1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * Copyright (C) 2009. SUSE Linux Products GmbH. All rights reserved.
4 *
5 * Authors:
6 *    Alexander Graf <agraf@suse.de>
7 *    Kevin Wolf <mail@kevin-wolf.de>
8 *    Paul Mackerras <paulus@samba.org>
9 *
10 * Description:
11 * Functions relating to running KVM on Book 3S processors where
12 * we don't have access to hypervisor mode, and we run the guest
13 * in problem state (user mode).
14 *
15 * This file is derived from arch/powerpc/kvm/44x.c,
16 * by Hollis Blanchard <hollisb@us.ibm.com>.
17 */
18
19#include <linux/kvm_host.h>
20#include <linux/export.h>
21#include <linux/err.h>
22#include <linux/slab.h>
23
24#include <asm/reg.h>
25#include <asm/cputable.h>
26#include <asm/cacheflush.h>
27#include <linux/uaccess.h>
28#include <asm/interrupt.h>
29#include <asm/io.h>
30#include <asm/kvm_ppc.h>
31#include <asm/kvm_book3s.h>
32#include <asm/mmu_context.h>
33#include <asm/switch_to.h>
34#include <asm/firmware.h>
35#include <asm/setup.h>
36#include <linux/gfp.h>
37#include <linux/sched.h>
38#include <linux/vmalloc.h>
39#include <linux/highmem.h>
40#include <linux/module.h>
41#include <linux/miscdevice.h>
42#include <asm/asm-prototypes.h>
43#include <asm/tm.h>
44
45#include "book3s.h"
46
47#define CREATE_TRACE_POINTS
48#include "trace_pr.h"
49
50/* #define EXIT_DEBUG */
51/* #define DEBUG_EXT */
52
53static int kvmppc_handle_ext(struct kvm_vcpu *vcpu, unsigned int exit_nr,
54			     ulong msr);
55#ifdef CONFIG_PPC_BOOK3S_64
56static int kvmppc_handle_fac(struct kvm_vcpu *vcpu, ulong fac);
57#endif
58
59/* Some compatibility defines */
60#ifdef CONFIG_PPC_BOOK3S_32
61#define MSR_USER32 MSR_USER
62#define MSR_USER64 MSR_USER
63#define HW_PAGE_SIZE PAGE_SIZE
64#define HPTE_R_M   _PAGE_COHERENT
65#endif
66
67static bool kvmppc_is_split_real(struct kvm_vcpu *vcpu)
68{
69	ulong msr = kvmppc_get_msr(vcpu);
70	return (msr & (MSR_IR|MSR_DR)) == MSR_DR;
71}
72
73static void kvmppc_fixup_split_real(struct kvm_vcpu *vcpu)
74{
75	ulong msr = kvmppc_get_msr(vcpu);
76	ulong pc = kvmppc_get_pc(vcpu);
77
78	/* We are in DR only split real mode */
79	if ((msr & (MSR_IR|MSR_DR)) != MSR_DR)
80		return;
81
82	/* We have not fixed up the guest already */
83	if (vcpu->arch.hflags & BOOK3S_HFLAG_SPLIT_HACK)
84		return;
85
86	/* The code is in fixupable address space */
87	if (pc & SPLIT_HACK_MASK)
88		return;
89
90	vcpu->arch.hflags |= BOOK3S_HFLAG_SPLIT_HACK;
91	kvmppc_set_pc(vcpu, pc | SPLIT_HACK_OFFS);
92}
93
94static void kvmppc_unfixup_split_real(struct kvm_vcpu *vcpu)
95{
96	if (vcpu->arch.hflags & BOOK3S_HFLAG_SPLIT_HACK) {
97		ulong pc = kvmppc_get_pc(vcpu);
98		ulong lr = kvmppc_get_lr(vcpu);
99		if ((pc & SPLIT_HACK_MASK) == SPLIT_HACK_OFFS)
100			kvmppc_set_pc(vcpu, pc & ~SPLIT_HACK_MASK);
101		if ((lr & SPLIT_HACK_MASK) == SPLIT_HACK_OFFS)
102			kvmppc_set_lr(vcpu, lr & ~SPLIT_HACK_MASK);
103		vcpu->arch.hflags &= ~BOOK3S_HFLAG_SPLIT_HACK;
104	}
105}
106
107static void kvmppc_inject_interrupt_pr(struct kvm_vcpu *vcpu, int vec, u64 srr1_flags)
108{
109	unsigned long msr, pc, new_msr, new_pc;
110
111	kvmppc_unfixup_split_real(vcpu);
112
113	msr = kvmppc_get_msr(vcpu);
114	pc = kvmppc_get_pc(vcpu);
115	new_msr = vcpu->arch.intr_msr;
116	new_pc = to_book3s(vcpu)->hior + vec;
117
118#ifdef CONFIG_PPC_BOOK3S_64
119	/* If transactional, change to suspend mode on IRQ delivery */
120	if (MSR_TM_TRANSACTIONAL(msr))
121		new_msr |= MSR_TS_S;
122	else
123		new_msr |= msr & MSR_TS_MASK;
124#endif
125
126	kvmppc_set_srr0(vcpu, pc);
127	kvmppc_set_srr1(vcpu, (msr & SRR1_MSR_BITS) | srr1_flags);
128	kvmppc_set_pc(vcpu, new_pc);
129	kvmppc_set_msr(vcpu, new_msr);
130}
131
132static void kvmppc_core_vcpu_load_pr(struct kvm_vcpu *vcpu, int cpu)
133{
134#ifdef CONFIG_PPC_BOOK3S_64
135	struct kvmppc_book3s_shadow_vcpu *svcpu = svcpu_get(vcpu);
136	memcpy(svcpu->slb, to_book3s(vcpu)->slb_shadow, sizeof(svcpu->slb));
137	svcpu->slb_max = to_book3s(vcpu)->slb_shadow_max;
138	svcpu->in_use = 0;
139	svcpu_put(svcpu);
140
141	/* Disable AIL if supported */
142	if (cpu_has_feature(CPU_FTR_HVMODE)) {
143		if (cpu_has_feature(CPU_FTR_ARCH_207S))
144			mtspr(SPRN_LPCR, mfspr(SPRN_LPCR) & ~LPCR_AIL);
145		if (cpu_has_feature(CPU_FTR_ARCH_300) && (current->thread.fscr & FSCR_SCV))
146			mtspr(SPRN_FSCR, mfspr(SPRN_FSCR) & ~FSCR_SCV);
147	}
148#endif
149
150	vcpu->cpu = smp_processor_id();
151#ifdef CONFIG_PPC_BOOK3S_32
152	current->thread.kvm_shadow_vcpu = vcpu->arch.shadow_vcpu;
153#endif
154
155	if (kvmppc_is_split_real(vcpu))
156		kvmppc_fixup_split_real(vcpu);
157
158	kvmppc_restore_tm_pr(vcpu);
159}
160
161static void kvmppc_core_vcpu_put_pr(struct kvm_vcpu *vcpu)
162{
163#ifdef CONFIG_PPC_BOOK3S_64
164	struct kvmppc_book3s_shadow_vcpu *svcpu = svcpu_get(vcpu);
165	if (svcpu->in_use) {
166		kvmppc_copy_from_svcpu(vcpu);
167	}
168	memcpy(to_book3s(vcpu)->slb_shadow, svcpu->slb, sizeof(svcpu->slb));
169	to_book3s(vcpu)->slb_shadow_max = svcpu->slb_max;
170	svcpu_put(svcpu);
171
172	/* Enable AIL if supported */
173	if (cpu_has_feature(CPU_FTR_HVMODE)) {
174		if (cpu_has_feature(CPU_FTR_ARCH_207S))
175			mtspr(SPRN_LPCR, mfspr(SPRN_LPCR) | LPCR_AIL_3);
176		if (cpu_has_feature(CPU_FTR_ARCH_300) && (current->thread.fscr & FSCR_SCV))
177			mtspr(SPRN_FSCR, mfspr(SPRN_FSCR) | FSCR_SCV);
178	}
179#endif
180
181	if (kvmppc_is_split_real(vcpu))
182		kvmppc_unfixup_split_real(vcpu);
183
184	kvmppc_giveup_ext(vcpu, MSR_FP | MSR_VEC | MSR_VSX);
185	kvmppc_giveup_fac(vcpu, FSCR_TAR_LG);
186	kvmppc_save_tm_pr(vcpu);
187
188	vcpu->cpu = -1;
189}
190
191/* Copy data needed by real-mode code from vcpu to shadow vcpu */
192void kvmppc_copy_to_svcpu(struct kvm_vcpu *vcpu)
193{
194	struct kvmppc_book3s_shadow_vcpu *svcpu = svcpu_get(vcpu);
195
196	svcpu->gpr[0] = vcpu->arch.regs.gpr[0];
197	svcpu->gpr[1] = vcpu->arch.regs.gpr[1];
198	svcpu->gpr[2] = vcpu->arch.regs.gpr[2];
199	svcpu->gpr[3] = vcpu->arch.regs.gpr[3];
200	svcpu->gpr[4] = vcpu->arch.regs.gpr[4];
201	svcpu->gpr[5] = vcpu->arch.regs.gpr[5];
202	svcpu->gpr[6] = vcpu->arch.regs.gpr[6];
203	svcpu->gpr[7] = vcpu->arch.regs.gpr[7];
204	svcpu->gpr[8] = vcpu->arch.regs.gpr[8];
205	svcpu->gpr[9] = vcpu->arch.regs.gpr[9];
206	svcpu->gpr[10] = vcpu->arch.regs.gpr[10];
207	svcpu->gpr[11] = vcpu->arch.regs.gpr[11];
208	svcpu->gpr[12] = vcpu->arch.regs.gpr[12];
209	svcpu->gpr[13] = vcpu->arch.regs.gpr[13];
210	svcpu->cr  = vcpu->arch.regs.ccr;
211	svcpu->xer = vcpu->arch.regs.xer;
212	svcpu->ctr = vcpu->arch.regs.ctr;
213	svcpu->lr  = vcpu->arch.regs.link;
214	svcpu->pc  = vcpu->arch.regs.nip;
215#ifdef CONFIG_PPC_BOOK3S_64
216	svcpu->shadow_fscr = vcpu->arch.shadow_fscr;
217#endif
218	/*
219	 * Now also save the current time base value. We use this
220	 * to find the guest purr and spurr value.
221	 */
222	vcpu->arch.entry_tb = get_tb();
223	vcpu->arch.entry_vtb = get_vtb();
224	if (cpu_has_feature(CPU_FTR_ARCH_207S))
225		vcpu->arch.entry_ic = mfspr(SPRN_IC);
226	svcpu->in_use = true;
227
228	svcpu_put(svcpu);
229}
230
231static void kvmppc_recalc_shadow_msr(struct kvm_vcpu *vcpu)
232{
233	ulong guest_msr = kvmppc_get_msr(vcpu);
234	ulong smsr = guest_msr;
235
236	/* Guest MSR values */
237#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
238	smsr &= MSR_FE0 | MSR_FE1 | MSR_SF | MSR_SE | MSR_BE | MSR_LE |
239		MSR_TM | MSR_TS_MASK;
240#else
241	smsr &= MSR_FE0 | MSR_FE1 | MSR_SF | MSR_SE | MSR_BE | MSR_LE;
242#endif
243	/* Process MSR values */
244	smsr |= MSR_ME | MSR_RI | MSR_IR | MSR_DR | MSR_PR | MSR_EE;
245	/* External providers the guest reserved */
246	smsr |= (guest_msr & vcpu->arch.guest_owned_ext);
247	/* 64-bit Process MSR values */
248#ifdef CONFIG_PPC_BOOK3S_64
249	smsr |= MSR_HV;
250#endif
251#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
252	/*
253	 * in guest privileged state, we want to fail all TM transactions.
254	 * So disable MSR TM bit so that all tbegin. will be able to be
255	 * trapped into host.
256	 */
257	if (!(guest_msr & MSR_PR))
258		smsr &= ~MSR_TM;
259#endif
260	vcpu->arch.shadow_msr = smsr;
261}
262
263/* Copy data touched by real-mode code from shadow vcpu back to vcpu */
264void kvmppc_copy_from_svcpu(struct kvm_vcpu *vcpu)
265{
266	struct kvmppc_book3s_shadow_vcpu *svcpu = svcpu_get(vcpu);
267#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
268	ulong old_msr;
269#endif
270
271	/*
272	 * Maybe we were already preempted and synced the svcpu from
273	 * our preempt notifiers. Don't bother touching this svcpu then.
274	 */
275	if (!svcpu->in_use)
276		goto out;
277
278	vcpu->arch.regs.gpr[0] = svcpu->gpr[0];
279	vcpu->arch.regs.gpr[1] = svcpu->gpr[1];
280	vcpu->arch.regs.gpr[2] = svcpu->gpr[2];
281	vcpu->arch.regs.gpr[3] = svcpu->gpr[3];
282	vcpu->arch.regs.gpr[4] = svcpu->gpr[4];
283	vcpu->arch.regs.gpr[5] = svcpu->gpr[5];
284	vcpu->arch.regs.gpr[6] = svcpu->gpr[6];
285	vcpu->arch.regs.gpr[7] = svcpu->gpr[7];
286	vcpu->arch.regs.gpr[8] = svcpu->gpr[8];
287	vcpu->arch.regs.gpr[9] = svcpu->gpr[9];
288	vcpu->arch.regs.gpr[10] = svcpu->gpr[10];
289	vcpu->arch.regs.gpr[11] = svcpu->gpr[11];
290	vcpu->arch.regs.gpr[12] = svcpu->gpr[12];
291	vcpu->arch.regs.gpr[13] = svcpu->gpr[13];
292	vcpu->arch.regs.ccr  = svcpu->cr;
293	vcpu->arch.regs.xer = svcpu->xer;
294	vcpu->arch.regs.ctr = svcpu->ctr;
295	vcpu->arch.regs.link  = svcpu->lr;
296	vcpu->arch.regs.nip  = svcpu->pc;
297	vcpu->arch.shadow_srr1 = svcpu->shadow_srr1;
298	vcpu->arch.fault_dar   = svcpu->fault_dar;
299	vcpu->arch.fault_dsisr = svcpu->fault_dsisr;
300	vcpu->arch.last_inst   = svcpu->last_inst;
301#ifdef CONFIG_PPC_BOOK3S_64
302	vcpu->arch.shadow_fscr = svcpu->shadow_fscr;
303#endif
304	/*
305	 * Update purr and spurr using time base on exit.
306	 */
307	vcpu->arch.purr += get_tb() - vcpu->arch.entry_tb;
308	vcpu->arch.spurr += get_tb() - vcpu->arch.entry_tb;
309	to_book3s(vcpu)->vtb += get_vtb() - vcpu->arch.entry_vtb;
310	if (cpu_has_feature(CPU_FTR_ARCH_207S))
311		vcpu->arch.ic += mfspr(SPRN_IC) - vcpu->arch.entry_ic;
312
313#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
314	/*
315	 * Unlike other MSR bits, MSR[TS]bits can be changed at guest without
316	 * notifying host:
317	 *  modified by unprivileged instructions like "tbegin"/"tend"/
318	 * "tresume"/"tsuspend" in PR KVM guest.
319	 *
320	 * It is necessary to sync here to calculate a correct shadow_msr.
321	 *
322	 * privileged guest's tbegin will be failed at present. So we
323	 * only take care of problem state guest.
324	 */
325	old_msr = kvmppc_get_msr(vcpu);
326	if (unlikely((old_msr & MSR_PR) &&
327		(vcpu->arch.shadow_srr1 & (MSR_TS_MASK)) !=
328				(old_msr & (MSR_TS_MASK)))) {
329		old_msr &= ~(MSR_TS_MASK);
330		old_msr |= (vcpu->arch.shadow_srr1 & (MSR_TS_MASK));
331		kvmppc_set_msr_fast(vcpu, old_msr);
332		kvmppc_recalc_shadow_msr(vcpu);
333	}
334#endif
335
336	svcpu->in_use = false;
337
338out:
339	svcpu_put(svcpu);
340}
341
342#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
343void kvmppc_save_tm_sprs(struct kvm_vcpu *vcpu)
344{
345	tm_enable();
346	vcpu->arch.tfhar = mfspr(SPRN_TFHAR);
347	vcpu->arch.texasr = mfspr(SPRN_TEXASR);
348	vcpu->arch.tfiar = mfspr(SPRN_TFIAR);
349	tm_disable();
350}
351
352void kvmppc_restore_tm_sprs(struct kvm_vcpu *vcpu)
353{
354	tm_enable();
355	mtspr(SPRN_TFHAR, vcpu->arch.tfhar);
356	mtspr(SPRN_TEXASR, vcpu->arch.texasr);
357	mtspr(SPRN_TFIAR, vcpu->arch.tfiar);
358	tm_disable();
359}
360
361/* loadup math bits which is enabled at kvmppc_get_msr() but not enabled at
362 * hardware.
363 */
364static void kvmppc_handle_lost_math_exts(struct kvm_vcpu *vcpu)
365{
366	ulong exit_nr;
367	ulong ext_diff = (kvmppc_get_msr(vcpu) & ~vcpu->arch.guest_owned_ext) &
368		(MSR_FP | MSR_VEC | MSR_VSX);
369
370	if (!ext_diff)
371		return;
372
373	if (ext_diff == MSR_FP)
374		exit_nr = BOOK3S_INTERRUPT_FP_UNAVAIL;
375	else if (ext_diff == MSR_VEC)
376		exit_nr = BOOK3S_INTERRUPT_ALTIVEC;
377	else
378		exit_nr = BOOK3S_INTERRUPT_VSX;
379
380	kvmppc_handle_ext(vcpu, exit_nr, ext_diff);
381}
382
383void kvmppc_save_tm_pr(struct kvm_vcpu *vcpu)
384{
385	if (!(MSR_TM_ACTIVE(kvmppc_get_msr(vcpu)))) {
386		kvmppc_save_tm_sprs(vcpu);
387		return;
388	}
389
390	kvmppc_giveup_fac(vcpu, FSCR_TAR_LG);
391	kvmppc_giveup_ext(vcpu, MSR_VSX);
392
393	preempt_disable();
394	_kvmppc_save_tm_pr(vcpu, mfmsr());
395	preempt_enable();
396}
397
398void kvmppc_restore_tm_pr(struct kvm_vcpu *vcpu)
399{
400	if (!MSR_TM_ACTIVE(kvmppc_get_msr(vcpu))) {
401		kvmppc_restore_tm_sprs(vcpu);
402		if (kvmppc_get_msr(vcpu) & MSR_TM) {
403			kvmppc_handle_lost_math_exts(vcpu);
404			if (vcpu->arch.fscr & FSCR_TAR)
405				kvmppc_handle_fac(vcpu, FSCR_TAR_LG);
406		}
407		return;
408	}
409
410	preempt_disable();
411	_kvmppc_restore_tm_pr(vcpu, kvmppc_get_msr(vcpu));
412	preempt_enable();
413
414	if (kvmppc_get_msr(vcpu) & MSR_TM) {
415		kvmppc_handle_lost_math_exts(vcpu);
416		if (vcpu->arch.fscr & FSCR_TAR)
417			kvmppc_handle_fac(vcpu, FSCR_TAR_LG);
418	}
419}
420#endif
421
422static int kvmppc_core_check_requests_pr(struct kvm_vcpu *vcpu)
423{
424	int r = 1; /* Indicate we want to get back into the guest */
425
426	/* We misuse TLB_FLUSH to indicate that we want to clear
427	   all shadow cache entries */
428	if (kvm_check_request(KVM_REQ_TLB_FLUSH, vcpu))
429		kvmppc_mmu_pte_flush(vcpu, 0, 0);
430
431	return r;
432}
433
434/************* MMU Notifiers *************/
435static bool do_kvm_unmap_gfn(struct kvm *kvm, struct kvm_gfn_range *range)
436{
437	unsigned long i;
438	struct kvm_vcpu *vcpu;
439
440	kvm_for_each_vcpu(i, vcpu, kvm)
441		kvmppc_mmu_pte_pflush(vcpu, range->start << PAGE_SHIFT,
442				      range->end << PAGE_SHIFT);
443
444	return false;
445}
446
447static bool kvm_unmap_gfn_range_pr(struct kvm *kvm, struct kvm_gfn_range *range)
448{
449	return do_kvm_unmap_gfn(kvm, range);
450}
451
452static bool kvm_age_gfn_pr(struct kvm *kvm, struct kvm_gfn_range *range)
453{
454	/* XXX could be more clever ;) */
455	return false;
456}
457
458static bool kvm_test_age_gfn_pr(struct kvm *kvm, struct kvm_gfn_range *range)
459{
460	/* XXX could be more clever ;) */
461	return false;
462}
463
464static bool kvm_set_spte_gfn_pr(struct kvm *kvm, struct kvm_gfn_range *range)
465{
466	/* The page will get remapped properly on its next fault */
467	return do_kvm_unmap_gfn(kvm, range);
468}
469
470/*****************************************/
471
472static void kvmppc_set_msr_pr(struct kvm_vcpu *vcpu, u64 msr)
473{
474	ulong old_msr;
475
476	/* For PAPR guest, make sure MSR reflects guest mode */
477	if (vcpu->arch.papr_enabled)
478		msr = (msr & ~MSR_HV) | MSR_ME;
479
480#ifdef EXIT_DEBUG
481	printk(KERN_INFO "KVM: Set MSR to 0x%llx\n", msr);
482#endif
483
484#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
485	/* We should never target guest MSR to TS=10 && PR=0,
486	 * since we always fail transaction for guest privilege
487	 * state.
488	 */
489	if (!(msr & MSR_PR) && MSR_TM_TRANSACTIONAL(msr))
490		kvmppc_emulate_tabort(vcpu,
491			TM_CAUSE_KVM_FAC_UNAV | TM_CAUSE_PERSISTENT);
492#endif
493
494	old_msr = kvmppc_get_msr(vcpu);
495	msr &= to_book3s(vcpu)->msr_mask;
496	kvmppc_set_msr_fast(vcpu, msr);
497	kvmppc_recalc_shadow_msr(vcpu);
498
499	if (msr & MSR_POW) {
500		if (!vcpu->arch.pending_exceptions) {
501			kvm_vcpu_halt(vcpu);
502			vcpu->stat.generic.halt_wakeup++;
503
504			/* Unset POW bit after we woke up */
505			msr &= ~MSR_POW;
506			kvmppc_set_msr_fast(vcpu, msr);
507		}
508	}
509
510	if (kvmppc_is_split_real(vcpu))
511		kvmppc_fixup_split_real(vcpu);
512	else
513		kvmppc_unfixup_split_real(vcpu);
514
515	if ((kvmppc_get_msr(vcpu) & (MSR_PR|MSR_IR|MSR_DR)) !=
516		   (old_msr & (MSR_PR|MSR_IR|MSR_DR))) {
517		kvmppc_mmu_flush_segments(vcpu);
518		kvmppc_mmu_map_segment(vcpu, kvmppc_get_pc(vcpu));
519
520		/* Preload magic page segment when in kernel mode */
521		if (!(msr & MSR_PR) && vcpu->arch.magic_page_pa) {
522			struct kvm_vcpu_arch *a = &vcpu->arch;
523
524			if (msr & MSR_DR)
525				kvmppc_mmu_map_segment(vcpu, a->magic_page_ea);
526			else
527				kvmppc_mmu_map_segment(vcpu, a->magic_page_pa);
528		}
529	}
530
531	/*
532	 * When switching from 32 to 64-bit, we may have a stale 32-bit
533	 * magic page around, we need to flush it. Typically 32-bit magic
534	 * page will be instantiated when calling into RTAS. Note: We
535	 * assume that such transition only happens while in kernel mode,
536	 * ie, we never transition from user 32-bit to kernel 64-bit with
537	 * a 32-bit magic page around.
538	 */
539	if (vcpu->arch.magic_page_pa &&
540	    !(old_msr & MSR_PR) && !(old_msr & MSR_SF) && (msr & MSR_SF)) {
541		/* going from RTAS to normal kernel code */
542		kvmppc_mmu_pte_flush(vcpu, (uint32_t)vcpu->arch.magic_page_pa,
543				     ~0xFFFUL);
544	}
545
546	/* Preload FPU if it's enabled */
547	if (kvmppc_get_msr(vcpu) & MSR_FP)
548		kvmppc_handle_ext(vcpu, BOOK3S_INTERRUPT_FP_UNAVAIL, MSR_FP);
549
550#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
551	if (kvmppc_get_msr(vcpu) & MSR_TM)
552		kvmppc_handle_lost_math_exts(vcpu);
553#endif
554}
555
556static void kvmppc_set_pvr_pr(struct kvm_vcpu *vcpu, u32 pvr)
557{
558	u32 host_pvr;
559
560	vcpu->arch.hflags &= ~BOOK3S_HFLAG_SLB;
561	vcpu->arch.pvr = pvr;
562#ifdef CONFIG_PPC_BOOK3S_64
563	if ((pvr >= 0x330000) && (pvr < 0x70330000)) {
564		kvmppc_mmu_book3s_64_init(vcpu);
565		if (!to_book3s(vcpu)->hior_explicit)
566			to_book3s(vcpu)->hior = 0xfff00000;
567		to_book3s(vcpu)->msr_mask = 0xffffffffffffffffULL;
568		vcpu->arch.cpu_type = KVM_CPU_3S_64;
569	} else
570#endif
571	{
572		kvmppc_mmu_book3s_32_init(vcpu);
573		if (!to_book3s(vcpu)->hior_explicit)
574			to_book3s(vcpu)->hior = 0;
575		to_book3s(vcpu)->msr_mask = 0xffffffffULL;
576		vcpu->arch.cpu_type = KVM_CPU_3S_32;
577	}
578
579	kvmppc_sanity_check(vcpu);
580
581	/* If we are in hypervisor level on 970, we can tell the CPU to
582	 * treat DCBZ as 32 bytes store */
583	vcpu->arch.hflags &= ~BOOK3S_HFLAG_DCBZ32;
584	if (vcpu->arch.mmu.is_dcbz32(vcpu) && (mfmsr() & MSR_HV) &&
585	    !strcmp(cur_cpu_spec->platform, "ppc970"))
586		vcpu->arch.hflags |= BOOK3S_HFLAG_DCBZ32;
587
588	/* Cell performs badly if MSR_FEx are set. So let's hope nobody
589	   really needs them in a VM on Cell and force disable them. */
590	if (!strcmp(cur_cpu_spec->platform, "ppc-cell-be"))
591		to_book3s(vcpu)->msr_mask &= ~(MSR_FE0 | MSR_FE1);
592
593	/*
594	 * If they're asking for POWER6 or later, set the flag
595	 * indicating that we can do multiple large page sizes
596	 * and 1TB segments.
597	 * Also set the flag that indicates that tlbie has the large
598	 * page bit in the RB operand instead of the instruction.
599	 */
600	switch (PVR_VER(pvr)) {
601	case PVR_POWER6:
602	case PVR_POWER7:
603	case PVR_POWER7p:
604	case PVR_POWER8:
605	case PVR_POWER8E:
606	case PVR_POWER8NVL:
607	case PVR_HX_C2000:
608	case PVR_POWER9:
609		vcpu->arch.hflags |= BOOK3S_HFLAG_MULTI_PGSIZE |
610			BOOK3S_HFLAG_NEW_TLBIE;
611		break;
612	}
613
614#ifdef CONFIG_PPC_BOOK3S_32
615	/* 32 bit Book3S always has 32 byte dcbz */
616	vcpu->arch.hflags |= BOOK3S_HFLAG_DCBZ32;
617#endif
618
619	/* On some CPUs we can execute paired single operations natively */
620	asm ( "mfpvr %0" : "=r"(host_pvr));
621	switch (host_pvr) {
622	case 0x00080200:	/* lonestar 2.0 */
623	case 0x00088202:	/* lonestar 2.2 */
624	case 0x70000100:	/* gekko 1.0 */
625	case 0x00080100:	/* gekko 2.0 */
626	case 0x00083203:	/* gekko 2.3a */
627	case 0x00083213:	/* gekko 2.3b */
628	case 0x00083204:	/* gekko 2.4 */
629	case 0x00083214:	/* gekko 2.4e (8SE) - retail HW2 */
630	case 0x00087200:	/* broadway */
631		vcpu->arch.hflags |= BOOK3S_HFLAG_NATIVE_PS;
632		/* Enable HID2.PSE - in case we need it later */
633		mtspr(SPRN_HID2_GEKKO, mfspr(SPRN_HID2_GEKKO) | (1 << 29));
634	}
635}
636
637/* Book3s_32 CPUs always have 32 bytes cache line size, which Linux assumes. To
638 * make Book3s_32 Linux work on Book3s_64, we have to make sure we trap dcbz to
639 * emulate 32 bytes dcbz length.
640 *
641 * The Book3s_64 inventors also realized this case and implemented a special bit
642 * in the HID5 register, which is a hypervisor ressource. Thus we can't use it.
643 *
644 * My approach here is to patch the dcbz instruction on executing pages.
645 */
646static void kvmppc_patch_dcbz(struct kvm_vcpu *vcpu, struct kvmppc_pte *pte)
647{
648	struct page *hpage;
649	u64 hpage_offset;
650	u32 *page;
651	int i;
652
653	hpage = gfn_to_page(vcpu->kvm, pte->raddr >> PAGE_SHIFT);
654	if (is_error_page(hpage))
655		return;
656
657	hpage_offset = pte->raddr & ~PAGE_MASK;
658	hpage_offset &= ~0xFFFULL;
659	hpage_offset /= 4;
660
661	get_page(hpage);
662	page = kmap_atomic(hpage);
663
664	/* patch dcbz into reserved instruction, so we trap */
665	for (i=hpage_offset; i < hpage_offset + (HW_PAGE_SIZE / 4); i++)
666		if ((be32_to_cpu(page[i]) & 0xff0007ff) == INS_DCBZ)
667			page[i] &= cpu_to_be32(0xfffffff7);
668
669	kunmap_atomic(page);
670	put_page(hpage);
671}
672
673static bool kvmppc_visible_gpa(struct kvm_vcpu *vcpu, gpa_t gpa)
674{
675	ulong mp_pa = vcpu->arch.magic_page_pa;
676
677	if (!(kvmppc_get_msr(vcpu) & MSR_SF))
678		mp_pa = (uint32_t)mp_pa;
679
680	gpa &= ~0xFFFULL;
681	if (unlikely(mp_pa) && unlikely((mp_pa & KVM_PAM) == (gpa & KVM_PAM))) {
682		return true;
683	}
684
685	return kvm_is_visible_gfn(vcpu->kvm, gpa >> PAGE_SHIFT);
686}
687
688static int kvmppc_handle_pagefault(struct kvm_vcpu *vcpu,
689			    ulong eaddr, int vec)
690{
691	bool data = (vec == BOOK3S_INTERRUPT_DATA_STORAGE);
692	bool iswrite = false;
693	int r = RESUME_GUEST;
694	int relocated;
695	int page_found = 0;
696	struct kvmppc_pte pte = { 0 };
697	bool dr = (kvmppc_get_msr(vcpu) & MSR_DR) ? true : false;
698	bool ir = (kvmppc_get_msr(vcpu) & MSR_IR) ? true : false;
699	u64 vsid;
700
701	relocated = data ? dr : ir;
702	if (data && (vcpu->arch.fault_dsisr & DSISR_ISSTORE))
703		iswrite = true;
704
705	/* Resolve real address if translation turned on */
706	if (relocated) {
707		page_found = vcpu->arch.mmu.xlate(vcpu, eaddr, &pte, data, iswrite);
708	} else {
709		pte.may_execute = true;
710		pte.may_read = true;
711		pte.may_write = true;
712		pte.raddr = eaddr & KVM_PAM;
713		pte.eaddr = eaddr;
714		pte.vpage = eaddr >> 12;
715		pte.page_size = MMU_PAGE_64K;
716		pte.wimg = HPTE_R_M;
717	}
718
719	switch (kvmppc_get_msr(vcpu) & (MSR_DR|MSR_IR)) {
720	case 0:
721		pte.vpage |= ((u64)VSID_REAL << (SID_SHIFT - 12));
722		break;
723	case MSR_DR:
724		if (!data &&
725		    (vcpu->arch.hflags & BOOK3S_HFLAG_SPLIT_HACK) &&
726		    ((pte.raddr & SPLIT_HACK_MASK) == SPLIT_HACK_OFFS))
727			pte.raddr &= ~SPLIT_HACK_MASK;
728		fallthrough;
729	case MSR_IR:
730		vcpu->arch.mmu.esid_to_vsid(vcpu, eaddr >> SID_SHIFT, &vsid);
731
732		if ((kvmppc_get_msr(vcpu) & (MSR_DR|MSR_IR)) == MSR_DR)
733			pte.vpage |= ((u64)VSID_REAL_DR << (SID_SHIFT - 12));
734		else
735			pte.vpage |= ((u64)VSID_REAL_IR << (SID_SHIFT - 12));
736		pte.vpage |= vsid;
737
738		if (vsid == -1)
739			page_found = -EINVAL;
740		break;
741	}
742
743	if (vcpu->arch.mmu.is_dcbz32(vcpu) &&
744	   (!(vcpu->arch.hflags & BOOK3S_HFLAG_DCBZ32))) {
745		/*
746		 * If we do the dcbz hack, we have to NX on every execution,
747		 * so we can patch the executing code. This renders our guest
748		 * NX-less.
749		 */
750		pte.may_execute = !data;
751	}
752
753	if (page_found == -ENOENT || page_found == -EPERM) {
754		/* Page not found in guest PTE entries, or protection fault */
755		u64 flags;
756
757		if (page_found == -EPERM)
758			flags = DSISR_PROTFAULT;
759		else
760			flags = DSISR_NOHPTE;
761		if (data) {
762			flags |= vcpu->arch.fault_dsisr & DSISR_ISSTORE;
763			kvmppc_core_queue_data_storage(vcpu, 0, eaddr, flags);
764		} else {
765			kvmppc_core_queue_inst_storage(vcpu, flags);
766		}
767	} else if (page_found == -EINVAL) {
768		/* Page not found in guest SLB */
769		kvmppc_set_dar(vcpu, kvmppc_get_fault_dar(vcpu));
770		kvmppc_book3s_queue_irqprio(vcpu, vec + 0x80);
771	} else if (kvmppc_visible_gpa(vcpu, pte.raddr)) {
772		if (data && !(vcpu->arch.fault_dsisr & DSISR_NOHPTE)) {
773			/*
774			 * There is already a host HPTE there, presumably
775			 * a read-only one for a page the guest thinks
776			 * is writable, so get rid of it first.
777			 */
778			kvmppc_mmu_unmap_page(vcpu, &pte);
779		}
780		/* The guest's PTE is not mapped yet. Map on the host */
781		if (kvmppc_mmu_map_page(vcpu, &pte, iswrite) == -EIO) {
782			/* Exit KVM if mapping failed */
783			vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
784			return RESUME_HOST;
785		}
786		if (data)
787			vcpu->stat.sp_storage++;
788		else if (vcpu->arch.mmu.is_dcbz32(vcpu) &&
789			 (!(vcpu->arch.hflags & BOOK3S_HFLAG_DCBZ32)))
790			kvmppc_patch_dcbz(vcpu, &pte);
791	} else {
792		/* MMIO */
793		vcpu->stat.mmio_exits++;
794		vcpu->arch.paddr_accessed = pte.raddr;
795		vcpu->arch.vaddr_accessed = pte.eaddr;
796		r = kvmppc_emulate_mmio(vcpu);
797		if ( r == RESUME_HOST_NV )
798			r = RESUME_HOST;
799	}
800
801	return r;
802}
803
804/* Give up external provider (FPU, Altivec, VSX) */
805void kvmppc_giveup_ext(struct kvm_vcpu *vcpu, ulong msr)
806{
807	struct thread_struct *t = &current->thread;
808
809	/*
810	 * VSX instructions can access FP and vector registers, so if
811	 * we are giving up VSX, make sure we give up FP and VMX as well.
812	 */
813	if (msr & MSR_VSX)
814		msr |= MSR_FP | MSR_VEC;
815
816	msr &= vcpu->arch.guest_owned_ext;
817	if (!msr)
818		return;
819
820#ifdef DEBUG_EXT
821	printk(KERN_INFO "Giving up ext 0x%lx\n", msr);
822#endif
823
824	if (msr & MSR_FP) {
825		/*
826		 * Note that on CPUs with VSX, giveup_fpu stores
827		 * both the traditional FP registers and the added VSX
828		 * registers into thread.fp_state.fpr[].
829		 */
830		if (t->regs->msr & MSR_FP)
831			giveup_fpu(current);
832		t->fp_save_area = NULL;
833	}
834
835#ifdef CONFIG_ALTIVEC
836	if (msr & MSR_VEC) {
837		if (current->thread.regs->msr & MSR_VEC)
838			giveup_altivec(current);
839		t->vr_save_area = NULL;
840	}
841#endif
842
843	vcpu->arch.guest_owned_ext &= ~(msr | MSR_VSX);
844	kvmppc_recalc_shadow_msr(vcpu);
845}
846
847/* Give up facility (TAR / EBB / DSCR) */
848void kvmppc_giveup_fac(struct kvm_vcpu *vcpu, ulong fac)
849{
850#ifdef CONFIG_PPC_BOOK3S_64
851	if (!(vcpu->arch.shadow_fscr & (1ULL << fac))) {
852		/* Facility not available to the guest, ignore giveup request*/
853		return;
854	}
855
856	switch (fac) {
857	case FSCR_TAR_LG:
858		vcpu->arch.tar = mfspr(SPRN_TAR);
859		mtspr(SPRN_TAR, current->thread.tar);
860		vcpu->arch.shadow_fscr &= ~FSCR_TAR;
861		break;
862	}
863#endif
864}
865
866/* Handle external providers (FPU, Altivec, VSX) */
867static int kvmppc_handle_ext(struct kvm_vcpu *vcpu, unsigned int exit_nr,
868			     ulong msr)
869{
870	struct thread_struct *t = &current->thread;
871
872	/* When we have paired singles, we emulate in software */
873	if (vcpu->arch.hflags & BOOK3S_HFLAG_PAIRED_SINGLE)
874		return RESUME_GUEST;
875
876	if (!(kvmppc_get_msr(vcpu) & msr)) {
877		kvmppc_book3s_queue_irqprio(vcpu, exit_nr);
878		return RESUME_GUEST;
879	}
880
881	if (msr == MSR_VSX) {
882		/* No VSX?  Give an illegal instruction interrupt */
883#ifdef CONFIG_VSX
884		if (!cpu_has_feature(CPU_FTR_VSX))
885#endif
886		{
887			kvmppc_core_queue_program(vcpu, SRR1_PROGILL);
888			return RESUME_GUEST;
889		}
890
891		/*
892		 * We have to load up all the FP and VMX registers before
893		 * we can let the guest use VSX instructions.
894		 */
895		msr = MSR_FP | MSR_VEC | MSR_VSX;
896	}
897
898	/* See if we already own all the ext(s) needed */
899	msr &= ~vcpu->arch.guest_owned_ext;
900	if (!msr)
901		return RESUME_GUEST;
902
903#ifdef DEBUG_EXT
904	printk(KERN_INFO "Loading up ext 0x%lx\n", msr);
905#endif
906
907	if (msr & MSR_FP) {
908		preempt_disable();
909		enable_kernel_fp();
910		load_fp_state(&vcpu->arch.fp);
911		disable_kernel_fp();
912		t->fp_save_area = &vcpu->arch.fp;
913		preempt_enable();
914	}
915
916	if (msr & MSR_VEC) {
917#ifdef CONFIG_ALTIVEC
918		preempt_disable();
919		enable_kernel_altivec();
920		load_vr_state(&vcpu->arch.vr);
921		disable_kernel_altivec();
922		t->vr_save_area = &vcpu->arch.vr;
923		preempt_enable();
924#endif
925	}
926
927	t->regs->msr |= msr;
928	vcpu->arch.guest_owned_ext |= msr;
929	kvmppc_recalc_shadow_msr(vcpu);
930
931	return RESUME_GUEST;
932}
933
934/*
935 * Kernel code using FP or VMX could have flushed guest state to
936 * the thread_struct; if so, get it back now.
937 */
938static void kvmppc_handle_lost_ext(struct kvm_vcpu *vcpu)
939{
940	unsigned long lost_ext;
941
942	lost_ext = vcpu->arch.guest_owned_ext & ~current->thread.regs->msr;
943	if (!lost_ext)
944		return;
945
946	if (lost_ext & MSR_FP) {
947		preempt_disable();
948		enable_kernel_fp();
949		load_fp_state(&vcpu->arch.fp);
950		disable_kernel_fp();
951		preempt_enable();
952	}
953#ifdef CONFIG_ALTIVEC
954	if (lost_ext & MSR_VEC) {
955		preempt_disable();
956		enable_kernel_altivec();
957		load_vr_state(&vcpu->arch.vr);
958		disable_kernel_altivec();
959		preempt_enable();
960	}
961#endif
962	current->thread.regs->msr |= lost_ext;
963}
964
965#ifdef CONFIG_PPC_BOOK3S_64
966
967void kvmppc_trigger_fac_interrupt(struct kvm_vcpu *vcpu, ulong fac)
968{
969	/* Inject the Interrupt Cause field and trigger a guest interrupt */
970	vcpu->arch.fscr &= ~(0xffULL << 56);
971	vcpu->arch.fscr |= (fac << 56);
972	kvmppc_book3s_queue_irqprio(vcpu, BOOK3S_INTERRUPT_FAC_UNAVAIL);
973}
974
975static void kvmppc_emulate_fac(struct kvm_vcpu *vcpu, ulong fac)
976{
977	enum emulation_result er = EMULATE_FAIL;
978
979	if (!(kvmppc_get_msr(vcpu) & MSR_PR))
980		er = kvmppc_emulate_instruction(vcpu);
981
982	if ((er != EMULATE_DONE) && (er != EMULATE_AGAIN)) {
983		/* Couldn't emulate, trigger interrupt in guest */
984		kvmppc_trigger_fac_interrupt(vcpu, fac);
985	}
986}
987
988/* Enable facilities (TAR, EBB, DSCR) for the guest */
989static int kvmppc_handle_fac(struct kvm_vcpu *vcpu, ulong fac)
990{
991	bool guest_fac_enabled;
992	BUG_ON(!cpu_has_feature(CPU_FTR_ARCH_207S));
993
994	/*
995	 * Not every facility is enabled by FSCR bits, check whether the
996	 * guest has this facility enabled at all.
997	 */
998	switch (fac) {
999	case FSCR_TAR_LG:
1000	case FSCR_EBB_LG:
1001		guest_fac_enabled = (vcpu->arch.fscr & (1ULL << fac));
1002		break;
1003	case FSCR_TM_LG:
1004		guest_fac_enabled = kvmppc_get_msr(vcpu) & MSR_TM;
1005		break;
1006	default:
1007		guest_fac_enabled = false;
1008		break;
1009	}
1010
1011	if (!guest_fac_enabled) {
1012		/* Facility not enabled by the guest */
1013		kvmppc_trigger_fac_interrupt(vcpu, fac);
1014		return RESUME_GUEST;
1015	}
1016
1017	switch (fac) {
1018	case FSCR_TAR_LG:
1019		/* TAR switching isn't lazy in Linux yet */
1020		current->thread.tar = mfspr(SPRN_TAR);
1021		mtspr(SPRN_TAR, vcpu->arch.tar);
1022		vcpu->arch.shadow_fscr |= FSCR_TAR;
1023		break;
1024	default:
1025		kvmppc_emulate_fac(vcpu, fac);
1026		break;
1027	}
1028
1029#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1030	/* Since we disabled MSR_TM at privilege state, the mfspr instruction
1031	 * for TM spr can trigger TM fac unavailable. In this case, the
1032	 * emulation is handled by kvmppc_emulate_fac(), which invokes
1033	 * kvmppc_emulate_mfspr() finally. But note the mfspr can include
1034	 * RT for NV registers. So it need to restore those NV reg to reflect
1035	 * the update.
1036	 */
1037	if ((fac == FSCR_TM_LG) && !(kvmppc_get_msr(vcpu) & MSR_PR))
1038		return RESUME_GUEST_NV;
1039#endif
1040
1041	return RESUME_GUEST;
1042}
1043
1044void kvmppc_set_fscr(struct kvm_vcpu *vcpu, u64 fscr)
1045{
1046	if (fscr & FSCR_SCV)
1047		fscr &= ~FSCR_SCV; /* SCV must not be enabled */
1048	/* Prohibit prefixed instructions for now */
1049	fscr &= ~FSCR_PREFIX;
1050	if ((vcpu->arch.fscr & FSCR_TAR) && !(fscr & FSCR_TAR)) {
1051		/* TAR got dropped, drop it in shadow too */
1052		kvmppc_giveup_fac(vcpu, FSCR_TAR_LG);
1053	} else if (!(vcpu->arch.fscr & FSCR_TAR) && (fscr & FSCR_TAR)) {
1054		vcpu->arch.fscr = fscr;
1055		kvmppc_handle_fac(vcpu, FSCR_TAR_LG);
1056		return;
1057	}
1058
1059	vcpu->arch.fscr = fscr;
1060}
1061#endif
1062
1063static void kvmppc_setup_debug(struct kvm_vcpu *vcpu)
1064{
1065	if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP) {
1066		u64 msr = kvmppc_get_msr(vcpu);
1067
1068		kvmppc_set_msr(vcpu, msr | MSR_SE);
1069	}
1070}
1071
1072static void kvmppc_clear_debug(struct kvm_vcpu *vcpu)
1073{
1074	if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP) {
1075		u64 msr = kvmppc_get_msr(vcpu);
1076
1077		kvmppc_set_msr(vcpu, msr & ~MSR_SE);
1078	}
1079}
1080
1081static int kvmppc_exit_pr_progint(struct kvm_vcpu *vcpu, unsigned int exit_nr)
1082{
1083	enum emulation_result er;
1084	ulong flags;
1085	ppc_inst_t last_inst;
1086	int emul, r;
1087
1088	/*
1089	 * shadow_srr1 only contains valid flags if we came here via a program
1090	 * exception. The other exceptions (emulation assist, FP unavailable,
1091	 * etc.) do not provide flags in SRR1, so use an illegal-instruction
1092	 * exception when injecting a program interrupt into the guest.
1093	 */
1094	if (exit_nr == BOOK3S_INTERRUPT_PROGRAM)
1095		flags = vcpu->arch.shadow_srr1 & 0x1f0000ull;
1096	else
1097		flags = SRR1_PROGILL;
1098
1099	emul = kvmppc_get_last_inst(vcpu, INST_GENERIC, &last_inst);
1100	if (emul != EMULATE_DONE)
1101		return RESUME_GUEST;
1102
1103	if (kvmppc_get_msr(vcpu) & MSR_PR) {
1104#ifdef EXIT_DEBUG
1105		pr_info("Userspace triggered 0x700 exception at\n 0x%lx (0x%x)\n",
1106			kvmppc_get_pc(vcpu), ppc_inst_val(last_inst));
1107#endif
1108		if ((ppc_inst_val(last_inst) & 0xff0007ff) != (INS_DCBZ & 0xfffffff7)) {
1109			kvmppc_core_queue_program(vcpu, flags);
1110			return RESUME_GUEST;
1111		}
1112	}
1113
1114	vcpu->stat.emulated_inst_exits++;
1115	er = kvmppc_emulate_instruction(vcpu);
1116	switch (er) {
1117	case EMULATE_DONE:
1118		r = RESUME_GUEST_NV;
1119		break;
1120	case EMULATE_AGAIN:
1121		r = RESUME_GUEST;
1122		break;
1123	case EMULATE_FAIL:
1124		pr_crit("%s: emulation at %lx failed (%08x)\n",
1125			__func__, kvmppc_get_pc(vcpu), ppc_inst_val(last_inst));
1126		kvmppc_core_queue_program(vcpu, flags);
1127		r = RESUME_GUEST;
1128		break;
1129	case EMULATE_DO_MMIO:
1130		vcpu->run->exit_reason = KVM_EXIT_MMIO;
1131		r = RESUME_HOST_NV;
1132		break;
1133	case EMULATE_EXIT_USER:
1134		r = RESUME_HOST_NV;
1135		break;
1136	default:
1137		BUG();
1138	}
1139
1140	return r;
1141}
1142
1143int kvmppc_handle_exit_pr(struct kvm_vcpu *vcpu, unsigned int exit_nr)
1144{
1145	struct kvm_run *run = vcpu->run;
1146	int r = RESUME_HOST;
1147	int s;
1148
1149	vcpu->stat.sum_exits++;
1150
1151	run->exit_reason = KVM_EXIT_UNKNOWN;
1152	run->ready_for_interrupt_injection = 1;
1153
1154	/* We get here with MSR.EE=1 */
1155
1156	trace_kvm_exit(exit_nr, vcpu);
1157	guest_exit();
1158
1159	switch (exit_nr) {
1160	case BOOK3S_INTERRUPT_INST_STORAGE:
1161	{
1162		ulong shadow_srr1 = vcpu->arch.shadow_srr1;
1163		vcpu->stat.pf_instruc++;
1164
1165		if (kvmppc_is_split_real(vcpu))
1166			kvmppc_fixup_split_real(vcpu);
1167
1168#ifdef CONFIG_PPC_BOOK3S_32
1169		/* We set segments as unused segments when invalidating them. So
1170		 * treat the respective fault as segment fault. */
1171		{
1172			struct kvmppc_book3s_shadow_vcpu *svcpu;
1173			u32 sr;
1174
1175			svcpu = svcpu_get(vcpu);
1176			sr = svcpu->sr[kvmppc_get_pc(vcpu) >> SID_SHIFT];
1177			svcpu_put(svcpu);
1178			if (sr == SR_INVALID) {
1179				kvmppc_mmu_map_segment(vcpu, kvmppc_get_pc(vcpu));
1180				r = RESUME_GUEST;
1181				break;
1182			}
1183		}
1184#endif
1185
1186		/* only care about PTEG not found errors, but leave NX alone */
1187		if (shadow_srr1 & 0x40000000) {
1188			int idx = srcu_read_lock(&vcpu->kvm->srcu);
1189			r = kvmppc_handle_pagefault(vcpu, kvmppc_get_pc(vcpu), exit_nr);
1190			srcu_read_unlock(&vcpu->kvm->srcu, idx);
1191			vcpu->stat.sp_instruc++;
1192		} else if (vcpu->arch.mmu.is_dcbz32(vcpu) &&
1193			  (!(vcpu->arch.hflags & BOOK3S_HFLAG_DCBZ32))) {
1194			/*
1195			 * XXX If we do the dcbz hack we use the NX bit to flush&patch the page,
1196			 *     so we can't use the NX bit inside the guest. Let's cross our fingers,
1197			 *     that no guest that needs the dcbz hack does NX.
1198			 */
1199			kvmppc_mmu_pte_flush(vcpu, kvmppc_get_pc(vcpu), ~0xFFFUL);
1200			r = RESUME_GUEST;
1201		} else {
1202			kvmppc_core_queue_inst_storage(vcpu,
1203						shadow_srr1 & 0x58000000);
1204			r = RESUME_GUEST;
1205		}
1206		break;
1207	}
1208	case BOOK3S_INTERRUPT_DATA_STORAGE:
1209	{
1210		ulong dar = kvmppc_get_fault_dar(vcpu);
1211		u32 fault_dsisr = vcpu->arch.fault_dsisr;
1212		vcpu->stat.pf_storage++;
1213
1214#ifdef CONFIG_PPC_BOOK3S_32
1215		/* We set segments as unused segments when invalidating them. So
1216		 * treat the respective fault as segment fault. */
1217		{
1218			struct kvmppc_book3s_shadow_vcpu *svcpu;
1219			u32 sr;
1220
1221			svcpu = svcpu_get(vcpu);
1222			sr = svcpu->sr[dar >> SID_SHIFT];
1223			svcpu_put(svcpu);
1224			if (sr == SR_INVALID) {
1225				kvmppc_mmu_map_segment(vcpu, dar);
1226				r = RESUME_GUEST;
1227				break;
1228			}
1229		}
1230#endif
1231
1232		/*
1233		 * We need to handle missing shadow PTEs, and
1234		 * protection faults due to us mapping a page read-only
1235		 * when the guest thinks it is writable.
1236		 */
1237		if (fault_dsisr & (DSISR_NOHPTE | DSISR_PROTFAULT)) {
1238			int idx = srcu_read_lock(&vcpu->kvm->srcu);
1239			r = kvmppc_handle_pagefault(vcpu, dar, exit_nr);
1240			srcu_read_unlock(&vcpu->kvm->srcu, idx);
1241		} else {
1242			kvmppc_core_queue_data_storage(vcpu, 0, dar, fault_dsisr);
1243			r = RESUME_GUEST;
1244		}
1245		break;
1246	}
1247	case BOOK3S_INTERRUPT_DATA_SEGMENT:
1248		if (kvmppc_mmu_map_segment(vcpu, kvmppc_get_fault_dar(vcpu)) < 0) {
1249			kvmppc_set_dar(vcpu, kvmppc_get_fault_dar(vcpu));
1250			kvmppc_book3s_queue_irqprio(vcpu,
1251				BOOK3S_INTERRUPT_DATA_SEGMENT);
1252		}
1253		r = RESUME_GUEST;
1254		break;
1255	case BOOK3S_INTERRUPT_INST_SEGMENT:
1256		if (kvmppc_mmu_map_segment(vcpu, kvmppc_get_pc(vcpu)) < 0) {
1257			kvmppc_book3s_queue_irqprio(vcpu,
1258				BOOK3S_INTERRUPT_INST_SEGMENT);
1259		}
1260		r = RESUME_GUEST;
1261		break;
1262	/* We're good on these - the host merely wanted to get our attention */
1263	case BOOK3S_INTERRUPT_DECREMENTER:
1264	case BOOK3S_INTERRUPT_HV_DECREMENTER:
1265	case BOOK3S_INTERRUPT_DOORBELL:
1266	case BOOK3S_INTERRUPT_H_DOORBELL:
1267		vcpu->stat.dec_exits++;
1268		r = RESUME_GUEST;
1269		break;
1270	case BOOK3S_INTERRUPT_EXTERNAL:
1271	case BOOK3S_INTERRUPT_EXTERNAL_HV:
1272	case BOOK3S_INTERRUPT_H_VIRT:
1273		vcpu->stat.ext_intr_exits++;
1274		r = RESUME_GUEST;
1275		break;
1276	case BOOK3S_INTERRUPT_HMI:
1277	case BOOK3S_INTERRUPT_PERFMON:
1278	case BOOK3S_INTERRUPT_SYSTEM_RESET:
1279		r = RESUME_GUEST;
1280		break;
1281	case BOOK3S_INTERRUPT_PROGRAM:
1282	case BOOK3S_INTERRUPT_H_EMUL_ASSIST:
1283		r = kvmppc_exit_pr_progint(vcpu, exit_nr);
1284		break;
1285	case BOOK3S_INTERRUPT_SYSCALL:
1286	{
1287		ppc_inst_t last_sc;
1288		int emul;
1289
1290		/* Get last sc for papr */
1291		if (vcpu->arch.papr_enabled) {
1292			/* The sc instruction points SRR0 to the next inst */
1293			emul = kvmppc_get_last_inst(vcpu, INST_SC, &last_sc);
1294			if (emul != EMULATE_DONE) {
1295				kvmppc_set_pc(vcpu, kvmppc_get_pc(vcpu) - 4);
1296				r = RESUME_GUEST;
1297				break;
1298			}
1299		}
1300
1301		if (vcpu->arch.papr_enabled &&
1302		    (ppc_inst_val(last_sc) == 0x44000022) &&
1303		    !(kvmppc_get_msr(vcpu) & MSR_PR)) {
1304			/* SC 1 papr hypercalls */
1305			ulong cmd = kvmppc_get_gpr(vcpu, 3);
1306			int i;
1307
1308#ifdef CONFIG_PPC_BOOK3S_64
1309			if (kvmppc_h_pr(vcpu, cmd) == EMULATE_DONE) {
1310				r = RESUME_GUEST;
1311				break;
1312			}
1313#endif
1314
1315			run->papr_hcall.nr = cmd;
1316			for (i = 0; i < 9; ++i) {
1317				ulong gpr = kvmppc_get_gpr(vcpu, 4 + i);
1318				run->papr_hcall.args[i] = gpr;
1319			}
1320			run->exit_reason = KVM_EXIT_PAPR_HCALL;
1321			vcpu->arch.hcall_needed = 1;
1322			r = RESUME_HOST;
1323		} else if (vcpu->arch.osi_enabled &&
1324		    (((u32)kvmppc_get_gpr(vcpu, 3)) == OSI_SC_MAGIC_R3) &&
1325		    (((u32)kvmppc_get_gpr(vcpu, 4)) == OSI_SC_MAGIC_R4)) {
1326			/* MOL hypercalls */
1327			u64 *gprs = run->osi.gprs;
1328			int i;
1329
1330			run->exit_reason = KVM_EXIT_OSI;
1331			for (i = 0; i < 32; i++)
1332				gprs[i] = kvmppc_get_gpr(vcpu, i);
1333			vcpu->arch.osi_needed = 1;
1334			r = RESUME_HOST_NV;
1335		} else if (!(kvmppc_get_msr(vcpu) & MSR_PR) &&
1336		    (((u32)kvmppc_get_gpr(vcpu, 0)) == KVM_SC_MAGIC_R0)) {
1337			/* KVM PV hypercalls */
1338			kvmppc_set_gpr(vcpu, 3, kvmppc_kvm_pv(vcpu));
1339			r = RESUME_GUEST;
1340		} else {
1341			/* Guest syscalls */
1342			vcpu->stat.syscall_exits++;
1343			kvmppc_book3s_queue_irqprio(vcpu, exit_nr);
1344			r = RESUME_GUEST;
1345		}
1346		break;
1347	}
1348	case BOOK3S_INTERRUPT_FP_UNAVAIL:
1349	case BOOK3S_INTERRUPT_ALTIVEC:
1350	case BOOK3S_INTERRUPT_VSX:
1351	{
1352		int ext_msr = 0;
1353		int emul;
1354		ppc_inst_t last_inst;
1355
1356		if (vcpu->arch.hflags & BOOK3S_HFLAG_PAIRED_SINGLE) {
1357			/* Do paired single instruction emulation */
1358			emul = kvmppc_get_last_inst(vcpu, INST_GENERIC,
1359						    &last_inst);
1360			if (emul == EMULATE_DONE)
1361				r = kvmppc_exit_pr_progint(vcpu, exit_nr);
1362			else
1363				r = RESUME_GUEST;
1364
1365			break;
1366		}
1367
1368		/* Enable external provider */
1369		switch (exit_nr) {
1370		case BOOK3S_INTERRUPT_FP_UNAVAIL:
1371			ext_msr = MSR_FP;
1372			break;
1373
1374		case BOOK3S_INTERRUPT_ALTIVEC:
1375			ext_msr = MSR_VEC;
1376			break;
1377
1378		case BOOK3S_INTERRUPT_VSX:
1379			ext_msr = MSR_VSX;
1380			break;
1381		}
1382
1383		r = kvmppc_handle_ext(vcpu, exit_nr, ext_msr);
1384		break;
1385	}
1386	case BOOK3S_INTERRUPT_ALIGNMENT:
1387	{
1388		ppc_inst_t last_inst;
1389		int emul = kvmppc_get_last_inst(vcpu, INST_GENERIC, &last_inst);
1390
1391		if (emul == EMULATE_DONE) {
1392			u32 dsisr;
1393			u64 dar;
1394
1395			dsisr = kvmppc_alignment_dsisr(vcpu, ppc_inst_val(last_inst));
1396			dar = kvmppc_alignment_dar(vcpu, ppc_inst_val(last_inst));
1397
1398			kvmppc_set_dsisr(vcpu, dsisr);
1399			kvmppc_set_dar(vcpu, dar);
1400
1401			kvmppc_book3s_queue_irqprio(vcpu, exit_nr);
1402		}
1403		r = RESUME_GUEST;
1404		break;
1405	}
1406#ifdef CONFIG_PPC_BOOK3S_64
1407	case BOOK3S_INTERRUPT_FAC_UNAVAIL:
1408		r = kvmppc_handle_fac(vcpu, vcpu->arch.shadow_fscr >> 56);
1409		break;
1410#endif
1411	case BOOK3S_INTERRUPT_MACHINE_CHECK:
1412		kvmppc_book3s_queue_irqprio(vcpu, exit_nr);
1413		r = RESUME_GUEST;
1414		break;
1415	case BOOK3S_INTERRUPT_TRACE:
1416		if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP) {
1417			run->exit_reason = KVM_EXIT_DEBUG;
1418			r = RESUME_HOST;
1419		} else {
1420			kvmppc_book3s_queue_irqprio(vcpu, exit_nr);
1421			r = RESUME_GUEST;
1422		}
1423		break;
1424	default:
1425	{
1426		ulong shadow_srr1 = vcpu->arch.shadow_srr1;
1427		/* Ugh - bork here! What did we get? */
1428		printk(KERN_EMERG "exit_nr=0x%x | pc=0x%lx | msr=0x%lx\n",
1429			exit_nr, kvmppc_get_pc(vcpu), shadow_srr1);
1430		r = RESUME_HOST;
1431		BUG();
1432		break;
1433	}
1434	}
1435
1436	if (!(r & RESUME_HOST)) {
1437		/* To avoid clobbering exit_reason, only check for signals if
1438		 * we aren't already exiting to userspace for some other
1439		 * reason. */
1440
1441		/*
1442		 * Interrupts could be timers for the guest which we have to
1443		 * inject again, so let's postpone them until we're in the guest
1444		 * and if we really did time things so badly, then we just exit
1445		 * again due to a host external interrupt.
1446		 */
1447		s = kvmppc_prepare_to_enter(vcpu);
1448		if (s <= 0)
1449			r = s;
1450		else {
1451			/* interrupts now hard-disabled */
1452			kvmppc_fix_ee_before_entry();
1453		}
1454
1455		kvmppc_handle_lost_ext(vcpu);
1456	}
1457
1458	trace_kvm_book3s_reenter(r, vcpu);
1459
1460	return r;
1461}
1462
1463static int kvm_arch_vcpu_ioctl_get_sregs_pr(struct kvm_vcpu *vcpu,
1464					    struct kvm_sregs *sregs)
1465{
1466	struct kvmppc_vcpu_book3s *vcpu3s = to_book3s(vcpu);
1467	int i;
1468
1469	sregs->pvr = vcpu->arch.pvr;
1470
1471	sregs->u.s.sdr1 = to_book3s(vcpu)->sdr1;
1472	if (vcpu->arch.hflags & BOOK3S_HFLAG_SLB) {
1473		for (i = 0; i < 64; i++) {
1474			sregs->u.s.ppc64.slb[i].slbe = vcpu->arch.slb[i].orige | i;
1475			sregs->u.s.ppc64.slb[i].slbv = vcpu->arch.slb[i].origv;
1476		}
1477	} else {
1478		for (i = 0; i < 16; i++)
1479			sregs->u.s.ppc32.sr[i] = kvmppc_get_sr(vcpu, i);
1480
1481		for (i = 0; i < 8; i++) {
1482			sregs->u.s.ppc32.ibat[i] = vcpu3s->ibat[i].raw;
1483			sregs->u.s.ppc32.dbat[i] = vcpu3s->dbat[i].raw;
1484		}
1485	}
1486
1487	return 0;
1488}
1489
1490static int kvm_arch_vcpu_ioctl_set_sregs_pr(struct kvm_vcpu *vcpu,
1491					    struct kvm_sregs *sregs)
1492{
1493	struct kvmppc_vcpu_book3s *vcpu3s = to_book3s(vcpu);
1494	int i;
1495
1496	kvmppc_set_pvr_pr(vcpu, sregs->pvr);
1497
1498	vcpu3s->sdr1 = sregs->u.s.sdr1;
1499#ifdef CONFIG_PPC_BOOK3S_64
1500	if (vcpu->arch.hflags & BOOK3S_HFLAG_SLB) {
1501		/* Flush all SLB entries */
1502		vcpu->arch.mmu.slbmte(vcpu, 0, 0);
1503		vcpu->arch.mmu.slbia(vcpu);
1504
1505		for (i = 0; i < 64; i++) {
1506			u64 rb = sregs->u.s.ppc64.slb[i].slbe;
1507			u64 rs = sregs->u.s.ppc64.slb[i].slbv;
1508
1509			if (rb & SLB_ESID_V)
1510				vcpu->arch.mmu.slbmte(vcpu, rs, rb);
1511		}
1512	} else
1513#endif
1514	{
1515		for (i = 0; i < 16; i++) {
1516			vcpu->arch.mmu.mtsrin(vcpu, i, sregs->u.s.ppc32.sr[i]);
1517		}
1518		for (i = 0; i < 8; i++) {
1519			kvmppc_set_bat(vcpu, &(vcpu3s->ibat[i]), false,
1520				       (u32)sregs->u.s.ppc32.ibat[i]);
1521			kvmppc_set_bat(vcpu, &(vcpu3s->ibat[i]), true,
1522				       (u32)(sregs->u.s.ppc32.ibat[i] >> 32));
1523			kvmppc_set_bat(vcpu, &(vcpu3s->dbat[i]), false,
1524				       (u32)sregs->u.s.ppc32.dbat[i]);
1525			kvmppc_set_bat(vcpu, &(vcpu3s->dbat[i]), true,
1526				       (u32)(sregs->u.s.ppc32.dbat[i] >> 32));
1527		}
1528	}
1529
1530	/* Flush the MMU after messing with the segments */
1531	kvmppc_mmu_pte_flush(vcpu, 0, 0);
1532
1533	return 0;
1534}
1535
1536static int kvmppc_get_one_reg_pr(struct kvm_vcpu *vcpu, u64 id,
1537				 union kvmppc_one_reg *val)
1538{
1539	int r = 0;
1540
1541	switch (id) {
1542	case KVM_REG_PPC_DEBUG_INST:
1543		*val = get_reg_val(id, KVMPPC_INST_SW_BREAKPOINT);
1544		break;
1545	case KVM_REG_PPC_HIOR:
1546		*val = get_reg_val(id, to_book3s(vcpu)->hior);
1547		break;
1548	case KVM_REG_PPC_VTB:
1549		*val = get_reg_val(id, to_book3s(vcpu)->vtb);
1550		break;
1551	case KVM_REG_PPC_LPCR:
1552	case KVM_REG_PPC_LPCR_64:
1553		/*
1554		 * We are only interested in the LPCR_ILE bit
1555		 */
1556		if (vcpu->arch.intr_msr & MSR_LE)
1557			*val = get_reg_val(id, LPCR_ILE);
1558		else
1559			*val = get_reg_val(id, 0);
1560		break;
1561#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1562	case KVM_REG_PPC_TFHAR:
1563		*val = get_reg_val(id, vcpu->arch.tfhar);
1564		break;
1565	case KVM_REG_PPC_TFIAR:
1566		*val = get_reg_val(id, vcpu->arch.tfiar);
1567		break;
1568	case KVM_REG_PPC_TEXASR:
1569		*val = get_reg_val(id, vcpu->arch.texasr);
1570		break;
1571	case KVM_REG_PPC_TM_GPR0 ... KVM_REG_PPC_TM_GPR31:
1572		*val = get_reg_val(id,
1573				vcpu->arch.gpr_tm[id-KVM_REG_PPC_TM_GPR0]);
1574		break;
1575	case KVM_REG_PPC_TM_VSR0 ... KVM_REG_PPC_TM_VSR63:
1576	{
1577		int i, j;
1578
1579		i = id - KVM_REG_PPC_TM_VSR0;
1580		if (i < 32)
1581			for (j = 0; j < TS_FPRWIDTH; j++)
1582				val->vsxval[j] = vcpu->arch.fp_tm.fpr[i][j];
1583		else {
1584			if (cpu_has_feature(CPU_FTR_ALTIVEC))
1585				val->vval = vcpu->arch.vr_tm.vr[i-32];
1586			else
1587				r = -ENXIO;
1588		}
1589		break;
1590	}
1591	case KVM_REG_PPC_TM_CR:
1592		*val = get_reg_val(id, vcpu->arch.cr_tm);
1593		break;
1594	case KVM_REG_PPC_TM_XER:
1595		*val = get_reg_val(id, vcpu->arch.xer_tm);
1596		break;
1597	case KVM_REG_PPC_TM_LR:
1598		*val = get_reg_val(id, vcpu->arch.lr_tm);
1599		break;
1600	case KVM_REG_PPC_TM_CTR:
1601		*val = get_reg_val(id, vcpu->arch.ctr_tm);
1602		break;
1603	case KVM_REG_PPC_TM_FPSCR:
1604		*val = get_reg_val(id, vcpu->arch.fp_tm.fpscr);
1605		break;
1606	case KVM_REG_PPC_TM_AMR:
1607		*val = get_reg_val(id, vcpu->arch.amr_tm);
1608		break;
1609	case KVM_REG_PPC_TM_PPR:
1610		*val = get_reg_val(id, vcpu->arch.ppr_tm);
1611		break;
1612	case KVM_REG_PPC_TM_VRSAVE:
1613		*val = get_reg_val(id, vcpu->arch.vrsave_tm);
1614		break;
1615	case KVM_REG_PPC_TM_VSCR:
1616		if (cpu_has_feature(CPU_FTR_ALTIVEC))
1617			*val = get_reg_val(id, vcpu->arch.vr_tm.vscr.u[3]);
1618		else
1619			r = -ENXIO;
1620		break;
1621	case KVM_REG_PPC_TM_DSCR:
1622		*val = get_reg_val(id, vcpu->arch.dscr_tm);
1623		break;
1624	case KVM_REG_PPC_TM_TAR:
1625		*val = get_reg_val(id, vcpu->arch.tar_tm);
1626		break;
1627#endif
1628	default:
1629		r = -EINVAL;
1630		break;
1631	}
1632
1633	return r;
1634}
1635
1636static void kvmppc_set_lpcr_pr(struct kvm_vcpu *vcpu, u64 new_lpcr)
1637{
1638	if (new_lpcr & LPCR_ILE)
1639		vcpu->arch.intr_msr |= MSR_LE;
1640	else
1641		vcpu->arch.intr_msr &= ~MSR_LE;
1642}
1643
1644static int kvmppc_set_one_reg_pr(struct kvm_vcpu *vcpu, u64 id,
1645				 union kvmppc_one_reg *val)
1646{
1647	int r = 0;
1648
1649	switch (id) {
1650	case KVM_REG_PPC_HIOR:
1651		to_book3s(vcpu)->hior = set_reg_val(id, *val);
1652		to_book3s(vcpu)->hior_explicit = true;
1653		break;
1654	case KVM_REG_PPC_VTB:
1655		to_book3s(vcpu)->vtb = set_reg_val(id, *val);
1656		break;
1657	case KVM_REG_PPC_LPCR:
1658	case KVM_REG_PPC_LPCR_64:
1659		kvmppc_set_lpcr_pr(vcpu, set_reg_val(id, *val));
1660		break;
1661#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1662	case KVM_REG_PPC_TFHAR:
1663		vcpu->arch.tfhar = set_reg_val(id, *val);
1664		break;
1665	case KVM_REG_PPC_TFIAR:
1666		vcpu->arch.tfiar = set_reg_val(id, *val);
1667		break;
1668	case KVM_REG_PPC_TEXASR:
1669		vcpu->arch.texasr = set_reg_val(id, *val);
1670		break;
1671	case KVM_REG_PPC_TM_GPR0 ... KVM_REG_PPC_TM_GPR31:
1672		vcpu->arch.gpr_tm[id - KVM_REG_PPC_TM_GPR0] =
1673			set_reg_val(id, *val);
1674		break;
1675	case KVM_REG_PPC_TM_VSR0 ... KVM_REG_PPC_TM_VSR63:
1676	{
1677		int i, j;
1678
1679		i = id - KVM_REG_PPC_TM_VSR0;
1680		if (i < 32)
1681			for (j = 0; j < TS_FPRWIDTH; j++)
1682				vcpu->arch.fp_tm.fpr[i][j] = val->vsxval[j];
1683		else
1684			if (cpu_has_feature(CPU_FTR_ALTIVEC))
1685				vcpu->arch.vr_tm.vr[i-32] = val->vval;
1686			else
1687				r = -ENXIO;
1688		break;
1689	}
1690	case KVM_REG_PPC_TM_CR:
1691		vcpu->arch.cr_tm = set_reg_val(id, *val);
1692		break;
1693	case KVM_REG_PPC_TM_XER:
1694		vcpu->arch.xer_tm = set_reg_val(id, *val);
1695		break;
1696	case KVM_REG_PPC_TM_LR:
1697		vcpu->arch.lr_tm = set_reg_val(id, *val);
1698		break;
1699	case KVM_REG_PPC_TM_CTR:
1700		vcpu->arch.ctr_tm = set_reg_val(id, *val);
1701		break;
1702	case KVM_REG_PPC_TM_FPSCR:
1703		vcpu->arch.fp_tm.fpscr = set_reg_val(id, *val);
1704		break;
1705	case KVM_REG_PPC_TM_AMR:
1706		vcpu->arch.amr_tm = set_reg_val(id, *val);
1707		break;
1708	case KVM_REG_PPC_TM_PPR:
1709		vcpu->arch.ppr_tm = set_reg_val(id, *val);
1710		break;
1711	case KVM_REG_PPC_TM_VRSAVE:
1712		vcpu->arch.vrsave_tm = set_reg_val(id, *val);
1713		break;
1714	case KVM_REG_PPC_TM_VSCR:
1715		if (cpu_has_feature(CPU_FTR_ALTIVEC))
1716			vcpu->arch.vr.vscr.u[3] = set_reg_val(id, *val);
1717		else
1718			r = -ENXIO;
1719		break;
1720	case KVM_REG_PPC_TM_DSCR:
1721		vcpu->arch.dscr_tm = set_reg_val(id, *val);
1722		break;
1723	case KVM_REG_PPC_TM_TAR:
1724		vcpu->arch.tar_tm = set_reg_val(id, *val);
1725		break;
1726#endif
1727	default:
1728		r = -EINVAL;
1729		break;
1730	}
1731
1732	return r;
1733}
1734
1735static int kvmppc_core_vcpu_create_pr(struct kvm_vcpu *vcpu)
1736{
1737	struct kvmppc_vcpu_book3s *vcpu_book3s;
1738	unsigned long p;
1739	int err;
1740
1741	err = -ENOMEM;
1742
1743	vcpu_book3s = vzalloc(sizeof(struct kvmppc_vcpu_book3s));
1744	if (!vcpu_book3s)
1745		goto out;
1746	vcpu->arch.book3s = vcpu_book3s;
1747
1748#ifdef CONFIG_KVM_BOOK3S_32_HANDLER
1749	vcpu->arch.shadow_vcpu =
1750		kzalloc(sizeof(*vcpu->arch.shadow_vcpu), GFP_KERNEL);
1751	if (!vcpu->arch.shadow_vcpu)
1752		goto free_vcpu3s;
1753#endif
1754
1755	p = __get_free_page(GFP_KERNEL|__GFP_ZERO);
1756	if (!p)
1757		goto free_shadow_vcpu;
1758	vcpu->arch.shared = (void *)p;
1759#ifdef CONFIG_PPC_BOOK3S_64
1760	/* Always start the shared struct in native endian mode */
1761#ifdef __BIG_ENDIAN__
1762        vcpu->arch.shared_big_endian = true;
1763#else
1764        vcpu->arch.shared_big_endian = false;
1765#endif
1766
1767	/*
1768	 * Default to the same as the host if we're on sufficiently
1769	 * recent machine that we have 1TB segments;
1770	 * otherwise default to PPC970FX.
1771	 */
1772	vcpu->arch.pvr = 0x3C0301;
1773	if (mmu_has_feature(MMU_FTR_1T_SEGMENT))
1774		vcpu->arch.pvr = mfspr(SPRN_PVR);
1775	vcpu->arch.intr_msr = MSR_SF;
1776#else
1777	/* default to book3s_32 (750) */
1778	vcpu->arch.pvr = 0x84202;
1779	vcpu->arch.intr_msr = 0;
1780#endif
1781	kvmppc_set_pvr_pr(vcpu, vcpu->arch.pvr);
1782	vcpu->arch.slb_nr = 64;
1783
1784	vcpu->arch.shadow_msr = MSR_USER64 & ~MSR_LE;
1785
1786	err = kvmppc_mmu_init_pr(vcpu);
1787	if (err < 0)
1788		goto free_shared_page;
1789
1790	return 0;
1791
1792free_shared_page:
1793	free_page((unsigned long)vcpu->arch.shared);
1794free_shadow_vcpu:
1795#ifdef CONFIG_KVM_BOOK3S_32_HANDLER
1796	kfree(vcpu->arch.shadow_vcpu);
1797free_vcpu3s:
1798#endif
1799	vfree(vcpu_book3s);
1800out:
1801	return err;
1802}
1803
1804static void kvmppc_core_vcpu_free_pr(struct kvm_vcpu *vcpu)
1805{
1806	struct kvmppc_vcpu_book3s *vcpu_book3s = to_book3s(vcpu);
1807
1808	kvmppc_mmu_destroy_pr(vcpu);
1809	free_page((unsigned long)vcpu->arch.shared & PAGE_MASK);
1810#ifdef CONFIG_KVM_BOOK3S_32_HANDLER
1811	kfree(vcpu->arch.shadow_vcpu);
1812#endif
1813	vfree(vcpu_book3s);
1814}
1815
1816static int kvmppc_vcpu_run_pr(struct kvm_vcpu *vcpu)
1817{
1818	int ret;
1819
1820	/* Check if we can run the vcpu at all */
1821	if (!vcpu->arch.sane) {
1822		vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
1823		ret = -EINVAL;
1824		goto out;
1825	}
1826
1827	kvmppc_setup_debug(vcpu);
1828
1829	/*
1830	 * Interrupts could be timers for the guest which we have to inject
1831	 * again, so let's postpone them until we're in the guest and if we
1832	 * really did time things so badly, then we just exit again due to
1833	 * a host external interrupt.
1834	 */
1835	ret = kvmppc_prepare_to_enter(vcpu);
1836	if (ret <= 0)
1837		goto out;
1838	/* interrupts now hard-disabled */
1839
1840	/* Save FPU, Altivec and VSX state */
1841	giveup_all(current);
1842
1843	/* Preload FPU if it's enabled */
1844	if (kvmppc_get_msr(vcpu) & MSR_FP)
1845		kvmppc_handle_ext(vcpu, BOOK3S_INTERRUPT_FP_UNAVAIL, MSR_FP);
1846
1847	kvmppc_fix_ee_before_entry();
1848
1849	ret = __kvmppc_vcpu_run(vcpu);
1850
1851	kvmppc_clear_debug(vcpu);
1852
1853	/* No need for guest_exit. It's done in handle_exit.
1854	   We also get here with interrupts enabled. */
1855
1856	/* Make sure we save the guest FPU/Altivec/VSX state */
1857	kvmppc_giveup_ext(vcpu, MSR_FP | MSR_VEC | MSR_VSX);
1858
1859	/* Make sure we save the guest TAR/EBB/DSCR state */
1860	kvmppc_giveup_fac(vcpu, FSCR_TAR_LG);
1861
1862	srr_regs_clobbered();
1863out:
1864	vcpu->mode = OUTSIDE_GUEST_MODE;
1865	return ret;
1866}
1867
1868/*
1869 * Get (and clear) the dirty memory log for a memory slot.
1870 */
1871static int kvm_vm_ioctl_get_dirty_log_pr(struct kvm *kvm,
1872					 struct kvm_dirty_log *log)
1873{
1874	struct kvm_memory_slot *memslot;
1875	struct kvm_vcpu *vcpu;
1876	ulong ga, ga_end;
1877	int is_dirty = 0;
1878	int r;
1879	unsigned long n;
1880
1881	mutex_lock(&kvm->slots_lock);
1882
1883	r = kvm_get_dirty_log(kvm, log, &is_dirty, &memslot);
1884	if (r)
1885		goto out;
1886
1887	/* If nothing is dirty, don't bother messing with page tables. */
1888	if (is_dirty) {
1889		ga = memslot->base_gfn << PAGE_SHIFT;
1890		ga_end = ga + (memslot->npages << PAGE_SHIFT);
1891
1892		kvm_for_each_vcpu(n, vcpu, kvm)
1893			kvmppc_mmu_pte_pflush(vcpu, ga, ga_end);
1894
1895		n = kvm_dirty_bitmap_bytes(memslot);
1896		memset(memslot->dirty_bitmap, 0, n);
1897	}
1898
1899	r = 0;
1900out:
1901	mutex_unlock(&kvm->slots_lock);
1902	return r;
1903}
1904
1905static void kvmppc_core_flush_memslot_pr(struct kvm *kvm,
1906					 struct kvm_memory_slot *memslot)
1907{
1908	return;
1909}
1910
1911static int kvmppc_core_prepare_memory_region_pr(struct kvm *kvm,
1912				const struct kvm_memory_slot *old,
1913				struct kvm_memory_slot *new,
1914				enum kvm_mr_change change)
1915{
1916	return 0;
1917}
1918
1919static void kvmppc_core_commit_memory_region_pr(struct kvm *kvm,
1920				struct kvm_memory_slot *old,
1921				const struct kvm_memory_slot *new,
1922				enum kvm_mr_change change)
1923{
1924	return;
1925}
1926
1927static void kvmppc_core_free_memslot_pr(struct kvm_memory_slot *slot)
1928{
1929	return;
1930}
1931
1932#ifdef CONFIG_PPC64
1933static int kvm_vm_ioctl_get_smmu_info_pr(struct kvm *kvm,
1934					 struct kvm_ppc_smmu_info *info)
1935{
1936	long int i;
1937	struct kvm_vcpu *vcpu;
1938
1939	info->flags = 0;
1940
1941	/* SLB is always 64 entries */
1942	info->slb_size = 64;
1943
1944	/* Standard 4k base page size segment */
1945	info->sps[0].page_shift = 12;
1946	info->sps[0].slb_enc = 0;
1947	info->sps[0].enc[0].page_shift = 12;
1948	info->sps[0].enc[0].pte_enc = 0;
1949
1950	/*
1951	 * 64k large page size.
1952	 * We only want to put this in if the CPUs we're emulating
1953	 * support it, but unfortunately we don't have a vcpu easily
1954	 * to hand here to test.  Just pick the first vcpu, and if
1955	 * that doesn't exist yet, report the minimum capability,
1956	 * i.e., no 64k pages.
1957	 * 1T segment support goes along with 64k pages.
1958	 */
1959	i = 1;
1960	vcpu = kvm_get_vcpu(kvm, 0);
1961	if (vcpu && (vcpu->arch.hflags & BOOK3S_HFLAG_MULTI_PGSIZE)) {
1962		info->flags = KVM_PPC_1T_SEGMENTS;
1963		info->sps[i].page_shift = 16;
1964		info->sps[i].slb_enc = SLB_VSID_L | SLB_VSID_LP_01;
1965		info->sps[i].enc[0].page_shift = 16;
1966		info->sps[i].enc[0].pte_enc = 1;
1967		++i;
1968	}
1969
1970	/* Standard 16M large page size segment */
1971	info->sps[i].page_shift = 24;
1972	info->sps[i].slb_enc = SLB_VSID_L;
1973	info->sps[i].enc[0].page_shift = 24;
1974	info->sps[i].enc[0].pte_enc = 0;
1975
1976	return 0;
1977}
1978
1979static int kvm_configure_mmu_pr(struct kvm *kvm, struct kvm_ppc_mmuv3_cfg *cfg)
1980{
1981	if (!cpu_has_feature(CPU_FTR_ARCH_300))
1982		return -ENODEV;
1983	/* Require flags and process table base and size to all be zero. */
1984	if (cfg->flags || cfg->process_table)
1985		return -EINVAL;
1986	return 0;
1987}
1988
1989#else
1990static int kvm_vm_ioctl_get_smmu_info_pr(struct kvm *kvm,
1991					 struct kvm_ppc_smmu_info *info)
1992{
1993	/* We should not get called */
1994	BUG();
1995	return 0;
1996}
1997#endif /* CONFIG_PPC64 */
1998
1999static unsigned int kvm_global_user_count = 0;
2000static DEFINE_SPINLOCK(kvm_global_user_count_lock);
2001
2002static int kvmppc_core_init_vm_pr(struct kvm *kvm)
2003{
2004	mutex_init(&kvm->arch.hpt_mutex);
2005
2006#ifdef CONFIG_PPC_BOOK3S_64
2007	/* Start out with the default set of hcalls enabled */
2008	kvmppc_pr_init_default_hcalls(kvm);
2009#endif
2010
2011	if (firmware_has_feature(FW_FEATURE_SET_MODE)) {
2012		spin_lock(&kvm_global_user_count_lock);
2013		if (++kvm_global_user_count == 1)
2014			pseries_disable_reloc_on_exc();
2015		spin_unlock(&kvm_global_user_count_lock);
2016	}
2017	return 0;
2018}
2019
2020static void kvmppc_core_destroy_vm_pr(struct kvm *kvm)
2021{
2022#ifdef CONFIG_PPC64
2023	WARN_ON(!list_empty(&kvm->arch.spapr_tce_tables));
2024#endif
2025
2026	if (firmware_has_feature(FW_FEATURE_SET_MODE)) {
2027		spin_lock(&kvm_global_user_count_lock);
2028		BUG_ON(kvm_global_user_count == 0);
2029		if (--kvm_global_user_count == 0)
2030			pseries_enable_reloc_on_exc();
2031		spin_unlock(&kvm_global_user_count_lock);
2032	}
2033}
2034
2035static int kvmppc_core_check_processor_compat_pr(void)
2036{
2037	/*
2038	 * PR KVM can work on POWER9 inside a guest partition
2039	 * running in HPT mode.  It can't work if we are using
2040	 * radix translation (because radix provides no way for
2041	 * a process to have unique translations in quadrant 3).
2042	 */
2043	if (cpu_has_feature(CPU_FTR_ARCH_300) && radix_enabled())
2044		return -EIO;
2045	return 0;
2046}
2047
2048static int kvm_arch_vm_ioctl_pr(struct file *filp,
2049				unsigned int ioctl, unsigned long arg)
2050{
2051	return -ENOTTY;
2052}
2053
2054static struct kvmppc_ops kvm_ops_pr = {
2055	.get_sregs = kvm_arch_vcpu_ioctl_get_sregs_pr,
2056	.set_sregs = kvm_arch_vcpu_ioctl_set_sregs_pr,
2057	.get_one_reg = kvmppc_get_one_reg_pr,
2058	.set_one_reg = kvmppc_set_one_reg_pr,
2059	.vcpu_load   = kvmppc_core_vcpu_load_pr,
2060	.vcpu_put    = kvmppc_core_vcpu_put_pr,
2061	.inject_interrupt = kvmppc_inject_interrupt_pr,
2062	.set_msr     = kvmppc_set_msr_pr,
2063	.vcpu_run    = kvmppc_vcpu_run_pr,
2064	.vcpu_create = kvmppc_core_vcpu_create_pr,
2065	.vcpu_free   = kvmppc_core_vcpu_free_pr,
2066	.check_requests = kvmppc_core_check_requests_pr,
2067	.get_dirty_log = kvm_vm_ioctl_get_dirty_log_pr,
2068	.flush_memslot = kvmppc_core_flush_memslot_pr,
2069	.prepare_memory_region = kvmppc_core_prepare_memory_region_pr,
2070	.commit_memory_region = kvmppc_core_commit_memory_region_pr,
2071	.unmap_gfn_range = kvm_unmap_gfn_range_pr,
2072	.age_gfn  = kvm_age_gfn_pr,
2073	.test_age_gfn = kvm_test_age_gfn_pr,
2074	.set_spte_gfn = kvm_set_spte_gfn_pr,
2075	.free_memslot = kvmppc_core_free_memslot_pr,
2076	.init_vm = kvmppc_core_init_vm_pr,
2077	.destroy_vm = kvmppc_core_destroy_vm_pr,
2078	.get_smmu_info = kvm_vm_ioctl_get_smmu_info_pr,
2079	.emulate_op = kvmppc_core_emulate_op_pr,
2080	.emulate_mtspr = kvmppc_core_emulate_mtspr_pr,
2081	.emulate_mfspr = kvmppc_core_emulate_mfspr_pr,
2082	.fast_vcpu_kick = kvm_vcpu_kick,
2083	.arch_vm_ioctl  = kvm_arch_vm_ioctl_pr,
2084#ifdef CONFIG_PPC_BOOK3S_64
2085	.hcall_implemented = kvmppc_hcall_impl_pr,
2086	.configure_mmu = kvm_configure_mmu_pr,
2087#endif
2088	.giveup_ext = kvmppc_giveup_ext,
2089};
2090
2091
2092int kvmppc_book3s_init_pr(void)
2093{
2094	int r;
2095
2096	r = kvmppc_core_check_processor_compat_pr();
2097	if (r < 0)
2098		return r;
2099
2100	kvm_ops_pr.owner = THIS_MODULE;
2101	kvmppc_pr_ops = &kvm_ops_pr;
2102
2103	r = kvmppc_mmu_hpte_sysinit();
2104	return r;
2105}
2106
2107void kvmppc_book3s_exit_pr(void)
2108{
2109	kvmppc_pr_ops = NULL;
2110	kvmppc_mmu_hpte_sysexit();
2111}
2112
2113/*
2114 * We only support separate modules for book3s 64
2115 */
2116#ifdef CONFIG_PPC_BOOK3S_64
2117
2118module_init(kvmppc_book3s_init_pr);
2119module_exit(kvmppc_book3s_exit_pr);
2120
2121MODULE_LICENSE("GPL");
2122MODULE_ALIAS_MISCDEV(KVM_MINOR);
2123MODULE_ALIAS("devname:kvm");
2124#endif
2125