1// SPDX-License-Identifier: GPL-2.0-or-later
2/*
3 * Copyright 2015-2016, Aneesh Kumar K.V, IBM Corporation.
4 */
5
6#include <linux/sched.h>
7#include <linux/mm_types.h>
8#include <linux/memblock.h>
9#include <linux/memremap.h>
10#include <linux/pkeys.h>
11#include <linux/debugfs.h>
12#include <linux/proc_fs.h>
13#include <misc/cxl-base.h>
14
15#include <asm/pgalloc.h>
16#include <asm/tlb.h>
17#include <asm/trace.h>
18#include <asm/powernv.h>
19#include <asm/firmware.h>
20#include <asm/ultravisor.h>
21#include <asm/kexec.h>
22
23#include <mm/mmu_decl.h>
24#include <trace/events/thp.h>
25
26#include "internal.h"
27
28struct mmu_psize_def mmu_psize_defs[MMU_PAGE_COUNT];
29EXPORT_SYMBOL_GPL(mmu_psize_defs);
30
31#ifdef CONFIG_SPARSEMEM_VMEMMAP
32int mmu_vmemmap_psize = MMU_PAGE_4K;
33#endif
34
35unsigned long __pmd_frag_nr;
36EXPORT_SYMBOL(__pmd_frag_nr);
37unsigned long __pmd_frag_size_shift;
38EXPORT_SYMBOL(__pmd_frag_size_shift);
39
40#ifdef CONFIG_TRANSPARENT_HUGEPAGE
41/*
42 * This is called when relaxing access to a hugepage. It's also called in the page
43 * fault path when we don't hit any of the major fault cases, ie, a minor
44 * update of _PAGE_ACCESSED, _PAGE_DIRTY, etc... The generic code will have
45 * handled those two for us, we additionally deal with missing execute
46 * permission here on some processors
47 */
48int pmdp_set_access_flags(struct vm_area_struct *vma, unsigned long address,
49			  pmd_t *pmdp, pmd_t entry, int dirty)
50{
51	int changed;
52#ifdef CONFIG_DEBUG_VM
53	WARN_ON(!pmd_trans_huge(*pmdp) && !pmd_devmap(*pmdp));
54	assert_spin_locked(pmd_lockptr(vma->vm_mm, pmdp));
55#endif
56	changed = !pmd_same(*(pmdp), entry);
57	if (changed) {
58		/*
59		 * We can use MMU_PAGE_2M here, because only radix
60		 * path look at the psize.
61		 */
62		__ptep_set_access_flags(vma, pmdp_ptep(pmdp),
63					pmd_pte(entry), address, MMU_PAGE_2M);
64	}
65	return changed;
66}
67
68int pudp_set_access_flags(struct vm_area_struct *vma, unsigned long address,
69			  pud_t *pudp, pud_t entry, int dirty)
70{
71	int changed;
72#ifdef CONFIG_DEBUG_VM
73	WARN_ON(!pud_devmap(*pudp));
74	assert_spin_locked(pud_lockptr(vma->vm_mm, pudp));
75#endif
76	changed = !pud_same(*(pudp), entry);
77	if (changed) {
78		/*
79		 * We can use MMU_PAGE_1G here, because only radix
80		 * path look at the psize.
81		 */
82		__ptep_set_access_flags(vma, pudp_ptep(pudp),
83					pud_pte(entry), address, MMU_PAGE_1G);
84	}
85	return changed;
86}
87
88
89int pmdp_test_and_clear_young(struct vm_area_struct *vma,
90			      unsigned long address, pmd_t *pmdp)
91{
92	return __pmdp_test_and_clear_young(vma->vm_mm, address, pmdp);
93}
94
95int pudp_test_and_clear_young(struct vm_area_struct *vma,
96			      unsigned long address, pud_t *pudp)
97{
98	return __pudp_test_and_clear_young(vma->vm_mm, address, pudp);
99}
100
101/*
102 * set a new huge pmd. We should not be called for updating
103 * an existing pmd entry. That should go via pmd_hugepage_update.
104 */
105void set_pmd_at(struct mm_struct *mm, unsigned long addr,
106		pmd_t *pmdp, pmd_t pmd)
107{
108#ifdef CONFIG_DEBUG_VM
109	/*
110	 * Make sure hardware valid bit is not set. We don't do
111	 * tlb flush for this update.
112	 */
113
114	WARN_ON(pte_hw_valid(pmd_pte(*pmdp)) && !pte_protnone(pmd_pte(*pmdp)));
115	assert_spin_locked(pmd_lockptr(mm, pmdp));
116	WARN_ON(!(pmd_leaf(pmd)));
117#endif
118	trace_hugepage_set_pmd(addr, pmd_val(pmd));
119	return set_pte_at(mm, addr, pmdp_ptep(pmdp), pmd_pte(pmd));
120}
121
122void set_pud_at(struct mm_struct *mm, unsigned long addr,
123		pud_t *pudp, pud_t pud)
124{
125#ifdef CONFIG_DEBUG_VM
126	/*
127	 * Make sure hardware valid bit is not set. We don't do
128	 * tlb flush for this update.
129	 */
130
131	WARN_ON(pte_hw_valid(pud_pte(*pudp)));
132	assert_spin_locked(pud_lockptr(mm, pudp));
133	WARN_ON(!(pud_leaf(pud)));
134#endif
135	trace_hugepage_set_pud(addr, pud_val(pud));
136	return set_pte_at(mm, addr, pudp_ptep(pudp), pud_pte(pud));
137}
138
139static void do_serialize(void *arg)
140{
141	/* We've taken the IPI, so try to trim the mask while here */
142	if (radix_enabled()) {
143		struct mm_struct *mm = arg;
144		exit_lazy_flush_tlb(mm, false);
145	}
146}
147
148/*
149 * Serialize against __find_linux_pte() which does lock-less
150 * lookup in page tables with local interrupts disabled. For huge pages
151 * it casts pmd_t to pte_t. Since format of pte_t is different from
152 * pmd_t we want to prevent transit from pmd pointing to page table
153 * to pmd pointing to huge page (and back) while interrupts are disabled.
154 * We clear pmd to possibly replace it with page table pointer in
155 * different code paths. So make sure we wait for the parallel
156 * __find_linux_pte() to finish.
157 */
158void serialize_against_pte_lookup(struct mm_struct *mm)
159{
160	smp_mb();
161	smp_call_function_many(mm_cpumask(mm), do_serialize, mm, 1);
162}
163
164/*
165 * We use this to invalidate a pmdp entry before switching from a
166 * hugepte to regular pmd entry.
167 */
168pmd_t pmdp_invalidate(struct vm_area_struct *vma, unsigned long address,
169		     pmd_t *pmdp)
170{
171	unsigned long old_pmd;
172
173	old_pmd = pmd_hugepage_update(vma->vm_mm, address, pmdp, _PAGE_PRESENT, _PAGE_INVALID);
174	flush_pmd_tlb_range(vma, address, address + HPAGE_PMD_SIZE);
175	return __pmd(old_pmd);
176}
177
178pmd_t pmdp_huge_get_and_clear_full(struct vm_area_struct *vma,
179				   unsigned long addr, pmd_t *pmdp, int full)
180{
181	pmd_t pmd;
182	VM_BUG_ON(addr & ~HPAGE_PMD_MASK);
183	VM_BUG_ON((pmd_present(*pmdp) && !pmd_trans_huge(*pmdp) &&
184		   !pmd_devmap(*pmdp)) || !pmd_present(*pmdp));
185	pmd = pmdp_huge_get_and_clear(vma->vm_mm, addr, pmdp);
186	/*
187	 * if it not a fullmm flush, then we can possibly end up converting
188	 * this PMD pte entry to a regular level 0 PTE by a parallel page fault.
189	 * Make sure we flush the tlb in this case.
190	 */
191	if (!full)
192		flush_pmd_tlb_range(vma, addr, addr + HPAGE_PMD_SIZE);
193	return pmd;
194}
195
196pud_t pudp_huge_get_and_clear_full(struct vm_area_struct *vma,
197				   unsigned long addr, pud_t *pudp, int full)
198{
199	pud_t pud;
200
201	VM_BUG_ON(addr & ~HPAGE_PMD_MASK);
202	VM_BUG_ON((pud_present(*pudp) && !pud_devmap(*pudp)) ||
203		  !pud_present(*pudp));
204	pud = pudp_huge_get_and_clear(vma->vm_mm, addr, pudp);
205	/*
206	 * if it not a fullmm flush, then we can possibly end up converting
207	 * this PMD pte entry to a regular level 0 PTE by a parallel page fault.
208	 * Make sure we flush the tlb in this case.
209	 */
210	if (!full)
211		flush_pud_tlb_range(vma, addr, addr + HPAGE_PUD_SIZE);
212	return pud;
213}
214
215static pmd_t pmd_set_protbits(pmd_t pmd, pgprot_t pgprot)
216{
217	return __pmd(pmd_val(pmd) | pgprot_val(pgprot));
218}
219
220static pud_t pud_set_protbits(pud_t pud, pgprot_t pgprot)
221{
222	return __pud(pud_val(pud) | pgprot_val(pgprot));
223}
224
225/*
226 * At some point we should be able to get rid of
227 * pmd_mkhuge() and mk_huge_pmd() when we update all the
228 * other archs to mark the pmd huge in pfn_pmd()
229 */
230pmd_t pfn_pmd(unsigned long pfn, pgprot_t pgprot)
231{
232	unsigned long pmdv;
233
234	pmdv = (pfn << PAGE_SHIFT) & PTE_RPN_MASK;
235
236	return __pmd_mkhuge(pmd_set_protbits(__pmd(pmdv), pgprot));
237}
238
239pud_t pfn_pud(unsigned long pfn, pgprot_t pgprot)
240{
241	unsigned long pudv;
242
243	pudv = (pfn << PAGE_SHIFT) & PTE_RPN_MASK;
244
245	return __pud_mkhuge(pud_set_protbits(__pud(pudv), pgprot));
246}
247
248pmd_t mk_pmd(struct page *page, pgprot_t pgprot)
249{
250	return pfn_pmd(page_to_pfn(page), pgprot);
251}
252
253pmd_t pmd_modify(pmd_t pmd, pgprot_t newprot)
254{
255	unsigned long pmdv;
256
257	pmdv = pmd_val(pmd);
258	pmdv &= _HPAGE_CHG_MASK;
259	return pmd_set_protbits(__pmd(pmdv), newprot);
260}
261#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
262
263/* For use by kexec, called with MMU off */
264notrace void mmu_cleanup_all(void)
265{
266	if (radix_enabled())
267		radix__mmu_cleanup_all();
268	else if (mmu_hash_ops.hpte_clear_all)
269		mmu_hash_ops.hpte_clear_all();
270
271	reset_sprs();
272}
273
274#ifdef CONFIG_MEMORY_HOTPLUG
275int __meminit create_section_mapping(unsigned long start, unsigned long end,
276				     int nid, pgprot_t prot)
277{
278	if (radix_enabled())
279		return radix__create_section_mapping(start, end, nid, prot);
280
281	return hash__create_section_mapping(start, end, nid, prot);
282}
283
284int __meminit remove_section_mapping(unsigned long start, unsigned long end)
285{
286	if (radix_enabled())
287		return radix__remove_section_mapping(start, end);
288
289	return hash__remove_section_mapping(start, end);
290}
291#endif /* CONFIG_MEMORY_HOTPLUG */
292
293void __init mmu_partition_table_init(void)
294{
295	unsigned long patb_size = 1UL << PATB_SIZE_SHIFT;
296	unsigned long ptcr;
297
298	/* Initialize the Partition Table with no entries */
299	partition_tb = memblock_alloc(patb_size, patb_size);
300	if (!partition_tb)
301		panic("%s: Failed to allocate %lu bytes align=0x%lx\n",
302		      __func__, patb_size, patb_size);
303
304	ptcr = __pa(partition_tb) | (PATB_SIZE_SHIFT - 12);
305	set_ptcr_when_no_uv(ptcr);
306	powernv_set_nmmu_ptcr(ptcr);
307}
308
309static void flush_partition(unsigned int lpid, bool radix)
310{
311	if (radix) {
312		radix__flush_all_lpid(lpid);
313		radix__flush_all_lpid_guest(lpid);
314	} else {
315		asm volatile("ptesync" : : : "memory");
316		asm volatile(PPC_TLBIE_5(%0,%1,2,0,0) : :
317			     "r" (TLBIEL_INVAL_SET_LPID), "r" (lpid));
318		/* do we need fixup here ?*/
319		asm volatile("eieio; tlbsync; ptesync" : : : "memory");
320		trace_tlbie(lpid, 0, TLBIEL_INVAL_SET_LPID, lpid, 2, 0, 0);
321	}
322}
323
324void mmu_partition_table_set_entry(unsigned int lpid, unsigned long dw0,
325				  unsigned long dw1, bool flush)
326{
327	unsigned long old = be64_to_cpu(partition_tb[lpid].patb0);
328
329	/*
330	 * When ultravisor is enabled, the partition table is stored in secure
331	 * memory and can only be accessed doing an ultravisor call. However, we
332	 * maintain a copy of the partition table in normal memory to allow Nest
333	 * MMU translations to occur (for normal VMs).
334	 *
335	 * Therefore, here we always update partition_tb, regardless of whether
336	 * we are running under an ultravisor or not.
337	 */
338	partition_tb[lpid].patb0 = cpu_to_be64(dw0);
339	partition_tb[lpid].patb1 = cpu_to_be64(dw1);
340
341	/*
342	 * If ultravisor is enabled, we do an ultravisor call to register the
343	 * partition table entry (PATE), which also do a global flush of TLBs
344	 * and partition table caches for the lpid. Otherwise, just do the
345	 * flush. The type of flush (hash or radix) depends on what the previous
346	 * use of the partition ID was, not the new use.
347	 */
348	if (firmware_has_feature(FW_FEATURE_ULTRAVISOR)) {
349		uv_register_pate(lpid, dw0, dw1);
350		pr_info("PATE registered by ultravisor: dw0 = 0x%lx, dw1 = 0x%lx\n",
351			dw0, dw1);
352	} else if (flush) {
353		/*
354		 * Boot does not need to flush, because MMU is off and each
355		 * CPU does a tlbiel_all() before switching them on, which
356		 * flushes everything.
357		 */
358		flush_partition(lpid, (old & PATB_HR));
359	}
360}
361EXPORT_SYMBOL_GPL(mmu_partition_table_set_entry);
362
363static pmd_t *get_pmd_from_cache(struct mm_struct *mm)
364{
365	void *pmd_frag, *ret;
366
367	if (PMD_FRAG_NR == 1)
368		return NULL;
369
370	spin_lock(&mm->page_table_lock);
371	ret = mm->context.pmd_frag;
372	if (ret) {
373		pmd_frag = ret + PMD_FRAG_SIZE;
374		/*
375		 * If we have taken up all the fragments mark PTE page NULL
376		 */
377		if (((unsigned long)pmd_frag & ~PAGE_MASK) == 0)
378			pmd_frag = NULL;
379		mm->context.pmd_frag = pmd_frag;
380	}
381	spin_unlock(&mm->page_table_lock);
382	return (pmd_t *)ret;
383}
384
385static pmd_t *__alloc_for_pmdcache(struct mm_struct *mm)
386{
387	void *ret = NULL;
388	struct ptdesc *ptdesc;
389	gfp_t gfp = GFP_KERNEL_ACCOUNT | __GFP_ZERO;
390
391	if (mm == &init_mm)
392		gfp &= ~__GFP_ACCOUNT;
393	ptdesc = pagetable_alloc(gfp, 0);
394	if (!ptdesc)
395		return NULL;
396	if (!pagetable_pmd_ctor(ptdesc)) {
397		pagetable_free(ptdesc);
398		return NULL;
399	}
400
401	atomic_set(&ptdesc->pt_frag_refcount, 1);
402
403	ret = ptdesc_address(ptdesc);
404	/*
405	 * if we support only one fragment just return the
406	 * allocated page.
407	 */
408	if (PMD_FRAG_NR == 1)
409		return ret;
410
411	spin_lock(&mm->page_table_lock);
412	/*
413	 * If we find ptdesc_page set, we return
414	 * the allocated page with single fragment
415	 * count.
416	 */
417	if (likely(!mm->context.pmd_frag)) {
418		atomic_set(&ptdesc->pt_frag_refcount, PMD_FRAG_NR);
419		mm->context.pmd_frag = ret + PMD_FRAG_SIZE;
420	}
421	spin_unlock(&mm->page_table_lock);
422
423	return (pmd_t *)ret;
424}
425
426pmd_t *pmd_fragment_alloc(struct mm_struct *mm, unsigned long vmaddr)
427{
428	pmd_t *pmd;
429
430	pmd = get_pmd_from_cache(mm);
431	if (pmd)
432		return pmd;
433
434	return __alloc_for_pmdcache(mm);
435}
436
437void pmd_fragment_free(unsigned long *pmd)
438{
439	struct ptdesc *ptdesc = virt_to_ptdesc(pmd);
440
441	if (pagetable_is_reserved(ptdesc))
442		return free_reserved_ptdesc(ptdesc);
443
444	BUG_ON(atomic_read(&ptdesc->pt_frag_refcount) <= 0);
445	if (atomic_dec_and_test(&ptdesc->pt_frag_refcount)) {
446		pagetable_pmd_dtor(ptdesc);
447		pagetable_free(ptdesc);
448	}
449}
450
451static inline void pgtable_free(void *table, int index)
452{
453	switch (index) {
454	case PTE_INDEX:
455		pte_fragment_free(table, 0);
456		break;
457	case PMD_INDEX:
458		pmd_fragment_free(table);
459		break;
460	case PUD_INDEX:
461		__pud_free(table);
462		break;
463#if defined(CONFIG_PPC_4K_PAGES) && defined(CONFIG_HUGETLB_PAGE)
464		/* 16M hugepd directory at pud level */
465	case HTLB_16M_INDEX:
466		BUILD_BUG_ON(H_16M_CACHE_INDEX <= 0);
467		kmem_cache_free(PGT_CACHE(H_16M_CACHE_INDEX), table);
468		break;
469		/* 16G hugepd directory at the pgd level */
470	case HTLB_16G_INDEX:
471		BUILD_BUG_ON(H_16G_CACHE_INDEX <= 0);
472		kmem_cache_free(PGT_CACHE(H_16G_CACHE_INDEX), table);
473		break;
474#endif
475		/* We don't free pgd table via RCU callback */
476	default:
477		BUG();
478	}
479}
480
481void pgtable_free_tlb(struct mmu_gather *tlb, void *table, int index)
482{
483	unsigned long pgf = (unsigned long)table;
484
485	BUG_ON(index > MAX_PGTABLE_INDEX_SIZE);
486	pgf |= index;
487	tlb_remove_table(tlb, (void *)pgf);
488}
489
490void __tlb_remove_table(void *_table)
491{
492	void *table = (void *)((unsigned long)_table & ~MAX_PGTABLE_INDEX_SIZE);
493	unsigned int index = (unsigned long)_table & MAX_PGTABLE_INDEX_SIZE;
494
495	return pgtable_free(table, index);
496}
497
498#ifdef CONFIG_PROC_FS
499atomic_long_t direct_pages_count[MMU_PAGE_COUNT];
500
501void arch_report_meminfo(struct seq_file *m)
502{
503	/*
504	 * Hash maps the memory with one size mmu_linear_psize.
505	 * So don't bother to print these on hash
506	 */
507	if (!radix_enabled())
508		return;
509	seq_printf(m, "DirectMap4k:    %8lu kB\n",
510		   atomic_long_read(&direct_pages_count[MMU_PAGE_4K]) << 2);
511	seq_printf(m, "DirectMap64k:    %8lu kB\n",
512		   atomic_long_read(&direct_pages_count[MMU_PAGE_64K]) << 6);
513	seq_printf(m, "DirectMap2M:    %8lu kB\n",
514		   atomic_long_read(&direct_pages_count[MMU_PAGE_2M]) << 11);
515	seq_printf(m, "DirectMap1G:    %8lu kB\n",
516		   atomic_long_read(&direct_pages_count[MMU_PAGE_1G]) << 20);
517}
518#endif /* CONFIG_PROC_FS */
519
520pte_t ptep_modify_prot_start(struct vm_area_struct *vma, unsigned long addr,
521			     pte_t *ptep)
522{
523	unsigned long pte_val;
524
525	/*
526	 * Clear the _PAGE_PRESENT so that no hardware parallel update is
527	 * possible. Also keep the pte_present true so that we don't take
528	 * wrong fault.
529	 */
530	pte_val = pte_update(vma->vm_mm, addr, ptep, _PAGE_PRESENT, _PAGE_INVALID, 0);
531
532	return __pte(pte_val);
533
534}
535
536void ptep_modify_prot_commit(struct vm_area_struct *vma, unsigned long addr,
537			     pte_t *ptep, pte_t old_pte, pte_t pte)
538{
539	if (radix_enabled())
540		return radix__ptep_modify_prot_commit(vma, addr,
541						      ptep, old_pte, pte);
542	set_pte_at(vma->vm_mm, addr, ptep, pte);
543}
544
545#ifdef CONFIG_TRANSPARENT_HUGEPAGE
546/*
547 * For hash translation mode, we use the deposited table to store hash slot
548 * information and they are stored at PTRS_PER_PMD offset from related pmd
549 * location. Hence a pmd move requires deposit and withdraw.
550 *
551 * For radix translation with split pmd ptl, we store the deposited table in the
552 * pmd page. Hence if we have different pmd page we need to withdraw during pmd
553 * move.
554 *
555 * With hash we use deposited table always irrespective of anon or not.
556 * With radix we use deposited table only for anonymous mapping.
557 */
558int pmd_move_must_withdraw(struct spinlock *new_pmd_ptl,
559			   struct spinlock *old_pmd_ptl,
560			   struct vm_area_struct *vma)
561{
562	if (radix_enabled())
563		return (new_pmd_ptl != old_pmd_ptl) && vma_is_anonymous(vma);
564
565	return true;
566}
567#endif
568
569/*
570 * Does the CPU support tlbie?
571 */
572bool tlbie_capable __read_mostly = true;
573EXPORT_SYMBOL(tlbie_capable);
574
575/*
576 * Should tlbie be used for management of CPU TLBs, for kernel and process
577 * address spaces? tlbie may still be used for nMMU accelerators, and for KVM
578 * guest address spaces.
579 */
580bool tlbie_enabled __read_mostly = true;
581
582static int __init setup_disable_tlbie(char *str)
583{
584	if (!radix_enabled()) {
585		pr_err("disable_tlbie: Unable to disable TLBIE with Hash MMU.\n");
586		return 1;
587	}
588
589	tlbie_capable = false;
590	tlbie_enabled = false;
591
592        return 1;
593}
594__setup("disable_tlbie", setup_disable_tlbie);
595
596static int __init pgtable_debugfs_setup(void)
597{
598	if (!tlbie_capable)
599		return 0;
600
601	/*
602	 * There is no locking vs tlb flushing when changing this value.
603	 * The tlb flushers will see one value or another, and use either
604	 * tlbie or tlbiel with IPIs. In both cases the TLBs will be
605	 * invalidated as expected.
606	 */
607	debugfs_create_bool("tlbie_enabled", 0600,
608			arch_debugfs_dir,
609			&tlbie_enabled);
610
611	return 0;
612}
613arch_initcall(pgtable_debugfs_setup);
614
615#if defined(CONFIG_ZONE_DEVICE) && defined(CONFIG_ARCH_HAS_MEMREMAP_COMPAT_ALIGN)
616/*
617 * Override the generic version in mm/memremap.c.
618 *
619 * With hash translation, the direct-map range is mapped with just one
620 * page size selected by htab_init_page_sizes(). Consult
621 * mmu_psize_defs[] to determine the minimum page size alignment.
622*/
623unsigned long memremap_compat_align(void)
624{
625	if (!radix_enabled()) {
626		unsigned int shift = mmu_psize_defs[mmu_linear_psize].shift;
627		return max(SUBSECTION_SIZE, 1UL << shift);
628	}
629
630	return SUBSECTION_SIZE;
631}
632EXPORT_SYMBOL_GPL(memremap_compat_align);
633#endif
634
635pgprot_t vm_get_page_prot(unsigned long vm_flags)
636{
637	unsigned long prot;
638
639	/* Radix supports execute-only, but protection_map maps X -> RX */
640	if (!radix_enabled() && ((vm_flags & VM_ACCESS_FLAGS) == VM_EXEC))
641		vm_flags |= VM_READ;
642
643	prot = pgprot_val(protection_map[vm_flags & (VM_ACCESS_FLAGS | VM_SHARED)]);
644
645	if (vm_flags & VM_SAO)
646		prot |= _PAGE_SAO;
647
648#ifdef CONFIG_PPC_MEM_KEYS
649	prot |= vmflag_to_pte_pkey_bits(vm_flags);
650#endif
651
652	return __pgprot(prot);
653}
654EXPORT_SYMBOL(vm_get_page_prot);
655