctx->stats.slb_flt_base);
460	ctx->stats.class2_intr +=
461		(spu->stats.class2_intr - ctx->stats.class2_intr_base);
462
463	/* This maps the underlying spu state to idle */
464	spuctx_switch_state(ctx, SPU_UTIL_IDLE_LOADED);
465	ctx->spu = NULL;
466
467	if (spu_stopped(ctx, &status))
468		wake_up_all(&ctx->stop_wq);
469}
470
471/**
472 * spu_add_to_rq - add a context to the runqueue
473 * @ctx:       context to add
474 */
475static void __spu_add_to_rq(struct spu_context *ctx)
476{
477	/*
478	 * Unfortunately this code path can be called from multiple threads
479	 * on behalf of a single context due to the way the problem state
480	 * mmap support works.
481	 *
482	 * Fortunately we need to wake up all these threads at the same time
483	 * and can simply skip the runqueue addition for every but the first
484	 * thread getting into this codepath.
485	 *
486	 * It's still quite hacky, and long-term we should proxy all other
487	 * threads through the owner thread so that spu_run is in control
488	 * of all the scheduling activity for a given context.
489	 */
490	if (list_empty(&ctx->rq)) {
491		list_add_tail(&ctx->rq, &spu_prio->runq[ctx->prio]);
492		set_bit(ctx->prio, spu_prio->bitmap);
493		if (!spu_prio->nr_waiting++)
494			mod_timer(&spusched_timer, jiffies + SPUSCHED_TICK);
495	}
496}
497
498static void spu_add_to_rq(struct spu_context *ctx)
499{
500	spin_lock(&spu_prio->runq_lock);
501	__spu_add_to_rq(ctx);
502	spin_unlock(&spu_prio->runq_lock);
503}
504
505static void __spu_del_from_rq(struct spu_context *ctx)
506{
507	int prio = ctx->prio;
508
509	if (!list_empty(&ctx->rq)) {
510		if (!--spu_prio->nr_waiting)
511			del_timer(&spusched_timer);
512		list_del_init(&ctx->rq);
513
514		if (list_empty(&spu_prio->runq[prio]))
515			clear_bit(prio, spu_prio->bitmap);
516	}
517}
518
519void spu_del_from_rq(struct spu_context *ctx)
520{
521	spin_lock(&spu_prio->runq_lock);
522	__spu_del_from_rq(ctx);
523	spin_unlock(&spu_prio->runq_lock);
524}
525
526static void spu_prio_wait(struct spu_context *ctx)
527{
528	DEFINE_WAIT(wait);
529
530	/*
531	 * The caller must explicitly wait for a context to be loaded
532	 * if the nosched flag is set.  If NOSCHED is not set, the caller
533	 * queues the context and waits for an spu event or error.
534	 */
535	BUG_ON(!(ctx->flags & SPU_CREATE_NOSCHED));
536
537	spin_lock(&spu_prio->runq_lock);
538	prepare_to_wait_exclusive(&ctx->stop_wq, &wait, TASK_INTERRUPTIBLE);
539	if (!signal_pending(current)) {
540		__spu_add_to_rq(ctx);
541		spin_unlock(&spu_prio->runq_lock);
542		mutex_unlock(&ctx->state_mutex);
543		schedule();
544		mutex_lock(&ctx->state_mutex);
545		spin_lock(&spu_prio->runq_lock);
546		__spu_del_from_rq(ctx);
547	}
548	spin_unlock(&spu_prio->runq_lock);
549	__set_current_state(TASK_RUNNING);
550	remove_wait_queue(&ctx->stop_wq, &wait);
551}
552
553static struct spu *spu_get_idle(struct spu_context *ctx)
554{
555	struct spu *spu, *aff_ref_spu;
556	int node, n;
557
558	spu_context_nospu_trace(spu_get_idle__enter, ctx);
559
560	if (ctx->gang) {
561		mutex_lock(&ctx->gang->aff_mutex);
562		if (has_affinity(ctx)) {
563			aff_ref_spu = ctx->gang->aff_ref_spu;
564			atomic_inc(&ctx->gang->aff_sched_count);
565			mutex_unlock(&ctx->gang->aff_mutex);
566			node = aff_ref_spu->node;
567
568			mutex_lock(&cbe_spu_info[node].list_mutex);
569			spu = ctx_location(aff_ref_spu, ctx->aff_offset, node);
570			if (spu && spu->alloc_state == SPU_FREE)
571				goto found;
572			mutex_unlock(&cbe_spu_info[node].list_mutex);
573
574			atomic_dec(&ctx->gang->aff_sched_count);
575			goto not_found;
576		}
577		mutex_unlock(&ctx->gang->aff_mutex);
578	}
579	node = cpu_to_node(raw_smp_processor_id());
580	for (n = 0; n < MAX_NUMNODES; n++, node++) {
581		node = (node < MAX_NUMNODES) ? node : 0;
582		if (!node_allowed(ctx, node))
583			continue;
584
585		mutex_lock(&cbe_spu_info[node].list_mutex);
586		list_for_each_entry(spu, &cbe_spu_info[node].spus, cbe_list) {
587			if (spu->alloc_state == SPU_FREE)
588				goto found;
589		}
590		mutex_unlock(&cbe_spu_info[node].list_mutex);
591	}
592
593 not_found:
594	spu_context_nospu_trace(spu_get_idle__not_found, ctx);
595	return NULL;
596
597 found:
598	spu->alloc_state = SPU_USED;
599	mutex_unlock(&cbe_spu_info[node].list_mutex);
600	spu_context_trace(spu_get_idle__found, ctx, spu);
601	spu_init_channels(spu);
602	return spu;
603}
604
605/**
606 * find_victim - find a lower priority context to preempt
607 * @ctx:	candidate context for running
608 *
609 * Returns the freed physical spu to run the new context on.
610 */
611static struct spu *find_victim(struct spu_context *ctx)
612{
613	struct spu_context *victim = NULL;
614	struct spu *spu;
615	int node, n;
616
617	spu_context_nospu_trace(spu_find_victim__enter, ctx);
618
619	/*
620	 * Look for a possible preemption candidate on the local node first.
621	 * If there is no candidate look at the other nodes.  This isn't
622	 * exactly fair, but so far the whole spu scheduler tries to keep
623	 * a strong node affinity.  We might want to fine-tune this in
624	 * the future.
625	 */
626 restart:
627	node = cpu_to_node(raw_smp_processor_id());
628	for (n = 0; n < MAX_NUMNODES; n++, node++) {
629		node = (node < MAX_NUMNODES) ? node : 0;
630		if (!node_allowed(ctx, node))
631			continue;
632
633		mutex_lock(&cbe_spu_info[node].list_mutex);
634		list_for_each_entry(spu, &cbe_spu_info[node].spus, cbe_list) {
635			struct spu_context *tmp = spu->ctx;
636
637			if (tmp && tmp->prio > ctx->prio &&
638			    !(tmp->flags & SPU_CREATE_NOSCHED) &&
639			    (!victim || tmp->prio > victim->prio)) {
640				victim = spu->ctx;
641			}
642		}
643		if (victim)
644			get_spu_context(victim);
645		mutex_unlock(&cbe_spu_info[node].list_mutex);
646
647		if (victim) {
648			/*
649			 * This nests ctx->state_mutex, but we always lock
650			 * higher priority contexts before lower priority
651			 * ones, so this is safe until we introduce
652			 * priority inheritance schemes.
653			 *
654			 * XXX if the highest priority context is locked,
655			 * this can loop a long time.  Might be better to
656			 * look at another context or give up after X retries.
657			 */
658			if (!mutex_trylock(&victim->state_mutex)) {
659				put_spu_context(victim);
660				victim = NULL;
661				goto restart;
662			}
663
664			spu = victim->spu;
665			if (!spu || victim->prio <= ctx->prio) {
666				/*
667				 * This race can happen because we've dropped
668				 * the active list mutex.  Not a problem, just
669				 * restart the search.
670				 */
671				mutex_unlock(&victim->state_mutex);
672				put_spu_context(victim);
673				victim = NULL;
674				goto restart;
675			}
676
677			spu_context_trace(__spu_deactivate__unload, ctx, spu);
678
679			mutex_lock(&cbe_spu_info[node].list_mutex);
680			cbe_spu_info[node].nr_active--;
681			spu_unbind_context(spu, victim);
682			mutex_unlock(&cbe_spu_info[node].list_mutex);
683
684			victim->stats.invol_ctx_switch++;
685			spu->stats.invol_ctx_switch++;
686			if (test_bit(SPU_SCHED_SPU_RUN, &victim->sched_flags))
687				spu_add_to_rq(victim);
688
689			mutex_unlock(&victim->state_mutex);
690			put_spu_context(victim);
691
692			return spu;
693		}
694	}
695
696	return NULL;
697}
698
699static void __spu_schedule(struct spu *spu, struct spu_context *ctx)
700{
701	int node = spu->node;
702	int success = 0;
703
704	spu_set_timeslice(ctx);
705
706	mutex_lock(&cbe_spu_info[node].list_mutex);
707	if (spu->ctx == NULL) {
708		spu_bind_context(spu, ctx);
709		cbe_spu_info[node].nr_active++;
710		spu->alloc_state = SPU_USED;
711		success = 1;
712	}
713	mutex_unlock(&cbe_spu_info[node].list_mutex);
714
715	if (success)
716		wake_up_all(&ctx->run_wq);
717	else
718		spu_add_to_rq(ctx);
719}
720
721static void spu_schedule(struct spu *spu, struct spu_context *ctx)
722{
723	/* not a candidate for interruptible because it's called either
724	   from the scheduler thread or from spu_deactivate */
725	mutex_lock(&ctx->state_mutex);
726	if (ctx->state == SPU_STATE_SAVED)
727		__spu_schedule(spu, ctx);
728	spu_release(ctx);
729}
730
731/**
732 * spu_unschedule - remove a context from a spu, and possibly release it.
733 * @spu:	The SPU to unschedule from
734 * @ctx:	The context currently scheduled on the SPU
735 * @free_spu	Whether to free the SPU for other contexts
736 *
737 * Unbinds the context @ctx from the SPU @spu. If @free_spu is non-zero, the
738 * SPU is made available for other contexts (ie, may be returned by
739 * spu_get_idle). If this is zero, the caller is expected to schedule another
740 * context to this spu.
741 *
742 * Should be called with ctx->state_mutex held.
743 */
744static void spu_unschedule(struct spu *spu, struct spu_context *ctx,
745		int free_spu)
746{
747	int node = spu->node;
748
749	mutex_lock(&cbe_spu_info[node].list_mutex);
750	cbe_spu_info[node].nr_active--;
751	if (free_spu)
752		spu->alloc_state = SPU_FREE;
753	spu_unbind_context(spu, ctx);
754	ctx->stats.invol_ctx_switch++;
755	spu->stats.invol_ctx_switch++;
756	mutex_unlock(&cbe_spu_info[node].list_mutex);
757}
758
759/**
760 * spu_activate - find a free spu for a context and execute it
761 * @ctx:	spu context to schedule
762 * @flags:	flags (currently ignored)
763 *
764 * Tries to find a free spu to run @ctx.  If no free spu is available
765 * add the context to the runqueue so it gets woken up once an spu
766 * is available.
767 */
768int spu_activate(struct spu_context *ctx, unsigned long flags)
769{
770	struct spu *spu;
771
772	/*
773	 * If there are multiple threads waiting for a single context
774	 * only one actually binds the context while the others will
775	 * only be able to acquire the state_mutex once the context
776	 * already is in runnable state.
777	 */
778	if (ctx->spu)
779		return 0;
780
781spu_activate_top:
782	if (signal_pending(current))
783		return -ERESTARTSYS;
784
785	spu = spu_get_idle(ctx);
786	/*
787	 * If this is a realtime thread we try to get it running by
788	 * preempting a lower priority thread.
789	 */
790	if (!spu && rt_prio(ctx->prio))
791		spu = find_victim(ctx);
792	if (spu) {
793		unsigned long runcntl;
794
795		runcntl = ctx->ops->runcntl_read(ctx);
796		__spu_schedule(spu, ctx);
797		if (runcntl & SPU_RUNCNTL_RUNNABLE)
798			spuctx_switch_state(ctx, SPU_UTIL_USER);
799
800		return 0;
801	}
802
803	if (ctx->flags & SPU_CREATE_NOSCHED) {
804		spu_prio_wait(ctx);
805		goto spu_activate_top;
806	}
807
808	spu_add_to_rq(ctx);
809
810	return 0;
811}
812
813/**
814 * grab_runnable_context - try to find a runnable context
815 *
816 * Remove the highest priority context on the runqueue and return it
817 * to the caller.  Returns %NULL if no runnable context was found.
818 */
819static struct spu_context *grab_runnable_context(int prio, int node)
820{
821	struct spu_context *ctx;
822	int best;
823
824	spin_lock(&spu_prio->runq_lock);
825	best = find_first_bit(spu_prio->bitmap, prio);
826	while (best < prio) {
827		struct list_head *rq = &spu_prio->runq[best];
828
829		list_for_each_entry(ctx, rq, rq) {
830			/* XXX(hch): check for affinity here as well */
831			if (__node_allowed(ctx, node)) {
832				__spu_del_from_rq(ctx);
833				goto found;
834			}
835		}
836		best++;
837	}
838	ctx = NULL;
839 found:
840	spin_unlock(&spu_prio->runq_lock);
841	return ctx;
842}
843
844static int __spu_deactivate(struct spu_context *ctx, int force, int max_prio)
845{
846	struct spu *spu = ctx->spu;
847	struct spu_context *new = NULL;
848
849	if (spu) {
850		new = grab_runnable_context(max_prio, spu->node);
851		if (new || force) {
852			spu_unschedule(spu, ctx, new == NULL);
853			if (new) {
854				if (new->flags & SPU_CREATE_NOSCHED)
855					wake_up(&new->stop_wq);
856				else {
857					spu_release(ctx);
858					spu_schedule(spu, new);
859					/* this one can't easily be made
860					   interruptible */
861					mutex_lock(&ctx->state_mutex);
862				}
863			}
864		}
865	}
866
867	return new != NULL;
868}
869
870/**
871 * spu_deactivate - unbind a context from it's physical spu
872 * @ctx:	spu context to unbind
873 *
874 * Unbind @ctx from the physical spu it is running on and schedule
875 * the highest priority context to run on the freed physical spu.
876 */
877void spu_deactivate(struct spu_context *ctx)
878{
879	spu_context_nospu_trace(spu_deactivate__enter, ctx);
880	__spu_deactivate(ctx, 1, MAX_PRIO);
881}
882
883/**
884 * spu_yield -	yield a physical spu if others are waiting
885 * @ctx:	spu context to yield
886 *
887 * Check if there is a higher priority context waiting and if yes
888 * unbind @ctx from the physical spu and schedule the highest
889 * priority context to run on the freed physical spu instead.
890 */
891void spu_yield(struct spu_context *ctx)
892{
893	spu_context_nospu_trace(spu_yield__enter, ctx);
894	if (!(ctx->flags & SPU_CREATE_NOSCHED)) {
895		mutex_lock(&ctx->state_mutex);
896		__spu_deactivate(ctx, 0, MAX_PRIO);
897		mutex_unlock(&ctx->state_mutex);
898	}
899}
900
901static noinline void spusched_tick(struct spu_context *ctx)
902{
903	struct spu_context *new = NULL;
904	struct spu *spu = NULL;
905
906	if (spu_acquire(ctx))
907		BUG();	/* a kernel thread never has signals pending */
908
909	if (ctx->state != SPU_STATE_RUNNABLE)
910		goto out;
911	if (ctx->flags & SPU_CREATE_NOSCHED)
912		goto out;
913	if (ctx->policy == SCHED_FIFO)
914		goto out;
915
916	if (--ctx->time_slice && test_bit(SPU_SCHED_SPU_RUN, &ctx->sched_flags))
917		goto out;
918
919	spu = ctx->spu;
920
921	spu_context_trace(spusched_tick__preempt, ctx, spu);
922
923	new = grab_runnable_context(ctx->prio + 1, spu->node);
924	if (new) {
925		spu_unschedule(spu, ctx, 0);
926		if (test_bit(SPU_SCHED_SPU_RUN, &ctx->sched_flags))
927			spu_add_to_rq(ctx);
928	} else {
929		spu_context_nospu_trace(spusched_tick__newslice, ctx);
930		if (!ctx->time_slice)
931			ctx->time_slice++;
932	}
933out:
934	spu_release(ctx);
935
936	if (new)
937		spu_schedule(spu, new);
938}
939
940/**
941 * count_active_contexts - count nr of active tasks
942 *
943 * Return the number of tasks currently running or waiting to run.
944 *
945 * Note that we don't take runq_lock / list_mutex here.  Reading
946 * a single 32bit value is atomic on powerpc, and we don't care
947 * about memory ordering issues here.
948 */
949static unsigned long count_active_contexts(void)
950{
951	int nr_active = 0, node;
952
953	for (node = 0; node < MAX_NUMNODES; node++)
954		nr_active += cbe_spu_info[node].nr_active;
955	nr_active += spu_prio->nr_waiting;
956
957	return nr_active;
958}
959
960/**
961 * spu_calc_load - update the avenrun load estimates.
962 *
963 * No locking against reading these values from userspace, as for
964 * the CPU loadavg code.
965 */
966static void spu_calc_load(void)
967{
968	unsigned long active_tasks; /* fixed-point */
969
970	active_tasks = count_active_contexts() * FIXED_1;
971	spu_avenrun[0] = calc_load(spu_avenrun[0], EXP_1, active_tasks);
972	spu_avenrun[1] = calc_load(spu_avenrun[1], EXP_5, active_tasks);
973	spu_avenrun[2] = calc_load(spu_avenrun[2], EXP_15, active_tasks);
974}
975
976static void spusched_wake(struct timer_list *unused)
977{
978	mod_timer(&spusched_timer, jiffies + SPUSCHED_TICK);
979	wake_up_process(spusched_task);
980}
981
982static void spuloadavg_wake(struct timer_list *unused)
983{
984	mod_timer(&spuloadavg_timer, jiffies + LOAD_FREQ);
985	spu_calc_load();
986}
987
988static int spusched_thread(void *unused)
989{
990	struct spu *spu;
991	int node;
992
993	while (!kthread_should_stop()) {
994		set_current_state(TASK_INTERRUPTIBLE);
995		schedule();
996		for (node = 0; node < MAX_NUMNODES; node++) {
997			struct mutex *mtx = &cbe_spu_info[node].list_mutex;
998
999			mutex_lock(mtx);
1000			list_for_each_entry(spu, &cbe_spu_info[node].spus,
1001					cbe_list) {
1002				struct spu_context *ctx = spu->ctx;
1003
1004				if (ctx) {
1005					get_spu_context(ctx);
1006					mutex_unlock(mtx);
1007					spusched_tick(ctx);
1008					mutex_lock(mtx);
1009					put_spu_context(ctx);
1010				}
1011			}
1012			mutex_unlock(mtx);
1013		}
1014	}
1015
1016	return 0;
1017}
1018
1019void spuctx_switch_state(struct spu_context *ctx,
1020		enum spu_utilization_state new_state)
1021{
1022	unsigned long long curtime;
1023	signed long long delta;
1024	struct spu *spu;
1025	enum spu_utilization_state old_state;
1026	int node;
1027
1028	curtime = ktime_get_ns();
1029	delta = curtime - ctx->stats.tstamp;
1030
1031	WARN_ON(!mutex_is_locked(&ctx->state_mutex));
1032	WARN_ON(delta < 0);
1033
1034	spu = ctx->spu;
1035	old_state = ctx->stats.util_state;
1036	ctx->stats.util_state = new_state;
1037	ctx->stats.tstamp = curtime;
1038
1039	/*
1040	 * Update the physical SPU utilization statistics.
1041	 */
1042	if (spu) {
1043		ctx->stats.times[old_state] += delta;
1044		spu->stats.times[old_state] += delta;
1045		spu->stats.util_state = new_state;
1046		spu->stats.tstamp = curtime;
1047		node = spu->node;
1048		if (old_state == SPU_UTIL_USER)
1049			atomic_dec(&cbe_spu_info[node].busy_spus);
1050		if (new_state == SPU_UTIL_USER)
1051			atomic_inc(&cbe_spu_info[node].busy_spus);
1052	}
1053}
1054
1055#ifdef CONFIG_PROC_FS
1056static int show_spu_loadavg(struct seq_file *s, void *private)
1057{
1058	int a, b, c;
1059
1060	a = spu_avenrun[0] + (FIXED_1/200);
1061	b = spu_avenrun[1] + (FIXED_1/200);
1062	c = spu_avenrun[2] + (FIXED_1/200);
1063
1064	/*
1065	 * Note that last_pid doesn't really make much sense for the
1066	 * SPU loadavg (it even seems very odd on the CPU side...),
1067	 * but we include it here to have a 100% compatible interface.
1068	 */
1069	seq_printf(s, "%d.%02d %d.%02d %d.%02d %ld/%d %d\n",
1070		LOAD_INT(a), LOAD_FRAC(a),
1071		LOAD_INT(b), LOAD_FRAC(b),
1072		LOAD_INT(c), LOAD_FRAC(c),
1073		count_active_contexts(),
1074		atomic_read(&nr_spu_contexts),
1075		idr_get_cursor(&task_active_pid_ns(current)->idr) - 1);
1076	return 0;
1077}
1078#endif
1079
1080int __init spu_sched_init(void)
1081{
1082	struct proc_dir_entry *entry;
1083	int err = -ENOMEM, i;
1084
1085	spu_prio = kzalloc(sizeof(struct spu_prio_array), GFP_KERNEL);
1086	if (!spu_prio)
1087		goto out;
1088
1089	for (i = 0; i < MAX_PRIO; i++) {
1090		INIT_LIST_HEAD(&spu_prio->runq[i]);
1091		__clear_bit(i, spu_prio->bitmap);
1092	}
1093	spin_lock_init(&spu_prio->runq_lock);
1094
1095	timer_setup(&spusched_timer, spusched_wake, 0);
1096	timer_setup(&spuloadavg_timer, spuloadavg_wake, 0);
1097
1098	spusched_task = kthread_run(spusched_thread, NULL, "spusched");
1099	if (IS_ERR(spusched_task)) {
1100		err = PTR_ERR(spusched_task);
1101		goto out_free_spu_prio;
1102	}
1103
1104	mod_timer(&spuloadavg_timer, 0);
1105
1106	entry = proc_create_single("spu_loadavg", 0, NULL, show_spu_loadavg);
1107	if (!entry)
1108		goto out_stop_kthread;
1109
1110	pr_debug("spusched: tick: %d, min ticks: %d, default ticks: %d\n",
1111			SPUSCHED_TICK, MIN_SPU_TIMESLICE, DEF_SPU_TIMESLICE);
1112	return 0;
1113
1114 out_stop_kthread:
1115	kthread_stop(spusched_task);
1116 out_free_spu_prio:
1117	kfree(spu_prio);
1118 out:
1119	return err;
1120}
1121
1122void spu_sched_exit(void)
1123{
1124	struct spu *spu;
1125	int node;
1126
1127	remove_proc_entry("spu_loadavg", NULL);
1128
1129	del_timer_sync(&spusched_timer);
1130	del_timer_sync(&spuloadavg_timer);
1131	kthread_stop(spusched_task);
1132
1133	for (node = 0; node < MAX_NUMNODES; node++) {
1134		mutex_lock(&cbe_spu_info[node].list_mutex);
1135		list_for_each_entry(spu, &cbe_spu_info[node].spus, cbe_list)
1136			if (spu->alloc_state != SPU_FREE)
1137				spu->alloc_state = SPU_FREE;
1138		mutex_unlock(&cbe_spu_info[node].list_mutex);
1139	}
1140	kfree(spu_prio);
1141}
1142