1// SPDX-License-Identifier: GPL-2.0-or-later
2/*
3 * Copyright 2005, Paul Mackerras, IBM Corporation.
4 * Copyright 2009, Benjamin Herrenschmidt, IBM Corporation.
5 * Copyright 2015-2016, Aneesh Kumar K.V, IBM Corporation.
6 */
7
8#include <linux/sched.h>
9#include <linux/mm_types.h>
10#include <linux/mm.h>
11#include <linux/stop_machine.h>
12
13#include <asm/sections.h>
14#include <asm/mmu.h>
15#include <asm/tlb.h>
16#include <asm/firmware.h>
17
18#include <mm/mmu_decl.h>
19
20#include <trace/events/thp.h>
21
22#if H_PGTABLE_RANGE > (USER_VSID_RANGE * (TASK_SIZE_USER64 / TASK_CONTEXT_SIZE))
23#warning Limited user VSID range means pagetable space is wasted
24#endif
25
26#ifdef CONFIG_SPARSEMEM_VMEMMAP
27/*
28 * vmemmap is the starting address of the virtual address space where
29 * struct pages are allocated for all possible PFNs present on the system
30 * including holes and bad memory (hence sparse). These virtual struct
31 * pages are stored in sequence in this virtual address space irrespective
32 * of the fact whether the corresponding PFN is valid or not. This achieves
33 * constant relationship between address of struct page and its PFN.
34 *
35 * During boot or memory hotplug operation when a new memory section is
36 * added, physical memory allocation (including hash table bolting) will
37 * be performed for the set of struct pages which are part of the memory
38 * section. This saves memory by not allocating struct pages for PFNs
39 * which are not valid.
40 *
41 *		----------------------------------------------
42 *		| PHYSICAL ALLOCATION OF VIRTUAL STRUCT PAGES|
43 *		----------------------------------------------
44 *
45 *	   f000000000000000                  c000000000000000
46 * vmemmap +--------------+                  +--------------+
47 *  +      |  page struct | +--------------> |  page struct |
48 *  |      +--------------+                  +--------------+
49 *  |      |  page struct | +--------------> |  page struct |
50 *  |      +--------------+ |                +--------------+
51 *  |      |  page struct | +       +------> |  page struct |
52 *  |      +--------------+         |        +--------------+
53 *  |      |  page struct |         |   +--> |  page struct |
54 *  |      +--------------+         |   |    +--------------+
55 *  |      |  page struct |         |   |
56 *  |      +--------------+         |   |
57 *  |      |  page struct |         |   |
58 *  |      +--------------+         |   |
59 *  |      |  page struct |         |   |
60 *  |      +--------------+         |   |
61 *  |      |  page struct |         |   |
62 *  |      +--------------+         |   |
63 *  |      |  page struct | +-------+   |
64 *  |      +--------------+             |
65 *  |      |  page struct | +-----------+
66 *  |      +--------------+
67 *  |      |  page struct | No mapping
68 *  |      +--------------+
69 *  |      |  page struct | No mapping
70 *  v      +--------------+
71 *
72 *		-----------------------------------------
73 *		| RELATION BETWEEN STRUCT PAGES AND PFNS|
74 *		-----------------------------------------
75 *
76 * vmemmap +--------------+                 +---------------+
77 *  +      |  page struct | +-------------> |      PFN      |
78 *  |      +--------------+                 +---------------+
79 *  |      |  page struct | +-------------> |      PFN      |
80 *  |      +--------------+                 +---------------+
81 *  |      |  page struct | +-------------> |      PFN      |
82 *  |      +--------------+                 +---------------+
83 *  |      |  page struct | +-------------> |      PFN      |
84 *  |      +--------------+                 +---------------+
85 *  |      |              |
86 *  |      +--------------+
87 *  |      |              |
88 *  |      +--------------+
89 *  |      |              |
90 *  |      +--------------+                 +---------------+
91 *  |      |  page struct | +-------------> |      PFN      |
92 *  |      +--------------+                 +---------------+
93 *  |      |              |
94 *  |      +--------------+
95 *  |      |              |
96 *  |      +--------------+                 +---------------+
97 *  |      |  page struct | +-------------> |      PFN      |
98 *  |      +--------------+                 +---------------+
99 *  |      |  page struct | +-------------> |      PFN      |
100 *  v      +--------------+                 +---------------+
101 */
102/*
103 * On hash-based CPUs, the vmemmap is bolted in the hash table.
104 *
105 */
106int __meminit hash__vmemmap_create_mapping(unsigned long start,
107				       unsigned long page_size,
108				       unsigned long phys)
109{
110	int rc;
111
112	if ((start + page_size) >= H_VMEMMAP_END) {
113		pr_warn("Outside the supported range\n");
114		return -1;
115	}
116
117	rc = htab_bolt_mapping(start, start + page_size, phys,
118			       pgprot_val(PAGE_KERNEL),
119			       mmu_vmemmap_psize, mmu_kernel_ssize);
120	if (rc < 0) {
121		int rc2 = htab_remove_mapping(start, start + page_size,
122					      mmu_vmemmap_psize,
123					      mmu_kernel_ssize);
124		BUG_ON(rc2 && (rc2 != -ENOENT));
125	}
126	return rc;
127}
128
129#ifdef CONFIG_MEMORY_HOTPLUG
130void hash__vmemmap_remove_mapping(unsigned long start,
131			      unsigned long page_size)
132{
133	int rc = htab_remove_mapping(start, start + page_size,
134				     mmu_vmemmap_psize,
135				     mmu_kernel_ssize);
136	BUG_ON((rc < 0) && (rc != -ENOENT));
137	WARN_ON(rc == -ENOENT);
138}
139#endif
140#endif /* CONFIG_SPARSEMEM_VMEMMAP */
141
142/*
143 * map_kernel_page currently only called by __ioremap
144 * map_kernel_page adds an entry to the ioremap page table
145 * and adds an entry to the HPT, possibly bolting it
146 */
147int hash__map_kernel_page(unsigned long ea, unsigned long pa, pgprot_t prot)
148{
149	pgd_t *pgdp;
150	p4d_t *p4dp;
151	pud_t *pudp;
152	pmd_t *pmdp;
153	pte_t *ptep;
154
155	BUILD_BUG_ON(TASK_SIZE_USER64 > H_PGTABLE_RANGE);
156	if (slab_is_available()) {
157		pgdp = pgd_offset_k(ea);
158		p4dp = p4d_offset(pgdp, ea);
159		pudp = pud_alloc(&init_mm, p4dp, ea);
160		if (!pudp)
161			return -ENOMEM;
162		pmdp = pmd_alloc(&init_mm, pudp, ea);
163		if (!pmdp)
164			return -ENOMEM;
165		ptep = pte_alloc_kernel(pmdp, ea);
166		if (!ptep)
167			return -ENOMEM;
168		set_pte_at(&init_mm, ea, ptep, pfn_pte(pa >> PAGE_SHIFT, prot));
169	} else {
170		/*
171		 * If the mm subsystem is not fully up, we cannot create a
172		 * linux page table entry for this mapping.  Simply bolt an
173		 * entry in the hardware page table.
174		 *
175		 */
176		if (htab_bolt_mapping(ea, ea + PAGE_SIZE, pa, pgprot_val(prot),
177				      mmu_io_psize, mmu_kernel_ssize)) {
178			printk(KERN_ERR "Failed to do bolted mapping IO "
179			       "memory at %016lx !\n", pa);
180			return -ENOMEM;
181		}
182	}
183
184	smp_wmb();
185	return 0;
186}
187
188#ifdef CONFIG_TRANSPARENT_HUGEPAGE
189
190unsigned long hash__pmd_hugepage_update(struct mm_struct *mm, unsigned long addr,
191				    pmd_t *pmdp, unsigned long clr,
192				    unsigned long set)
193{
194	__be64 old_be, tmp;
195	unsigned long old;
196
197#ifdef CONFIG_DEBUG_VM
198	WARN_ON(!hash__pmd_trans_huge(*pmdp) && !pmd_devmap(*pmdp));
199	assert_spin_locked(pmd_lockptr(mm, pmdp));
200#endif
201
202	__asm__ __volatile__(
203	"1:	ldarx	%0,0,%3\n\
204		and.	%1,%0,%6\n\
205		bne-	1b \n\
206		andc	%1,%0,%4 \n\
207		or	%1,%1,%7\n\
208		stdcx.	%1,0,%3 \n\
209		bne-	1b"
210	: "=&r" (old_be), "=&r" (tmp), "=m" (*pmdp)
211	: "r" (pmdp), "r" (cpu_to_be64(clr)), "m" (*pmdp),
212	  "r" (cpu_to_be64(H_PAGE_BUSY)), "r" (cpu_to_be64(set))
213	: "cc" );
214
215	old = be64_to_cpu(old_be);
216
217	trace_hugepage_update_pmd(addr, old, clr, set);
218	if (old & H_PAGE_HASHPTE)
219		hpte_do_hugepage_flush(mm, addr, pmdp, old);
220	return old;
221}
222
223pmd_t hash__pmdp_collapse_flush(struct vm_area_struct *vma, unsigned long address,
224			    pmd_t *pmdp)
225{
226	pmd_t pmd;
227
228	VM_BUG_ON(address & ~HPAGE_PMD_MASK);
229	VM_BUG_ON(pmd_trans_huge(*pmdp));
230	VM_BUG_ON(pmd_devmap(*pmdp));
231
232	pmd = *pmdp;
233	pmd_clear(pmdp);
234	/*
235	 * Wait for all pending hash_page to finish. This is needed
236	 * in case of subpage collapse. When we collapse normal pages
237	 * to hugepage, we first clear the pmd, then invalidate all
238	 * the PTE entries. The assumption here is that any low level
239	 * page fault will see a none pmd and take the slow path that
240	 * will wait on mmap_lock. But we could very well be in a
241	 * hash_page with local ptep pointer value. Such a hash page
242	 * can result in adding new HPTE entries for normal subpages.
243	 * That means we could be modifying the page content as we
244	 * copy them to a huge page. So wait for parallel hash_page
245	 * to finish before invalidating HPTE entries. We can do this
246	 * by sending an IPI to all the cpus and executing a dummy
247	 * function there.
248	 */
249	serialize_against_pte_lookup(vma->vm_mm);
250	/*
251	 * Now invalidate the hpte entries in the range
252	 * covered by pmd. This make sure we take a
253	 * fault and will find the pmd as none, which will
254	 * result in a major fault which takes mmap_lock and
255	 * hence wait for collapse to complete. Without this
256	 * the __collapse_huge_page_copy can result in copying
257	 * the old content.
258	 */
259	flush_hash_table_pmd_range(vma->vm_mm, &pmd, address);
260	return pmd;
261}
262
263/*
264 * We want to put the pgtable in pmd and use pgtable for tracking
265 * the base page size hptes
266 */
267void hash__pgtable_trans_huge_deposit(struct mm_struct *mm, pmd_t *pmdp,
268				  pgtable_t pgtable)
269{
270	pgtable_t *pgtable_slot;
271
272	assert_spin_locked(pmd_lockptr(mm, pmdp));
273	/*
274	 * we store the pgtable in the second half of PMD
275	 */
276	pgtable_slot = (pgtable_t *)pmdp + PTRS_PER_PMD;
277	*pgtable_slot = pgtable;
278	/*
279	 * expose the deposited pgtable to other cpus.
280	 * before we set the hugepage PTE at pmd level
281	 * hash fault code looks at the deposted pgtable
282	 * to store hash index values.
283	 */
284	smp_wmb();
285}
286
287pgtable_t hash__pgtable_trans_huge_withdraw(struct mm_struct *mm, pmd_t *pmdp)
288{
289	pgtable_t pgtable;
290	pgtable_t *pgtable_slot;
291
292	assert_spin_locked(pmd_lockptr(mm, pmdp));
293
294	pgtable_slot = (pgtable_t *)pmdp + PTRS_PER_PMD;
295	pgtable = *pgtable_slot;
296	/*
297	 * Once we withdraw, mark the entry NULL.
298	 */
299	*pgtable_slot = NULL;
300	/*
301	 * We store HPTE information in the deposited PTE fragment.
302	 * zero out the content on withdraw.
303	 */
304	memset(pgtable, 0, PTE_FRAG_SIZE);
305	return pgtable;
306}
307
308/*
309 * A linux hugepage PMD was changed and the corresponding hash table entries
310 * neesd to be flushed.
311 */
312void hpte_do_hugepage_flush(struct mm_struct *mm, unsigned long addr,
313			    pmd_t *pmdp, unsigned long old_pmd)
314{
315	int ssize;
316	unsigned int psize;
317	unsigned long vsid;
318	unsigned long flags = 0;
319
320	/* get the base page size,vsid and segment size */
321#ifdef CONFIG_DEBUG_VM
322	psize = get_slice_psize(mm, addr);
323	BUG_ON(psize == MMU_PAGE_16M);
324#endif
325	if (old_pmd & H_PAGE_COMBO)
326		psize = MMU_PAGE_4K;
327	else
328		psize = MMU_PAGE_64K;
329
330	if (!is_kernel_addr(addr)) {
331		ssize = user_segment_size(addr);
332		vsid = get_user_vsid(&mm->context, addr, ssize);
333		WARN_ON(vsid == 0);
334	} else {
335		vsid = get_kernel_vsid(addr, mmu_kernel_ssize);
336		ssize = mmu_kernel_ssize;
337	}
338
339	if (mm_is_thread_local(mm))
340		flags |= HPTE_LOCAL_UPDATE;
341
342	return flush_hash_hugepage(vsid, addr, pmdp, psize, ssize, flags);
343}
344
345pmd_t hash__pmdp_huge_get_and_clear(struct mm_struct *mm,
346				unsigned long addr, pmd_t *pmdp)
347{
348	pmd_t old_pmd;
349	pgtable_t pgtable;
350	unsigned long old;
351	pgtable_t *pgtable_slot;
352
353	old = pmd_hugepage_update(mm, addr, pmdp, ~0UL, 0);
354	old_pmd = __pmd(old);
355	/*
356	 * We have pmd == none and we are holding page_table_lock.
357	 * So we can safely go and clear the pgtable hash
358	 * index info.
359	 */
360	pgtable_slot = (pgtable_t *)pmdp + PTRS_PER_PMD;
361	pgtable = *pgtable_slot;
362	/*
363	 * Let's zero out old valid and hash index details
364	 * hash fault look at them.
365	 */
366	memset(pgtable, 0, PTE_FRAG_SIZE);
367	return old_pmd;
368}
369
370int hash__has_transparent_hugepage(void)
371{
372
373	if (!mmu_has_feature(MMU_FTR_16M_PAGE))
374		return 0;
375	/*
376	 * We support THP only if PMD_SIZE is 16MB.
377	 */
378	if (mmu_psize_defs[MMU_PAGE_16M].shift != PMD_SHIFT)
379		return 0;
380	/*
381	 * We need to make sure that we support 16MB hugepage in a segment
382	 * with base page size 64K or 4K. We only enable THP with a PAGE_SIZE
383	 * of 64K.
384	 */
385	/*
386	 * If we have 64K HPTE, we will be using that by default
387	 */
388	if (mmu_psize_defs[MMU_PAGE_64K].shift &&
389	    (mmu_psize_defs[MMU_PAGE_64K].penc[MMU_PAGE_16M] == -1))
390		return 0;
391	/*
392	 * Ok we only have 4K HPTE
393	 */
394	if (mmu_psize_defs[MMU_PAGE_4K].penc[MMU_PAGE_16M] == -1)
395		return 0;
396
397	return 1;
398}
399EXPORT_SYMBOL_GPL(hash__has_transparent_hugepage);
400
401#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
402
403#ifdef CONFIG_STRICT_KERNEL_RWX
404
405struct change_memory_parms {
406	unsigned long start, end, newpp;
407	unsigned int step, nr_cpus;
408	atomic_t master_cpu;
409	atomic_t cpu_counter;
410};
411
412// We'd rather this was on the stack but it has to be in the RMO
413static struct change_memory_parms chmem_parms;
414
415// And therefore we need a lock to protect it from concurrent use
416static DEFINE_MUTEX(chmem_lock);
417
418static void change_memory_range(unsigned long start, unsigned long end,
419				unsigned int step, unsigned long newpp)
420{
421	unsigned long idx;
422
423	pr_debug("Changing page protection on range 0x%lx-0x%lx, to 0x%lx, step 0x%x\n",
424		 start, end, newpp, step);
425
426	for (idx = start; idx < end; idx += step)
427		/* Not sure if we can do much with the return value */
428		mmu_hash_ops.hpte_updateboltedpp(newpp, idx, mmu_linear_psize,
429							mmu_kernel_ssize);
430}
431
432static int notrace chmem_secondary_loop(struct change_memory_parms *parms)
433{
434	unsigned long msr, tmp, flags;
435	int *p;
436
437	p = &parms->cpu_counter.counter;
438
439	local_irq_save(flags);
440	hard_irq_disable();
441
442	asm volatile (
443	// Switch to real mode and leave interrupts off
444	"mfmsr	%[msr]			;"
445	"li	%[tmp], %[MSR_IR_DR]	;"
446	"andc	%[tmp], %[msr], %[tmp]	;"
447	"mtmsrd %[tmp]			;"
448
449	// Tell the master we are in real mode
450	"1:				"
451	"lwarx	%[tmp], 0, %[p]		;"
452	"addic	%[tmp], %[tmp], -1	;"
453	"stwcx.	%[tmp], 0, %[p]		;"
454	"bne-	1b			;"
455
456	// Spin until the counter goes to zero
457	"2:				;"
458	"lwz	%[tmp], 0(%[p])		;"
459	"cmpwi	%[tmp], 0		;"
460	"bne-	2b			;"
461
462	// Switch back to virtual mode
463	"mtmsrd %[msr]			;"
464
465	: // outputs
466	  [msr] "=&r" (msr), [tmp] "=&b" (tmp), "+m" (*p)
467	: // inputs
468	  [p] "b" (p), [MSR_IR_DR] "i" (MSR_IR | MSR_DR)
469	: // clobbers
470	  "cc", "xer"
471	);
472
473	local_irq_restore(flags);
474
475	return 0;
476}
477
478static int change_memory_range_fn(void *data)
479{
480	struct change_memory_parms *parms = data;
481
482	// First CPU goes through, all others wait.
483	if (atomic_xchg(&parms->master_cpu, 1) == 1)
484		return chmem_secondary_loop(parms);
485
486	// Wait for all but one CPU (this one) to call-in
487	while (atomic_read(&parms->cpu_counter) > 1)
488		barrier();
489
490	change_memory_range(parms->start, parms->end, parms->step, parms->newpp);
491
492	mb();
493
494	// Signal the other CPUs that we're done
495	atomic_dec(&parms->cpu_counter);
496
497	return 0;
498}
499
500static bool hash__change_memory_range(unsigned long start, unsigned long end,
501				      unsigned long newpp)
502{
503	unsigned int step, shift;
504
505	shift = mmu_psize_defs[mmu_linear_psize].shift;
506	step = 1 << shift;
507
508	start = ALIGN_DOWN(start, step);
509	end = ALIGN(end, step); // aligns up
510
511	if (start >= end)
512		return false;
513
514	if (firmware_has_feature(FW_FEATURE_LPAR)) {
515		mutex_lock(&chmem_lock);
516
517		chmem_parms.start = start;
518		chmem_parms.end = end;
519		chmem_parms.step = step;
520		chmem_parms.newpp = newpp;
521		atomic_set(&chmem_parms.master_cpu, 0);
522
523		cpus_read_lock();
524
525		atomic_set(&chmem_parms.cpu_counter, num_online_cpus());
526
527		// Ensure state is consistent before we call the other CPUs
528		mb();
529
530		stop_machine_cpuslocked(change_memory_range_fn, &chmem_parms,
531					cpu_online_mask);
532
533		cpus_read_unlock();
534		mutex_unlock(&chmem_lock);
535	} else
536		change_memory_range(start, end, step, newpp);
537
538	return true;
539}
540
541void hash__mark_rodata_ro(void)
542{
543	unsigned long start, end, pp;
544
545	start = (unsigned long)_stext;
546	end = (unsigned long)__end_rodata;
547
548	pp = htab_convert_pte_flags(pgprot_val(PAGE_KERNEL_ROX), HPTE_USE_KERNEL_KEY);
549
550	WARN_ON(!hash__change_memory_range(start, end, pp));
551}
552
553void hash__mark_initmem_nx(void)
554{
555	unsigned long start, end, pp;
556
557	start = (unsigned long)__init_begin;
558	end = (unsigned long)__init_end;
559
560	pp = htab_convert_pte_flags(pgprot_val(PAGE_KERNEL), HPTE_USE_KERNEL_KEY);
561
562	WARN_ON(!hash__change_memory_range(start, end, pp));
563}
564#endif
565