1// SPDX-License-Identifier: GPL-2.0-or-later
2/*
3 * Common Performance counter support functions for PowerISA v2.07 processors.
4 *
5 * Copyright 2009 Paul Mackerras, IBM Corporation.
6 * Copyright 2013 Michael Ellerman, IBM Corporation.
7 * Copyright 2016 Madhavan Srinivasan, IBM Corporation.
8 */
9#include "isa207-common.h"
10
11PMU_FORMAT_ATTR(event,		"config:0-49");
12PMU_FORMAT_ATTR(pmcxsel,	"config:0-7");
13PMU_FORMAT_ATTR(mark,		"config:8");
14PMU_FORMAT_ATTR(combine,	"config:11");
15PMU_FORMAT_ATTR(unit,		"config:12-15");
16PMU_FORMAT_ATTR(pmc,		"config:16-19");
17PMU_FORMAT_ATTR(cache_sel,	"config:20-23");
18PMU_FORMAT_ATTR(sample_mode,	"config:24-28");
19PMU_FORMAT_ATTR(thresh_sel,	"config:29-31");
20PMU_FORMAT_ATTR(thresh_stop,	"config:32-35");
21PMU_FORMAT_ATTR(thresh_start,	"config:36-39");
22PMU_FORMAT_ATTR(thresh_cmp,	"config:40-49");
23
24static struct attribute *isa207_pmu_format_attr[] = {
25	&format_attr_event.attr,
26	&format_attr_pmcxsel.attr,
27	&format_attr_mark.attr,
28	&format_attr_combine.attr,
29	&format_attr_unit.attr,
30	&format_attr_pmc.attr,
31	&format_attr_cache_sel.attr,
32	&format_attr_sample_mode.attr,
33	&format_attr_thresh_sel.attr,
34	&format_attr_thresh_stop.attr,
35	&format_attr_thresh_start.attr,
36	&format_attr_thresh_cmp.attr,
37	NULL,
38};
39
40const struct attribute_group isa207_pmu_format_group = {
41	.name = "format",
42	.attrs = isa207_pmu_format_attr,
43};
44
45static inline bool event_is_fab_match(u64 event)
46{
47	/* Only check pmc, unit and pmcxsel, ignore the edge bit (0) */
48	event &= 0xff0fe;
49
50	/* PM_MRK_FAB_RSP_MATCH & PM_MRK_FAB_RSP_MATCH_CYC */
51	return (event == 0x30056 || event == 0x4f052);
52}
53
54static bool is_event_valid(u64 event)
55{
56	u64 valid_mask = EVENT_VALID_MASK;
57
58	if (cpu_has_feature(CPU_FTR_ARCH_31))
59		valid_mask = p10_EVENT_VALID_MASK;
60	else if (cpu_has_feature(CPU_FTR_ARCH_300))
61		valid_mask = p9_EVENT_VALID_MASK;
62
63	return !(event & ~valid_mask);
64}
65
66static inline bool is_event_marked(u64 event)
67{
68	if (event & EVENT_IS_MARKED)
69		return true;
70
71	return false;
72}
73
74static unsigned long sdar_mod_val(u64 event)
75{
76	if (cpu_has_feature(CPU_FTR_ARCH_31))
77		return p10_SDAR_MODE(event);
78
79	return p9_SDAR_MODE(event);
80}
81
82static void mmcra_sdar_mode(u64 event, unsigned long *mmcra)
83{
84	/*
85	 * MMCRA[SDAR_MODE] specifies how the SDAR should be updated in
86	 * continuous sampling mode.
87	 *
88	 * Incase of Power8:
89	 * MMCRA[SDAR_MODE] will be programmed as "0b01" for continuous sampling
90	 * mode and will be un-changed when setting MMCRA[63] (Marked events).
91	 *
92	 * Incase of Power9/power10:
93	 * Marked event: MMCRA[SDAR_MODE] will be set to 0b00 ('No Updates'),
94	 *               or if group already have any marked events.
95	 * For rest
96	 *	MMCRA[SDAR_MODE] will be set from event code.
97	 *      If sdar_mode from event is zero, default to 0b01. Hardware
98	 *      requires that we set a non-zero value.
99	 */
100	if (cpu_has_feature(CPU_FTR_ARCH_300)) {
101		if (is_event_marked(event) || (*mmcra & MMCRA_SAMPLE_ENABLE))
102			*mmcra &= MMCRA_SDAR_MODE_NO_UPDATES;
103		else if (sdar_mod_val(event))
104			*mmcra |= sdar_mod_val(event) << MMCRA_SDAR_MODE_SHIFT;
105		else
106			*mmcra |= MMCRA_SDAR_MODE_DCACHE;
107	} else
108		*mmcra |= MMCRA_SDAR_MODE_TLB;
109}
110
111static int p10_thresh_cmp_val(u64 value)
112{
113	int exp = 0;
114	u64 result = value;
115
116	if (!value)
117		return value;
118
119	/*
120	 * Incase of P10, thresh_cmp value is not part of raw event code
121	 * and provided via attr.config1 parameter. To program threshold in MMCRA,
122	 * take a 18 bit number N and shift right 2 places and increment
123	 * the exponent E by 1 until the upper 10 bits of N are zero.
124	 * Write E to the threshold exponent and write the lower 8 bits of N
125	 * to the threshold mantissa.
126	 * The max threshold that can be written is 261120.
127	 */
128	if (cpu_has_feature(CPU_FTR_ARCH_31)) {
129		if (value > 261120)
130			value = 261120;
131		while ((64 - __builtin_clzl(value)) > 8) {
132			exp++;
133			value >>= 2;
134		}
135
136		/*
137		 * Note that it is invalid to write a mantissa with the
138		 * upper 2 bits of mantissa being zero, unless the
139		 * exponent is also zero.
140		 */
141		if (!(value & 0xC0) && exp)
142			result = -1;
143		else
144			result = (exp << 8) | value;
145	}
146	return result;
147}
148
149static u64 thresh_cmp_val(u64 value)
150{
151	if (cpu_has_feature(CPU_FTR_ARCH_31))
152		value = p10_thresh_cmp_val(value);
153
154	/*
155	 * Since location of threshold compare bits in MMCRA
156	 * is different for p8, using different shift value.
157	 */
158	if (cpu_has_feature(CPU_FTR_ARCH_300))
159		return value << p9_MMCRA_THR_CMP_SHIFT;
160	else
161		return value << MMCRA_THR_CMP_SHIFT;
162}
163
164static unsigned long combine_from_event(u64 event)
165{
166	if (cpu_has_feature(CPU_FTR_ARCH_300))
167		return p9_EVENT_COMBINE(event);
168
169	return EVENT_COMBINE(event);
170}
171
172static unsigned long combine_shift(unsigned long pmc)
173{
174	if (cpu_has_feature(CPU_FTR_ARCH_300))
175		return p9_MMCR1_COMBINE_SHIFT(pmc);
176
177	return MMCR1_COMBINE_SHIFT(pmc);
178}
179
180static inline bool event_is_threshold(u64 event)
181{
182	return (event >> EVENT_THR_SEL_SHIFT) & EVENT_THR_SEL_MASK;
183}
184
185static bool is_thresh_cmp_valid(u64 event)
186{
187	unsigned int cmp, exp;
188
189	if (cpu_has_feature(CPU_FTR_ARCH_31))
190		return p10_thresh_cmp_val(event) >= 0;
191
192	/*
193	 * Check the mantissa upper two bits are not zero, unless the
194	 * exponent is also zero. See the THRESH_CMP_MANTISSA doc.
195	 */
196
197	cmp = (event >> EVENT_THR_CMP_SHIFT) & EVENT_THR_CMP_MASK;
198	exp = cmp >> 7;
199
200	if (exp && (cmp & 0x60) == 0)
201		return false;
202
203	return true;
204}
205
206static unsigned int dc_ic_rld_quad_l1_sel(u64 event)
207{
208	unsigned int cache;
209
210	cache = (event >> EVENT_CACHE_SEL_SHIFT) & MMCR1_DC_IC_QUAL_MASK;
211	return cache;
212}
213
214static inline u64 isa207_find_source(u64 idx, u32 sub_idx)
215{
216	u64 ret = PERF_MEM_NA;
217
218	switch(idx) {
219	case 0:
220		/* Nothing to do */
221		break;
222	case 1:
223		ret = PH(LVL, L1) | LEVEL(L1) | P(SNOOP, HIT);
224		break;
225	case 2:
226		ret = PH(LVL, L2) | LEVEL(L2) | P(SNOOP, HIT);
227		break;
228	case 3:
229		ret = PH(LVL, L3) | LEVEL(L3) | P(SNOOP, HIT);
230		break;
231	case 4:
232		if (cpu_has_feature(CPU_FTR_ARCH_31)) {
233			ret = P(SNOOP, HIT);
234
235			if (sub_idx == 1)
236				ret |= PH(LVL, LOC_RAM) | LEVEL(RAM);
237			else if (sub_idx == 2 || sub_idx == 3)
238				ret |= P(LVL, HIT) | LEVEL(PMEM);
239			else if (sub_idx == 4)
240				ret |= PH(LVL, REM_RAM1) | REM | LEVEL(RAM) | P(HOPS, 2);
241			else if (sub_idx == 5 || sub_idx == 7)
242				ret |= P(LVL, HIT) | LEVEL(PMEM) | REM;
243			else if (sub_idx == 6)
244				ret |= PH(LVL, REM_RAM2) | REM | LEVEL(RAM) | P(HOPS, 3);
245		} else {
246			if (sub_idx <= 1)
247				ret = PH(LVL, LOC_RAM);
248			else if (sub_idx > 1 && sub_idx <= 2)
249				ret = PH(LVL, REM_RAM1);
250			else
251				ret = PH(LVL, REM_RAM2);
252			ret |= P(SNOOP, HIT);
253		}
254		break;
255	case 5:
256		if (cpu_has_feature(CPU_FTR_ARCH_31)) {
257			ret = REM | P(HOPS, 0);
258
259			if (sub_idx == 0 || sub_idx == 4)
260				ret |= PH(LVL, L2) | LEVEL(L2) | P(SNOOP, HIT);
261			else if (sub_idx == 1 || sub_idx == 5)
262				ret |= PH(LVL, L2) | LEVEL(L2) | P(SNOOP, HITM);
263			else if (sub_idx == 2 || sub_idx == 6)
264				ret |= PH(LVL, L3) | LEVEL(L3) | P(SNOOP, HIT);
265			else if (sub_idx == 3 || sub_idx == 7)
266				ret |= PH(LVL, L3) | LEVEL(L3) | P(SNOOP, HITM);
267		} else {
268			if (sub_idx == 0)
269				ret = PH(LVL, L2) | LEVEL(L2) | REM | P(SNOOP, HIT) | P(HOPS, 0);
270			else if (sub_idx == 1)
271				ret = PH(LVL, L2) | LEVEL(L2) | REM | P(SNOOP, HITM) | P(HOPS, 0);
272			else if (sub_idx == 2 || sub_idx == 4)
273				ret = PH(LVL, L3) | LEVEL(L3) | REM | P(SNOOP, HIT) | P(HOPS, 0);
274			else if (sub_idx == 3 || sub_idx == 5)
275				ret = PH(LVL, L3) | LEVEL(L3) | REM | P(SNOOP, HITM) | P(HOPS, 0);
276		}
277		break;
278	case 6:
279		if (cpu_has_feature(CPU_FTR_ARCH_31)) {
280			if (sub_idx == 0)
281				ret = PH(LVL, REM_CCE1) | LEVEL(ANY_CACHE) | REM |
282					P(SNOOP, HIT) | P(HOPS, 2);
283			else if (sub_idx == 1)
284				ret = PH(LVL, REM_CCE1) | LEVEL(ANY_CACHE) | REM |
285					P(SNOOP, HITM) | P(HOPS, 2);
286			else if (sub_idx == 2)
287				ret = PH(LVL, REM_CCE2) | LEVEL(ANY_CACHE) | REM |
288					P(SNOOP, HIT) | P(HOPS, 3);
289			else if (sub_idx == 3)
290				ret = PH(LVL, REM_CCE2) | LEVEL(ANY_CACHE) | REM |
291					P(SNOOP, HITM) | P(HOPS, 3);
292		} else {
293			ret = PH(LVL, REM_CCE2);
294			if (sub_idx == 0 || sub_idx == 2)
295				ret |= P(SNOOP, HIT);
296			else if (sub_idx == 1 || sub_idx == 3)
297				ret |= P(SNOOP, HITM);
298		}
299		break;
300	case 7:
301		ret = PM(LVL, L1);
302		break;
303	}
304
305	return ret;
306}
307
308void isa207_get_mem_data_src(union perf_mem_data_src *dsrc, u32 flags,
309							struct pt_regs *regs)
310{
311	u64 idx;
312	u32 sub_idx;
313	u64 sier;
314	u64 val;
315
316	/* Skip if no SIER support */
317	if (!(flags & PPMU_HAS_SIER)) {
318		dsrc->val = 0;
319		return;
320	}
321
322	sier = mfspr(SPRN_SIER);
323	val = (sier & ISA207_SIER_TYPE_MASK) >> ISA207_SIER_TYPE_SHIFT;
324	if (val != 1 && val != 2 && !(val == 7 && cpu_has_feature(CPU_FTR_ARCH_31)))
325		return;
326
327	idx = (sier & ISA207_SIER_LDST_MASK) >> ISA207_SIER_LDST_SHIFT;
328	sub_idx = (sier & ISA207_SIER_DATA_SRC_MASK) >> ISA207_SIER_DATA_SRC_SHIFT;
329
330	dsrc->val = isa207_find_source(idx, sub_idx);
331	if (val == 7) {
332		u64 mmcra;
333		u32 op_type;
334
335		/*
336		 * Type 0b111 denotes either larx or stcx instruction. Use the
337		 * MMCRA sampling bits [57:59] along with the type value
338		 * to determine the exact instruction type. If the sampling
339		 * criteria is neither load or store, set the type as default
340		 * to NA.
341		 */
342		mmcra = mfspr(SPRN_MMCRA);
343
344		op_type = (mmcra >> MMCRA_SAMP_ELIG_SHIFT) & MMCRA_SAMP_ELIG_MASK;
345		switch (op_type) {
346		case 5:
347			dsrc->val |= P(OP, LOAD);
348			break;
349		case 7:
350			dsrc->val |= P(OP, STORE);
351			break;
352		default:
353			dsrc->val |= P(OP, NA);
354			break;
355		}
356	} else {
357		dsrc->val |= (val == 1) ? P(OP, LOAD) : P(OP, STORE);
358	}
359}
360
361void isa207_get_mem_weight(u64 *weight, u64 type)
362{
363	union perf_sample_weight *weight_fields;
364	u64 weight_lat;
365	u64 mmcra = mfspr(SPRN_MMCRA);
366	u64 exp = MMCRA_THR_CTR_EXP(mmcra);
367	u64 mantissa = MMCRA_THR_CTR_MANT(mmcra);
368	u64 sier = mfspr(SPRN_SIER);
369	u64 val = (sier & ISA207_SIER_TYPE_MASK) >> ISA207_SIER_TYPE_SHIFT;
370
371	if (cpu_has_feature(CPU_FTR_ARCH_31))
372		mantissa = P10_MMCRA_THR_CTR_MANT(mmcra);
373
374	if (val == 0 || (val == 7 && !cpu_has_feature(CPU_FTR_ARCH_31)))
375		weight_lat = 0;
376	else
377		weight_lat = mantissa << (2 * exp);
378
379	/*
380	 * Use 64 bit weight field (full) if sample type is
381	 * WEIGHT.
382	 *
383	 * if sample type is WEIGHT_STRUCT:
384	 * - store memory latency in the lower 32 bits.
385	 * - For ISA v3.1, use remaining two 16 bit fields of
386	 *   perf_sample_weight to store cycle counter values
387	 *   from sier2.
388	 */
389	weight_fields = (union perf_sample_weight *)weight;
390	if (type & PERF_SAMPLE_WEIGHT)
391		weight_fields->full = weight_lat;
392	else {
393		weight_fields->var1_dw = (u32)weight_lat;
394		if (cpu_has_feature(CPU_FTR_ARCH_31)) {
395			weight_fields->var2_w = P10_SIER2_FINISH_CYC(mfspr(SPRN_SIER2));
396			weight_fields->var3_w = P10_SIER2_DISPATCH_CYC(mfspr(SPRN_SIER2));
397		}
398	}
399}
400
401int isa207_get_constraint(u64 event, unsigned long *maskp, unsigned long *valp, u64 event_config1)
402{
403	unsigned int unit, pmc, cache, ebb;
404	unsigned long mask, value;
405
406	mask = value = 0;
407
408	if (!is_event_valid(event))
409		return -1;
410
411	pmc   = (event >> EVENT_PMC_SHIFT)        & EVENT_PMC_MASK;
412	unit  = (event >> EVENT_UNIT_SHIFT)       & EVENT_UNIT_MASK;
413	if (cpu_has_feature(CPU_FTR_ARCH_31))
414		cache = (event >> EVENT_CACHE_SEL_SHIFT) &
415			p10_EVENT_CACHE_SEL_MASK;
416	else
417		cache = (event >> EVENT_CACHE_SEL_SHIFT) &
418			EVENT_CACHE_SEL_MASK;
419	ebb   = (event >> EVENT_EBB_SHIFT)        & EVENT_EBB_MASK;
420
421	if (pmc) {
422		u64 base_event;
423
424		if (pmc > 6)
425			return -1;
426
427		/* Ignore Linux defined bits when checking event below */
428		base_event = event & ~EVENT_LINUX_MASK;
429
430		if (pmc >= 5 && base_event != 0x500fa &&
431				base_event != 0x600f4)
432			return -1;
433
434		mask  |= CNST_PMC_MASK(pmc);
435		value |= CNST_PMC_VAL(pmc);
436
437		/*
438		 * PMC5 and PMC6 are used to count cycles and instructions and
439		 * they do not support most of the constraint bits. Add a check
440		 * to exclude PMC5/6 from most of the constraints except for
441		 * EBB/BHRB.
442		 */
443		if (pmc >= 5)
444			goto ebb_bhrb;
445	}
446
447	if (pmc <= 4) {
448		/*
449		 * Add to number of counters in use. Note this includes events with
450		 * a PMC of 0 - they still need a PMC, it's just assigned later.
451		 * Don't count events on PMC 5 & 6, there is only one valid event
452		 * on each of those counters, and they are handled above.
453		 */
454		mask  |= CNST_NC_MASK;
455		value |= CNST_NC_VAL;
456	}
457
458	if (unit >= 6 && unit <= 9) {
459		if (cpu_has_feature(CPU_FTR_ARCH_31)) {
460			if (unit == 6) {
461				mask |= CNST_L2L3_GROUP_MASK;
462				value |= CNST_L2L3_GROUP_VAL(event >> p10_L2L3_EVENT_SHIFT);
463			}
464		} else if (cpu_has_feature(CPU_FTR_ARCH_300)) {
465			mask  |= CNST_CACHE_GROUP_MASK;
466			value |= CNST_CACHE_GROUP_VAL(event & 0xff);
467
468			mask |= CNST_CACHE_PMC4_MASK;
469			if (pmc == 4)
470				value |= CNST_CACHE_PMC4_VAL;
471		} else if (cache & 0x7) {
472			/*
473			 * L2/L3 events contain a cache selector field, which is
474			 * supposed to be programmed into MMCRC. However MMCRC is only
475			 * HV writable, and there is no API for guest kernels to modify
476			 * it. The solution is for the hypervisor to initialise the
477			 * field to zeroes, and for us to only ever allow events that
478			 * have a cache selector of zero. The bank selector (bit 3) is
479			 * irrelevant, as long as the rest of the value is 0.
480			 */
481			return -1;
482		}
483
484	} else if (cpu_has_feature(CPU_FTR_ARCH_300) || (event & EVENT_IS_L1)) {
485		mask  |= CNST_L1_QUAL_MASK;
486		value |= CNST_L1_QUAL_VAL(cache);
487	}
488
489	if (cpu_has_feature(CPU_FTR_ARCH_31)) {
490		mask |= CNST_RADIX_SCOPE_GROUP_MASK;
491		value |= CNST_RADIX_SCOPE_GROUP_VAL(event >> p10_EVENT_RADIX_SCOPE_QUAL_SHIFT);
492	}
493
494	if (is_event_marked(event)) {
495		mask  |= CNST_SAMPLE_MASK;
496		value |= CNST_SAMPLE_VAL(event >> EVENT_SAMPLE_SHIFT);
497	}
498
499	if (cpu_has_feature(CPU_FTR_ARCH_31)) {
500		if (event_is_threshold(event) && is_thresh_cmp_valid(event_config1)) {
501			mask  |= CNST_THRESH_CTL_SEL_MASK;
502			value |= CNST_THRESH_CTL_SEL_VAL(event >> EVENT_THRESH_SHIFT);
503			mask  |= p10_CNST_THRESH_CMP_MASK;
504			value |= p10_CNST_THRESH_CMP_VAL(p10_thresh_cmp_val(event_config1));
505		} else if (event_is_threshold(event))
506			return -1;
507	} else if (cpu_has_feature(CPU_FTR_ARCH_300))  {
508		if (event_is_threshold(event) && is_thresh_cmp_valid(event)) {
509			mask  |= CNST_THRESH_MASK;
510			value |= CNST_THRESH_VAL(event >> EVENT_THRESH_SHIFT);
511		} else if (event_is_threshold(event))
512			return -1;
513	} else {
514		/*
515		 * Special case for PM_MRK_FAB_RSP_MATCH and PM_MRK_FAB_RSP_MATCH_CYC,
516		 * the threshold control bits are used for the match value.
517		 */
518		if (event_is_fab_match(event)) {
519			mask  |= CNST_FAB_MATCH_MASK;
520			value |= CNST_FAB_MATCH_VAL(event >> EVENT_THR_CTL_SHIFT);
521		} else {
522			if (!is_thresh_cmp_valid(event))
523				return -1;
524
525			mask  |= CNST_THRESH_MASK;
526			value |= CNST_THRESH_VAL(event >> EVENT_THRESH_SHIFT);
527		}
528	}
529
530ebb_bhrb:
531	if (!pmc && ebb)
532		/* EBB events must specify the PMC */
533		return -1;
534
535	if (event & EVENT_WANTS_BHRB) {
536		if (!ebb)
537			/* Only EBB events can request BHRB */
538			return -1;
539
540		mask  |= CNST_IFM_MASK;
541		value |= CNST_IFM_VAL(event >> EVENT_IFM_SHIFT);
542	}
543
544	/*
545	 * All events must agree on EBB, either all request it or none.
546	 * EBB events are pinned & exclusive, so this should never actually
547	 * hit, but we leave it as a fallback in case.
548	 */
549	mask  |= CNST_EBB_MASK;
550	value |= CNST_EBB_VAL(ebb);
551
552	*maskp = mask;
553	*valp = value;
554
555	return 0;
556}
557
558int isa207_compute_mmcr(u64 event[], int n_ev,
559			       unsigned int hwc[], struct mmcr_regs *mmcr,
560			       struct perf_event *pevents[], u32 flags)
561{
562	unsigned long mmcra, mmcr1, mmcr2, unit, combine, psel, cache, val;
563	unsigned long mmcr3;
564	unsigned int pmc, pmc_inuse;
565	int i;
566
567	pmc_inuse = 0;
568
569	/* First pass to count resource use */
570	for (i = 0; i < n_ev; ++i) {
571		pmc = (event[i] >> EVENT_PMC_SHIFT) & EVENT_PMC_MASK;
572		if (pmc)
573			pmc_inuse |= 1 << pmc;
574	}
575
576	mmcra = mmcr1 = mmcr2 = mmcr3 = 0;
577
578	/*
579	 * Disable bhrb unless explicitly requested
580	 * by setting MMCRA (BHRBRD) bit.
581	 */
582	if (cpu_has_feature(CPU_FTR_ARCH_31))
583		mmcra |= MMCRA_BHRB_DISABLE;
584
585	/* Second pass: assign PMCs, set all MMCR1 fields */
586	for (i = 0; i < n_ev; ++i) {
587		pmc     = (event[i] >> EVENT_PMC_SHIFT) & EVENT_PMC_MASK;
588		unit    = (event[i] >> EVENT_UNIT_SHIFT) & EVENT_UNIT_MASK;
589		combine = combine_from_event(event[i]);
590		psel    =  event[i] & EVENT_PSEL_MASK;
591
592		if (!pmc) {
593			for (pmc = 1; pmc <= 4; ++pmc) {
594				if (!(pmc_inuse & (1 << pmc)))
595					break;
596			}
597
598			pmc_inuse |= 1 << pmc;
599		}
600
601		if (pmc <= 4) {
602			mmcr1 |= unit << MMCR1_UNIT_SHIFT(pmc);
603			mmcr1 |= combine << combine_shift(pmc);
604			mmcr1 |= psel << MMCR1_PMCSEL_SHIFT(pmc);
605		}
606
607		/* In continuous sampling mode, update SDAR on TLB miss */
608		mmcra_sdar_mode(event[i], &mmcra);
609
610		if (cpu_has_feature(CPU_FTR_ARCH_300)) {
611			cache = dc_ic_rld_quad_l1_sel(event[i]);
612			mmcr1 |= (cache) << MMCR1_DC_IC_QUAL_SHIFT;
613		} else {
614			if (event[i] & EVENT_IS_L1) {
615				cache = dc_ic_rld_quad_l1_sel(event[i]);
616				mmcr1 |= (cache) << MMCR1_DC_IC_QUAL_SHIFT;
617			}
618		}
619
620		/* Set RADIX_SCOPE_QUAL bit */
621		if (cpu_has_feature(CPU_FTR_ARCH_31)) {
622			val = (event[i] >> p10_EVENT_RADIX_SCOPE_QUAL_SHIFT) &
623				p10_EVENT_RADIX_SCOPE_QUAL_MASK;
624			mmcr1 |= val << p10_MMCR1_RADIX_SCOPE_QUAL_SHIFT;
625		}
626
627		if (is_event_marked(event[i])) {
628			mmcra |= MMCRA_SAMPLE_ENABLE;
629
630			val = (event[i] >> EVENT_SAMPLE_SHIFT) & EVENT_SAMPLE_MASK;
631			if (val) {
632				mmcra |= (val &  3) << MMCRA_SAMP_MODE_SHIFT;
633				mmcra |= (val >> 2) << MMCRA_SAMP_ELIG_SHIFT;
634			}
635		}
636
637		/*
638		 * PM_MRK_FAB_RSP_MATCH and PM_MRK_FAB_RSP_MATCH_CYC,
639		 * the threshold bits are used for the match value.
640		 */
641		if (!cpu_has_feature(CPU_FTR_ARCH_300) && event_is_fab_match(event[i])) {
642			mmcr1 |= ((event[i] >> EVENT_THR_CTL_SHIFT) &
643				  EVENT_THR_CTL_MASK) << MMCR1_FAB_SHIFT;
644		} else {
645			val = (event[i] >> EVENT_THR_CTL_SHIFT) & EVENT_THR_CTL_MASK;
646			mmcra |= val << MMCRA_THR_CTL_SHIFT;
647			val = (event[i] >> EVENT_THR_SEL_SHIFT) & EVENT_THR_SEL_MASK;
648			mmcra |= val << MMCRA_THR_SEL_SHIFT;
649			if (!cpu_has_feature(CPU_FTR_ARCH_31)) {
650				val = (event[i] >> EVENT_THR_CMP_SHIFT) &
651					EVENT_THR_CMP_MASK;
652				mmcra |= thresh_cmp_val(val);
653			} else if (flags & PPMU_HAS_ATTR_CONFIG1) {
654				val = (pevents[i]->attr.config1 >> p10_EVENT_THR_CMP_SHIFT) &
655					p10_EVENT_THR_CMP_MASK;
656				mmcra |= thresh_cmp_val(val);
657			}
658		}
659
660		if (cpu_has_feature(CPU_FTR_ARCH_31) && (unit == 6)) {
661			val = (event[i] >> p10_L2L3_EVENT_SHIFT) &
662				p10_EVENT_L2L3_SEL_MASK;
663			mmcr2 |= val << p10_L2L3_SEL_SHIFT;
664		}
665
666		if (event[i] & EVENT_WANTS_BHRB) {
667			val = (event[i] >> EVENT_IFM_SHIFT) & EVENT_IFM_MASK;
668			mmcra |= val << MMCRA_IFM_SHIFT;
669		}
670
671		/* set MMCRA (BHRBRD) to 0 if there is user request for BHRB */
672		if (cpu_has_feature(CPU_FTR_ARCH_31) &&
673				(has_branch_stack(pevents[i]) || (event[i] & EVENT_WANTS_BHRB)))
674			mmcra &= ~MMCRA_BHRB_DISABLE;
675
676		if (pevents[i]->attr.exclude_user)
677			mmcr2 |= MMCR2_FCP(pmc);
678
679		if (pevents[i]->attr.exclude_hv)
680			mmcr2 |= MMCR2_FCH(pmc);
681
682		if (pevents[i]->attr.exclude_kernel) {
683			if (cpu_has_feature(CPU_FTR_HVMODE))
684				mmcr2 |= MMCR2_FCH(pmc);
685			else
686				mmcr2 |= MMCR2_FCS(pmc);
687		}
688
689		if (pevents[i]->attr.exclude_idle)
690			mmcr2 |= MMCR2_FCWAIT(pmc);
691
692		if (cpu_has_feature(CPU_FTR_ARCH_31)) {
693			if (pmc <= 4) {
694				val = (event[i] >> p10_EVENT_MMCR3_SHIFT) &
695					p10_EVENT_MMCR3_MASK;
696				mmcr3 |= val << MMCR3_SHIFT(pmc);
697			}
698		}
699
700		hwc[i] = pmc - 1;
701	}
702
703	/* Return MMCRx values */
704	mmcr->mmcr0 = 0;
705
706	/* pmc_inuse is 1-based */
707	if (pmc_inuse & 2)
708		mmcr->mmcr0 = MMCR0_PMC1CE;
709
710	if (pmc_inuse & 0x7c)
711		mmcr->mmcr0 |= MMCR0_PMCjCE;
712
713	/* If we're not using PMC 5 or 6, freeze them */
714	if (!(pmc_inuse & 0x60))
715		mmcr->mmcr0 |= MMCR0_FC56;
716
717	/*
718	 * Set mmcr0 (PMCCEXT) for p10 which
719	 * will restrict access to group B registers
720	 * when MMCR0 PMCC=0b00.
721	 */
722	if (cpu_has_feature(CPU_FTR_ARCH_31))
723		mmcr->mmcr0 |= MMCR0_PMCCEXT;
724
725	mmcr->mmcr1 = mmcr1;
726	mmcr->mmcra = mmcra;
727	mmcr->mmcr2 = mmcr2;
728	mmcr->mmcr3 = mmcr3;
729
730	return 0;
731}
732
733void isa207_disable_pmc(unsigned int pmc, struct mmcr_regs *mmcr)
734{
735	if (pmc <= 3)
736		mmcr->mmcr1 &= ~(0xffUL << MMCR1_PMCSEL_SHIFT(pmc + 1));
737}
738
739static int find_alternative(u64 event, const unsigned int ev_alt[][MAX_ALT], int size)
740{
741	int i, j;
742
743	for (i = 0; i < size; ++i) {
744		if (event < ev_alt[i][0])
745			break;
746
747		for (j = 0; j < MAX_ALT && ev_alt[i][j]; ++j)
748			if (event == ev_alt[i][j])
749				return i;
750	}
751
752	return -1;
753}
754
755int isa207_get_alternatives(u64 event, u64 alt[], int size, unsigned int flags,
756					const unsigned int ev_alt[][MAX_ALT])
757{
758	int i, j, num_alt = 0;
759	u64 alt_event;
760
761	alt[num_alt++] = event;
762	i = find_alternative(event, ev_alt, size);
763	if (i >= 0) {
764		/* Filter out the original event, it's already in alt[0] */
765		for (j = 0; j < MAX_ALT; ++j) {
766			alt_event = ev_alt[i][j];
767			if (alt_event && alt_event != event)
768				alt[num_alt++] = alt_event;
769		}
770	}
771
772	if (flags & PPMU_ONLY_COUNT_RUN) {
773		/*
774		 * We're only counting in RUN state, so PM_CYC is equivalent to
775		 * PM_RUN_CYC and PM_INST_CMPL === PM_RUN_INST_CMPL.
776		 */
777		j = num_alt;
778		for (i = 0; i < num_alt; ++i) {
779			switch (alt[i]) {
780			case 0x1e:			/* PMC_CYC */
781				alt[j++] = 0x600f4;	/* PM_RUN_CYC */
782				break;
783			case 0x600f4:
784				alt[j++] = 0x1e;
785				break;
786			case 0x2:			/* PM_INST_CMPL */
787				alt[j++] = 0x500fa;	/* PM_RUN_INST_CMPL */
788				break;
789			case 0x500fa:
790				alt[j++] = 0x2;
791				break;
792			}
793		}
794		num_alt = j;
795	}
796
797	return num_alt;
798}
799
800int isa3XX_check_attr_config(struct perf_event *ev)
801{
802	u64 val, sample_mode;
803	u64 event = ev->attr.config;
804
805	val = (event >> EVENT_SAMPLE_SHIFT) & EVENT_SAMPLE_MASK;
806	sample_mode = val & 0x3;
807
808	/*
809	 * MMCRA[61:62] is Random Sampling Mode (SM).
810	 * value of 0b11 is reserved.
811	 */
812	if (sample_mode == 0x3)
813		return -EINVAL;
814
815	/*
816	 * Check for all reserved value
817	 * Source: Performance Monitoring Unit User Guide
818	 */
819	switch (val) {
820	case 0x5:
821	case 0x9:
822	case 0xD:
823	case 0x19:
824	case 0x1D:
825	case 0x1A:
826	case 0x1E:
827		return -EINVAL;
828	}
829
830	/*
831	 * MMCRA[48:51]/[52:55]) Threshold Start/Stop
832	 * Events Selection.
833	 * 0b11110000/0b00001111 is reserved.
834	 */
835	val = (event >> EVENT_THR_CTL_SHIFT) & EVENT_THR_CTL_MASK;
836	if (((val & 0xF0) == 0xF0) || ((val & 0xF) == 0xF))
837		return -EINVAL;
838
839	return 0;
840}
841