1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 *
4 * Copyright 2010-2011 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
5 */
6
7#include <linux/types.h>
8#include <linux/string.h>
9#include <linux/kvm.h>
10#include <linux/kvm_host.h>
11#include <linux/hugetlb.h>
12#include <linux/module.h>
13#include <linux/log2.h>
14#include <linux/sizes.h>
15
16#include <asm/trace.h>
17#include <asm/kvm_ppc.h>
18#include <asm/kvm_book3s.h>
19#include <asm/book3s/64/mmu-hash.h>
20#include <asm/hvcall.h>
21#include <asm/synch.h>
22#include <asm/ppc-opcode.h>
23#include <asm/pte-walk.h>
24
25/* Translate address of a vmalloc'd thing to a linear map address */
26static void *real_vmalloc_addr(void *addr)
27{
28	return __va(ppc_find_vmap_phys((unsigned long)addr));
29}
30
31/* Return 1 if we need to do a global tlbie, 0 if we can use tlbiel */
32static int global_invalidates(struct kvm *kvm)
33{
34	int global;
35	int cpu;
36
37	/*
38	 * If there is only one vcore, and it's currently running,
39	 * as indicated by local_paca->kvm_hstate.kvm_vcpu being set,
40	 * we can use tlbiel as long as we mark all other physical
41	 * cores as potentially having stale TLB entries for this lpid.
42	 * Otherwise, don't use tlbiel.
43	 */
44	if (kvm->arch.online_vcores == 1 && local_paca->kvm_hstate.kvm_vcpu)
45		global = 0;
46	else
47		global = 1;
48
49	/* LPID has been switched to host if in virt mode so can't do local */
50	if (!global && (mfmsr() & (MSR_IR|MSR_DR)))
51		global = 1;
52
53	if (!global) {
54		/* any other core might now have stale TLB entries... */
55		smp_wmb();
56		cpumask_setall(&kvm->arch.need_tlb_flush);
57		cpu = local_paca->kvm_hstate.kvm_vcore->pcpu;
58		cpumask_clear_cpu(cpu, &kvm->arch.need_tlb_flush);
59	}
60
61	return global;
62}
63
64/*
65 * Add this HPTE into the chain for the real page.
66 * Must be called with the chain locked; it unlocks the chain.
67 */
68void kvmppc_add_revmap_chain(struct kvm *kvm, struct revmap_entry *rev,
69			     unsigned long *rmap, long pte_index, int realmode)
70{
71	struct revmap_entry *head, *tail;
72	unsigned long i;
73
74	if (*rmap & KVMPPC_RMAP_PRESENT) {
75		i = *rmap & KVMPPC_RMAP_INDEX;
76		head = &kvm->arch.hpt.rev[i];
77		if (realmode)
78			head = real_vmalloc_addr(head);
79		tail = &kvm->arch.hpt.rev[head->back];
80		if (realmode)
81			tail = real_vmalloc_addr(tail);
82		rev->forw = i;
83		rev->back = head->back;
84		tail->forw = pte_index;
85		head->back = pte_index;
86	} else {
87		rev->forw = rev->back = pte_index;
88		*rmap = (*rmap & ~KVMPPC_RMAP_INDEX) |
89			pte_index | KVMPPC_RMAP_PRESENT | KVMPPC_RMAP_HPT;
90	}
91	unlock_rmap(rmap);
92}
93EXPORT_SYMBOL_GPL(kvmppc_add_revmap_chain);
94
95/* Update the dirty bitmap of a memslot */
96void kvmppc_update_dirty_map(const struct kvm_memory_slot *memslot,
97			     unsigned long gfn, unsigned long psize)
98{
99	unsigned long npages;
100
101	if (!psize || !memslot->dirty_bitmap)
102		return;
103	npages = (psize + PAGE_SIZE - 1) / PAGE_SIZE;
104	gfn -= memslot->base_gfn;
105	set_dirty_bits_atomic(memslot->dirty_bitmap, gfn, npages);
106}
107EXPORT_SYMBOL_GPL(kvmppc_update_dirty_map);
108
109static void kvmppc_set_dirty_from_hpte(struct kvm *kvm,
110				unsigned long hpte_v, unsigned long hpte_gr)
111{
112	struct kvm_memory_slot *memslot;
113	unsigned long gfn;
114	unsigned long psize;
115
116	psize = kvmppc_actual_pgsz(hpte_v, hpte_gr);
117	gfn = hpte_rpn(hpte_gr, psize);
118	memslot = __gfn_to_memslot(kvm_memslots_raw(kvm), gfn);
119	if (memslot && memslot->dirty_bitmap)
120		kvmppc_update_dirty_map(memslot, gfn, psize);
121}
122
123/* Returns a pointer to the revmap entry for the page mapped by a HPTE */
124static unsigned long *revmap_for_hpte(struct kvm *kvm, unsigned long hpte_v,
125				      unsigned long hpte_gr,
126				      struct kvm_memory_slot **memslotp,
127				      unsigned long *gfnp)
128{
129	struct kvm_memory_slot *memslot;
130	unsigned long *rmap;
131	unsigned long gfn;
132
133	gfn = hpte_rpn(hpte_gr, kvmppc_actual_pgsz(hpte_v, hpte_gr));
134	memslot = __gfn_to_memslot(kvm_memslots_raw(kvm), gfn);
135	if (memslotp)
136		*memslotp = memslot;
137	if (gfnp)
138		*gfnp = gfn;
139	if (!memslot)
140		return NULL;
141
142	rmap = real_vmalloc_addr(&memslot->arch.rmap[gfn - memslot->base_gfn]);
143	return rmap;
144}
145
146/* Remove this HPTE from the chain for a real page */
147static void remove_revmap_chain(struct kvm *kvm, long pte_index,
148				struct revmap_entry *rev,
149				unsigned long hpte_v, unsigned long hpte_r)
150{
151	struct revmap_entry *next, *prev;
152	unsigned long ptel, head;
153	unsigned long *rmap;
154	unsigned long rcbits;
155	struct kvm_memory_slot *memslot;
156	unsigned long gfn;
157
158	rcbits = hpte_r & (HPTE_R_R | HPTE_R_C);
159	ptel = rev->guest_rpte |= rcbits;
160	rmap = revmap_for_hpte(kvm, hpte_v, ptel, &memslot, &gfn);
161	if (!rmap)
162		return;
163	lock_rmap(rmap);
164
165	head = *rmap & KVMPPC_RMAP_INDEX;
166	next = real_vmalloc_addr(&kvm->arch.hpt.rev[rev->forw]);
167	prev = real_vmalloc_addr(&kvm->arch.hpt.rev[rev->back]);
168	next->back = rev->back;
169	prev->forw = rev->forw;
170	if (head == pte_index) {
171		head = rev->forw;
172		if (head == pte_index)
173			*rmap &= ~(KVMPPC_RMAP_PRESENT | KVMPPC_RMAP_INDEX);
174		else
175			*rmap = (*rmap & ~KVMPPC_RMAP_INDEX) | head;
176	}
177	*rmap |= rcbits << KVMPPC_RMAP_RC_SHIFT;
178	if (rcbits & HPTE_R_C)
179		kvmppc_update_dirty_map(memslot, gfn,
180					kvmppc_actual_pgsz(hpte_v, hpte_r));
181	unlock_rmap(rmap);
182}
183
184long kvmppc_do_h_enter(struct kvm *kvm, unsigned long flags,
185		       long pte_index, unsigned long pteh, unsigned long ptel,
186		       pgd_t *pgdir, bool realmode, unsigned long *pte_idx_ret)
187{
188	unsigned long i, pa, gpa, gfn, psize;
189	unsigned long slot_fn, hva;
190	__be64 *hpte;
191	struct revmap_entry *rev;
192	unsigned long g_ptel;
193	struct kvm_memory_slot *memslot;
194	unsigned hpage_shift;
195	bool is_ci;
196	unsigned long *rmap;
197	pte_t *ptep;
198	unsigned int writing;
199	unsigned long mmu_seq;
200	unsigned long rcbits;
201
202	if (kvm_is_radix(kvm))
203		return H_FUNCTION;
204	/*
205	 * The HPTE gets used by compute_tlbie_rb() to set TLBIE bits, so
206	 * these functions should work together -- must ensure a guest can not
207	 * cause problems with the TLBIE that KVM executes.
208	 */
209	if ((pteh >> HPTE_V_SSIZE_SHIFT) & 0x2) {
210		/* B=0b1x is a reserved value, disallow it. */
211		return H_PARAMETER;
212	}
213	psize = kvmppc_actual_pgsz(pteh, ptel);
214	if (!psize)
215		return H_PARAMETER;
216	writing = hpte_is_writable(ptel);
217	pteh &= ~(HPTE_V_HVLOCK | HPTE_V_ABSENT | HPTE_V_VALID);
218	ptel &= ~HPTE_GR_RESERVED;
219	g_ptel = ptel;
220
221	/* used later to detect if we might have been invalidated */
222	mmu_seq = kvm->mmu_invalidate_seq;
223	smp_rmb();
224
225	/* Find the memslot (if any) for this address */
226	gpa = (ptel & HPTE_R_RPN) & ~(psize - 1);
227	gfn = gpa >> PAGE_SHIFT;
228	memslot = __gfn_to_memslot(kvm_memslots_raw(kvm), gfn);
229	pa = 0;
230	is_ci = false;
231	rmap = NULL;
232	if (!(memslot && !(memslot->flags & KVM_MEMSLOT_INVALID))) {
233		/* Emulated MMIO - mark this with key=31 */
234		pteh |= HPTE_V_ABSENT;
235		ptel |= HPTE_R_KEY_HI | HPTE_R_KEY_LO;
236		goto do_insert;
237	}
238
239	/* Check if the requested page fits entirely in the memslot. */
240	if (!slot_is_aligned(memslot, psize))
241		return H_PARAMETER;
242	slot_fn = gfn - memslot->base_gfn;
243	rmap = &memslot->arch.rmap[slot_fn];
244
245	/* Translate to host virtual address */
246	hva = __gfn_to_hva_memslot(memslot, gfn);
247
248	arch_spin_lock(&kvm->mmu_lock.rlock.raw_lock);
249	ptep = find_kvm_host_pte(kvm, mmu_seq, hva, &hpage_shift);
250	if (ptep) {
251		pte_t pte;
252		unsigned int host_pte_size;
253
254		if (hpage_shift)
255			host_pte_size = 1ul << hpage_shift;
256		else
257			host_pte_size = PAGE_SIZE;
258		/*
259		 * We should always find the guest page size
260		 * to <= host page size, if host is using hugepage
261		 */
262		if (host_pte_size < psize) {
263			arch_spin_unlock(&kvm->mmu_lock.rlock.raw_lock);
264			return H_PARAMETER;
265		}
266		pte = kvmppc_read_update_linux_pte(ptep, writing);
267		if (pte_present(pte) && !pte_protnone(pte)) {
268			if (writing && !pte_write(pte))
269				/* make the actual HPTE be read-only */
270				ptel = hpte_make_readonly(ptel);
271			is_ci = pte_ci(pte);
272			pa = pte_pfn(pte) << PAGE_SHIFT;
273			pa |= hva & (host_pte_size - 1);
274			pa |= gpa & ~PAGE_MASK;
275		}
276	}
277	arch_spin_unlock(&kvm->mmu_lock.rlock.raw_lock);
278
279	ptel &= HPTE_R_KEY | HPTE_R_PP0 | (psize-1);
280	ptel |= pa;
281
282	if (pa)
283		pteh |= HPTE_V_VALID;
284	else {
285		pteh |= HPTE_V_ABSENT;
286		ptel &= ~(HPTE_R_KEY_HI | HPTE_R_KEY_LO);
287	}
288
289	/*If we had host pte mapping then  Check WIMG */
290	if (ptep && !hpte_cache_flags_ok(ptel, is_ci)) {
291		if (is_ci)
292			return H_PARAMETER;
293		/*
294		 * Allow guest to map emulated device memory as
295		 * uncacheable, but actually make it cacheable.
296		 */
297		ptel &= ~(HPTE_R_W|HPTE_R_I|HPTE_R_G);
298		ptel |= HPTE_R_M;
299	}
300
301	/* Find and lock the HPTEG slot to use */
302 do_insert:
303	if (pte_index >= kvmppc_hpt_npte(&kvm->arch.hpt))
304		return H_PARAMETER;
305	if (likely((flags & H_EXACT) == 0)) {
306		pte_index &= ~7UL;
307		hpte = (__be64 *)(kvm->arch.hpt.virt + (pte_index << 4));
308		for (i = 0; i < 8; ++i) {
309			if ((be64_to_cpu(*hpte) & HPTE_V_VALID) == 0 &&
310			    try_lock_hpte(hpte, HPTE_V_HVLOCK | HPTE_V_VALID |
311					  HPTE_V_ABSENT))
312				break;
313			hpte += 2;
314		}
315		if (i == 8) {
316			/*
317			 * Since try_lock_hpte doesn't retry (not even stdcx.
318			 * failures), it could be that there is a free slot
319			 * but we transiently failed to lock it.  Try again,
320			 * actually locking each slot and checking it.
321			 */
322			hpte -= 16;
323			for (i = 0; i < 8; ++i) {
324				u64 pte;
325				while (!try_lock_hpte(hpte, HPTE_V_HVLOCK))
326					cpu_relax();
327				pte = be64_to_cpu(hpte[0]);
328				if (!(pte & (HPTE_V_VALID | HPTE_V_ABSENT)))
329					break;
330				__unlock_hpte(hpte, pte);
331				hpte += 2;
332			}
333			if (i == 8)
334				return H_PTEG_FULL;
335		}
336		pte_index += i;
337	} else {
338		hpte = (__be64 *)(kvm->arch.hpt.virt + (pte_index << 4));
339		if (!try_lock_hpte(hpte, HPTE_V_HVLOCK | HPTE_V_VALID |
340				   HPTE_V_ABSENT)) {
341			/* Lock the slot and check again */
342			u64 pte;
343
344			while (!try_lock_hpte(hpte, HPTE_V_HVLOCK))
345				cpu_relax();
346			pte = be64_to_cpu(hpte[0]);
347			if (pte & (HPTE_V_VALID | HPTE_V_ABSENT)) {
348				__unlock_hpte(hpte, pte);
349				return H_PTEG_FULL;
350			}
351		}
352	}
353
354	/* Save away the guest's idea of the second HPTE dword */
355	rev = &kvm->arch.hpt.rev[pte_index];
356	if (realmode)
357		rev = real_vmalloc_addr(rev);
358	if (rev) {
359		rev->guest_rpte = g_ptel;
360		note_hpte_modification(kvm, rev);
361	}
362
363	/* Link HPTE into reverse-map chain */
364	if (pteh & HPTE_V_VALID) {
365		if (realmode)
366			rmap = real_vmalloc_addr(rmap);
367		lock_rmap(rmap);
368		/* Check for pending invalidations under the rmap chain lock */
369		if (mmu_invalidate_retry(kvm, mmu_seq)) {
370			/* inval in progress, write a non-present HPTE */
371			pteh |= HPTE_V_ABSENT;
372			pteh &= ~HPTE_V_VALID;
373			ptel &= ~(HPTE_R_KEY_HI | HPTE_R_KEY_LO);
374			unlock_rmap(rmap);
375		} else {
376			kvmppc_add_revmap_chain(kvm, rev, rmap, pte_index,
377						realmode);
378			/* Only set R/C in real HPTE if already set in *rmap */
379			rcbits = *rmap >> KVMPPC_RMAP_RC_SHIFT;
380			ptel &= rcbits | ~(HPTE_R_R | HPTE_R_C);
381		}
382	}
383
384	/* Convert to new format on P9 */
385	if (cpu_has_feature(CPU_FTR_ARCH_300)) {
386		ptel = hpte_old_to_new_r(pteh, ptel);
387		pteh = hpte_old_to_new_v(pteh);
388	}
389	hpte[1] = cpu_to_be64(ptel);
390
391	/* Write the first HPTE dword, unlocking the HPTE and making it valid */
392	eieio();
393	__unlock_hpte(hpte, pteh);
394	asm volatile("ptesync" : : : "memory");
395
396	*pte_idx_ret = pte_index;
397	return H_SUCCESS;
398}
399EXPORT_SYMBOL_GPL(kvmppc_do_h_enter);
400
401long kvmppc_h_enter(struct kvm_vcpu *vcpu, unsigned long flags,
402		    long pte_index, unsigned long pteh, unsigned long ptel)
403{
404	return kvmppc_do_h_enter(vcpu->kvm, flags, pte_index, pteh, ptel,
405				 vcpu->arch.pgdir, true,
406				 &vcpu->arch.regs.gpr[4]);
407}
408EXPORT_SYMBOL_GPL(kvmppc_h_enter);
409
410#ifdef __BIG_ENDIAN__
411#define LOCK_TOKEN	(*(u32 *)(&get_paca()->lock_token))
412#else
413#define LOCK_TOKEN	(*(u32 *)(&get_paca()->paca_index))
414#endif
415
416static inline int is_mmio_hpte(unsigned long v, unsigned long r)
417{
418	return ((v & HPTE_V_ABSENT) &&
419		(r & (HPTE_R_KEY_HI | HPTE_R_KEY_LO)) ==
420		(HPTE_R_KEY_HI | HPTE_R_KEY_LO));
421}
422
423static inline void fixup_tlbie_lpid(unsigned long rb_value, unsigned long lpid)
424{
425
426	if (cpu_has_feature(CPU_FTR_P9_TLBIE_ERAT_BUG)) {
427		/* Radix flush for a hash guest */
428
429		unsigned long rb,rs,prs,r,ric;
430
431		rb = PPC_BIT(52); /* IS = 2 */
432		rs = 0;  /* lpid = 0 */
433		prs = 0; /* partition scoped */
434		r = 1;   /* radix format */
435		ric = 0; /* RIC_FLSUH_TLB */
436
437		/*
438		 * Need the extra ptesync to make sure we don't
439		 * re-order the tlbie
440		 */
441		asm volatile("ptesync": : :"memory");
442		asm volatile(PPC_TLBIE_5(%0, %4, %3, %2, %1)
443			     : : "r"(rb), "i"(r), "i"(prs),
444			       "i"(ric), "r"(rs) : "memory");
445	}
446
447	if (cpu_has_feature(CPU_FTR_P9_TLBIE_STQ_BUG)) {
448		asm volatile("ptesync": : :"memory");
449		asm volatile(PPC_TLBIE_5(%0,%1,0,0,0) : :
450			     "r" (rb_value), "r" (lpid));
451	}
452}
453
454static void do_tlbies(struct kvm *kvm, unsigned long *rbvalues,
455		      long npages, int global, bool need_sync)
456{
457	long i;
458
459	/*
460	 * We use the POWER9 5-operand versions of tlbie and tlbiel here.
461	 * Since we are using RIC=0 PRS=0 R=0, and P7/P8 tlbiel ignores
462	 * the RS field, this is backwards-compatible with P7 and P8.
463	 */
464	if (global) {
465		if (need_sync)
466			asm volatile("ptesync" : : : "memory");
467		for (i = 0; i < npages; ++i) {
468			asm volatile(PPC_TLBIE_5(%0,%1,0,0,0) : :
469				     "r" (rbvalues[i]), "r" (kvm->arch.lpid));
470		}
471
472		fixup_tlbie_lpid(rbvalues[i - 1], kvm->arch.lpid);
473		asm volatile("eieio; tlbsync; ptesync" : : : "memory");
474	} else {
475		if (need_sync)
476			asm volatile("ptesync" : : : "memory");
477		for (i = 0; i < npages; ++i) {
478			asm volatile(PPC_TLBIEL(%0,%1,0,0,0) : :
479				     "r" (rbvalues[i]), "r" (0));
480		}
481		asm volatile("ptesync" : : : "memory");
482	}
483}
484
485long kvmppc_do_h_remove(struct kvm *kvm, unsigned long flags,
486			unsigned long pte_index, unsigned long avpn,
487			unsigned long *hpret)
488{
489	__be64 *hpte;
490	unsigned long v, r, rb;
491	struct revmap_entry *rev;
492	u64 pte, orig_pte, pte_r;
493
494	if (kvm_is_radix(kvm))
495		return H_FUNCTION;
496	if (pte_index >= kvmppc_hpt_npte(&kvm->arch.hpt))
497		return H_PARAMETER;
498	hpte = (__be64 *)(kvm->arch.hpt.virt + (pte_index << 4));
499	while (!try_lock_hpte(hpte, HPTE_V_HVLOCK))
500		cpu_relax();
501	pte = orig_pte = be64_to_cpu(hpte[0]);
502	pte_r = be64_to_cpu(hpte[1]);
503	if (cpu_has_feature(CPU_FTR_ARCH_300)) {
504		pte = hpte_new_to_old_v(pte, pte_r);
505		pte_r = hpte_new_to_old_r(pte_r);
506	}
507	if ((pte & (HPTE_V_ABSENT | HPTE_V_VALID)) == 0 ||
508	    ((flags & H_AVPN) && (pte & ~0x7fUL) != avpn) ||
509	    ((flags & H_ANDCOND) && (pte & avpn) != 0)) {
510		__unlock_hpte(hpte, orig_pte);
511		return H_NOT_FOUND;
512	}
513
514	rev = real_vmalloc_addr(&kvm->arch.hpt.rev[pte_index]);
515	v = pte & ~HPTE_V_HVLOCK;
516	if (v & HPTE_V_VALID) {
517		hpte[0] &= ~cpu_to_be64(HPTE_V_VALID);
518		rb = compute_tlbie_rb(v, pte_r, pte_index);
519		do_tlbies(kvm, &rb, 1, global_invalidates(kvm), true);
520		/*
521		 * The reference (R) and change (C) bits in a HPT
522		 * entry can be set by hardware at any time up until
523		 * the HPTE is invalidated and the TLB invalidation
524		 * sequence has completed.  This means that when
525		 * removing a HPTE, we need to re-read the HPTE after
526		 * the invalidation sequence has completed in order to
527		 * obtain reliable values of R and C.
528		 */
529		remove_revmap_chain(kvm, pte_index, rev, v,
530				    be64_to_cpu(hpte[1]));
531	}
532	r = rev->guest_rpte & ~HPTE_GR_RESERVED;
533	note_hpte_modification(kvm, rev);
534	unlock_hpte(hpte, 0);
535
536	if (is_mmio_hpte(v, pte_r))
537		atomic64_inc(&kvm->arch.mmio_update);
538
539	if (v & HPTE_V_ABSENT)
540		v = (v & ~HPTE_V_ABSENT) | HPTE_V_VALID;
541	hpret[0] = v;
542	hpret[1] = r;
543	return H_SUCCESS;
544}
545EXPORT_SYMBOL_GPL(kvmppc_do_h_remove);
546
547long kvmppc_h_remove(struct kvm_vcpu *vcpu, unsigned long flags,
548		     unsigned long pte_index, unsigned long avpn)
549{
550	return kvmppc_do_h_remove(vcpu->kvm, flags, pte_index, avpn,
551				  &vcpu->arch.regs.gpr[4]);
552}
553EXPORT_SYMBOL_GPL(kvmppc_h_remove);
554
555long kvmppc_h_bulk_remove(struct kvm_vcpu *vcpu)
556{
557	struct kvm *kvm = vcpu->kvm;
558	unsigned long *args = &vcpu->arch.regs.gpr[4];
559	__be64 *hp, *hptes[4];
560	unsigned long tlbrb[4];
561	long int i, j, k, n, found, indexes[4];
562	unsigned long flags, req, pte_index, rcbits;
563	int global;
564	long int ret = H_SUCCESS;
565	struct revmap_entry *rev, *revs[4];
566	u64 hp0, hp1;
567
568	if (kvm_is_radix(kvm))
569		return H_FUNCTION;
570	global = global_invalidates(kvm);
571	for (i = 0; i < 4 && ret == H_SUCCESS; ) {
572		n = 0;
573		for (; i < 4; ++i) {
574			j = i * 2;
575			pte_index = args[j];
576			flags = pte_index >> 56;
577			pte_index &= ((1ul << 56) - 1);
578			req = flags >> 6;
579			flags &= 3;
580			if (req == 3) {		/* no more requests */
581				i = 4;
582				break;
583			}
584			if (req != 1 || flags == 3 ||
585			    pte_index >= kvmppc_hpt_npte(&kvm->arch.hpt)) {
586				/* parameter error */
587				args[j] = ((0xa0 | flags) << 56) + pte_index;
588				ret = H_PARAMETER;
589				break;
590			}
591			hp = (__be64 *) (kvm->arch.hpt.virt + (pte_index << 4));
592			/* to avoid deadlock, don't spin except for first */
593			if (!try_lock_hpte(hp, HPTE_V_HVLOCK)) {
594				if (n)
595					break;
596				while (!try_lock_hpte(hp, HPTE_V_HVLOCK))
597					cpu_relax();
598			}
599			found = 0;
600			hp0 = be64_to_cpu(hp[0]);
601			hp1 = be64_to_cpu(hp[1]);
602			if (cpu_has_feature(CPU_FTR_ARCH_300)) {
603				hp0 = hpte_new_to_old_v(hp0, hp1);
604				hp1 = hpte_new_to_old_r(hp1);
605			}
606			if (hp0 & (HPTE_V_ABSENT | HPTE_V_VALID)) {
607				switch (flags & 3) {
608				case 0:		/* absolute */
609					found = 1;
610					break;
611				case 1:		/* andcond */
612					if (!(hp0 & args[j + 1]))
613						found = 1;
614					break;
615				case 2:		/* AVPN */
616					if ((hp0 & ~0x7fUL) == args[j + 1])
617						found = 1;
618					break;
619				}
620			}
621			if (!found) {
622				hp[0] &= ~cpu_to_be64(HPTE_V_HVLOCK);
623				args[j] = ((0x90 | flags) << 56) + pte_index;
624				continue;
625			}
626
627			args[j] = ((0x80 | flags) << 56) + pte_index;
628			rev = real_vmalloc_addr(&kvm->arch.hpt.rev[pte_index]);
629			note_hpte_modification(kvm, rev);
630
631			if (!(hp0 & HPTE_V_VALID)) {
632				/* insert R and C bits from PTE */
633				rcbits = rev->guest_rpte & (HPTE_R_R|HPTE_R_C);
634				args[j] |= rcbits << (56 - 5);
635				hp[0] = 0;
636				if (is_mmio_hpte(hp0, hp1))
637					atomic64_inc(&kvm->arch.mmio_update);
638				continue;
639			}
640
641			/* leave it locked */
642			hp[0] &= ~cpu_to_be64(HPTE_V_VALID);
643			tlbrb[n] = compute_tlbie_rb(hp0, hp1, pte_index);
644			indexes[n] = j;
645			hptes[n] = hp;
646			revs[n] = rev;
647			++n;
648		}
649
650		if (!n)
651			break;
652
653		/* Now that we've collected a batch, do the tlbies */
654		do_tlbies(kvm, tlbrb, n, global, true);
655
656		/* Read PTE low words after tlbie to get final R/C values */
657		for (k = 0; k < n; ++k) {
658			j = indexes[k];
659			pte_index = args[j] & ((1ul << 56) - 1);
660			hp = hptes[k];
661			rev = revs[k];
662			remove_revmap_chain(kvm, pte_index, rev,
663				be64_to_cpu(hp[0]), be64_to_cpu(hp[1]));
664			rcbits = rev->guest_rpte & (HPTE_R_R|HPTE_R_C);
665			args[j] |= rcbits << (56 - 5);
666			__unlock_hpte(hp, 0);
667		}
668	}
669
670	return ret;
671}
672EXPORT_SYMBOL_GPL(kvmppc_h_bulk_remove);
673
674long kvmppc_h_protect(struct kvm_vcpu *vcpu, unsigned long flags,
675		      unsigned long pte_index, unsigned long avpn)
676{
677	struct kvm *kvm = vcpu->kvm;
678	__be64 *hpte;
679	struct revmap_entry *rev;
680	unsigned long v, r, rb, mask, bits;
681	u64 pte_v, pte_r;
682
683	if (kvm_is_radix(kvm))
684		return H_FUNCTION;
685	if (pte_index >= kvmppc_hpt_npte(&kvm->arch.hpt))
686		return H_PARAMETER;
687
688	hpte = (__be64 *)(kvm->arch.hpt.virt + (pte_index << 4));
689	while (!try_lock_hpte(hpte, HPTE_V_HVLOCK))
690		cpu_relax();
691	v = pte_v = be64_to_cpu(hpte[0]);
692	if (cpu_has_feature(CPU_FTR_ARCH_300))
693		v = hpte_new_to_old_v(v, be64_to_cpu(hpte[1]));
694	if ((v & (HPTE_V_ABSENT | HPTE_V_VALID)) == 0 ||
695	    ((flags & H_AVPN) && (v & ~0x7fUL) != avpn)) {
696		__unlock_hpte(hpte, pte_v);
697		return H_NOT_FOUND;
698	}
699
700	pte_r = be64_to_cpu(hpte[1]);
701	bits = (flags << 55) & HPTE_R_PP0;
702	bits |= (flags << 48) & HPTE_R_KEY_HI;
703	bits |= flags & (HPTE_R_PP | HPTE_R_N | HPTE_R_KEY_LO);
704
705	/* Update guest view of 2nd HPTE dword */
706	mask = HPTE_R_PP0 | HPTE_R_PP | HPTE_R_N |
707		HPTE_R_KEY_HI | HPTE_R_KEY_LO;
708	rev = real_vmalloc_addr(&kvm->arch.hpt.rev[pte_index]);
709	if (rev) {
710		r = (rev->guest_rpte & ~mask) | bits;
711		rev->guest_rpte = r;
712		note_hpte_modification(kvm, rev);
713	}
714
715	/* Update HPTE */
716	if (v & HPTE_V_VALID) {
717		/*
718		 * If the page is valid, don't let it transition from
719		 * readonly to writable.  If it should be writable, we'll
720		 * take a trap and let the page fault code sort it out.
721		 */
722		r = (pte_r & ~mask) | bits;
723		if (hpte_is_writable(r) && !hpte_is_writable(pte_r))
724			r = hpte_make_readonly(r);
725		/* If the PTE is changing, invalidate it first */
726		if (r != pte_r) {
727			rb = compute_tlbie_rb(v, r, pte_index);
728			hpte[0] = cpu_to_be64((pte_v & ~HPTE_V_VALID) |
729					      HPTE_V_ABSENT);
730			do_tlbies(kvm, &rb, 1, global_invalidates(kvm), true);
731			/* Don't lose R/C bit updates done by hardware */
732			r |= be64_to_cpu(hpte[1]) & (HPTE_R_R | HPTE_R_C);
733			hpte[1] = cpu_to_be64(r);
734		}
735	}
736	unlock_hpte(hpte, pte_v & ~HPTE_V_HVLOCK);
737	asm volatile("ptesync" : : : "memory");
738	if (is_mmio_hpte(v, pte_r))
739		atomic64_inc(&kvm->arch.mmio_update);
740
741	return H_SUCCESS;
742}
743EXPORT_SYMBOL_GPL(kvmppc_h_protect);
744
745long kvmppc_h_read(struct kvm_vcpu *vcpu, unsigned long flags,
746		   unsigned long pte_index)
747{
748	struct kvm *kvm = vcpu->kvm;
749	__be64 *hpte;
750	unsigned long v, r;
751	int i, n = 1;
752	struct revmap_entry *rev = NULL;
753
754	if (kvm_is_radix(kvm))
755		return H_FUNCTION;
756	if (pte_index >= kvmppc_hpt_npte(&kvm->arch.hpt))
757		return H_PARAMETER;
758	if (flags & H_READ_4) {
759		pte_index &= ~3;
760		n = 4;
761	}
762	rev = real_vmalloc_addr(&kvm->arch.hpt.rev[pte_index]);
763	for (i = 0; i < n; ++i, ++pte_index) {
764		hpte = (__be64 *)(kvm->arch.hpt.virt + (pte_index << 4));
765		v = be64_to_cpu(hpte[0]) & ~HPTE_V_HVLOCK;
766		r = be64_to_cpu(hpte[1]);
767		if (cpu_has_feature(CPU_FTR_ARCH_300)) {
768			v = hpte_new_to_old_v(v, r);
769			r = hpte_new_to_old_r(r);
770		}
771		if (v & HPTE_V_ABSENT) {
772			v &= ~HPTE_V_ABSENT;
773			v |= HPTE_V_VALID;
774		}
775		if (v & HPTE_V_VALID) {
776			r = rev[i].guest_rpte | (r & (HPTE_R_R | HPTE_R_C));
777			r &= ~HPTE_GR_RESERVED;
778		}
779		kvmppc_set_gpr(vcpu, 4 + i * 2, v);
780		kvmppc_set_gpr(vcpu, 5 + i * 2, r);
781	}
782	return H_SUCCESS;
783}
784EXPORT_SYMBOL_GPL(kvmppc_h_read);
785
786long kvmppc_h_clear_ref(struct kvm_vcpu *vcpu, unsigned long flags,
787			unsigned long pte_index)
788{
789	struct kvm *kvm = vcpu->kvm;
790	__be64 *hpte;
791	unsigned long v, r, gr;
792	struct revmap_entry *rev;
793	unsigned long *rmap;
794	long ret = H_NOT_FOUND;
795
796	if (kvm_is_radix(kvm))
797		return H_FUNCTION;
798	if (pte_index >= kvmppc_hpt_npte(&kvm->arch.hpt))
799		return H_PARAMETER;
800
801	rev = real_vmalloc_addr(&kvm->arch.hpt.rev[pte_index]);
802	hpte = (__be64 *)(kvm->arch.hpt.virt + (pte_index << 4));
803	while (!try_lock_hpte(hpte, HPTE_V_HVLOCK))
804		cpu_relax();
805	v = be64_to_cpu(hpte[0]);
806	r = be64_to_cpu(hpte[1]);
807	if (!(v & (HPTE_V_VALID | HPTE_V_ABSENT)))
808		goto out;
809
810	gr = rev->guest_rpte;
811	if (rev->guest_rpte & HPTE_R_R) {
812		rev->guest_rpte &= ~HPTE_R_R;
813		note_hpte_modification(kvm, rev);
814	}
815	if (v & HPTE_V_VALID) {
816		gr |= r & (HPTE_R_R | HPTE_R_C);
817		if (r & HPTE_R_R) {
818			kvmppc_clear_ref_hpte(kvm, hpte, pte_index);
819			rmap = revmap_for_hpte(kvm, v, gr, NULL, NULL);
820			if (rmap) {
821				lock_rmap(rmap);
822				*rmap |= KVMPPC_RMAP_REFERENCED;
823				unlock_rmap(rmap);
824			}
825		}
826	}
827	kvmppc_set_gpr(vcpu, 4, gr);
828	ret = H_SUCCESS;
829 out:
830	unlock_hpte(hpte, v & ~HPTE_V_HVLOCK);
831	return ret;
832}
833EXPORT_SYMBOL_GPL(kvmppc_h_clear_ref);
834
835long kvmppc_h_clear_mod(struct kvm_vcpu *vcpu, unsigned long flags,
836			unsigned long pte_index)
837{
838	struct kvm *kvm = vcpu->kvm;
839	__be64 *hpte;
840	unsigned long v, r, gr;
841	struct revmap_entry *rev;
842	long ret = H_NOT_FOUND;
843
844	if (kvm_is_radix(kvm))
845		return H_FUNCTION;
846	if (pte_index >= kvmppc_hpt_npte(&kvm->arch.hpt))
847		return H_PARAMETER;
848
849	rev = real_vmalloc_addr(&kvm->arch.hpt.rev[pte_index]);
850	hpte = (__be64 *)(kvm->arch.hpt.virt + (pte_index << 4));
851	while (!try_lock_hpte(hpte, HPTE_V_HVLOCK))
852		cpu_relax();
853	v = be64_to_cpu(hpte[0]);
854	r = be64_to_cpu(hpte[1]);
855	if (!(v & (HPTE_V_VALID | HPTE_V_ABSENT)))
856		goto out;
857
858	gr = rev->guest_rpte;
859	if (gr & HPTE_R_C) {
860		rev->guest_rpte &= ~HPTE_R_C;
861		note_hpte_modification(kvm, rev);
862	}
863	if (v & HPTE_V_VALID) {
864		/* need to make it temporarily absent so C is stable */
865		hpte[0] |= cpu_to_be64(HPTE_V_ABSENT);
866		kvmppc_invalidate_hpte(kvm, hpte, pte_index);
867		r = be64_to_cpu(hpte[1]);
868		gr |= r & (HPTE_R_R | HPTE_R_C);
869		if (r & HPTE_R_C) {
870			hpte[1] = cpu_to_be64(r & ~HPTE_R_C);
871			eieio();
872			kvmppc_set_dirty_from_hpte(kvm, v, gr);
873		}
874	}
875	kvmppc_set_gpr(vcpu, 4, gr);
876	ret = H_SUCCESS;
877 out:
878	unlock_hpte(hpte, v & ~HPTE_V_HVLOCK);
879	return ret;
880}
881EXPORT_SYMBOL_GPL(kvmppc_h_clear_mod);
882
883static int kvmppc_get_hpa(struct kvm_vcpu *vcpu, unsigned long mmu_seq,
884			  unsigned long gpa, int writing, unsigned long *hpa,
885			  struct kvm_memory_slot **memslot_p)
886{
887	struct kvm *kvm = vcpu->kvm;
888	struct kvm_memory_slot *memslot;
889	unsigned long gfn, hva, pa, psize = PAGE_SHIFT;
890	unsigned int shift;
891	pte_t *ptep, pte;
892
893	/* Find the memslot for this address */
894	gfn = gpa >> PAGE_SHIFT;
895	memslot = __gfn_to_memslot(kvm_memslots_raw(kvm), gfn);
896	if (!memslot || (memslot->flags & KVM_MEMSLOT_INVALID))
897		return H_PARAMETER;
898
899	/* Translate to host virtual address */
900	hva = __gfn_to_hva_memslot(memslot, gfn);
901
902	/* Try to find the host pte for that virtual address */
903	ptep = find_kvm_host_pte(kvm, mmu_seq, hva, &shift);
904	if (!ptep)
905		return H_TOO_HARD;
906	pte = kvmppc_read_update_linux_pte(ptep, writing);
907	if (!pte_present(pte))
908		return H_TOO_HARD;
909
910	/* Convert to a physical address */
911	if (shift)
912		psize = 1UL << shift;
913	pa = pte_pfn(pte) << PAGE_SHIFT;
914	pa |= hva & (psize - 1);
915	pa |= gpa & ~PAGE_MASK;
916
917	if (hpa)
918		*hpa = pa;
919	if (memslot_p)
920		*memslot_p = memslot;
921
922	return H_SUCCESS;
923}
924
925static long kvmppc_do_h_page_init_zero(struct kvm_vcpu *vcpu,
926				       unsigned long dest)
927{
928	struct kvm_memory_slot *memslot;
929	struct kvm *kvm = vcpu->kvm;
930	unsigned long pa, mmu_seq;
931	long ret = H_SUCCESS;
932	int i;
933
934	/* Used later to detect if we might have been invalidated */
935	mmu_seq = kvm->mmu_invalidate_seq;
936	smp_rmb();
937
938	arch_spin_lock(&kvm->mmu_lock.rlock.raw_lock);
939
940	ret = kvmppc_get_hpa(vcpu, mmu_seq, dest, 1, &pa, &memslot);
941	if (ret != H_SUCCESS)
942		goto out_unlock;
943
944	/* Zero the page */
945	for (i = 0; i < SZ_4K; i += L1_CACHE_BYTES, pa += L1_CACHE_BYTES)
946		dcbz((void *)pa);
947	kvmppc_update_dirty_map(memslot, dest >> PAGE_SHIFT, PAGE_SIZE);
948
949out_unlock:
950	arch_spin_unlock(&kvm->mmu_lock.rlock.raw_lock);
951	return ret;
952}
953
954static long kvmppc_do_h_page_init_copy(struct kvm_vcpu *vcpu,
955				       unsigned long dest, unsigned long src)
956{
957	unsigned long dest_pa, src_pa, mmu_seq;
958	struct kvm_memory_slot *dest_memslot;
959	struct kvm *kvm = vcpu->kvm;
960	long ret = H_SUCCESS;
961
962	/* Used later to detect if we might have been invalidated */
963	mmu_seq = kvm->mmu_invalidate_seq;
964	smp_rmb();
965
966	arch_spin_lock(&kvm->mmu_lock.rlock.raw_lock);
967	ret = kvmppc_get_hpa(vcpu, mmu_seq, dest, 1, &dest_pa, &dest_memslot);
968	if (ret != H_SUCCESS)
969		goto out_unlock;
970
971	ret = kvmppc_get_hpa(vcpu, mmu_seq, src, 0, &src_pa, NULL);
972	if (ret != H_SUCCESS)
973		goto out_unlock;
974
975	/* Copy the page */
976	memcpy((void *)dest_pa, (void *)src_pa, SZ_4K);
977
978	kvmppc_update_dirty_map(dest_memslot, dest >> PAGE_SHIFT, PAGE_SIZE);
979
980out_unlock:
981	arch_spin_unlock(&kvm->mmu_lock.rlock.raw_lock);
982	return ret;
983}
984
985long kvmppc_rm_h_page_init(struct kvm_vcpu *vcpu, unsigned long flags,
986			   unsigned long dest, unsigned long src)
987{
988	struct kvm *kvm = vcpu->kvm;
989	u64 pg_mask = SZ_4K - 1;	/* 4K page size */
990	long ret = H_SUCCESS;
991
992	/* Don't handle radix mode here, go up to the virtual mode handler */
993	if (kvm_is_radix(kvm))
994		return H_TOO_HARD;
995
996	/* Check for invalid flags (H_PAGE_SET_LOANED covers all CMO flags) */
997	if (flags & ~(H_ICACHE_INVALIDATE | H_ICACHE_SYNCHRONIZE |
998		      H_ZERO_PAGE | H_COPY_PAGE | H_PAGE_SET_LOANED))
999		return H_PARAMETER;
1000
1001	/* dest (and src if copy_page flag set) must be page aligned */
1002	if ((dest & pg_mask) || ((flags & H_COPY_PAGE) && (src & pg_mask)))
1003		return H_PARAMETER;
1004
1005	/* zero and/or copy the page as determined by the flags */
1006	if (flags & H_COPY_PAGE)
1007		ret = kvmppc_do_h_page_init_copy(vcpu, dest, src);
1008	else if (flags & H_ZERO_PAGE)
1009		ret = kvmppc_do_h_page_init_zero(vcpu, dest);
1010
1011	/* We can ignore the other flags */
1012
1013	return ret;
1014}
1015
1016void kvmppc_invalidate_hpte(struct kvm *kvm, __be64 *hptep,
1017			unsigned long pte_index)
1018{
1019	unsigned long rb;
1020	u64 hp0, hp1;
1021
1022	hptep[0] &= ~cpu_to_be64(HPTE_V_VALID);
1023	hp0 = be64_to_cpu(hptep[0]);
1024	hp1 = be64_to_cpu(hptep[1]);
1025	if (cpu_has_feature(CPU_FTR_ARCH_300)) {
1026		hp0 = hpte_new_to_old_v(hp0, hp1);
1027		hp1 = hpte_new_to_old_r(hp1);
1028	}
1029	rb = compute_tlbie_rb(hp0, hp1, pte_index);
1030	do_tlbies(kvm, &rb, 1, 1, true);
1031}
1032EXPORT_SYMBOL_GPL(kvmppc_invalidate_hpte);
1033
1034void kvmppc_clear_ref_hpte(struct kvm *kvm, __be64 *hptep,
1035			   unsigned long pte_index)
1036{
1037	unsigned long rb;
1038	unsigned char rbyte;
1039	u64 hp0, hp1;
1040
1041	hp0 = be64_to_cpu(hptep[0]);
1042	hp1 = be64_to_cpu(hptep[1]);
1043	if (cpu_has_feature(CPU_FTR_ARCH_300)) {
1044		hp0 = hpte_new_to_old_v(hp0, hp1);
1045		hp1 = hpte_new_to_old_r(hp1);
1046	}
1047	rb = compute_tlbie_rb(hp0, hp1, pte_index);
1048	rbyte = (be64_to_cpu(hptep[1]) & ~HPTE_R_R) >> 8;
1049	/* modify only the second-last byte, which contains the ref bit */
1050	*((char *)hptep + 14) = rbyte;
1051	do_tlbies(kvm, &rb, 1, 1, false);
1052}
1053EXPORT_SYMBOL_GPL(kvmppc_clear_ref_hpte);
1054
1055static int slb_base_page_shift[4] = {
1056	24,	/* 16M */
1057	16,	/* 64k */
1058	34,	/* 16G */
1059	20,	/* 1M, unsupported */
1060};
1061
1062static struct mmio_hpte_cache_entry *mmio_cache_search(struct kvm_vcpu *vcpu,
1063		unsigned long eaddr, unsigned long slb_v, long mmio_update)
1064{
1065	struct mmio_hpte_cache_entry *entry = NULL;
1066	unsigned int pshift;
1067	unsigned int i;
1068
1069	for (i = 0; i < MMIO_HPTE_CACHE_SIZE; i++) {
1070		entry = &vcpu->arch.mmio_cache.entry[i];
1071		if (entry->mmio_update == mmio_update) {
1072			pshift = entry->slb_base_pshift;
1073			if ((entry->eaddr >> pshift) == (eaddr >> pshift) &&
1074			    entry->slb_v == slb_v)
1075				return entry;
1076		}
1077	}
1078	return NULL;
1079}
1080
1081static struct mmio_hpte_cache_entry *
1082			next_mmio_cache_entry(struct kvm_vcpu *vcpu)
1083{
1084	unsigned int index = vcpu->arch.mmio_cache.index;
1085
1086	vcpu->arch.mmio_cache.index++;
1087	if (vcpu->arch.mmio_cache.index == MMIO_HPTE_CACHE_SIZE)
1088		vcpu->arch.mmio_cache.index = 0;
1089
1090	return &vcpu->arch.mmio_cache.entry[index];
1091}
1092
1093/* When called from virtmode, this func should be protected by
1094 * preempt_disable(), otherwise, the holding of HPTE_V_HVLOCK
1095 * can trigger deadlock issue.
1096 */
1097long kvmppc_hv_find_lock_hpte(struct kvm *kvm, gva_t eaddr, unsigned long slb_v,
1098			      unsigned long valid)
1099{
1100	unsigned int i;
1101	unsigned int pshift;
1102	unsigned long somask;
1103	unsigned long vsid, hash;
1104	unsigned long avpn;
1105	__be64 *hpte;
1106	unsigned long mask, val;
1107	unsigned long v, r, orig_v;
1108
1109	/* Get page shift, work out hash and AVPN etc. */
1110	mask = SLB_VSID_B | HPTE_V_AVPN | HPTE_V_SECONDARY;
1111	val = 0;
1112	pshift = 12;
1113	if (slb_v & SLB_VSID_L) {
1114		mask |= HPTE_V_LARGE;
1115		val |= HPTE_V_LARGE;
1116		pshift = slb_base_page_shift[(slb_v & SLB_VSID_LP) >> 4];
1117	}
1118	if (slb_v & SLB_VSID_B_1T) {
1119		somask = (1UL << 40) - 1;
1120		vsid = (slb_v & ~SLB_VSID_B) >> SLB_VSID_SHIFT_1T;
1121		vsid ^= vsid << 25;
1122	} else {
1123		somask = (1UL << 28) - 1;
1124		vsid = (slb_v & ~SLB_VSID_B) >> SLB_VSID_SHIFT;
1125	}
1126	hash = (vsid ^ ((eaddr & somask) >> pshift)) & kvmppc_hpt_mask(&kvm->arch.hpt);
1127	avpn = slb_v & ~(somask >> 16);	/* also includes B */
1128	avpn |= (eaddr & somask) >> 16;
1129
1130	if (pshift >= 24)
1131		avpn &= ~((1UL << (pshift - 16)) - 1);
1132	else
1133		avpn &= ~0x7fUL;
1134	val |= avpn;
1135
1136	for (;;) {
1137		hpte = (__be64 *)(kvm->arch.hpt.virt + (hash << 7));
1138
1139		for (i = 0; i < 16; i += 2) {
1140			/* Read the PTE racily */
1141			v = be64_to_cpu(hpte[i]) & ~HPTE_V_HVLOCK;
1142			if (cpu_has_feature(CPU_FTR_ARCH_300))
1143				v = hpte_new_to_old_v(v, be64_to_cpu(hpte[i+1]));
1144
1145			/* Check valid/absent, hash, segment size and AVPN */
1146			if (!(v & valid) || (v & mask) != val)
1147				continue;
1148
1149			/* Lock the PTE and read it under the lock */
1150			while (!try_lock_hpte(&hpte[i], HPTE_V_HVLOCK))
1151				cpu_relax();
1152			v = orig_v = be64_to_cpu(hpte[i]) & ~HPTE_V_HVLOCK;
1153			r = be64_to_cpu(hpte[i+1]);
1154			if (cpu_has_feature(CPU_FTR_ARCH_300)) {
1155				v = hpte_new_to_old_v(v, r);
1156				r = hpte_new_to_old_r(r);
1157			}
1158
1159			/*
1160			 * Check the HPTE again, including base page size
1161			 */
1162			if ((v & valid) && (v & mask) == val &&
1163			    kvmppc_hpte_base_page_shift(v, r) == pshift)
1164				/* Return with the HPTE still locked */
1165				return (hash << 3) + (i >> 1);
1166
1167			__unlock_hpte(&hpte[i], orig_v);
1168		}
1169
1170		if (val & HPTE_V_SECONDARY)
1171			break;
1172		val |= HPTE_V_SECONDARY;
1173		hash = hash ^ kvmppc_hpt_mask(&kvm->arch.hpt);
1174	}
1175	return -1;
1176}
1177EXPORT_SYMBOL(kvmppc_hv_find_lock_hpte);
1178
1179/*
1180 * Called in real mode to check whether an HPTE not found fault
1181 * is due to accessing a paged-out page or an emulated MMIO page,
1182 * or if a protection fault is due to accessing a page that the
1183 * guest wanted read/write access to but which we made read-only.
1184 * Returns a possibly modified status (DSISR) value if not
1185 * (i.e. pass the interrupt to the guest),
1186 * -1 to pass the fault up to host kernel mode code, -2 to do that
1187 * and also load the instruction word (for MMIO emulation),
1188 * or 0 if we should make the guest retry the access.
1189 */
1190long kvmppc_hpte_hv_fault(struct kvm_vcpu *vcpu, unsigned long addr,
1191			  unsigned long slb_v, unsigned int status, bool data)
1192{
1193	struct kvm *kvm = vcpu->kvm;
1194	long int index;
1195	unsigned long v, r, gr, orig_v;
1196	__be64 *hpte;
1197	unsigned long valid;
1198	struct revmap_entry *rev;
1199	unsigned long pp, key;
1200	struct mmio_hpte_cache_entry *cache_entry = NULL;
1201	long mmio_update = 0;
1202
1203	/* For protection fault, expect to find a valid HPTE */
1204	valid = HPTE_V_VALID;
1205	if (status & DSISR_NOHPTE) {
1206		valid |= HPTE_V_ABSENT;
1207		mmio_update = atomic64_read(&kvm->arch.mmio_update);
1208		cache_entry = mmio_cache_search(vcpu, addr, slb_v, mmio_update);
1209	}
1210	if (cache_entry) {
1211		index = cache_entry->pte_index;
1212		v = cache_entry->hpte_v;
1213		r = cache_entry->hpte_r;
1214		gr = cache_entry->rpte;
1215	} else {
1216		index = kvmppc_hv_find_lock_hpte(kvm, addr, slb_v, valid);
1217		if (index < 0) {
1218			if (status & DSISR_NOHPTE)
1219				return status;	/* there really was no HPTE */
1220			return 0;	/* for prot fault, HPTE disappeared */
1221		}
1222		hpte = (__be64 *)(kvm->arch.hpt.virt + (index << 4));
1223		v = orig_v = be64_to_cpu(hpte[0]) & ~HPTE_V_HVLOCK;
1224		r = be64_to_cpu(hpte[1]);
1225		if (cpu_has_feature(CPU_FTR_ARCH_300)) {
1226			v = hpte_new_to_old_v(v, r);
1227			r = hpte_new_to_old_r(r);
1228		}
1229		rev = real_vmalloc_addr(&kvm->arch.hpt.rev[index]);
1230		gr = rev->guest_rpte;
1231
1232		unlock_hpte(hpte, orig_v);
1233	}
1234
1235	/* For not found, if the HPTE is valid by now, retry the instruction */
1236	if ((status & DSISR_NOHPTE) && (v & HPTE_V_VALID))
1237		return 0;
1238
1239	/* Check access permissions to the page */
1240	pp = gr & (HPTE_R_PP0 | HPTE_R_PP);
1241	key = (vcpu->arch.shregs.msr & MSR_PR) ? SLB_VSID_KP : SLB_VSID_KS;
1242	status &= ~DSISR_NOHPTE;	/* DSISR_NOHPTE == SRR1_ISI_NOPT */
1243	if (!data) {
1244		if (gr & (HPTE_R_N | HPTE_R_G))
1245			return status | SRR1_ISI_N_G_OR_CIP;
1246		if (!hpte_read_permission(pp, slb_v & key))
1247			return status | SRR1_ISI_PROT;
1248	} else if (status & DSISR_ISSTORE) {
1249		/* check write permission */
1250		if (!hpte_write_permission(pp, slb_v & key))
1251			return status | DSISR_PROTFAULT;
1252	} else {
1253		if (!hpte_read_permission(pp, slb_v & key))
1254			return status | DSISR_PROTFAULT;
1255	}
1256
1257	/* Check storage key, if applicable */
1258	if (data && (vcpu->arch.shregs.msr & MSR_DR)) {
1259		unsigned int perm = hpte_get_skey_perm(gr, vcpu->arch.amr);
1260		if (status & DSISR_ISSTORE)
1261			perm >>= 1;
1262		if (perm & 1)
1263			return status | DSISR_KEYFAULT;
1264	}
1265
1266	/* Save HPTE info for virtual-mode handler */
1267	vcpu->arch.pgfault_addr = addr;
1268	vcpu->arch.pgfault_index = index;
1269	vcpu->arch.pgfault_hpte[0] = v;
1270	vcpu->arch.pgfault_hpte[1] = r;
1271	vcpu->arch.pgfault_cache = cache_entry;
1272
1273	/* Check the storage key to see if it is possibly emulated MMIO */
1274	if ((r & (HPTE_R_KEY_HI | HPTE_R_KEY_LO)) ==
1275	    (HPTE_R_KEY_HI | HPTE_R_KEY_LO)) {
1276		if (!cache_entry) {
1277			unsigned int pshift = 12;
1278			unsigned int pshift_index;
1279
1280			if (slb_v & SLB_VSID_L) {
1281				pshift_index = ((slb_v & SLB_VSID_LP) >> 4);
1282				pshift = slb_base_page_shift[pshift_index];
1283			}
1284			cache_entry = next_mmio_cache_entry(vcpu);
1285			cache_entry->eaddr = addr;
1286			cache_entry->slb_base_pshift = pshift;
1287			cache_entry->pte_index = index;
1288			cache_entry->hpte_v = v;
1289			cache_entry->hpte_r = r;
1290			cache_entry->rpte = gr;
1291			cache_entry->slb_v = slb_v;
1292			cache_entry->mmio_update = mmio_update;
1293		}
1294		if (data && (vcpu->arch.shregs.msr & MSR_IR))
1295			return -2;	/* MMIO emulation - load instr word */
1296	}
1297
1298	return -1;		/* send fault up to host kernel mode */
1299}
1300EXPORT_SYMBOL_GPL(kvmppc_hpte_hv_fault);
1301