153541Sshin// SPDX-License-Identifier: GPL-2.0-only
253541Sshin/*
353541Sshin * Copyright 2011 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
453541Sshin * Copyright (C) 2009. SUSE Linux Products GmbH. All rights reserved.
553541Sshin *
653541Sshin * Authors:
753541Sshin *    Paul Mackerras <paulus@au1.ibm.com>
853541Sshin *    Alexander Graf <agraf@suse.de>
953541Sshin *    Kevin Wolf <mail@kevin-wolf.de>
1053541Sshin *
1153541Sshin * Description: KVM functions specific to running on Book 3S
1253541Sshin * processors in hypervisor mode (specifically POWER7 and later).
1353541Sshin *
1453541Sshin * This file is derived from arch/powerpc/kvm/book3s.c,
1553541Sshin * by Alexander Graf <agraf@suse.de>.
1653541Sshin */
1753541Sshin
1853541Sshin#include <linux/kvm_host.h>
1953541Sshin#include <linux/kernel.h>
2053541Sshin#include <linux/err.h>
2153541Sshin#include <linux/slab.h>
2253541Sshin#include <linux/preempt.h>
2353541Sshin#include <linux/sched/signal.h>
2453541Sshin#include <linux/sched/stat.h>
2553541Sshin#include <linux/delay.h>
2653541Sshin#include <linux/export.h>
2753541Sshin#include <linux/fs.h>
2853541Sshin#include <linux/anon_inodes.h>
2953541Sshin#include <linux/cpu.h>
3053541Sshin#include <linux/cpumask.h>
3153541Sshin#include <linux/spinlock.h>
3253541Sshin#include <linux/page-flags.h>
3353541Sshin#include <linux/srcu.h>
3453541Sshin#include <linux/miscdevice.h>
3553541Sshin#include <linux/debugfs.h>
3653541Sshin#include <linux/gfp.h>
3753541Sshin#include <linux/vmalloc.h>
3853541Sshin#include <linux/highmem.h>
3953541Sshin#include <linux/hugetlb.h>
4053541Sshin#include <linux/kvm_irqfd.h>
4153541Sshin#include <linux/irqbypass.h>
4253541Sshin#include <linux/module.h>
4353541Sshin#include <linux/compiler.h>
4453541Sshin#include <linux/of.h>
4553541Sshin#include <linux/irqdomain.h>
4653541Sshin#include <linux/smp.h>
4753541Sshin
4853541Sshin#include <asm/ftrace.h>
4953541Sshin#include <asm/reg.h>
5053541Sshin#include <asm/ppc-opcode.h>
5153541Sshin#include <asm/asm-prototypes.h>
5253541Sshin#include <asm/archrandom.h>
5353541Sshin#include <asm/debug.h>
5453541Sshin#include <asm/disassemble.h>
5553541Sshin#include <asm/cputable.h>
5653541Sshin#include <asm/cacheflush.h>
5753541Sshin#include <linux/uaccess.h>
5853541Sshin#include <asm/interrupt.h>
5953541Sshin#include <asm/io.h>
6053541Sshin#include <asm/kvm_ppc.h>
6153541Sshin#include <asm/kvm_book3s.h>
6253541Sshin#include <asm/mmu_context.h>
6353541Sshin#include <asm/lppaca.h>
6453541Sshin#include <asm/pmc.h>
6553541Sshin#include <asm/processor.h>
6653541Sshin#include <asm/cputhreads.h>
6755009Sshin#include <asm/page.h>
6855009Sshin#include <asm/hvcall.h>
6953541Sshin#include <asm/switch_to.h>
7053541Sshin#include <asm/smp.h>
7153541Sshin#include <asm/dbell.h>
7253541Sshin#include <asm/hmi.h>
7353541Sshin#include <asm/pnv-pci.h>
7453541Sshin#include <asm/mmu.h>
7553541Sshin#include <asm/opal.h>
7653541Sshin#include <asm/xics.h>
7753541Sshin#include <asm/xive.h>
7853541Sshin#include <asm/hw_breakpoint.h>
7953541Sshin#include <asm/kvm_book3s_uvmem.h>
8053541Sshin#include <asm/ultravisor.h>
8153541Sshin#include <asm/dtl.h>
8253541Sshin#include <asm/plpar_wrappers.h>
8353541Sshin
8453541Sshin#include <trace/events/ipi.h>
8553541Sshin
8653541Sshin#include "book3s.h"
8753541Sshin#include "book3s_hv.h"
8853541Sshin
8953541Sshin#define CREATE_TRACE_POINTS
9053541Sshin#include "trace_hv.h"
9153541Sshin
9253541Sshin/* #define EXIT_DEBUG */
9353541Sshin/* #define EXIT_DEBUG_SIMPLE */
9453541Sshin/* #define EXIT_DEBUG_INT */
9553541Sshin
9653541Sshin/* Used to indicate that a guest page fault needs to be handled */
9753541Sshin#define RESUME_PAGE_FAULT	(RESUME_GUEST | RESUME_FLAG_ARCH1)
9853541Sshin/* Used to indicate that a guest passthrough interrupt needs to be handled */
9953541Sshin#define RESUME_PASSTHROUGH	(RESUME_GUEST | RESUME_FLAG_ARCH2)
10053541Sshin
10153541Sshin/* Used as a "null" value for timebase values */
10254263Sshin#define TB_NIL	(~(u64)0)
10353541Sshin
10453541Sshinstatic DECLARE_BITMAP(default_enabled_hcalls, MAX_HCALL_OPCODE/4 + 1);
10553541Sshin
10653541Sshinstatic int dynamic_mt_modes = 6;
10753541Sshinmodule_param(dynamic_mt_modes, int, 0644);
10853541SshinMODULE_PARM_DESC(dynamic_mt_modes, "Set of allowed dynamic micro-threading modes: 0 (= none), 2, 4, or 6 (= 2 or 4)");
10953541Sshinstatic int target_smt_mode;
11053541Sshinmodule_param(target_smt_mode, int, 0644);
11153541SshinMODULE_PARM_DESC(target_smt_mode, "Target threads per core (0 = max)");
11253541Sshin
11353541Sshinstatic bool one_vm_per_core;
11453541Sshinmodule_param(one_vm_per_core, bool, S_IRUGO | S_IWUSR);
11553541SshinMODULE_PARM_DESC(one_vm_per_core, "Only run vCPUs from the same VM on a core (requires POWER8 or older)");
11653541Sshin
11753541Sshin#ifdef CONFIG_KVM_XICS
11853541Sshinstatic const struct kernel_param_ops module_param_ops = {
11953541Sshin	.set = param_set_int,
12053541Sshin	.get = param_get_int,
12153541Sshin};
12253541Sshin
12353541Sshinmodule_param_cb(kvm_irq_bypass, &module_param_ops, &kvm_irq_bypass, 0644);
12453541SshinMODULE_PARM_DESC(kvm_irq_bypass, "Bypass passthrough interrupt optimization");
12553541Sshin
12653541Sshinmodule_param_cb(h_ipi_redirect, &module_param_ops, &h_ipi_redirect, 0644);
12753541SshinMODULE_PARM_DESC(h_ipi_redirect, "Redirect H_IPI wakeup to a free host core");
12853541Sshin#endif
12953541Sshin
13053541Sshin/* If set, guests are allowed to create and control nested guests */
13153541Sshinstatic bool nested = true;
13253541Sshinmodule_param(nested, bool, S_IRUGO | S_IWUSR);
13353541SshinMODULE_PARM_DESC(nested, "Enable nested virtualization (only on POWER9)");
13453541Sshin
13553541Sshinstatic int kvmppc_hv_setup_htab_rma(struct kvm_vcpu *vcpu);
13653541Sshin
13753541Sshin/*
13853541Sshin * RWMR values for POWER8.  These control the rate at which PURR
13953541Sshin * and SPURR count and should be set according to the number of
14053541Sshin * online threads in the vcore being run.
14153541Sshin */
14253541Sshin#define RWMR_RPA_P8_1THREAD	0x164520C62609AECAUL
14353541Sshin#define RWMR_RPA_P8_2THREAD	0x7FFF2908450D8DA9UL
14453541Sshin#define RWMR_RPA_P8_3THREAD	0x164520C62609AECAUL
14555009Sshin#define RWMR_RPA_P8_4THREAD	0x199A421245058DA9UL
14653541Sshin#define RWMR_RPA_P8_5THREAD	0x164520C62609AECAUL
14753541Sshin#define RWMR_RPA_P8_6THREAD	0x164520C62609AECAUL
14853541Sshin#define RWMR_RPA_P8_7THREAD	0x164520C62609AECAUL
14953541Sshin#define RWMR_RPA_P8_8THREAD	0x164520C62609AECAUL
15053541Sshin
15153541Sshinstatic unsigned long p8_rwmr_values[MAX_SMT_THREADS + 1] = {
15253541Sshin	RWMR_RPA_P8_1THREAD,
15353541Sshin	RWMR_RPA_P8_1THREAD,
15453541Sshin	RWMR_RPA_P8_2THREAD,
15553541Sshin	RWMR_RPA_P8_3THREAD,
15653541Sshin	RWMR_RPA_P8_4THREAD,
15753541Sshin	RWMR_RPA_P8_5THREAD,
15853541Sshin	RWMR_RPA_P8_6THREAD,
15953541Sshin	RWMR_RPA_P8_7THREAD,
16053541Sshin	RWMR_RPA_P8_8THREAD,
16153541Sshin};
16253541Sshin
16353541Sshinstatic inline struct kvm_vcpu *next_runnable_thread(struct kvmppc_vcore *vc,
16453541Sshin		int *ip)
16553541Sshin{
16653541Sshin	int i = *ip;
16753541Sshin	struct kvm_vcpu *vcpu;
16853541Sshin
16953541Sshin	while (++i < MAX_SMT_THREADS) {
17053541Sshin		vcpu = READ_ONCE(vc->runnable_threads[i]);
17153541Sshin		if (vcpu) {
17253541Sshin			*ip = i;
17353541Sshin			return vcpu;
17453541Sshin		}
17553541Sshin	}
17653541Sshin	return NULL;
17753541Sshin}
17853541Sshin
17953541Sshin/* Used to traverse the list of runnable threads for a given vcore */
18053541Sshin#define for_each_runnable_thread(i, vcpu, vc) \
18153541Sshin	for (i = -1; (vcpu = next_runnable_thread(vc, &i)); )
18253541Sshin
18353541Sshinstatic bool kvmppc_ipi_thread(int cpu)
18453541Sshin{
18553541Sshin	unsigned long msg = PPC_DBELL_TYPE(PPC_DBELL_SERVER);
18653541Sshin
18753541Sshin	/* If we're a nested hypervisor, fall back to ordinary IPIs for now */
18853541Sshin	if (kvmhv_on_pseries())
18953541Sshin		return false;
19053541Sshin
19153541Sshin	/* On POWER9 we can use msgsnd to IPI any cpu */
19253541Sshin	if (cpu_has_feature(CPU_FTR_ARCH_300)) {
19353541Sshin		msg |= get_hard_smp_processor_id(cpu);
19453541Sshin		smp_mb();
19553541Sshin		__asm__ __volatile__ (PPC_MSGSND(%0) : : "r" (msg));
19653541Sshin		return true;
19753541Sshin	}
19853541Sshin
19953541Sshin	/* On POWER8 for IPIs to threads in the same core, use msgsnd */
20053541Sshin	if (cpu_has_feature(CPU_FTR_ARCH_207S)) {
20153541Sshin		preempt_disable();
20253541Sshin		if (cpu_first_thread_sibling(cpu) ==
20353541Sshin		    cpu_first_thread_sibling(smp_processor_id())) {
20453541Sshin			msg |= cpu_thread_in_core(cpu);
20553541Sshin			smp_mb();
20653541Sshin			__asm__ __volatile__ (PPC_MSGSND(%0) : : "r" (msg));
20753541Sshin			preempt_enable();
20853541Sshin			return true;
20953541Sshin		}
21053541Sshin		preempt_enable();
21153541Sshin	}
21253541Sshin
21353541Sshin#if defined(CONFIG_PPC_ICP_NATIVE) && defined(CONFIG_SMP)
21453541Sshin	if (cpu >= 0 && cpu < nr_cpu_ids) {
21553541Sshin		if (paca_ptrs[cpu]->kvm_hstate.xics_phys) {
21653541Sshin			xics_wake_cpu(cpu);
21753541Sshin			return true;
21853541Sshin		}
21953541Sshin		opal_int_set_mfrr(get_hard_smp_processor_id(cpu), IPI_PRIORITY);
22053541Sshin		return true;
22153541Sshin	}
22253541Sshin#endif
22353541Sshin
22453541Sshin	return false;
22553541Sshin}
22653541Sshin
22753541Sshinstatic void kvmppc_fast_vcpu_kick_hv(struct kvm_vcpu *vcpu)
22853541Sshin{
22953541Sshin	int cpu;
23053541Sshin	struct rcuwait *waitp;
23153541Sshin
23253541Sshin	/*
23353541Sshin	 * rcuwait_wake_up contains smp_mb() which orders prior stores that
23453541Sshin	 * create pending work vs below loads of cpu fields. The other side
23553541Sshin	 * is the barrier in vcpu run that orders setting the cpu fields vs
23653541Sshin	 * testing for pending work.
23753541Sshin	 */
23853541Sshin
23953541Sshin	waitp = kvm_arch_vcpu_get_wait(vcpu);
24053541Sshin	if (rcuwait_wake_up(waitp))
24153541Sshin		++vcpu->stat.generic.halt_wakeup;
24253541Sshin
24353541Sshin	cpu = READ_ONCE(vcpu->arch.thread_cpu);
24453541Sshin	if (cpu >= 0 && kvmppc_ipi_thread(cpu))
24553541Sshin		return;
24653541Sshin
24753541Sshin	/* CPU points to the first thread of the core */
24853541Sshin	cpu = vcpu->cpu;
24953541Sshin	if (cpu >= 0 && cpu < nr_cpu_ids && cpu_online(cpu))
25053541Sshin		smp_send_reschedule(cpu);
25153541Sshin}
25253541Sshin
25353541Sshin/*
25453541Sshin * We use the vcpu_load/put functions to measure stolen time.
25553541Sshin *
25653541Sshin * Stolen time is counted as time when either the vcpu is able to
25753541Sshin * run as part of a virtual core, but the task running the vcore
25853541Sshin * is preempted or sleeping, or when the vcpu needs something done
25953541Sshin * in the kernel by the task running the vcpu, but that task is
26053541Sshin * preempted or sleeping.  Those two things have to be counted
26153541Sshin * separately, since one of the vcpu tasks will take on the job
26253541Sshin * of running the core, and the other vcpu tasks in the vcore will
26353541Sshin * sleep waiting for it to do that, but that sleep shouldn't count
26453541Sshin * as stolen time.
26553541Sshin *
26653541Sshin * Hence we accumulate stolen time when the vcpu can run as part of
26753541Sshin * a vcore using vc->stolen_tb, and the stolen time when the vcpu
26853541Sshin * needs its task to do other things in the kernel (for example,
26953541Sshin * service a page fault) in busy_stolen.  We don't accumulate
27053541Sshin * stolen time for a vcore when it is inactive, or for a vcpu
27153541Sshin * when it is in state RUNNING or NOTREADY.  NOTREADY is a bit of
27253541Sshin * a misnomer; it means that the vcpu task is not executing in
27353541Sshin * the KVM_VCPU_RUN ioctl, i.e. it is in userspace or elsewhere in
27453541Sshin * the kernel.  We don't have any way of dividing up that time
27553541Sshin * between time that the vcpu is genuinely stopped, time that
27653541Sshin * the task is actively working on behalf of the vcpu, and time
27753541Sshin * that the task is preempted, so we don't count any of it as
27853541Sshin * stolen.
27953541Sshin *
28053541Sshin * Updates to busy_stolen are protected by arch.tbacct_lock;
28153541Sshin * updates to vc->stolen_tb are protected by the vcore->stoltb_lock
28253541Sshin * lock.  The stolen times are measured in units of timebase ticks.
28353541Sshin * (Note that the != TB_NIL checks below are purely defensive;
28453541Sshin * they should never fail.)
28553541Sshin *
28653541Sshin * The POWER9 path is simpler, one vcpu per virtual core so the
28753541Sshin * former case does not exist. If a vcpu is preempted when it is
28853541Sshin * BUSY_IN_HOST and not ceded or otherwise blocked, then accumulate
28953541Sshin * the stolen cycles in busy_stolen. RUNNING is not a preemptible
29053541Sshin * state in the P9 path.
29153541Sshin */
29253541Sshin
29353541Sshinstatic void kvmppc_core_start_stolen(struct kvmppc_vcore *vc, u64 tb)
29453541Sshin{
29553541Sshin	unsigned long flags;
29653541Sshin
29753541Sshin	WARN_ON_ONCE(cpu_has_feature(CPU_FTR_ARCH_300));
29853541Sshin
29953541Sshin	spin_lock_irqsave(&vc->stoltb_lock, flags);
30053541Sshin	vc->preempt_tb = tb;
30153541Sshin	spin_unlock_irqrestore(&vc->stoltb_lock, flags);
30253541Sshin}
30353541Sshin
30453541Sshinstatic void kvmppc_core_end_stolen(struct kvmppc_vcore *vc, u64 tb)
30553541Sshin{
30653541Sshin	unsigned long flags;
30753541Sshin
30853541Sshin	WARN_ON_ONCE(cpu_has_feature(CPU_FTR_ARCH_300));
30953541Sshin
31053541Sshin	spin_lock_irqsave(&vc->stoltb_lock, flags);
31153541Sshin	if (vc->preempt_tb != TB_NIL) {
31253541Sshin		vc->stolen_tb += tb - vc->preempt_tb;
31353541Sshin		vc->preempt_tb = TB_NIL;
31453541Sshin	}
31553541Sshin	spin_unlock_irqrestore(&vc->stoltb_lock, flags);
31653541Sshin}
31753541Sshin
31853541Sshinstatic void kvmppc_core_vcpu_load_hv(struct kvm_vcpu *vcpu, int cpu)
31953541Sshin{
32053541Sshin	struct kvmppc_vcore *vc = vcpu->arch.vcore;
32153541Sshin	unsigned long flags;
32253541Sshin	u64 now;
32353541Sshin
32453541Sshin	if (cpu_has_feature(CPU_FTR_ARCH_300)) {
32553541Sshin		if (vcpu->arch.busy_preempt != TB_NIL) {
32653541Sshin			WARN_ON_ONCE(vcpu->arch.state != KVMPPC_VCPU_BUSY_IN_HOST);
32753541Sshin			vc->stolen_tb += mftb() - vcpu->arch.busy_preempt;
32853541Sshin			vcpu->arch.busy_preempt = TB_NIL;
32953541Sshin		}
33053541Sshin		return;
33153541Sshin	}
33253541Sshin
33355009Sshin	now = mftb();
33455009Sshin
33555009Sshin	/*
33655009Sshin	 * We can test vc->runner without taking the vcore lock,
33753541Sshin	 * because only this task ever sets vc->runner to this
33853541Sshin	 * vcpu, and once it is set to this vcpu, only this task
33953541Sshin	 * ever sets it to NULL.
34053541Sshin	 */
34153541Sshin	if (vc->runner == vcpu && vc->vcore_state >= VCORE_SLEEPING)
34253541Sshin		kvmppc_core_end_stolen(vc, now);
34353541Sshin
34453541Sshin	spin_lock_irqsave(&vcpu->arch.tbacct_lock, flags);
34553541Sshin	if (vcpu->arch.state == KVMPPC_VCPU_BUSY_IN_HOST &&
34653541Sshin	    vcpu->arch.busy_preempt != TB_NIL) {
34753541Sshin		vcpu->arch.busy_stolen += now - vcpu->arch.busy_preempt;
34853541Sshin		vcpu->arch.busy_preempt = TB_NIL;
34953541Sshin	}
35053541Sshin	spin_unlock_irqrestore(&vcpu->arch.tbacct_lock, flags);
35153541Sshin}
35253541Sshin
35353541Sshinstatic void kvmppc_core_vcpu_put_hv(struct kvm_vcpu *vcpu)
35453541Sshin{
35553541Sshin	struct kvmppc_vcore *vc = vcpu->arch.vcore;
35653541Sshin	unsigned long flags;
35753541Sshin	u64 now;
35853541Sshin
35953541Sshin	if (cpu_has_feature(CPU_FTR_ARCH_300)) {
36053541Sshin		/*
36153541Sshin		 * In the P9 path, RUNNABLE is not preemptible
36253541Sshin		 * (nor takes host interrupts)
36353541Sshin		 */
36453541Sshin		WARN_ON_ONCE(vcpu->arch.state == KVMPPC_VCPU_RUNNABLE);
36553541Sshin		/*
36653541Sshin		 * Account stolen time when preempted while the vcpu task is
36753541Sshin		 * running in the kernel (but not in qemu, which is INACTIVE).
36853541Sshin		 */
36953541Sshin		if (task_is_running(current) &&
37053541Sshin				vcpu->arch.state == KVMPPC_VCPU_BUSY_IN_HOST)
37153541Sshin			vcpu->arch.busy_preempt = mftb();
37253541Sshin		return;
37353541Sshin	}
37453541Sshin
37553541Sshin	now = mftb();
37655009Sshin
37755009Sshin	if (vc->runner == vcpu && vc->vcore_state >= VCORE_SLEEPING)
37853541Sshin		kvmppc_core_start_stolen(vc, now);
37953541Sshin
38053541Sshin	spin_lock_irqsave(&vcpu->arch.tbacct_lock, flags);
38153541Sshin	if (vcpu->arch.state == KVMPPC_VCPU_BUSY_IN_HOST)
38253541Sshin		vcpu->arch.busy_preempt = now;
38353541Sshin	spin_unlock_irqrestore(&vcpu->arch.tbacct_lock, flags);
38453541Sshin}
38553541Sshin
38653541Sshinstatic void kvmppc_set_pvr_hv(struct kvm_vcpu *vcpu, u32 pvr)
38753541Sshin{
38853541Sshin	vcpu->arch.pvr = pvr;
38953541Sshin}
39053541Sshin
39153541Sshin/* Dummy value used in computing PCR value below */
39253541Sshin#define PCR_ARCH_31    (PCR_ARCH_300 << 1)
39353541Sshin
39453541Sshinstatic inline unsigned long map_pcr_to_cap(unsigned long pcr)
39553541Sshin{
39653541Sshin	unsigned long cap = 0;
39753541Sshin
39853541Sshin	switch (pcr) {
39953541Sshin	case PCR_ARCH_300:
40053541Sshin		cap = H_GUEST_CAP_POWER9;
40153541Sshin		break;
40253541Sshin	case PCR_ARCH_31:
40353541Sshin		cap = H_GUEST_CAP_POWER10;
40453541Sshin		break;
40553541Sshin	default:
40653541Sshin		break;
40753541Sshin	}
40853541Sshin
40953541Sshin	return cap;
41053541Sshin}
41153541Sshin
41253541Sshinstatic int kvmppc_set_arch_compat(struct kvm_vcpu *vcpu, u32 arch_compat)
41353541Sshin{
41453541Sshin	unsigned long host_pcr_bit = 0, guest_pcr_bit = 0, cap = 0;
41553541Sshin	struct kvmppc_vcore *vc = vcpu->arch.vcore;
41653541Sshin
41753541Sshin	/* We can (emulate) our own architecture version and anything older */
41853541Sshin	if (cpu_has_feature(CPU_FTR_ARCH_31))
41953541Sshin		host_pcr_bit = PCR_ARCH_31;
42053541Sshin	else if (cpu_has_feature(CPU_FTR_ARCH_300))
42153541Sshin		host_pcr_bit = PCR_ARCH_300;
42253541Sshin	else if (cpu_has_feature(CPU_FTR_ARCH_207S))
42353541Sshin		host_pcr_bit = PCR_ARCH_207;
42453541Sshin	else if (cpu_has_feature(CPU_FTR_ARCH_206))
42553541Sshin		host_pcr_bit = PCR_ARCH_206;
42653541Sshin	else
42753541Sshin		host_pcr_bit = PCR_ARCH_205;
42853541Sshin
42953541Sshin	/* Determine lowest PCR bit needed to run guest in given PVR level */
43053541Sshin	guest_pcr_bit = host_pcr_bit;
43153541Sshin	if (arch_compat) {
43253541Sshin		switch (arch_compat) {
43353541Sshin		case PVR_ARCH_205:
43453541Sshin			guest_pcr_bit = PCR_ARCH_205;
43553541Sshin			break;
43653541Sshin		case PVR_ARCH_206:
43753541Sshin		case PVR_ARCH_206p:
43853541Sshin			guest_pcr_bit = PCR_ARCH_206;
43953541Sshin			break;
44053541Sshin		case PVR_ARCH_207:
44153541Sshin			guest_pcr_bit = PCR_ARCH_207;
44253541Sshin			break;
44353541Sshin		case PVR_ARCH_300:
44453541Sshin			guest_pcr_bit = PCR_ARCH_300;
44553541Sshin			break;
44653541Sshin		case PVR_ARCH_31:
44753541Sshin		case PVR_ARCH_31_P11:
44853541Sshin			guest_pcr_bit = PCR_ARCH_31;
44953541Sshin			break;
45053541Sshin		default:
45153541Sshin			return -EINVAL;
45255009Sshin		}
45355009Sshin	}
45455009Sshin
45553541Sshin	/* Check requested PCR bits don't exceed our capabilities */
45653541Sshin	if (guest_pcr_bit > host_pcr_bit)
45753541Sshin		return -EINVAL;
45853541Sshin
45953541Sshin	if (kvmhv_on_pseries() && kvmhv_is_nestedv2()) {
46053541Sshin		/*
46153541Sshin		 * 'arch_compat == 0' would mean the guest should default to
46253541Sshin		 * L1's compatibility. In this case, the guest would pick
46353541Sshin		 * host's PCR and evaluate the corresponding capabilities.
46453541Sshin		 */
46553541Sshin		cap = map_pcr_to_cap(guest_pcr_bit);
46653541Sshin		if (!(cap & nested_capabilities))
46753541Sshin			return -EINVAL;
46853541Sshin	}
46953541Sshin
47053541Sshin	spin_lock(&vc->lock);
47153541Sshin	vc->arch_compat = arch_compat;
47253541Sshin	kvmhv_nestedv2_mark_dirty(vcpu, KVMPPC_GSID_LOGICAL_PVR);
47353541Sshin	/*
47453541Sshin	 * Set all PCR bits for which guest_pcr_bit <= bit < host_pcr_bit
47553541Sshin	 * Also set all reserved PCR bits
47653541Sshin	 */
47753541Sshin	vc->pcr = (host_pcr_bit - guest_pcr_bit) | PCR_MASK;
47853541Sshin	spin_unlock(&vc->lock);
47953541Sshin
48053541Sshin	return 0;
48153541Sshin}
48253541Sshin
48353541Sshinstatic void kvmppc_dump_regs(struct kvm_vcpu *vcpu)
48453541Sshin{
48553541Sshin	int r;
48653541Sshin
48753541Sshin	pr_err("vcpu %p (%d):\n", vcpu, vcpu->vcpu_id);
48853541Sshin	pr_err("pc  = %.16lx  msr = %.16llx  trap = %x\n",
48953541Sshin	       vcpu->arch.regs.nip, vcpu->arch.shregs.msr, vcpu->arch.trap);
49053541Sshin	for (r = 0; r < 16; ++r)
49153541Sshin		pr_err("r%2d = %.16lx  r%d = %.16lx\n",
49253541Sshin		       r, kvmppc_get_gpr(vcpu, r),
49353541Sshin		       r+16, kvmppc_get_gpr(vcpu, r+16));
49453541Sshin	pr_err("ctr = %.16lx  lr  = %.16lx\n",
49553541Sshin	       vcpu->arch.regs.ctr, vcpu->arch.regs.link);
49653541Sshin	pr_err("srr0 = %.16llx srr1 = %.16llx\n",
49753541Sshin	       vcpu->arch.shregs.srr0, vcpu->arch.shregs.srr1);
49853541Sshin	pr_err("sprg0 = %.16llx sprg1 = %.16llx\n",
49953541Sshin	       vcpu->arch.shregs.sprg0, vcpu->arch.shregs.sprg1);
50053541Sshin	pr_err("sprg2 = %.16llx sprg3 = %.16llx\n",
50153541Sshin	       vcpu->arch.shregs.sprg2, vcpu->arch.shregs.sprg3);
50253541Sshin	pr_err("cr = %.8lx  xer = %.16lx  dsisr = %.8x\n",
50353541Sshin	       vcpu->arch.regs.ccr, vcpu->arch.regs.xer, vcpu->arch.shregs.dsisr);
50453541Sshin	pr_err("dar = %.16llx\n", vcpu->arch.shregs.dar);
50553541Sshin	pr_err("fault dar = %.16lx dsisr = %.8x\n",
50653541Sshin	       vcpu->arch.fault_dar, vcpu->arch.fault_dsisr);
50753541Sshin	pr_err("SLB (%d entries):\n", vcpu->arch.slb_max);
50853541Sshin	for (r = 0; r < vcpu->arch.slb_max; ++r)
50953541Sshin		pr_err("  ESID = %.16llx VSID = %.16llx\n",
51053541Sshin		       vcpu->arch.slb[r].orige, vcpu->arch.slb[r].origv);
51153541Sshin	pr_err("lpcr = %.16lx sdr1 = %.16lx last_inst = %.16lx\n",
51253541Sshin	       vcpu->arch.vcore->lpcr, vcpu->kvm->arch.sdr1,
51353541Sshin	       vcpu->arch.last_inst);
51453541Sshin}
51553541Sshin
51653541Sshinstatic struct kvm_vcpu *kvmppc_find_vcpu(struct kvm *kvm, int id)
51753541Sshin{
51853541Sshin	return kvm_get_vcpu_by_id(kvm, id);
51953541Sshin}
52053541Sshin
52153541Sshinstatic void init_vpa(struct kvm_vcpu *vcpu, struct lppaca *vpa)
52253541Sshin{
52353541Sshin	vpa->__old_status |= LPPACA_OLD_SHARED_PROC;
52453541Sshin	vpa->yield_count = cpu_to_be32(1);
52553541Sshin}
52653541Sshin
52753541Sshinstatic int set_vpa(struct kvm_vcpu *vcpu, struct kvmppc_vpa *v,
52853541Sshin		   unsigned long addr, unsigned long len)
52953541Sshin{
53053541Sshin	/* check address is cacheline aligned */
53153541Sshin	if (addr & (L1_CACHE_BYTES - 1))
53253541Sshin		return -EINVAL;
53353541Sshin	spin_lock(&vcpu->arch.vpa_update_lock);
53453541Sshin	if (v->next_gpa != addr || v->len != len) {
53553541Sshin		v->next_gpa = addr;
53653541Sshin		v->len = addr ? len : 0;
53753541Sshin		v->update_pending = 1;
53853541Sshin	}
53953541Sshin	spin_unlock(&vcpu->arch.vpa_update_lock);
54053541Sshin	return 0;
54153541Sshin}
54253541Sshin
54353541Sshin/* Length for a per-processor buffer is passed in at offset 4 in the buffer */
54453541Sshinstruct reg_vpa {
54553541Sshin	u32 dummy;
54653541Sshin	union {
54753541Sshin		__be16 hword;
54853541Sshin		__be32 word;
54953541Sshin	} length;
55053541Sshin};
55153541Sshin
55253541Sshinstatic int vpa_is_registered(struct kvmppc_vpa *vpap)
55353541Sshin{
55453541Sshin	if (vpap->update_pending)
55553541Sshin		return vpap->next_gpa != 0;
55653541Sshin	return vpap->pinned_addr != NULL;
55753541Sshin}
55853541Sshin
55953541Sshinstatic unsigned long do_h_register_vpa(struct kvm_vcpu *vcpu,
56053541Sshin				       unsigned long flags,
56153541Sshin				       unsigned long vcpuid, unsigned long vpa)
56253541Sshin{
56353541Sshin	struct kvm *kvm = vcpu->kvm;
56453541Sshin	unsigned long len, nb;
56553541Sshin	void *va;
56653541Sshin	struct kvm_vcpu *tvcpu;
56753541Sshin	int err;
56853541Sshin	int subfunc;
56953541Sshin	struct kvmppc_vpa *vpap;
57053541Sshin
57153541Sshin	tvcpu = kvmppc_find_vcpu(kvm, vcpuid);
57253541Sshin	if (!tvcpu)
57353541Sshin		return H_PARAMETER;
57453541Sshin
57553541Sshin	subfunc = (flags >> H_VPA_FUNC_SHIFT) & H_VPA_FUNC_MASK;
57653541Sshin	if (subfunc == H_VPA_REG_VPA || subfunc == H_VPA_REG_DTL ||
57753541Sshin	    subfunc == H_VPA_REG_SLB) {
57853541Sshin		/* Registering new area - address must be cache-line aligned */
57953541Sshin		if ((vpa & (L1_CACHE_BYTES - 1)) || !vpa)
58053541Sshin			return H_PARAMETER;
58153541Sshin
58253541Sshin		/* convert logical addr to kernel addr and read length */
58353541Sshin		va = kvmppc_pin_guest_page(kvm, vpa, &nb);
58453541Sshin		if (va == NULL)
58553541Sshin			return H_PARAMETER;
58653541Sshin		if (subfunc == H_VPA_REG_VPA)
58753541Sshin			len = be16_to_cpu(((struct reg_vpa *)va)->length.hword);
58853541Sshin		else
58953541Sshin			len = be32_to_cpu(((struct reg_vpa *)va)->length.word);
59053541Sshin		kvmppc_unpin_guest_page(kvm, va, vpa, false);
59153541Sshin
59253541Sshin		/* Check length */
59353541Sshin		if (len > nb || len < sizeof(struct reg_vpa))
59453541Sshin			return H_PARAMETER;
59553541Sshin	} else {
59653541Sshin		vpa = 0;
59753541Sshin		len = 0;
59853541Sshin	}
59953541Sshin
60053541Sshin	err = H_PARAMETER;
60153541Sshin	vpap = NULL;
60253541Sshin	spin_lock(&tvcpu->arch.vpa_update_lock);
60353541Sshin
60453541Sshin	switch (subfunc) {
60553541Sshin	case H_VPA_REG_VPA:		/* register VPA */
60653541Sshin		/*
60753541Sshin		 * The size of our lppaca is 1kB because of the way we align
60853541Sshin		 * it for the guest to avoid crossing a 4kB boundary. We only
609		 * use 640 bytes of the structure though, so we should accept
610		 * clients that set a size of 640.
611		 */
612		BUILD_BUG_ON(sizeof(struct lppaca) != 640);
613		if (len < sizeof(struct lppaca))
614			break;
615		vpap = &tvcpu->arch.vpa;
616		err = 0;
617		break;
618
619	case H_VPA_REG_DTL:		/* register DTL */
620		if (len < sizeof(struct dtl_entry))
621			break;
622		len -= len % sizeof(struct dtl_entry);
623
624		/* Check that they have previously registered a VPA */
625		err = H_RESOURCE;
626		if (!vpa_is_registered(&tvcpu->arch.vpa))
627			break;
628
629		vpap = &tvcpu->arch.dtl;
630		err = 0;
631		break;
632
633	case H_VPA_REG_SLB:		/* register SLB shadow buffer */
634		/* Check that they have previously registered a VPA */
635		err = H_RESOURCE;
636		if (!vpa_is_registered(&tvcpu->arch.vpa))
637			break;
638
639		vpap = &tvcpu->arch.slb_shadow;
640		err = 0;
641		break;
642
643	case H_VPA_DEREG_VPA:		/* deregister VPA */
644		/* Check they don't still have a DTL or SLB buf registered */
645		err = H_RESOURCE;
646		if (vpa_is_registered(&tvcpu->arch.dtl) ||
647		    vpa_is_registered(&tvcpu->arch.slb_shadow))
648			break;
649
650		vpap = &tvcpu->arch.vpa;
651		err = 0;
652		break;
653
654	case H_VPA_DEREG_DTL:		/* deregister DTL */
655		vpap = &tvcpu->arch.dtl;
656		err = 0;
657		break;
658
659	case H_VPA_DEREG_SLB:		/* deregister SLB shadow buffer */
660		vpap = &tvcpu->arch.slb_shadow;
661		err = 0;
662		break;
663	}
664
665	if (vpap) {
666		vpap->next_gpa = vpa;
667		vpap->len = len;
668		vpap->update_pending = 1;
669	}
670
671	spin_unlock(&tvcpu->arch.vpa_update_lock);
672
673	return err;
674}
675
676static void kvmppc_update_vpa(struct kvm_vcpu *vcpu, struct kvmppc_vpa *vpap,
677			       struct kvmppc_vpa *old_vpap)
678{
679	struct kvm *kvm = vcpu->kvm;
680	void *va;
681	unsigned long nb;
682	unsigned long gpa;
683
684	/*
685	 * We need to pin the page pointed to by vpap->next_gpa,
686	 * but we can't call kvmppc_pin_guest_page under the lock
687	 * as it does get_user_pages() and down_read().  So we
688	 * have to drop the lock, pin the page, then get the lock
689	 * again and check that a new area didn't get registered
690	 * in the meantime.
691	 */
692	for (;;) {
693		gpa = vpap->next_gpa;
694		spin_unlock(&vcpu->arch.vpa_update_lock);
695		va = NULL;
696		nb = 0;
697		if (gpa)
698			va = kvmppc_pin_guest_page(kvm, gpa, &nb);
699		spin_lock(&vcpu->arch.vpa_update_lock);
700		if (gpa == vpap->next_gpa)
701			break;
702		/* sigh... unpin that one and try again */
703		if (va)
704			kvmppc_unpin_guest_page(kvm, va, gpa, false);
705	}
706
707	vpap->update_pending = 0;
708	if (va && nb < vpap->len) {
709		/*
710		 * If it's now too short, it must be that userspace
711		 * has changed the mappings underlying guest memory,
712		 * so unregister the region.
713		 */
714		kvmppc_unpin_guest_page(kvm, va, gpa, false);
715		va = NULL;
716	}
717	*old_vpap = *vpap;
718
719	vpap->gpa = gpa;
720	vpap->pinned_addr = va;
721	vpap->dirty = false;
722	if (va)
723		vpap->pinned_end = va + vpap->len;
724}
725
726static void kvmppc_update_vpas(struct kvm_vcpu *vcpu)
727{
728	struct kvm *kvm = vcpu->kvm;
729	struct kvmppc_vpa old_vpa = { 0 };
730
731	if (!(vcpu->arch.vpa.update_pending ||
732	      vcpu->arch.slb_shadow.update_pending ||
733	      vcpu->arch.dtl.update_pending))
734		return;
735
736	spin_lock(&vcpu->arch.vpa_update_lock);
737	if (vcpu->arch.vpa.update_pending) {
738		kvmppc_update_vpa(vcpu, &vcpu->arch.vpa, &old_vpa);
739		if (old_vpa.pinned_addr) {
740			if (kvmhv_is_nestedv2())
741				kvmhv_nestedv2_set_vpa(vcpu, ~0ull);
742			kvmppc_unpin_guest_page(kvm, old_vpa.pinned_addr, old_vpa.gpa,
743						old_vpa.dirty);
744		}
745		if (vcpu->arch.vpa.pinned_addr) {
746			init_vpa(vcpu, vcpu->arch.vpa.pinned_addr);
747			if (kvmhv_is_nestedv2())
748				kvmhv_nestedv2_set_vpa(vcpu, __pa(vcpu->arch.vpa.pinned_addr));
749		}
750	}
751	if (vcpu->arch.dtl.update_pending) {
752		kvmppc_update_vpa(vcpu, &vcpu->arch.dtl, &old_vpa);
753		if (old_vpa.pinned_addr)
754			kvmppc_unpin_guest_page(kvm, old_vpa.pinned_addr, old_vpa.gpa,
755						old_vpa.dirty);
756		vcpu->arch.dtl_ptr = vcpu->arch.dtl.pinned_addr;
757		vcpu->arch.dtl_index = 0;
758	}
759	if (vcpu->arch.slb_shadow.update_pending) {
760		kvmppc_update_vpa(vcpu, &vcpu->arch.slb_shadow, &old_vpa);
761		if (old_vpa.pinned_addr)
762			kvmppc_unpin_guest_page(kvm, old_vpa.pinned_addr, old_vpa.gpa,
763						old_vpa.dirty);
764	}
765
766	spin_unlock(&vcpu->arch.vpa_update_lock);
767}
768
769/*
770 * Return the accumulated stolen time for the vcore up until `now'.
771 * The caller should hold the vcore lock.
772 */
773static u64 vcore_stolen_time(struct kvmppc_vcore *vc, u64 now)
774{
775	u64 p;
776	unsigned long flags;
777
778	WARN_ON_ONCE(cpu_has_feature(CPU_FTR_ARCH_300));
779
780	spin_lock_irqsave(&vc->stoltb_lock, flags);
781	p = vc->stolen_tb;
782	if (vc->vcore_state != VCORE_INACTIVE &&
783	    vc->preempt_tb != TB_NIL)
784		p += now - vc->preempt_tb;
785	spin_unlock_irqrestore(&vc->stoltb_lock, flags);
786	return p;
787}
788
789static void __kvmppc_create_dtl_entry(struct kvm_vcpu *vcpu,
790					struct lppaca *vpa,
791					unsigned int pcpu, u64 now,
792					unsigned long stolen)
793{
794	struct dtl_entry *dt;
795
796	dt = vcpu->arch.dtl_ptr;
797
798	if (!dt)
799		return;
800
801	dt->dispatch_reason = 7;
802	dt->preempt_reason = 0;
803	dt->processor_id = cpu_to_be16(pcpu + vcpu->arch.ptid);
804	dt->enqueue_to_dispatch_time = cpu_to_be32(stolen);
805	dt->ready_to_enqueue_time = 0;
806	dt->waiting_to_ready_time = 0;
807	dt->timebase = cpu_to_be64(now);
808	dt->fault_addr = 0;
809	dt->srr0 = cpu_to_be64(kvmppc_get_pc(vcpu));
810	dt->srr1 = cpu_to_be64(vcpu->arch.shregs.msr);
811
812	++dt;
813	if (dt == vcpu->arch.dtl.pinned_end)
814		dt = vcpu->arch.dtl.pinned_addr;
815	vcpu->arch.dtl_ptr = dt;
816	/* order writing *dt vs. writing vpa->dtl_idx */
817	smp_wmb();
818	vpa->dtl_idx = cpu_to_be64(++vcpu->arch.dtl_index);
819
820	/* vcpu->arch.dtl.dirty is set by the caller */
821}
822
823static void kvmppc_update_vpa_dispatch(struct kvm_vcpu *vcpu,
824				       struct kvmppc_vcore *vc)
825{
826	struct lppaca *vpa;
827	unsigned long stolen;
828	unsigned long core_stolen;
829	u64 now;
830	unsigned long flags;
831
832	vpa = vcpu->arch.vpa.pinned_addr;
833	if (!vpa)
834		return;
835
836	now = mftb();
837
838	core_stolen = vcore_stolen_time(vc, now);
839	stolen = core_stolen - vcpu->arch.stolen_logged;
840	vcpu->arch.stolen_logged = core_stolen;
841	spin_lock_irqsave(&vcpu->arch.tbacct_lock, flags);
842	stolen += vcpu->arch.busy_stolen;
843	vcpu->arch.busy_stolen = 0;
844	spin_unlock_irqrestore(&vcpu->arch.tbacct_lock, flags);
845
846	vpa->enqueue_dispatch_tb = cpu_to_be64(be64_to_cpu(vpa->enqueue_dispatch_tb) + stolen);
847
848	__kvmppc_create_dtl_entry(vcpu, vpa, vc->pcpu, now + kvmppc_get_tb_offset(vcpu), stolen);
849
850	vcpu->arch.vpa.dirty = true;
851}
852
853static void kvmppc_update_vpa_dispatch_p9(struct kvm_vcpu *vcpu,
854				       struct kvmppc_vcore *vc,
855				       u64 now)
856{
857	struct lppaca *vpa;
858	unsigned long stolen;
859	unsigned long stolen_delta;
860
861	vpa = vcpu->arch.vpa.pinned_addr;
862	if (!vpa)
863		return;
864
865	stolen = vc->stolen_tb;
866	stolen_delta = stolen - vcpu->arch.stolen_logged;
867	vcpu->arch.stolen_logged = stolen;
868
869	vpa->enqueue_dispatch_tb = cpu_to_be64(stolen);
870
871	__kvmppc_create_dtl_entry(vcpu, vpa, vc->pcpu, now, stolen_delta);
872
873	vcpu->arch.vpa.dirty = true;
874}
875
876/* See if there is a doorbell interrupt pending for a vcpu */
877static bool kvmppc_doorbell_pending(struct kvm_vcpu *vcpu)
878{
879	int thr;
880	struct kvmppc_vcore *vc;
881
882	if (vcpu->arch.doorbell_request)
883		return true;
884	if (cpu_has_feature(CPU_FTR_ARCH_300))
885		return false;
886	/*
887	 * Ensure that the read of vcore->dpdes comes after the read
888	 * of vcpu->doorbell_request.  This barrier matches the
889	 * smp_wmb() in kvmppc_guest_entry_inject().
890	 */
891	smp_rmb();
892	vc = vcpu->arch.vcore;
893	thr = vcpu->vcpu_id - vc->first_vcpuid;
894	return !!(vc->dpdes & (1 << thr));
895}
896
897static bool kvmppc_power8_compatible(struct kvm_vcpu *vcpu)
898{
899	if (kvmppc_get_arch_compat(vcpu) >= PVR_ARCH_207)
900		return true;
901	if ((!kvmppc_get_arch_compat(vcpu)) &&
902	    cpu_has_feature(CPU_FTR_ARCH_207S))
903		return true;
904	return false;
905}
906
907static int kvmppc_h_set_mode(struct kvm_vcpu *vcpu, unsigned long mflags,
908			     unsigned long resource, unsigned long value1,
909			     unsigned long value2)
910{
911	switch (resource) {
912	case H_SET_MODE_RESOURCE_SET_CIABR:
913		if (!kvmppc_power8_compatible(vcpu))
914			return H_P2;
915		if (value2)
916			return H_P4;
917		if (mflags)
918			return H_UNSUPPORTED_FLAG_START;
919		/* Guests can't breakpoint the hypervisor */
920		if ((value1 & CIABR_PRIV) == CIABR_PRIV_HYPER)
921			return H_P3;
922		kvmppc_set_ciabr_hv(vcpu, value1);
923		return H_SUCCESS;
924	case H_SET_MODE_RESOURCE_SET_DAWR0:
925		if (!kvmppc_power8_compatible(vcpu))
926			return H_P2;
927		if (!ppc_breakpoint_available())
928			return H_P2;
929		if (mflags)
930			return H_UNSUPPORTED_FLAG_START;
931		if (value2 & DABRX_HYP)
932			return H_P4;
933		kvmppc_set_dawr0_hv(vcpu, value1);
934		kvmppc_set_dawrx0_hv(vcpu, value2);
935		return H_SUCCESS;
936	case H_SET_MODE_RESOURCE_SET_DAWR1:
937		if (!kvmppc_power8_compatible(vcpu))
938			return H_P2;
939		if (!ppc_breakpoint_available())
940			return H_P2;
941		if (!cpu_has_feature(CPU_FTR_DAWR1))
942			return H_P2;
943		if (!vcpu->kvm->arch.dawr1_enabled)
944			return H_FUNCTION;
945		if (mflags)
946			return H_UNSUPPORTED_FLAG_START;
947		if (value2 & DABRX_HYP)
948			return H_P4;
949		kvmppc_set_dawr1_hv(vcpu, value1);
950		kvmppc_set_dawrx1_hv(vcpu, value2);
951		return H_SUCCESS;
952	case H_SET_MODE_RESOURCE_ADDR_TRANS_MODE:
953		/*
954		 * KVM does not support mflags=2 (AIL=2) and AIL=1 is reserved.
955		 * Keep this in synch with kvmppc_filter_guest_lpcr_hv.
956		 */
957		if (cpu_has_feature(CPU_FTR_P9_RADIX_PREFETCH_BUG) &&
958				kvmhv_vcpu_is_radix(vcpu) && mflags == 3)
959			return H_UNSUPPORTED_FLAG_START;
960		return H_TOO_HARD;
961	default:
962		return H_TOO_HARD;
963	}
964}
965
966/* Copy guest memory in place - must reside within a single memslot */
967static int kvmppc_copy_guest(struct kvm *kvm, gpa_t to, gpa_t from,
968				  unsigned long len)
969{
970	struct kvm_memory_slot *to_memslot = NULL;
971	struct kvm_memory_slot *from_memslot = NULL;
972	unsigned long to_addr, from_addr;
973	int r;
974
975	/* Get HPA for from address */
976	from_memslot = gfn_to_memslot(kvm, from >> PAGE_SHIFT);
977	if (!from_memslot)
978		return -EFAULT;
979	if ((from + len) >= ((from_memslot->base_gfn + from_memslot->npages)
980			     << PAGE_SHIFT))
981		return -EINVAL;
982	from_addr = gfn_to_hva_memslot(from_memslot, from >> PAGE_SHIFT);
983	if (kvm_is_error_hva(from_addr))
984		return -EFAULT;
985	from_addr |= (from & (PAGE_SIZE - 1));
986
987	/* Get HPA for to address */
988	to_memslot = gfn_to_memslot(kvm, to >> PAGE_SHIFT);
989	if (!to_memslot)
990		return -EFAULT;
991	if ((to + len) >= ((to_memslot->base_gfn + to_memslot->npages)
992			   << PAGE_SHIFT))
993		return -EINVAL;
994	to_addr = gfn_to_hva_memslot(to_memslot, to >> PAGE_SHIFT);
995	if (kvm_is_error_hva(to_addr))
996		return -EFAULT;
997	to_addr |= (to & (PAGE_SIZE - 1));
998
999	/* Perform copy */
1000	r = raw_copy_in_user((void __user *)to_addr, (void __user *)from_addr,
1001			     len);
1002	if (r)
1003		return -EFAULT;
1004	mark_page_dirty(kvm, to >> PAGE_SHIFT);
1005	return 0;
1006}
1007
1008static long kvmppc_h_page_init(struct kvm_vcpu *vcpu, unsigned long flags,
1009			       unsigned long dest, unsigned long src)
1010{
1011	u64 pg_sz = SZ_4K;		/* 4K page size */
1012	u64 pg_mask = SZ_4K - 1;
1013	int ret;
1014
1015	/* Check for invalid flags (H_PAGE_SET_LOANED covers all CMO flags) */
1016	if (flags & ~(H_ICACHE_INVALIDATE | H_ICACHE_SYNCHRONIZE |
1017		      H_ZERO_PAGE | H_COPY_PAGE | H_PAGE_SET_LOANED))
1018		return H_PARAMETER;
1019
1020	/* dest (and src if copy_page flag set) must be page aligned */
1021	if ((dest & pg_mask) || ((flags & H_COPY_PAGE) && (src & pg_mask)))
1022		return H_PARAMETER;
1023
1024	/* zero and/or copy the page as determined by the flags */
1025	if (flags & H_COPY_PAGE) {
1026		ret = kvmppc_copy_guest(vcpu->kvm, dest, src, pg_sz);
1027		if (ret < 0)
1028			return H_PARAMETER;
1029	} else if (flags & H_ZERO_PAGE) {
1030		ret = kvm_clear_guest(vcpu->kvm, dest, pg_sz);
1031		if (ret < 0)
1032			return H_PARAMETER;
1033	}
1034
1035	/* We can ignore the remaining flags */
1036
1037	return H_SUCCESS;
1038}
1039
1040static int kvm_arch_vcpu_yield_to(struct kvm_vcpu *target)
1041{
1042	struct kvmppc_vcore *vcore = target->arch.vcore;
1043
1044	/*
1045	 * We expect to have been called by the real mode handler
1046	 * (kvmppc_rm_h_confer()) which would have directly returned
1047	 * H_SUCCESS if the source vcore wasn't idle (e.g. if it may
1048	 * have useful work to do and should not confer) so we don't
1049	 * recheck that here.
1050	 *
1051	 * In the case of the P9 single vcpu per vcore case, the real
1052	 * mode handler is not called but no other threads are in the
1053	 * source vcore.
1054	 */
1055	if (!cpu_has_feature(CPU_FTR_ARCH_300)) {
1056		spin_lock(&vcore->lock);
1057		if (target->arch.state == KVMPPC_VCPU_RUNNABLE &&
1058		    vcore->vcore_state != VCORE_INACTIVE &&
1059		    vcore->runner)
1060			target = vcore->runner;
1061		spin_unlock(&vcore->lock);
1062	}
1063
1064	return kvm_vcpu_yield_to(target);
1065}
1066
1067static int kvmppc_get_yield_count(struct kvm_vcpu *vcpu)
1068{
1069	int yield_count = 0;
1070	struct lppaca *lppaca;
1071
1072	spin_lock(&vcpu->arch.vpa_update_lock);
1073	lppaca = (struct lppaca *)vcpu->arch.vpa.pinned_addr;
1074	if (lppaca)
1075		yield_count = be32_to_cpu(lppaca->yield_count);
1076	spin_unlock(&vcpu->arch.vpa_update_lock);
1077	return yield_count;
1078}
1079
1080/*
1081 * H_RPT_INVALIDATE hcall handler for nested guests.
1082 *
1083 * Handles only nested process-scoped invalidation requests in L0.
1084 */
1085static int kvmppc_nested_h_rpt_invalidate(struct kvm_vcpu *vcpu)
1086{
1087	unsigned long type = kvmppc_get_gpr(vcpu, 6);
1088	unsigned long pid, pg_sizes, start, end;
1089
1090	/*
1091	 * The partition-scoped invalidations aren't handled here in L0.
1092	 */
1093	if (type & H_RPTI_TYPE_NESTED)
1094		return RESUME_HOST;
1095
1096	pid = kvmppc_get_gpr(vcpu, 4);
1097	pg_sizes = kvmppc_get_gpr(vcpu, 7);
1098	start = kvmppc_get_gpr(vcpu, 8);
1099	end = kvmppc_get_gpr(vcpu, 9);
1100
1101	do_h_rpt_invalidate_prt(pid, vcpu->arch.nested->shadow_lpid,
1102				type, pg_sizes, start, end);
1103
1104	kvmppc_set_gpr(vcpu, 3, H_SUCCESS);
1105	return RESUME_GUEST;
1106}
1107
1108static long kvmppc_h_rpt_invalidate(struct kvm_vcpu *vcpu,
1109				    unsigned long id, unsigned long target,
1110				    unsigned long type, unsigned long pg_sizes,
1111				    unsigned long start, unsigned long end)
1112{
1113	if (!kvm_is_radix(vcpu->kvm))
1114		return H_UNSUPPORTED;
1115
1116	if (end < start)
1117		return H_P5;
1118
1119	/*
1120	 * Partition-scoped invalidation for nested guests.
1121	 */
1122	if (type & H_RPTI_TYPE_NESTED) {
1123		if (!nesting_enabled(vcpu->kvm))
1124			return H_FUNCTION;
1125
1126		/* Support only cores as target */
1127		if (target != H_RPTI_TARGET_CMMU)
1128			return H_P2;
1129
1130		return do_h_rpt_invalidate_pat(vcpu, id, type, pg_sizes,
1131					       start, end);
1132	}
1133
1134	/*
1135	 * Process-scoped invalidation for L1 guests.
1136	 */
1137	do_h_rpt_invalidate_prt(id, vcpu->kvm->arch.lpid,
1138				type, pg_sizes, start, end);
1139	return H_SUCCESS;
1140}
1141
1142int kvmppc_pseries_do_hcall(struct kvm_vcpu *vcpu)
1143{
1144	struct kvm *kvm = vcpu->kvm;
1145	unsigned long req = kvmppc_get_gpr(vcpu, 3);
1146	unsigned long target, ret = H_SUCCESS;
1147	int yield_count;
1148	struct kvm_vcpu *tvcpu;
1149	int idx, rc;
1150
1151	if (req <= MAX_HCALL_OPCODE &&
1152	    !test_bit(req/4, vcpu->kvm->arch.enabled_hcalls))
1153		return RESUME_HOST;
1154
1155	switch (req) {
1156	case H_REMOVE:
1157		ret = kvmppc_h_remove(vcpu, kvmppc_get_gpr(vcpu, 4),
1158					kvmppc_get_gpr(vcpu, 5),
1159					kvmppc_get_gpr(vcpu, 6));
1160		if (ret == H_TOO_HARD)
1161			return RESUME_HOST;
1162		break;
1163	case H_ENTER:
1164		ret = kvmppc_h_enter(vcpu, kvmppc_get_gpr(vcpu, 4),
1165					kvmppc_get_gpr(vcpu, 5),
1166					kvmppc_get_gpr(vcpu, 6),
1167					kvmppc_get_gpr(vcpu, 7));
1168		if (ret == H_TOO_HARD)
1169			return RESUME_HOST;
1170		break;
1171	case H_READ:
1172		ret = kvmppc_h_read(vcpu, kvmppc_get_gpr(vcpu, 4),
1173					kvmppc_get_gpr(vcpu, 5));
1174		if (ret == H_TOO_HARD)
1175			return RESUME_HOST;
1176		break;
1177	case H_CLEAR_MOD:
1178		ret = kvmppc_h_clear_mod(vcpu, kvmppc_get_gpr(vcpu, 4),
1179					kvmppc_get_gpr(vcpu, 5));
1180		if (ret == H_TOO_HARD)
1181			return RESUME_HOST;
1182		break;
1183	case H_CLEAR_REF:
1184		ret = kvmppc_h_clear_ref(vcpu, kvmppc_get_gpr(vcpu, 4),
1185					kvmppc_get_gpr(vcpu, 5));
1186		if (ret == H_TOO_HARD)
1187			return RESUME_HOST;
1188		break;
1189	case H_PROTECT:
1190		ret = kvmppc_h_protect(vcpu, kvmppc_get_gpr(vcpu, 4),
1191					kvmppc_get_gpr(vcpu, 5),
1192					kvmppc_get_gpr(vcpu, 6));
1193		if (ret == H_TOO_HARD)
1194			return RESUME_HOST;
1195		break;
1196	case H_BULK_REMOVE:
1197		ret = kvmppc_h_bulk_remove(vcpu);
1198		if (ret == H_TOO_HARD)
1199			return RESUME_HOST;
1200		break;
1201
1202	case H_CEDE:
1203		break;
1204	case H_PROD:
1205		target = kvmppc_get_gpr(vcpu, 4);
1206		tvcpu = kvmppc_find_vcpu(kvm, target);
1207		if (!tvcpu) {
1208			ret = H_PARAMETER;
1209			break;
1210		}
1211		tvcpu->arch.prodded = 1;
1212		smp_mb(); /* This orders prodded store vs ceded load */
1213		if (tvcpu->arch.ceded)
1214			kvmppc_fast_vcpu_kick_hv(tvcpu);
1215		break;
1216	case H_CONFER:
1217		target = kvmppc_get_gpr(vcpu, 4);
1218		if (target == -1)
1219			break;
1220		tvcpu = kvmppc_find_vcpu(kvm, target);
1221		if (!tvcpu) {
1222			ret = H_PARAMETER;
1223			break;
1224		}
1225		yield_count = kvmppc_get_gpr(vcpu, 5);
1226		if (kvmppc_get_yield_count(tvcpu) != yield_count)
1227			break;
1228		kvm_arch_vcpu_yield_to(tvcpu);
1229		break;
1230	case H_REGISTER_VPA:
1231		ret = do_h_register_vpa(vcpu, kvmppc_get_gpr(vcpu, 4),
1232					kvmppc_get_gpr(vcpu, 5),
1233					kvmppc_get_gpr(vcpu, 6));
1234		break;
1235	case H_RTAS:
1236		if (list_empty(&kvm->arch.rtas_tokens))
1237			return RESUME_HOST;
1238
1239		idx = srcu_read_lock(&kvm->srcu);
1240		rc = kvmppc_rtas_hcall(vcpu);
1241		srcu_read_unlock(&kvm->srcu, idx);
1242
1243		if (rc == -ENOENT)
1244			return RESUME_HOST;
1245		else if (rc == 0)
1246			break;
1247
1248		/* Send the error out to userspace via KVM_RUN */
1249		return rc;
1250	case H_LOGICAL_CI_LOAD:
1251		ret = kvmppc_h_logical_ci_load(vcpu);
1252		if (ret == H_TOO_HARD)
1253			return RESUME_HOST;
1254		break;
1255	case H_LOGICAL_CI_STORE:
1256		ret = kvmppc_h_logical_ci_store(vcpu);
1257		if (ret == H_TOO_HARD)
1258			return RESUME_HOST;
1259		break;
1260	case H_SET_MODE:
1261		ret = kvmppc_h_set_mode(vcpu, kvmppc_get_gpr(vcpu, 4),
1262					kvmppc_get_gpr(vcpu, 5),
1263					kvmppc_get_gpr(vcpu, 6),
1264					kvmppc_get_gpr(vcpu, 7));
1265		if (ret == H_TOO_HARD)
1266			return RESUME_HOST;
1267		break;
1268	case H_XIRR:
1269	case H_CPPR:
1270	case H_EOI:
1271	case H_IPI:
1272	case H_IPOLL:
1273	case H_XIRR_X:
1274		if (kvmppc_xics_enabled(vcpu)) {
1275			if (xics_on_xive()) {
1276				ret = H_NOT_AVAILABLE;
1277				return RESUME_GUEST;
1278			}
1279			ret = kvmppc_xics_hcall(vcpu, req);
1280			break;
1281		}
1282		return RESUME_HOST;
1283	case H_SET_DABR:
1284		ret = kvmppc_h_set_dabr(vcpu, kvmppc_get_gpr(vcpu, 4));
1285		break;
1286	case H_SET_XDABR:
1287		ret = kvmppc_h_set_xdabr(vcpu, kvmppc_get_gpr(vcpu, 4),
1288						kvmppc_get_gpr(vcpu, 5));
1289		break;
1290#ifdef CONFIG_SPAPR_TCE_IOMMU
1291	case H_GET_TCE:
1292		ret = kvmppc_h_get_tce(vcpu, kvmppc_get_gpr(vcpu, 4),
1293						kvmppc_get_gpr(vcpu, 5));
1294		if (ret == H_TOO_HARD)
1295			return RESUME_HOST;
1296		break;
1297	case H_PUT_TCE:
1298		ret = kvmppc_h_put_tce(vcpu, kvmppc_get_gpr(vcpu, 4),
1299						kvmppc_get_gpr(vcpu, 5),
1300						kvmppc_get_gpr(vcpu, 6));
1301		if (ret == H_TOO_HARD)
1302			return RESUME_HOST;
1303		break;
1304	case H_PUT_TCE_INDIRECT:
1305		ret = kvmppc_h_put_tce_indirect(vcpu, kvmppc_get_gpr(vcpu, 4),
1306						kvmppc_get_gpr(vcpu, 5),
1307						kvmppc_get_gpr(vcpu, 6),
1308						kvmppc_get_gpr(vcpu, 7));
1309		if (ret == H_TOO_HARD)
1310			return RESUME_HOST;
1311		break;
1312	case H_STUFF_TCE:
1313		ret = kvmppc_h_stuff_tce(vcpu, kvmppc_get_gpr(vcpu, 4),
1314						kvmppc_get_gpr(vcpu, 5),
1315						kvmppc_get_gpr(vcpu, 6),
1316						kvmppc_get_gpr(vcpu, 7));
1317		if (ret == H_TOO_HARD)
1318			return RESUME_HOST;
1319		break;
1320#endif
1321	case H_RANDOM: {
1322		unsigned long rand;
1323
1324		if (!arch_get_random_seed_longs(&rand, 1))
1325			ret = H_HARDWARE;
1326		kvmppc_set_gpr(vcpu, 4, rand);
1327		break;
1328	}
1329	case H_RPT_INVALIDATE:
1330		ret = kvmppc_h_rpt_invalidate(vcpu, kvmppc_get_gpr(vcpu, 4),
1331					      kvmppc_get_gpr(vcpu, 5),
1332					      kvmppc_get_gpr(vcpu, 6),
1333					      kvmppc_get_gpr(vcpu, 7),
1334					      kvmppc_get_gpr(vcpu, 8),
1335					      kvmppc_get_gpr(vcpu, 9));
1336		break;
1337
1338	case H_SET_PARTITION_TABLE:
1339		ret = H_FUNCTION;
1340		if (nesting_enabled(kvm))
1341			ret = kvmhv_set_partition_table(vcpu);
1342		break;
1343	case H_ENTER_NESTED:
1344		ret = H_FUNCTION;
1345		if (!nesting_enabled(kvm))
1346			break;
1347		ret = kvmhv_enter_nested_guest(vcpu);
1348		if (ret == H_INTERRUPT) {
1349			kvmppc_set_gpr(vcpu, 3, 0);
1350			vcpu->arch.hcall_needed = 0;
1351			return -EINTR;
1352		} else if (ret == H_TOO_HARD) {
1353			kvmppc_set_gpr(vcpu, 3, 0);
1354			vcpu->arch.hcall_needed = 0;
1355			return RESUME_HOST;
1356		}
1357		break;
1358	case H_TLB_INVALIDATE:
1359		ret = H_FUNCTION;
1360		if (nesting_enabled(kvm))
1361			ret = kvmhv_do_nested_tlbie(vcpu);
1362		break;
1363	case H_COPY_TOFROM_GUEST:
1364		ret = H_FUNCTION;
1365		if (nesting_enabled(kvm))
1366			ret = kvmhv_copy_tofrom_guest_nested(vcpu);
1367		break;
1368	case H_PAGE_INIT:
1369		ret = kvmppc_h_page_init(vcpu, kvmppc_get_gpr(vcpu, 4),
1370					 kvmppc_get_gpr(vcpu, 5),
1371					 kvmppc_get_gpr(vcpu, 6));
1372		break;
1373	case H_SVM_PAGE_IN:
1374		ret = H_UNSUPPORTED;
1375		if (kvmppc_get_srr1(vcpu) & MSR_S)
1376			ret = kvmppc_h_svm_page_in(kvm,
1377						   kvmppc_get_gpr(vcpu, 4),
1378						   kvmppc_get_gpr(vcpu, 5),
1379						   kvmppc_get_gpr(vcpu, 6));
1380		break;
1381	case H_SVM_PAGE_OUT:
1382		ret = H_UNSUPPORTED;
1383		if (kvmppc_get_srr1(vcpu) & MSR_S)
1384			ret = kvmppc_h_svm_page_out(kvm,
1385						    kvmppc_get_gpr(vcpu, 4),
1386						    kvmppc_get_gpr(vcpu, 5),
1387						    kvmppc_get_gpr(vcpu, 6));
1388		break;
1389	case H_SVM_INIT_START:
1390		ret = H_UNSUPPORTED;
1391		if (kvmppc_get_srr1(vcpu) & MSR_S)
1392			ret = kvmppc_h_svm_init_start(kvm);
1393		break;
1394	case H_SVM_INIT_DONE:
1395		ret = H_UNSUPPORTED;
1396		if (kvmppc_get_srr1(vcpu) & MSR_S)
1397			ret = kvmppc_h_svm_init_done(kvm);
1398		break;
1399	case H_SVM_INIT_ABORT:
1400		/*
1401		 * Even if that call is made by the Ultravisor, the SSR1 value
1402		 * is the guest context one, with the secure bit clear as it has
1403		 * not yet been secured. So we can't check it here.
1404		 * Instead the kvm->arch.secure_guest flag is checked inside
1405		 * kvmppc_h_svm_init_abort().
1406		 */
1407		ret = kvmppc_h_svm_init_abort(kvm);
1408		break;
1409
1410	default:
1411		return RESUME_HOST;
1412	}
1413	WARN_ON_ONCE(ret == H_TOO_HARD);
1414	kvmppc_set_gpr(vcpu, 3, ret);
1415	vcpu->arch.hcall_needed = 0;
1416	return RESUME_GUEST;
1417}
1418
1419/*
1420 * Handle H_CEDE in the P9 path where we don't call the real-mode hcall
1421 * handlers in book3s_hv_rmhandlers.S.
1422 *
1423 * This has to be done early, not in kvmppc_pseries_do_hcall(), so
1424 * that the cede logic in kvmppc_run_single_vcpu() works properly.
1425 */
1426static void kvmppc_cede(struct kvm_vcpu *vcpu)
1427{
1428	__kvmppc_set_msr_hv(vcpu, __kvmppc_get_msr_hv(vcpu) | MSR_EE);
1429	vcpu->arch.ceded = 1;
1430	smp_mb();
1431	if (vcpu->arch.prodded) {
1432		vcpu->arch.prodded = 0;
1433		smp_mb();
1434		vcpu->arch.ceded = 0;
1435	}
1436}
1437
1438static int kvmppc_hcall_impl_hv(unsigned long cmd)
1439{
1440	switch (cmd) {
1441	case H_CEDE:
1442	case H_PROD:
1443	case H_CONFER:
1444	case H_REGISTER_VPA:
1445	case H_SET_MODE:
1446#ifdef CONFIG_SPAPR_TCE_IOMMU
1447	case H_GET_TCE:
1448	case H_PUT_TCE:
1449	case H_PUT_TCE_INDIRECT:
1450	case H_STUFF_TCE:
1451#endif
1452	case H_LOGICAL_CI_LOAD:
1453	case H_LOGICAL_CI_STORE:
1454#ifdef CONFIG_KVM_XICS
1455	case H_XIRR:
1456	case H_CPPR:
1457	case H_EOI:
1458	case H_IPI:
1459	case H_IPOLL:
1460	case H_XIRR_X:
1461#endif
1462	case H_PAGE_INIT:
1463	case H_RPT_INVALIDATE:
1464		return 1;
1465	}
1466
1467	/* See if it's in the real-mode table */
1468	return kvmppc_hcall_impl_hv_realmode(cmd);
1469}
1470
1471static int kvmppc_emulate_debug_inst(struct kvm_vcpu *vcpu)
1472{
1473	ppc_inst_t last_inst;
1474
1475	if (kvmppc_get_last_inst(vcpu, INST_GENERIC, &last_inst) !=
1476					EMULATE_DONE) {
1477		/*
1478		 * Fetch failed, so return to guest and
1479		 * try executing it again.
1480		 */
1481		return RESUME_GUEST;
1482	}
1483
1484	if (ppc_inst_val(last_inst) == KVMPPC_INST_SW_BREAKPOINT) {
1485		vcpu->run->exit_reason = KVM_EXIT_DEBUG;
1486		vcpu->run->debug.arch.address = kvmppc_get_pc(vcpu);
1487		return RESUME_HOST;
1488	} else {
1489		kvmppc_core_queue_program(vcpu, SRR1_PROGILL |
1490				(kvmppc_get_msr(vcpu) & SRR1_PREFIXED));
1491		return RESUME_GUEST;
1492	}
1493}
1494
1495static void do_nothing(void *x)
1496{
1497}
1498
1499static unsigned long kvmppc_read_dpdes(struct kvm_vcpu *vcpu)
1500{
1501	int thr, cpu, pcpu, nthreads;
1502	struct kvm_vcpu *v;
1503	unsigned long dpdes;
1504
1505	nthreads = vcpu->kvm->arch.emul_smt_mode;
1506	dpdes = 0;
1507	cpu = vcpu->vcpu_id & ~(nthreads - 1);
1508	for (thr = 0; thr < nthreads; ++thr, ++cpu) {
1509		v = kvmppc_find_vcpu(vcpu->kvm, cpu);
1510		if (!v)
1511			continue;
1512		/*
1513		 * If the vcpu is currently running on a physical cpu thread,
1514		 * interrupt it in order to pull it out of the guest briefly,
1515		 * which will update its vcore->dpdes value.
1516		 */
1517		pcpu = READ_ONCE(v->cpu);
1518		if (pcpu >= 0)
1519			smp_call_function_single(pcpu, do_nothing, NULL, 1);
1520		if (kvmppc_doorbell_pending(v))
1521			dpdes |= 1 << thr;
1522	}
1523	return dpdes;
1524}
1525
1526/*
1527 * On POWER9, emulate doorbell-related instructions in order to
1528 * give the guest the illusion of running on a multi-threaded core.
1529 * The instructions emulated are msgsndp, msgclrp, mfspr TIR,
1530 * and mfspr DPDES.
1531 */
1532static int kvmppc_emulate_doorbell_instr(struct kvm_vcpu *vcpu)
1533{
1534	u32 inst, rb, thr;
1535	unsigned long arg;
1536	struct kvm *kvm = vcpu->kvm;
1537	struct kvm_vcpu *tvcpu;
1538	ppc_inst_t pinst;
1539
1540	if (kvmppc_get_last_inst(vcpu, INST_GENERIC, &pinst) != EMULATE_DONE)
1541		return RESUME_GUEST;
1542	inst = ppc_inst_val(pinst);
1543	if (get_op(inst) != 31)
1544		return EMULATE_FAIL;
1545	rb = get_rb(inst);
1546	thr = vcpu->vcpu_id & (kvm->arch.emul_smt_mode - 1);
1547	switch (get_xop(inst)) {
1548	case OP_31_XOP_MSGSNDP:
1549		arg = kvmppc_get_gpr(vcpu, rb);
1550		if (((arg >> 27) & 0x1f) != PPC_DBELL_SERVER)
1551			break;
1552		arg &= 0x7f;
1553		if (arg >= kvm->arch.emul_smt_mode)
1554			break;
1555		tvcpu = kvmppc_find_vcpu(kvm, vcpu->vcpu_id - thr + arg);
1556		if (!tvcpu)
1557			break;
1558		if (!tvcpu->arch.doorbell_request) {
1559			tvcpu->arch.doorbell_request = 1;
1560			kvmppc_fast_vcpu_kick_hv(tvcpu);
1561		}
1562		break;
1563	case OP_31_XOP_MSGCLRP:
1564		arg = kvmppc_get_gpr(vcpu, rb);
1565		if (((arg >> 27) & 0x1f) != PPC_DBELL_SERVER)
1566			break;
1567		vcpu->arch.vcore->dpdes = 0;
1568		vcpu->arch.doorbell_request = 0;
1569		break;
1570	case OP_31_XOP_MFSPR:
1571		switch (get_sprn(inst)) {
1572		case SPRN_TIR:
1573			arg = thr;
1574			break;
1575		case SPRN_DPDES:
1576			arg = kvmppc_read_dpdes(vcpu);
1577			break;
1578		default:
1579			return EMULATE_FAIL;
1580		}
1581		kvmppc_set_gpr(vcpu, get_rt(inst), arg);
1582		break;
1583	default:
1584		return EMULATE_FAIL;
1585	}
1586	kvmppc_set_pc(vcpu, kvmppc_get_pc(vcpu) + 4);
1587	return RESUME_GUEST;
1588}
1589
1590/*
1591 * If the lppaca had pmcregs_in_use clear when we exited the guest, then
1592 * HFSCR_PM is cleared for next entry. If the guest then tries to access
1593 * the PMU SPRs, we get this facility unavailable interrupt. Putting HFSCR_PM
1594 * back in the guest HFSCR will cause the next entry to load the PMU SPRs and
1595 * allow the guest access to continue.
1596 */
1597static int kvmppc_pmu_unavailable(struct kvm_vcpu *vcpu)
1598{
1599	if (!(vcpu->arch.hfscr_permitted & HFSCR_PM))
1600		return EMULATE_FAIL;
1601
1602	kvmppc_set_hfscr_hv(vcpu, kvmppc_get_hfscr_hv(vcpu) | HFSCR_PM);
1603
1604	return RESUME_GUEST;
1605}
1606
1607static int kvmppc_ebb_unavailable(struct kvm_vcpu *vcpu)
1608{
1609	if (!(vcpu->arch.hfscr_permitted & HFSCR_EBB))
1610		return EMULATE_FAIL;
1611
1612	kvmppc_set_hfscr_hv(vcpu, kvmppc_get_hfscr_hv(vcpu) | HFSCR_EBB);
1613
1614	return RESUME_GUEST;
1615}
1616
1617static int kvmppc_tm_unavailable(struct kvm_vcpu *vcpu)
1618{
1619	if (!(vcpu->arch.hfscr_permitted & HFSCR_TM))
1620		return EMULATE_FAIL;
1621
1622	kvmppc_set_hfscr_hv(vcpu, kvmppc_get_hfscr_hv(vcpu) | HFSCR_TM);
1623
1624	return RESUME_GUEST;
1625}
1626
1627static int kvmppc_handle_exit_hv(struct kvm_vcpu *vcpu,
1628				 struct task_struct *tsk)
1629{
1630	struct kvm_run *run = vcpu->run;
1631	int r = RESUME_HOST;
1632
1633	vcpu->stat.sum_exits++;
1634
1635	/*
1636	 * This can happen if an interrupt occurs in the last stages
1637	 * of guest entry or the first stages of guest exit (i.e. after
1638	 * setting paca->kvm_hstate.in_guest to KVM_GUEST_MODE_GUEST_HV
1639	 * and before setting it to KVM_GUEST_MODE_HOST_HV).
1640	 * That can happen due to a bug, or due to a machine check
1641	 * occurring at just the wrong time.
1642	 */
1643	if (!kvmhv_is_nestedv2() && (__kvmppc_get_msr_hv(vcpu) & MSR_HV)) {
1644		printk(KERN_EMERG "KVM trap in HV mode!\n");
1645		printk(KERN_EMERG "trap=0x%x | pc=0x%lx | msr=0x%llx\n",
1646			vcpu->arch.trap, kvmppc_get_pc(vcpu),
1647			vcpu->arch.shregs.msr);
1648		kvmppc_dump_regs(vcpu);
1649		run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
1650		run->hw.hardware_exit_reason = vcpu->arch.trap;
1651		return RESUME_HOST;
1652	}
1653	run->exit_reason = KVM_EXIT_UNKNOWN;
1654	run->ready_for_interrupt_injection = 1;
1655	switch (vcpu->arch.trap) {
1656	/* We're good on these - the host merely wanted to get our attention */
1657	case BOOK3S_INTERRUPT_NESTED_HV_DECREMENTER:
1658		WARN_ON_ONCE(1); /* Should never happen */
1659		vcpu->arch.trap = BOOK3S_INTERRUPT_HV_DECREMENTER;
1660		fallthrough;
1661	case BOOK3S_INTERRUPT_HV_DECREMENTER:
1662		vcpu->stat.dec_exits++;
1663		r = RESUME_GUEST;
1664		break;
1665	case BOOK3S_INTERRUPT_EXTERNAL:
1666	case BOOK3S_INTERRUPT_H_DOORBELL:
1667	case BOOK3S_INTERRUPT_H_VIRT:
1668		vcpu->stat.ext_intr_exits++;
1669		r = RESUME_GUEST;
1670		break;
1671	/* SR/HMI/PMI are HV interrupts that host has handled. Resume guest.*/
1672	case BOOK3S_INTERRUPT_HMI:
1673	case BOOK3S_INTERRUPT_PERFMON:
1674	case BOOK3S_INTERRUPT_SYSTEM_RESET:
1675		r = RESUME_GUEST;
1676		break;
1677	case BOOK3S_INTERRUPT_MACHINE_CHECK: {
1678		static DEFINE_RATELIMIT_STATE(rs, DEFAULT_RATELIMIT_INTERVAL,
1679					      DEFAULT_RATELIMIT_BURST);
1680		/*
1681		 * Print the MCE event to host console. Ratelimit so the guest
1682		 * can't flood the host log.
1683		 */
1684		if (__ratelimit(&rs))
1685			machine_check_print_event_info(&vcpu->arch.mce_evt,false, true);
1686
1687		/*
1688		 * If the guest can do FWNMI, exit to userspace so it can
1689		 * deliver a FWNMI to the guest.
1690		 * Otherwise we synthesize a machine check for the guest
1691		 * so that it knows that the machine check occurred.
1692		 */
1693		if (!vcpu->kvm->arch.fwnmi_enabled) {
1694			ulong flags = (__kvmppc_get_msr_hv(vcpu) & 0x083c0000) |
1695					(kvmppc_get_msr(vcpu) & SRR1_PREFIXED);
1696			kvmppc_core_queue_machine_check(vcpu, flags);
1697			r = RESUME_GUEST;
1698			break;
1699		}
1700
1701		/* Exit to guest with KVM_EXIT_NMI as exit reason */
1702		run->exit_reason = KVM_EXIT_NMI;
1703		run->hw.hardware_exit_reason = vcpu->arch.trap;
1704		/* Clear out the old NMI status from run->flags */
1705		run->flags &= ~KVM_RUN_PPC_NMI_DISP_MASK;
1706		/* Now set the NMI status */
1707		if (vcpu->arch.mce_evt.disposition == MCE_DISPOSITION_RECOVERED)
1708			run->flags |= KVM_RUN_PPC_NMI_DISP_FULLY_RECOV;
1709		else
1710			run->flags |= KVM_RUN_PPC_NMI_DISP_NOT_RECOV;
1711
1712		r = RESUME_HOST;
1713		break;
1714	}
1715	case BOOK3S_INTERRUPT_PROGRAM:
1716	{
1717		ulong flags;
1718		/*
1719		 * Normally program interrupts are delivered directly
1720		 * to the guest by the hardware, but we can get here
1721		 * as a result of a hypervisor emulation interrupt
1722		 * (e40) getting turned into a 700 by BML RTAS.
1723		 */
1724		flags = (__kvmppc_get_msr_hv(vcpu) & 0x1f0000ull) |
1725			(kvmppc_get_msr(vcpu) & SRR1_PREFIXED);
1726		kvmppc_core_queue_program(vcpu, flags);
1727		r = RESUME_GUEST;
1728		break;
1729	}
1730	case BOOK3S_INTERRUPT_SYSCALL:
1731	{
1732		int i;
1733
1734		if (!kvmhv_is_nestedv2() && unlikely(__kvmppc_get_msr_hv(vcpu) & MSR_PR)) {
1735			/*
1736			 * Guest userspace executed sc 1. This can only be
1737			 * reached by the P9 path because the old path
1738			 * handles this case in realmode hcall handlers.
1739			 */
1740			if (!kvmhv_vcpu_is_radix(vcpu)) {
1741				/*
1742				 * A guest could be running PR KVM, so this
1743				 * may be a PR KVM hcall. It must be reflected
1744				 * to the guest kernel as a sc interrupt.
1745				 */
1746				kvmppc_core_queue_syscall(vcpu);
1747			} else {
1748				/*
1749				 * Radix guests can not run PR KVM or nested HV
1750				 * hash guests which might run PR KVM, so this
1751				 * is always a privilege fault. Send a program
1752				 * check to guest kernel.
1753				 */
1754				kvmppc_core_queue_program(vcpu, SRR1_PROGPRIV);
1755			}
1756			r = RESUME_GUEST;
1757			break;
1758		}
1759
1760		/*
1761		 * hcall - gather args and set exit_reason. This will next be
1762		 * handled by kvmppc_pseries_do_hcall which may be able to deal
1763		 * with it and resume guest, or may punt to userspace.
1764		 */
1765		run->papr_hcall.nr = kvmppc_get_gpr(vcpu, 3);
1766		for (i = 0; i < 9; ++i)
1767			run->papr_hcall.args[i] = kvmppc_get_gpr(vcpu, 4 + i);
1768		run->exit_reason = KVM_EXIT_PAPR_HCALL;
1769		vcpu->arch.hcall_needed = 1;
1770		r = RESUME_HOST;
1771		break;
1772	}
1773	/*
1774	 * We get these next two if the guest accesses a page which it thinks
1775	 * it has mapped but which is not actually present, either because
1776	 * it is for an emulated I/O device or because the corresonding
1777	 * host page has been paged out.
1778	 *
1779	 * Any other HDSI/HISI interrupts have been handled already for P7/8
1780	 * guests. For POWER9 hash guests not using rmhandlers, basic hash
1781	 * fault handling is done here.
1782	 */
1783	case BOOK3S_INTERRUPT_H_DATA_STORAGE: {
1784		unsigned long vsid;
1785		long err;
1786
1787		if (cpu_has_feature(CPU_FTR_P9_RADIX_PREFETCH_BUG) &&
1788		    unlikely(vcpu->arch.fault_dsisr == HDSISR_CANARY)) {
1789			r = RESUME_GUEST; /* Just retry if it's the canary */
1790			break;
1791		}
1792
1793		if (kvm_is_radix(vcpu->kvm) || !cpu_has_feature(CPU_FTR_ARCH_300)) {
1794			/*
1795			 * Radix doesn't require anything, and pre-ISAv3.0 hash
1796			 * already attempted to handle this in rmhandlers. The
1797			 * hash fault handling below is v3 only (it uses ASDR
1798			 * via fault_gpa).
1799			 */
1800			r = RESUME_PAGE_FAULT;
1801			break;
1802		}
1803
1804		if (!(vcpu->arch.fault_dsisr & (DSISR_NOHPTE | DSISR_PROTFAULT))) {
1805			kvmppc_core_queue_data_storage(vcpu,
1806				kvmppc_get_msr(vcpu) & SRR1_PREFIXED,
1807				vcpu->arch.fault_dar, vcpu->arch.fault_dsisr);
1808			r = RESUME_GUEST;
1809			break;
1810		}
1811
1812		if (!(__kvmppc_get_msr_hv(vcpu) & MSR_DR))
1813			vsid = vcpu->kvm->arch.vrma_slb_v;
1814		else
1815			vsid = vcpu->arch.fault_gpa;
1816
1817		err = kvmppc_hpte_hv_fault(vcpu, vcpu->arch.fault_dar,
1818				vsid, vcpu->arch.fault_dsisr, true);
1819		if (err == 0) {
1820			r = RESUME_GUEST;
1821		} else if (err == -1 || err == -2) {
1822			r = RESUME_PAGE_FAULT;
1823		} else {
1824			kvmppc_core_queue_data_storage(vcpu,
1825				kvmppc_get_msr(vcpu) & SRR1_PREFIXED,
1826				vcpu->arch.fault_dar, err);
1827			r = RESUME_GUEST;
1828		}
1829		break;
1830	}
1831	case BOOK3S_INTERRUPT_H_INST_STORAGE: {
1832		unsigned long vsid;
1833		long err;
1834
1835		vcpu->arch.fault_dar = kvmppc_get_pc(vcpu);
1836		vcpu->arch.fault_dsisr = __kvmppc_get_msr_hv(vcpu) &
1837			DSISR_SRR1_MATCH_64S;
1838		if (kvm_is_radix(vcpu->kvm) || !cpu_has_feature(CPU_FTR_ARCH_300)) {
1839			/*
1840			 * Radix doesn't require anything, and pre-ISAv3.0 hash
1841			 * already attempted to handle this in rmhandlers. The
1842			 * hash fault handling below is v3 only (it uses ASDR
1843			 * via fault_gpa).
1844			 */
1845			if (__kvmppc_get_msr_hv(vcpu) & HSRR1_HISI_WRITE)
1846				vcpu->arch.fault_dsisr |= DSISR_ISSTORE;
1847			r = RESUME_PAGE_FAULT;
1848			break;
1849		}
1850
1851		if (!(vcpu->arch.fault_dsisr & SRR1_ISI_NOPT)) {
1852			kvmppc_core_queue_inst_storage(vcpu,
1853				vcpu->arch.fault_dsisr |
1854				(kvmppc_get_msr(vcpu) & SRR1_PREFIXED));
1855			r = RESUME_GUEST;
1856			break;
1857		}
1858
1859		if (!(__kvmppc_get_msr_hv(vcpu) & MSR_IR))
1860			vsid = vcpu->kvm->arch.vrma_slb_v;
1861		else
1862			vsid = vcpu->arch.fault_gpa;
1863
1864		err = kvmppc_hpte_hv_fault(vcpu, vcpu->arch.fault_dar,
1865				vsid, vcpu->arch.fault_dsisr, false);
1866		if (err == 0) {
1867			r = RESUME_GUEST;
1868		} else if (err == -1) {
1869			r = RESUME_PAGE_FAULT;
1870		} else {
1871			kvmppc_core_queue_inst_storage(vcpu,
1872				err | (kvmppc_get_msr(vcpu) & SRR1_PREFIXED));
1873			r = RESUME_GUEST;
1874		}
1875		break;
1876	}
1877
1878	/*
1879	 * This occurs if the guest executes an illegal instruction.
1880	 * If the guest debug is disabled, generate a program interrupt
1881	 * to the guest. If guest debug is enabled, we need to check
1882	 * whether the instruction is a software breakpoint instruction.
1883	 * Accordingly return to Guest or Host.
1884	 */
1885	case BOOK3S_INTERRUPT_H_EMUL_ASSIST:
1886		if (vcpu->arch.emul_inst != KVM_INST_FETCH_FAILED)
1887			vcpu->arch.last_inst = kvmppc_need_byteswap(vcpu) ?
1888				swab32(vcpu->arch.emul_inst) :
1889				vcpu->arch.emul_inst;
1890		if (vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP) {
1891			r = kvmppc_emulate_debug_inst(vcpu);
1892		} else {
1893			kvmppc_core_queue_program(vcpu, SRR1_PROGILL |
1894				(kvmppc_get_msr(vcpu) & SRR1_PREFIXED));
1895			r = RESUME_GUEST;
1896		}
1897		break;
1898
1899#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1900	case BOOK3S_INTERRUPT_HV_SOFTPATCH:
1901		/*
1902		 * This occurs for various TM-related instructions that
1903		 * we need to emulate on POWER9 DD2.2.  We have already
1904		 * handled the cases where the guest was in real-suspend
1905		 * mode and was transitioning to transactional state.
1906		 */
1907		r = kvmhv_p9_tm_emulation(vcpu);
1908		if (r != -1)
1909			break;
1910		fallthrough; /* go to facility unavailable handler */
1911#endif
1912
1913	/*
1914	 * This occurs if the guest (kernel or userspace), does something that
1915	 * is prohibited by HFSCR.
1916	 * On POWER9, this could be a doorbell instruction that we need
1917	 * to emulate.
1918	 * Otherwise, we just generate a program interrupt to the guest.
1919	 */
1920	case BOOK3S_INTERRUPT_H_FAC_UNAVAIL: {
1921		u64 cause = kvmppc_get_hfscr_hv(vcpu) >> 56;
1922
1923		r = EMULATE_FAIL;
1924		if (cpu_has_feature(CPU_FTR_ARCH_300)) {
1925			if (cause == FSCR_MSGP_LG)
1926				r = kvmppc_emulate_doorbell_instr(vcpu);
1927			if (cause == FSCR_PM_LG)
1928				r = kvmppc_pmu_unavailable(vcpu);
1929			if (cause == FSCR_EBB_LG)
1930				r = kvmppc_ebb_unavailable(vcpu);
1931			if (cause == FSCR_TM_LG)
1932				r = kvmppc_tm_unavailable(vcpu);
1933		}
1934		if (r == EMULATE_FAIL) {
1935			kvmppc_core_queue_program(vcpu, SRR1_PROGILL |
1936				(kvmppc_get_msr(vcpu) & SRR1_PREFIXED));
1937			r = RESUME_GUEST;
1938		}
1939		break;
1940	}
1941
1942	case BOOK3S_INTERRUPT_HV_RM_HARD:
1943		r = RESUME_PASSTHROUGH;
1944		break;
1945	default:
1946		kvmppc_dump_regs(vcpu);
1947		printk(KERN_EMERG "trap=0x%x | pc=0x%lx | msr=0x%llx\n",
1948			vcpu->arch.trap, kvmppc_get_pc(vcpu),
1949			__kvmppc_get_msr_hv(vcpu));
1950		run->hw.hardware_exit_reason = vcpu->arch.trap;
1951		r = RESUME_HOST;
1952		break;
1953	}
1954
1955	return r;
1956}
1957
1958static int kvmppc_handle_nested_exit(struct kvm_vcpu *vcpu)
1959{
1960	int r;
1961	int srcu_idx;
1962
1963	vcpu->stat.sum_exits++;
1964
1965	/*
1966	 * This can happen if an interrupt occurs in the last stages
1967	 * of guest entry or the first stages of guest exit (i.e. after
1968	 * setting paca->kvm_hstate.in_guest to KVM_GUEST_MODE_GUEST_HV
1969	 * and before setting it to KVM_GUEST_MODE_HOST_HV).
1970	 * That can happen due to a bug, or due to a machine check
1971	 * occurring at just the wrong time.
1972	 */
1973	if (__kvmppc_get_msr_hv(vcpu) & MSR_HV) {
1974		pr_emerg("KVM trap in HV mode while nested!\n");
1975		pr_emerg("trap=0x%x | pc=0x%lx | msr=0x%llx\n",
1976			 vcpu->arch.trap, kvmppc_get_pc(vcpu),
1977			 __kvmppc_get_msr_hv(vcpu));
1978		kvmppc_dump_regs(vcpu);
1979		return RESUME_HOST;
1980	}
1981	switch (vcpu->arch.trap) {
1982	/* We're good on these - the host merely wanted to get our attention */
1983	case BOOK3S_INTERRUPT_HV_DECREMENTER:
1984		vcpu->stat.dec_exits++;
1985		r = RESUME_GUEST;
1986		break;
1987	case BOOK3S_INTERRUPT_EXTERNAL:
1988		vcpu->stat.ext_intr_exits++;
1989		r = RESUME_HOST;
1990		break;
1991	case BOOK3S_INTERRUPT_H_DOORBELL:
1992	case BOOK3S_INTERRUPT_H_VIRT:
1993		vcpu->stat.ext_intr_exits++;
1994		r = RESUME_GUEST;
1995		break;
1996	/* These need to go to the nested HV */
1997	case BOOK3S_INTERRUPT_NESTED_HV_DECREMENTER:
1998		vcpu->arch.trap = BOOK3S_INTERRUPT_HV_DECREMENTER;
1999		vcpu->stat.dec_exits++;
2000		r = RESUME_HOST;
2001		break;
2002	/* SR/HMI/PMI are HV interrupts that host has handled. Resume guest.*/
2003	case BOOK3S_INTERRUPT_HMI:
2004	case BOOK3S_INTERRUPT_PERFMON:
2005	case BOOK3S_INTERRUPT_SYSTEM_RESET:
2006		r = RESUME_GUEST;
2007		break;
2008	case BOOK3S_INTERRUPT_MACHINE_CHECK:
2009	{
2010		static DEFINE_RATELIMIT_STATE(rs, DEFAULT_RATELIMIT_INTERVAL,
2011					      DEFAULT_RATELIMIT_BURST);
2012		/* Pass the machine check to the L1 guest */
2013		r = RESUME_HOST;
2014		/* Print the MCE event to host console. */
2015		if (__ratelimit(&rs))
2016			machine_check_print_event_info(&vcpu->arch.mce_evt, false, true);
2017		break;
2018	}
2019	/*
2020	 * We get these next two if the guest accesses a page which it thinks
2021	 * it has mapped but which is not actually present, either because
2022	 * it is for an emulated I/O device or because the corresonding
2023	 * host page has been paged out.
2024	 */
2025	case BOOK3S_INTERRUPT_H_DATA_STORAGE:
2026		srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
2027		r = kvmhv_nested_page_fault(vcpu);
2028		srcu_read_unlock(&vcpu->kvm->srcu, srcu_idx);
2029		break;
2030	case BOOK3S_INTERRUPT_H_INST_STORAGE:
2031		vcpu->arch.fault_dar = kvmppc_get_pc(vcpu);
2032		vcpu->arch.fault_dsisr = kvmppc_get_msr(vcpu) &
2033					 DSISR_SRR1_MATCH_64S;
2034		if (__kvmppc_get_msr_hv(vcpu) & HSRR1_HISI_WRITE)
2035			vcpu->arch.fault_dsisr |= DSISR_ISSTORE;
2036		srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
2037		r = kvmhv_nested_page_fault(vcpu);
2038		srcu_read_unlock(&vcpu->kvm->srcu, srcu_idx);
2039		break;
2040
2041#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
2042	case BOOK3S_INTERRUPT_HV_SOFTPATCH:
2043		/*
2044		 * This occurs for various TM-related instructions that
2045		 * we need to emulate on POWER9 DD2.2.  We have already
2046		 * handled the cases where the guest was in real-suspend
2047		 * mode and was transitioning to transactional state.
2048		 */
2049		r = kvmhv_p9_tm_emulation(vcpu);
2050		if (r != -1)
2051			break;
2052		fallthrough; /* go to facility unavailable handler */
2053#endif
2054
2055	case BOOK3S_INTERRUPT_H_FAC_UNAVAIL: {
2056		u64 cause = vcpu->arch.hfscr >> 56;
2057
2058		/*
2059		 * Only pass HFU interrupts to the L1 if the facility is
2060		 * permitted but disabled by the L1's HFSCR, otherwise
2061		 * the interrupt does not make sense to the L1 so turn
2062		 * it into a HEAI.
2063		 */
2064		if (!(vcpu->arch.hfscr_permitted & (1UL << cause)) ||
2065				(vcpu->arch.nested_hfscr & (1UL << cause))) {
2066			ppc_inst_t pinst;
2067			vcpu->arch.trap = BOOK3S_INTERRUPT_H_EMUL_ASSIST;
2068
2069			/*
2070			 * If the fetch failed, return to guest and
2071			 * try executing it again.
2072			 */
2073			r = kvmppc_get_last_inst(vcpu, INST_GENERIC, &pinst);
2074			vcpu->arch.emul_inst = ppc_inst_val(pinst);
2075			if (r != EMULATE_DONE)
2076				r = RESUME_GUEST;
2077			else
2078				r = RESUME_HOST;
2079		} else {
2080			r = RESUME_HOST;
2081		}
2082
2083		break;
2084	}
2085
2086	case BOOK3S_INTERRUPT_HV_RM_HARD:
2087		vcpu->arch.trap = 0;
2088		r = RESUME_GUEST;
2089		if (!xics_on_xive())
2090			kvmppc_xics_rm_complete(vcpu, 0);
2091		break;
2092	case BOOK3S_INTERRUPT_SYSCALL:
2093	{
2094		unsigned long req = kvmppc_get_gpr(vcpu, 3);
2095
2096		/*
2097		 * The H_RPT_INVALIDATE hcalls issued by nested
2098		 * guests for process-scoped invalidations when
2099		 * GTSE=0, are handled here in L0.
2100		 */
2101		if (req == H_RPT_INVALIDATE) {
2102			r = kvmppc_nested_h_rpt_invalidate(vcpu);
2103			break;
2104		}
2105
2106		r = RESUME_HOST;
2107		break;
2108	}
2109	default:
2110		r = RESUME_HOST;
2111		break;
2112	}
2113
2114	return r;
2115}
2116
2117static int kvm_arch_vcpu_ioctl_get_sregs_hv(struct kvm_vcpu *vcpu,
2118					    struct kvm_sregs *sregs)
2119{
2120	int i;
2121
2122	memset(sregs, 0, sizeof(struct kvm_sregs));
2123	sregs->pvr = vcpu->arch.pvr;
2124	for (i = 0; i < vcpu->arch.slb_max; i++) {
2125		sregs->u.s.ppc64.slb[i].slbe = vcpu->arch.slb[i].orige;
2126		sregs->u.s.ppc64.slb[i].slbv = vcpu->arch.slb[i].origv;
2127	}
2128
2129	return 0;
2130}
2131
2132static int kvm_arch_vcpu_ioctl_set_sregs_hv(struct kvm_vcpu *vcpu,
2133					    struct kvm_sregs *sregs)
2134{
2135	int i, j;
2136
2137	/* Only accept the same PVR as the host's, since we can't spoof it */
2138	if (sregs->pvr != vcpu->arch.pvr)
2139		return -EINVAL;
2140
2141	j = 0;
2142	for (i = 0; i < vcpu->arch.slb_nr; i++) {
2143		if (sregs->u.s.ppc64.slb[i].slbe & SLB_ESID_V) {
2144			vcpu->arch.slb[j].orige = sregs->u.s.ppc64.slb[i].slbe;
2145			vcpu->arch.slb[j].origv = sregs->u.s.ppc64.slb[i].slbv;
2146			++j;
2147		}
2148	}
2149	vcpu->arch.slb_max = j;
2150
2151	return 0;
2152}
2153
2154/*
2155 * Enforce limits on guest LPCR values based on hardware availability,
2156 * guest configuration, and possibly hypervisor support and security
2157 * concerns.
2158 */
2159unsigned long kvmppc_filter_lpcr_hv(struct kvm *kvm, unsigned long lpcr)
2160{
2161	/* LPCR_TC only applies to HPT guests */
2162	if (kvm_is_radix(kvm))
2163		lpcr &= ~LPCR_TC;
2164
2165	/* On POWER8 and above, userspace can modify AIL */
2166	if (!cpu_has_feature(CPU_FTR_ARCH_207S))
2167		lpcr &= ~LPCR_AIL;
2168	if ((lpcr & LPCR_AIL) != LPCR_AIL_3)
2169		lpcr &= ~LPCR_AIL; /* LPCR[AIL]=1/2 is disallowed */
2170	/*
2171	 * On some POWER9s we force AIL off for radix guests to prevent
2172	 * executing in MSR[HV]=1 mode with the MMU enabled and PIDR set to
2173	 * guest, which can result in Q0 translations with LPID=0 PID=PIDR to
2174	 * be cached, which the host TLB management does not expect.
2175	 */
2176	if (kvm_is_radix(kvm) && cpu_has_feature(CPU_FTR_P9_RADIX_PREFETCH_BUG))
2177		lpcr &= ~LPCR_AIL;
2178
2179	/*
2180	 * On POWER9, allow userspace to enable large decrementer for the
2181	 * guest, whether or not the host has it enabled.
2182	 */
2183	if (!cpu_has_feature(CPU_FTR_ARCH_300))
2184		lpcr &= ~LPCR_LD;
2185
2186	return lpcr;
2187}
2188
2189static void verify_lpcr(struct kvm *kvm, unsigned long lpcr)
2190{
2191	if (lpcr != kvmppc_filter_lpcr_hv(kvm, lpcr)) {
2192		WARN_ONCE(1, "lpcr 0x%lx differs from filtered 0x%lx\n",
2193			  lpcr, kvmppc_filter_lpcr_hv(kvm, lpcr));
2194	}
2195}
2196
2197static void kvmppc_set_lpcr(struct kvm_vcpu *vcpu, u64 new_lpcr,
2198		bool preserve_top32)
2199{
2200	struct kvm *kvm = vcpu->kvm;
2201	struct kvmppc_vcore *vc = vcpu->arch.vcore;
2202	u64 mask;
2203
2204	spin_lock(&vc->lock);
2205
2206	/*
2207	 * Userspace can only modify
2208	 * DPFD (default prefetch depth), ILE (interrupt little-endian),
2209	 * TC (translation control), AIL (alternate interrupt location),
2210	 * LD (large decrementer).
2211	 * These are subject to restrictions from kvmppc_filter_lcpr_hv().
2212	 */
2213	mask = LPCR_DPFD | LPCR_ILE | LPCR_TC | LPCR_AIL | LPCR_LD;
2214
2215	/* Broken 32-bit version of LPCR must not clear top bits */
2216	if (preserve_top32)
2217		mask &= 0xFFFFFFFF;
2218
2219	new_lpcr = kvmppc_filter_lpcr_hv(kvm,
2220			(vc->lpcr & ~mask) | (new_lpcr & mask));
2221
2222	/*
2223	 * If ILE (interrupt little-endian) has changed, update the
2224	 * MSR_LE bit in the intr_msr for each vcpu in this vcore.
2225	 */
2226	if ((new_lpcr & LPCR_ILE) != (vc->lpcr & LPCR_ILE)) {
2227		struct kvm_vcpu *vcpu;
2228		unsigned long i;
2229
2230		kvm_for_each_vcpu(i, vcpu, kvm) {
2231			if (vcpu->arch.vcore != vc)
2232				continue;
2233			if (new_lpcr & LPCR_ILE)
2234				vcpu->arch.intr_msr |= MSR_LE;
2235			else
2236				vcpu->arch.intr_msr &= ~MSR_LE;
2237		}
2238	}
2239
2240	vc->lpcr = new_lpcr;
2241	kvmhv_nestedv2_mark_dirty(vcpu, KVMPPC_GSID_LPCR);
2242
2243	spin_unlock(&vc->lock);
2244}
2245
2246static int kvmppc_get_one_reg_hv(struct kvm_vcpu *vcpu, u64 id,
2247				 union kvmppc_one_reg *val)
2248{
2249	int r = 0;
2250	long int i;
2251
2252	switch (id) {
2253	case KVM_REG_PPC_DEBUG_INST:
2254		*val = get_reg_val(id, KVMPPC_INST_SW_BREAKPOINT);
2255		break;
2256	case KVM_REG_PPC_HIOR:
2257		*val = get_reg_val(id, 0);
2258		break;
2259	case KVM_REG_PPC_DABR:
2260		*val = get_reg_val(id, vcpu->arch.dabr);
2261		break;
2262	case KVM_REG_PPC_DABRX:
2263		*val = get_reg_val(id, vcpu->arch.dabrx);
2264		break;
2265	case KVM_REG_PPC_DSCR:
2266		*val = get_reg_val(id, kvmppc_get_dscr_hv(vcpu));
2267		break;
2268	case KVM_REG_PPC_PURR:
2269		*val = get_reg_val(id, kvmppc_get_purr_hv(vcpu));
2270		break;
2271	case KVM_REG_PPC_SPURR:
2272		*val = get_reg_val(id, kvmppc_get_spurr_hv(vcpu));
2273		break;
2274	case KVM_REG_PPC_AMR:
2275		*val = get_reg_val(id, kvmppc_get_amr_hv(vcpu));
2276		break;
2277	case KVM_REG_PPC_UAMOR:
2278		*val = get_reg_val(id, kvmppc_get_uamor_hv(vcpu));
2279		break;
2280	case KVM_REG_PPC_MMCR0 ... KVM_REG_PPC_MMCR1:
2281		i = id - KVM_REG_PPC_MMCR0;
2282		*val = get_reg_val(id, kvmppc_get_mmcr_hv(vcpu, i));
2283		break;
2284	case KVM_REG_PPC_MMCR2:
2285		*val = get_reg_val(id, kvmppc_get_mmcr_hv(vcpu, 2));
2286		break;
2287	case KVM_REG_PPC_MMCRA:
2288		*val = get_reg_val(id, kvmppc_get_mmcra_hv(vcpu));
2289		break;
2290	case KVM_REG_PPC_MMCRS:
2291		*val = get_reg_val(id, vcpu->arch.mmcrs);
2292		break;
2293	case KVM_REG_PPC_MMCR3:
2294		*val = get_reg_val(id, kvmppc_get_mmcr_hv(vcpu, 3));
2295		break;
2296	case KVM_REG_PPC_PMC1 ... KVM_REG_PPC_PMC8:
2297		i = id - KVM_REG_PPC_PMC1;
2298		*val = get_reg_val(id, kvmppc_get_pmc_hv(vcpu, i));
2299		break;
2300	case KVM_REG_PPC_SPMC1 ... KVM_REG_PPC_SPMC2:
2301		i = id - KVM_REG_PPC_SPMC1;
2302		*val = get_reg_val(id, vcpu->arch.spmc[i]);
2303		break;
2304	case KVM_REG_PPC_SIAR:
2305		*val = get_reg_val(id, kvmppc_get_siar_hv(vcpu));
2306		break;
2307	case KVM_REG_PPC_SDAR:
2308		*val = get_reg_val(id, kvmppc_get_siar_hv(vcpu));
2309		break;
2310	case KVM_REG_PPC_SIER:
2311		*val = get_reg_val(id, kvmppc_get_sier_hv(vcpu, 0));
2312		break;
2313	case KVM_REG_PPC_SIER2:
2314		*val = get_reg_val(id, kvmppc_get_sier_hv(vcpu, 1));
2315		break;
2316	case KVM_REG_PPC_SIER3:
2317		*val = get_reg_val(id, kvmppc_get_sier_hv(vcpu, 2));
2318		break;
2319	case KVM_REG_PPC_IAMR:
2320		*val = get_reg_val(id, kvmppc_get_iamr_hv(vcpu));
2321		break;
2322	case KVM_REG_PPC_PSPB:
2323		*val = get_reg_val(id, kvmppc_get_pspb_hv(vcpu));
2324		break;
2325	case KVM_REG_PPC_DPDES:
2326		/*
2327		 * On POWER9, where we are emulating msgsndp etc.,
2328		 * we return 1 bit for each vcpu, which can come from
2329		 * either vcore->dpdes or doorbell_request.
2330		 * On POWER8, doorbell_request is 0.
2331		 */
2332		if (cpu_has_feature(CPU_FTR_ARCH_300))
2333			*val = get_reg_val(id, vcpu->arch.doorbell_request);
2334		else
2335			*val = get_reg_val(id, vcpu->arch.vcore->dpdes);
2336		break;
2337	case KVM_REG_PPC_VTB:
2338		*val = get_reg_val(id, kvmppc_get_vtb(vcpu));
2339		break;
2340	case KVM_REG_PPC_DAWR:
2341		*val = get_reg_val(id, kvmppc_get_dawr0_hv(vcpu));
2342		break;
2343	case KVM_REG_PPC_DAWRX:
2344		*val = get_reg_val(id, kvmppc_get_dawrx0_hv(vcpu));
2345		break;
2346	case KVM_REG_PPC_DAWR1:
2347		*val = get_reg_val(id, kvmppc_get_dawr1_hv(vcpu));
2348		break;
2349	case KVM_REG_PPC_DAWRX1:
2350		*val = get_reg_val(id, kvmppc_get_dawrx1_hv(vcpu));
2351		break;
2352	case KVM_REG_PPC_CIABR:
2353		*val = get_reg_val(id, kvmppc_get_ciabr_hv(vcpu));
2354		break;
2355	case KVM_REG_PPC_CSIGR:
2356		*val = get_reg_val(id, vcpu->arch.csigr);
2357		break;
2358	case KVM_REG_PPC_TACR:
2359		*val = get_reg_val(id, vcpu->arch.tacr);
2360		break;
2361	case KVM_REG_PPC_TCSCR:
2362		*val = get_reg_val(id, vcpu->arch.tcscr);
2363		break;
2364	case KVM_REG_PPC_PID:
2365		*val = get_reg_val(id, kvmppc_get_pid(vcpu));
2366		break;
2367	case KVM_REG_PPC_ACOP:
2368		*val = get_reg_val(id, vcpu->arch.acop);
2369		break;
2370	case KVM_REG_PPC_WORT:
2371		*val = get_reg_val(id, kvmppc_get_wort_hv(vcpu));
2372		break;
2373	case KVM_REG_PPC_TIDR:
2374		*val = get_reg_val(id, vcpu->arch.tid);
2375		break;
2376	case KVM_REG_PPC_PSSCR:
2377		*val = get_reg_val(id, vcpu->arch.psscr);
2378		break;
2379	case KVM_REG_PPC_VPA_ADDR:
2380		spin_lock(&vcpu->arch.vpa_update_lock);
2381		*val = get_reg_val(id, vcpu->arch.vpa.next_gpa);
2382		spin_unlock(&vcpu->arch.vpa_update_lock);
2383		break;
2384	case KVM_REG_PPC_VPA_SLB:
2385		spin_lock(&vcpu->arch.vpa_update_lock);
2386		val->vpaval.addr = vcpu->arch.slb_shadow.next_gpa;
2387		val->vpaval.length = vcpu->arch.slb_shadow.len;
2388		spin_unlock(&vcpu->arch.vpa_update_lock);
2389		break;
2390	case KVM_REG_PPC_VPA_DTL:
2391		spin_lock(&vcpu->arch.vpa_update_lock);
2392		val->vpaval.addr = vcpu->arch.dtl.next_gpa;
2393		val->vpaval.length = vcpu->arch.dtl.len;
2394		spin_unlock(&vcpu->arch.vpa_update_lock);
2395		break;
2396	case KVM_REG_PPC_TB_OFFSET:
2397		*val = get_reg_val(id, kvmppc_get_tb_offset(vcpu));
2398		break;
2399	case KVM_REG_PPC_LPCR:
2400	case KVM_REG_PPC_LPCR_64:
2401		*val = get_reg_val(id, kvmppc_get_lpcr(vcpu));
2402		break;
2403	case KVM_REG_PPC_PPR:
2404		*val = get_reg_val(id, kvmppc_get_ppr_hv(vcpu));
2405		break;
2406#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
2407	case KVM_REG_PPC_TFHAR:
2408		*val = get_reg_val(id, vcpu->arch.tfhar);
2409		break;
2410	case KVM_REG_PPC_TFIAR:
2411		*val = get_reg_val(id, vcpu->arch.tfiar);
2412		break;
2413	case KVM_REG_PPC_TEXASR:
2414		*val = get_reg_val(id, vcpu->arch.texasr);
2415		break;
2416	case KVM_REG_PPC_TM_GPR0 ... KVM_REG_PPC_TM_GPR31:
2417		i = id - KVM_REG_PPC_TM_GPR0;
2418		*val = get_reg_val(id, vcpu->arch.gpr_tm[i]);
2419		break;
2420	case KVM_REG_PPC_TM_VSR0 ... KVM_REG_PPC_TM_VSR63:
2421	{
2422		int j;
2423		i = id - KVM_REG_PPC_TM_VSR0;
2424		if (i < 32)
2425			for (j = 0; j < TS_FPRWIDTH; j++)
2426				val->vsxval[j] = vcpu->arch.fp_tm.fpr[i][j];
2427		else {
2428			if (cpu_has_feature(CPU_FTR_ALTIVEC))
2429				val->vval = vcpu->arch.vr_tm.vr[i-32];
2430			else
2431				r = -ENXIO;
2432		}
2433		break;
2434	}
2435	case KVM_REG_PPC_TM_CR:
2436		*val = get_reg_val(id, vcpu->arch.cr_tm);
2437		break;
2438	case KVM_REG_PPC_TM_XER:
2439		*val = get_reg_val(id, vcpu->arch.xer_tm);
2440		break;
2441	case KVM_REG_PPC_TM_LR:
2442		*val = get_reg_val(id, vcpu->arch.lr_tm);
2443		break;
2444	case KVM_REG_PPC_TM_CTR:
2445		*val = get_reg_val(id, vcpu->arch.ctr_tm);
2446		break;
2447	case KVM_REG_PPC_TM_FPSCR:
2448		*val = get_reg_val(id, vcpu->arch.fp_tm.fpscr);
2449		break;
2450	case KVM_REG_PPC_TM_AMR:
2451		*val = get_reg_val(id, vcpu->arch.amr_tm);
2452		break;
2453	case KVM_REG_PPC_TM_PPR:
2454		*val = get_reg_val(id, vcpu->arch.ppr_tm);
2455		break;
2456	case KVM_REG_PPC_TM_VRSAVE:
2457		*val = get_reg_val(id, vcpu->arch.vrsave_tm);
2458		break;
2459	case KVM_REG_PPC_TM_VSCR:
2460		if (cpu_has_feature(CPU_FTR_ALTIVEC))
2461			*val = get_reg_val(id, vcpu->arch.vr_tm.vscr.u[3]);
2462		else
2463			r = -ENXIO;
2464		break;
2465	case KVM_REG_PPC_TM_DSCR:
2466		*val = get_reg_val(id, vcpu->arch.dscr_tm);
2467		break;
2468	case KVM_REG_PPC_TM_TAR:
2469		*val = get_reg_val(id, vcpu->arch.tar_tm);
2470		break;
2471#endif
2472	case KVM_REG_PPC_ARCH_COMPAT:
2473		*val = get_reg_val(id, kvmppc_get_arch_compat(vcpu));
2474		break;
2475	case KVM_REG_PPC_DEC_EXPIRY:
2476		*val = get_reg_val(id, kvmppc_get_dec_expires(vcpu));
2477		break;
2478	case KVM_REG_PPC_ONLINE:
2479		*val = get_reg_val(id, vcpu->arch.online);
2480		break;
2481	case KVM_REG_PPC_PTCR:
2482		*val = get_reg_val(id, vcpu->kvm->arch.l1_ptcr);
2483		break;
2484	case KVM_REG_PPC_FSCR:
2485		*val = get_reg_val(id, kvmppc_get_fscr_hv(vcpu));
2486		break;
2487	default:
2488		r = -EINVAL;
2489		break;
2490	}
2491
2492	return r;
2493}
2494
2495static int kvmppc_set_one_reg_hv(struct kvm_vcpu *vcpu, u64 id,
2496				 union kvmppc_one_reg *val)
2497{
2498	int r = 0;
2499	long int i;
2500	unsigned long addr, len;
2501
2502	switch (id) {
2503	case KVM_REG_PPC_HIOR:
2504		/* Only allow this to be set to zero */
2505		if (set_reg_val(id, *val))
2506			r = -EINVAL;
2507		break;
2508	case KVM_REG_PPC_DABR:
2509		vcpu->arch.dabr = set_reg_val(id, *val);
2510		break;
2511	case KVM_REG_PPC_DABRX:
2512		vcpu->arch.dabrx = set_reg_val(id, *val) & ~DABRX_HYP;
2513		break;
2514	case KVM_REG_PPC_DSCR:
2515		kvmppc_set_dscr_hv(vcpu, set_reg_val(id, *val));
2516		break;
2517	case KVM_REG_PPC_PURR:
2518		kvmppc_set_purr_hv(vcpu, set_reg_val(id, *val));
2519		break;
2520	case KVM_REG_PPC_SPURR:
2521		kvmppc_set_spurr_hv(vcpu, set_reg_val(id, *val));
2522		break;
2523	case KVM_REG_PPC_AMR:
2524		kvmppc_set_amr_hv(vcpu, set_reg_val(id, *val));
2525		break;
2526	case KVM_REG_PPC_UAMOR:
2527		kvmppc_set_uamor_hv(vcpu, set_reg_val(id, *val));
2528		break;
2529	case KVM_REG_PPC_MMCR0 ... KVM_REG_PPC_MMCR1:
2530		i = id - KVM_REG_PPC_MMCR0;
2531		kvmppc_set_mmcr_hv(vcpu, i, set_reg_val(id, *val));
2532		break;
2533	case KVM_REG_PPC_MMCR2:
2534		kvmppc_set_mmcr_hv(vcpu, 2, set_reg_val(id, *val));
2535		break;
2536	case KVM_REG_PPC_MMCRA:
2537		kvmppc_set_mmcra_hv(vcpu, set_reg_val(id, *val));
2538		break;
2539	case KVM_REG_PPC_MMCRS:
2540		vcpu->arch.mmcrs = set_reg_val(id, *val);
2541		break;
2542	case KVM_REG_PPC_MMCR3:
2543		*val = get_reg_val(id, vcpu->arch.mmcr[3]);
2544		break;
2545	case KVM_REG_PPC_PMC1 ... KVM_REG_PPC_PMC8:
2546		i = id - KVM_REG_PPC_PMC1;
2547		kvmppc_set_pmc_hv(vcpu, i, set_reg_val(id, *val));
2548		break;
2549	case KVM_REG_PPC_SPMC1 ... KVM_REG_PPC_SPMC2:
2550		i = id - KVM_REG_PPC_SPMC1;
2551		vcpu->arch.spmc[i] = set_reg_val(id, *val);
2552		break;
2553	case KVM_REG_PPC_SIAR:
2554		kvmppc_set_siar_hv(vcpu, set_reg_val(id, *val));
2555		break;
2556	case KVM_REG_PPC_SDAR:
2557		kvmppc_set_sdar_hv(vcpu, set_reg_val(id, *val));
2558		break;
2559	case KVM_REG_PPC_SIER:
2560		kvmppc_set_sier_hv(vcpu, 0, set_reg_val(id, *val));
2561		break;
2562	case KVM_REG_PPC_SIER2:
2563		kvmppc_set_sier_hv(vcpu, 1, set_reg_val(id, *val));
2564		break;
2565	case KVM_REG_PPC_SIER3:
2566		kvmppc_set_sier_hv(vcpu, 2, set_reg_val(id, *val));
2567		break;
2568	case KVM_REG_PPC_IAMR:
2569		kvmppc_set_iamr_hv(vcpu, set_reg_val(id, *val));
2570		break;
2571	case KVM_REG_PPC_PSPB:
2572		kvmppc_set_pspb_hv(vcpu, set_reg_val(id, *val));
2573		break;
2574	case KVM_REG_PPC_DPDES:
2575		if (cpu_has_feature(CPU_FTR_ARCH_300))
2576			vcpu->arch.doorbell_request = set_reg_val(id, *val) & 1;
2577		else
2578			vcpu->arch.vcore->dpdes = set_reg_val(id, *val);
2579		break;
2580	case KVM_REG_PPC_VTB:
2581		kvmppc_set_vtb(vcpu, set_reg_val(id, *val));
2582		break;
2583	case KVM_REG_PPC_DAWR:
2584		kvmppc_set_dawr0_hv(vcpu, set_reg_val(id, *val));
2585		break;
2586	case KVM_REG_PPC_DAWRX:
2587		kvmppc_set_dawrx0_hv(vcpu, set_reg_val(id, *val) & ~DAWRX_HYP);
2588		break;
2589	case KVM_REG_PPC_DAWR1:
2590		kvmppc_set_dawr1_hv(vcpu, set_reg_val(id, *val));
2591		break;
2592	case KVM_REG_PPC_DAWRX1:
2593		kvmppc_set_dawrx1_hv(vcpu, set_reg_val(id, *val) & ~DAWRX_HYP);
2594		break;
2595	case KVM_REG_PPC_CIABR:
2596		kvmppc_set_ciabr_hv(vcpu, set_reg_val(id, *val));
2597		/* Don't allow setting breakpoints in hypervisor code */
2598		if ((kvmppc_get_ciabr_hv(vcpu) & CIABR_PRIV) == CIABR_PRIV_HYPER)
2599			kvmppc_set_ciabr_hv(vcpu, kvmppc_get_ciabr_hv(vcpu) & ~CIABR_PRIV);
2600		break;
2601	case KVM_REG_PPC_CSIGR:
2602		vcpu->arch.csigr = set_reg_val(id, *val);
2603		break;
2604	case KVM_REG_PPC_TACR:
2605		vcpu->arch.tacr = set_reg_val(id, *val);
2606		break;
2607	case KVM_REG_PPC_TCSCR:
2608		vcpu->arch.tcscr = set_reg_val(id, *val);
2609		break;
2610	case KVM_REG_PPC_PID:
2611		kvmppc_set_pid(vcpu, set_reg_val(id, *val));
2612		break;
2613	case KVM_REG_PPC_ACOP:
2614		vcpu->arch.acop = set_reg_val(id, *val);
2615		break;
2616	case KVM_REG_PPC_WORT:
2617		kvmppc_set_wort_hv(vcpu, set_reg_val(id, *val));
2618		break;
2619	case KVM_REG_PPC_TIDR:
2620		vcpu->arch.tid = set_reg_val(id, *val);
2621		break;
2622	case KVM_REG_PPC_PSSCR:
2623		vcpu->arch.psscr = set_reg_val(id, *val) & PSSCR_GUEST_VIS;
2624		break;
2625	case KVM_REG_PPC_VPA_ADDR:
2626		addr = set_reg_val(id, *val);
2627		r = -EINVAL;
2628		if (!addr && (vcpu->arch.slb_shadow.next_gpa ||
2629			      vcpu->arch.dtl.next_gpa))
2630			break;
2631		r = set_vpa(vcpu, &vcpu->arch.vpa, addr, sizeof(struct lppaca));
2632		break;
2633	case KVM_REG_PPC_VPA_SLB:
2634		addr = val->vpaval.addr;
2635		len = val->vpaval.length;
2636		r = -EINVAL;
2637		if (addr && !vcpu->arch.vpa.next_gpa)
2638			break;
2639		r = set_vpa(vcpu, &vcpu->arch.slb_shadow, addr, len);
2640		break;
2641	case KVM_REG_PPC_VPA_DTL:
2642		addr = val->vpaval.addr;
2643		len = val->vpaval.length;
2644		r = -EINVAL;
2645		if (addr && (len < sizeof(struct dtl_entry) ||
2646			     !vcpu->arch.vpa.next_gpa))
2647			break;
2648		len -= len % sizeof(struct dtl_entry);
2649		r = set_vpa(vcpu, &vcpu->arch.dtl, addr, len);
2650		break;
2651	case KVM_REG_PPC_TB_OFFSET:
2652	{
2653		/* round up to multiple of 2^24 */
2654		u64 tb_offset = ALIGN(set_reg_val(id, *val), 1UL << 24);
2655
2656		/*
2657		 * Now that we know the timebase offset, update the
2658		 * decrementer expiry with a guest timebase value. If
2659		 * the userspace does not set DEC_EXPIRY, this ensures
2660		 * a migrated vcpu at least starts with an expired
2661		 * decrementer, which is better than a large one that
2662		 * causes a hang.
2663		 */
2664		kvmppc_set_tb_offset(vcpu, tb_offset);
2665		if (!kvmppc_get_dec_expires(vcpu) && tb_offset)
2666			kvmppc_set_dec_expires(vcpu, get_tb() + tb_offset);
2667
2668		kvmppc_set_tb_offset(vcpu, tb_offset);
2669		break;
2670	}
2671	case KVM_REG_PPC_LPCR:
2672		kvmppc_set_lpcr(vcpu, set_reg_val(id, *val), true);
2673		break;
2674	case KVM_REG_PPC_LPCR_64:
2675		kvmppc_set_lpcr(vcpu, set_reg_val(id, *val), false);
2676		break;
2677	case KVM_REG_PPC_PPR:
2678		kvmppc_set_ppr_hv(vcpu, set_reg_val(id, *val));
2679		break;
2680#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
2681	case KVM_REG_PPC_TFHAR:
2682		vcpu->arch.tfhar = set_reg_val(id, *val);
2683		break;
2684	case KVM_REG_PPC_TFIAR:
2685		vcpu->arch.tfiar = set_reg_val(id, *val);
2686		break;
2687	case KVM_REG_PPC_TEXASR:
2688		vcpu->arch.texasr = set_reg_val(id, *val);
2689		break;
2690	case KVM_REG_PPC_TM_GPR0 ... KVM_REG_PPC_TM_GPR31:
2691		i = id - KVM_REG_PPC_TM_GPR0;
2692		vcpu->arch.gpr_tm[i] = set_reg_val(id, *val);
2693		break;
2694	case KVM_REG_PPC_TM_VSR0 ... KVM_REG_PPC_TM_VSR63:
2695	{
2696		int j;
2697		i = id - KVM_REG_PPC_TM_VSR0;
2698		if (i < 32)
2699			for (j = 0; j < TS_FPRWIDTH; j++)
2700				vcpu->arch.fp_tm.fpr[i][j] = val->vsxval[j];
2701		else
2702			if (cpu_has_feature(CPU_FTR_ALTIVEC))
2703				vcpu->arch.vr_tm.vr[i-32] = val->vval;
2704			else
2705				r = -ENXIO;
2706		break;
2707	}
2708	case KVM_REG_PPC_TM_CR:
2709		vcpu->arch.cr_tm = set_reg_val(id, *val);
2710		break;
2711	case KVM_REG_PPC_TM_XER:
2712		vcpu->arch.xer_tm = set_reg_val(id, *val);
2713		break;
2714	case KVM_REG_PPC_TM_LR:
2715		vcpu->arch.lr_tm = set_reg_val(id, *val);
2716		break;
2717	case KVM_REG_PPC_TM_CTR:
2718		vcpu->arch.ctr_tm = set_reg_val(id, *val);
2719		break;
2720	case KVM_REG_PPC_TM_FPSCR:
2721		vcpu->arch.fp_tm.fpscr = set_reg_val(id, *val);
2722		break;
2723	case KVM_REG_PPC_TM_AMR:
2724		vcpu->arch.amr_tm = set_reg_val(id, *val);
2725		break;
2726	case KVM_REG_PPC_TM_PPR:
2727		vcpu->arch.ppr_tm = set_reg_val(id, *val);
2728		break;
2729	case KVM_REG_PPC_TM_VRSAVE:
2730		vcpu->arch.vrsave_tm = set_reg_val(id, *val);
2731		break;
2732	case KVM_REG_PPC_TM_VSCR:
2733		if (cpu_has_feature(CPU_FTR_ALTIVEC))
2734			vcpu->arch.vr.vscr.u[3] = set_reg_val(id, *val);
2735		else
2736			r = - ENXIO;
2737		break;
2738	case KVM_REG_PPC_TM_DSCR:
2739		vcpu->arch.dscr_tm = set_reg_val(id, *val);
2740		break;
2741	case KVM_REG_PPC_TM_TAR:
2742		vcpu->arch.tar_tm = set_reg_val(id, *val);
2743		break;
2744#endif
2745	case KVM_REG_PPC_ARCH_COMPAT:
2746		r = kvmppc_set_arch_compat(vcpu, set_reg_val(id, *val));
2747		break;
2748	case KVM_REG_PPC_DEC_EXPIRY:
2749		kvmppc_set_dec_expires(vcpu, set_reg_val(id, *val));
2750		break;
2751	case KVM_REG_PPC_ONLINE:
2752		i = set_reg_val(id, *val);
2753		if (i && !vcpu->arch.online)
2754			atomic_inc(&vcpu->arch.vcore->online_count);
2755		else if (!i && vcpu->arch.online)
2756			atomic_dec(&vcpu->arch.vcore->online_count);
2757		vcpu->arch.online = i;
2758		break;
2759	case KVM_REG_PPC_PTCR:
2760		vcpu->kvm->arch.l1_ptcr = set_reg_val(id, *val);
2761		break;
2762	case KVM_REG_PPC_FSCR:
2763		kvmppc_set_fscr_hv(vcpu, set_reg_val(id, *val));
2764		break;
2765	default:
2766		r = -EINVAL;
2767		break;
2768	}
2769
2770	return r;
2771}
2772
2773/*
2774 * On POWER9, threads are independent and can be in different partitions.
2775 * Therefore we consider each thread to be a subcore.
2776 * There is a restriction that all threads have to be in the same
2777 * MMU mode (radix or HPT), unfortunately, but since we only support
2778 * HPT guests on a HPT host so far, that isn't an impediment yet.
2779 */
2780static int threads_per_vcore(struct kvm *kvm)
2781{
2782	if (cpu_has_feature(CPU_FTR_ARCH_300))
2783		return 1;
2784	return threads_per_subcore;
2785}
2786
2787static struct kvmppc_vcore *kvmppc_vcore_create(struct kvm *kvm, int id)
2788{
2789	struct kvmppc_vcore *vcore;
2790
2791	vcore = kzalloc(sizeof(struct kvmppc_vcore), GFP_KERNEL);
2792
2793	if (vcore == NULL)
2794		return NULL;
2795
2796	spin_lock_init(&vcore->lock);
2797	spin_lock_init(&vcore->stoltb_lock);
2798	rcuwait_init(&vcore->wait);
2799	vcore->preempt_tb = TB_NIL;
2800	vcore->lpcr = kvm->arch.lpcr;
2801	vcore->first_vcpuid = id;
2802	vcore->kvm = kvm;
2803	INIT_LIST_HEAD(&vcore->preempt_list);
2804
2805	return vcore;
2806}
2807
2808#ifdef CONFIG_KVM_BOOK3S_HV_EXIT_TIMING
2809static struct debugfs_timings_element {
2810	const char *name;
2811	size_t offset;
2812} timings[] = {
2813#ifdef CONFIG_KVM_BOOK3S_HV_P9_TIMING
2814	{"vcpu_entry",	offsetof(struct kvm_vcpu, arch.vcpu_entry)},
2815	{"guest_entry",	offsetof(struct kvm_vcpu, arch.guest_entry)},
2816	{"in_guest",	offsetof(struct kvm_vcpu, arch.in_guest)},
2817	{"guest_exit",	offsetof(struct kvm_vcpu, arch.guest_exit)},
2818	{"vcpu_exit",	offsetof(struct kvm_vcpu, arch.vcpu_exit)},
2819	{"hypercall",	offsetof(struct kvm_vcpu, arch.hcall)},
2820	{"page_fault",	offsetof(struct kvm_vcpu, arch.pg_fault)},
2821#else
2822	{"rm_entry",	offsetof(struct kvm_vcpu, arch.rm_entry)},
2823	{"rm_intr",	offsetof(struct kvm_vcpu, arch.rm_intr)},
2824	{"rm_exit",	offsetof(struct kvm_vcpu, arch.rm_exit)},
2825	{"guest",	offsetof(struct kvm_vcpu, arch.guest_time)},
2826	{"cede",	offsetof(struct kvm_vcpu, arch.cede_time)},
2827#endif
2828};
2829
2830#define N_TIMINGS	(ARRAY_SIZE(timings))
2831
2832struct debugfs_timings_state {
2833	struct kvm_vcpu	*vcpu;
2834	unsigned int	buflen;
2835	char		buf[N_TIMINGS * 100];
2836};
2837
2838static int debugfs_timings_open(struct inode *inode, struct file *file)
2839{
2840	struct kvm_vcpu *vcpu = inode->i_private;
2841	struct debugfs_timings_state *p;
2842
2843	p = kzalloc(sizeof(*p), GFP_KERNEL);
2844	if (!p)
2845		return -ENOMEM;
2846
2847	kvm_get_kvm(vcpu->kvm);
2848	p->vcpu = vcpu;
2849	file->private_data = p;
2850
2851	return nonseekable_open(inode, file);
2852}
2853
2854static int debugfs_timings_release(struct inode *inode, struct file *file)
2855{
2856	struct debugfs_timings_state *p = file->private_data;
2857
2858	kvm_put_kvm(p->vcpu->kvm);
2859	kfree(p);
2860	return 0;
2861}
2862
2863static ssize_t debugfs_timings_read(struct file *file, char __user *buf,
2864				    size_t len, loff_t *ppos)
2865{
2866	struct debugfs_timings_state *p = file->private_data;
2867	struct kvm_vcpu *vcpu = p->vcpu;
2868	char *s, *buf_end;
2869	struct kvmhv_tb_accumulator tb;
2870	u64 count;
2871	loff_t pos;
2872	ssize_t n;
2873	int i, loops;
2874	bool ok;
2875
2876	if (!p->buflen) {
2877		s = p->buf;
2878		buf_end = s + sizeof(p->buf);
2879		for (i = 0; i < N_TIMINGS; ++i) {
2880			struct kvmhv_tb_accumulator *acc;
2881
2882			acc = (struct kvmhv_tb_accumulator *)
2883				((unsigned long)vcpu + timings[i].offset);
2884			ok = false;
2885			for (loops = 0; loops < 1000; ++loops) {
2886				count = acc->seqcount;
2887				if (!(count & 1)) {
2888					smp_rmb();
2889					tb = *acc;
2890					smp_rmb();
2891					if (count == acc->seqcount) {
2892						ok = true;
2893						break;
2894					}
2895				}
2896				udelay(1);
2897			}
2898			if (!ok)
2899				snprintf(s, buf_end - s, "%s: stuck\n",
2900					timings[i].name);
2901			else
2902				snprintf(s, buf_end - s,
2903					"%s: %llu %llu %llu %llu\n",
2904					timings[i].name, count / 2,
2905					tb_to_ns(tb.tb_total),
2906					tb_to_ns(tb.tb_min),
2907					tb_to_ns(tb.tb_max));
2908			s += strlen(s);
2909		}
2910		p->buflen = s - p->buf;
2911	}
2912
2913	pos = *ppos;
2914	if (pos >= p->buflen)
2915		return 0;
2916	if (len > p->buflen - pos)
2917		len = p->buflen - pos;
2918	n = copy_to_user(buf, p->buf + pos, len);
2919	if (n) {
2920		if (n == len)
2921			return -EFAULT;
2922		len -= n;
2923	}
2924	*ppos = pos + len;
2925	return len;
2926}
2927
2928static ssize_t debugfs_timings_write(struct file *file, const char __user *buf,
2929				     size_t len, loff_t *ppos)
2930{
2931	return -EACCES;
2932}
2933
2934static const struct file_operations debugfs_timings_ops = {
2935	.owner	 = THIS_MODULE,
2936	.open	 = debugfs_timings_open,
2937	.release = debugfs_timings_release,
2938	.read	 = debugfs_timings_read,
2939	.write	 = debugfs_timings_write,
2940	.llseek	 = generic_file_llseek,
2941};
2942
2943/* Create a debugfs directory for the vcpu */
2944static int kvmppc_arch_create_vcpu_debugfs_hv(struct kvm_vcpu *vcpu, struct dentry *debugfs_dentry)
2945{
2946	if (cpu_has_feature(CPU_FTR_ARCH_300) == IS_ENABLED(CONFIG_KVM_BOOK3S_HV_P9_TIMING))
2947		debugfs_create_file("timings", 0444, debugfs_dentry, vcpu,
2948				    &debugfs_timings_ops);
2949	return 0;
2950}
2951
2952#else /* CONFIG_KVM_BOOK3S_HV_EXIT_TIMING */
2953static int kvmppc_arch_create_vcpu_debugfs_hv(struct kvm_vcpu *vcpu, struct dentry *debugfs_dentry)
2954{
2955	return 0;
2956}
2957#endif /* CONFIG_KVM_BOOK3S_HV_EXIT_TIMING */
2958
2959static int kvmppc_core_vcpu_create_hv(struct kvm_vcpu *vcpu)
2960{
2961	int err;
2962	int core;
2963	struct kvmppc_vcore *vcore;
2964	struct kvm *kvm;
2965	unsigned int id;
2966
2967	kvm = vcpu->kvm;
2968	id = vcpu->vcpu_id;
2969
2970	vcpu->arch.shared = &vcpu->arch.shregs;
2971#ifdef CONFIG_KVM_BOOK3S_PR_POSSIBLE
2972	/*
2973	 * The shared struct is never shared on HV,
2974	 * so we can always use host endianness
2975	 */
2976#ifdef __BIG_ENDIAN__
2977	vcpu->arch.shared_big_endian = true;
2978#else
2979	vcpu->arch.shared_big_endian = false;
2980#endif
2981#endif
2982
2983	if (kvmhv_is_nestedv2()) {
2984		err = kvmhv_nestedv2_vcpu_create(vcpu, &vcpu->arch.nestedv2_io);
2985		if (err < 0)
2986			return err;
2987	}
2988
2989	kvmppc_set_mmcr_hv(vcpu, 0, MMCR0_FC);
2990	if (cpu_has_feature(CPU_FTR_ARCH_31)) {
2991		kvmppc_set_mmcr_hv(vcpu, 0, kvmppc_get_mmcr_hv(vcpu, 0) | MMCR0_PMCCEXT);
2992		kvmppc_set_mmcra_hv(vcpu, MMCRA_BHRB_DISABLE);
2993	}
2994
2995	kvmppc_set_ctrl_hv(vcpu, CTRL_RUNLATCH);
2996	/* default to host PVR, since we can't spoof it */
2997	kvmppc_set_pvr_hv(vcpu, mfspr(SPRN_PVR));
2998	spin_lock_init(&vcpu->arch.vpa_update_lock);
2999	spin_lock_init(&vcpu->arch.tbacct_lock);
3000	vcpu->arch.busy_preempt = TB_NIL;
3001	__kvmppc_set_msr_hv(vcpu, MSR_ME);
3002	vcpu->arch.intr_msr = MSR_SF | MSR_ME;
3003
3004	/*
3005	 * Set the default HFSCR for the guest from the host value.
3006	 * This value is only used on POWER9 and later.
3007	 * On >= POWER9, we want to virtualize the doorbell facility, so we
3008	 * don't set the HFSCR_MSGP bit, and that causes those instructions
3009	 * to trap and then we emulate them.
3010	 */
3011	kvmppc_set_hfscr_hv(vcpu, HFSCR_TAR | HFSCR_EBB | HFSCR_PM | HFSCR_BHRB |
3012			    HFSCR_DSCR | HFSCR_VECVSX | HFSCR_FP);
3013
3014	/* On POWER10 and later, allow prefixed instructions */
3015	if (cpu_has_feature(CPU_FTR_ARCH_31))
3016		kvmppc_set_hfscr_hv(vcpu, kvmppc_get_hfscr_hv(vcpu) | HFSCR_PREFIX);
3017
3018	if (cpu_has_feature(CPU_FTR_HVMODE)) {
3019		kvmppc_set_hfscr_hv(vcpu, kvmppc_get_hfscr_hv(vcpu) & mfspr(SPRN_HFSCR));
3020
3021#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
3022		if (cpu_has_feature(CPU_FTR_P9_TM_HV_ASSIST))
3023			kvmppc_set_hfscr_hv(vcpu, kvmppc_get_hfscr_hv(vcpu) | HFSCR_TM);
3024#endif
3025	}
3026	if (cpu_has_feature(CPU_FTR_TM_COMP))
3027		vcpu->arch.hfscr |= HFSCR_TM;
3028
3029	vcpu->arch.hfscr_permitted = kvmppc_get_hfscr_hv(vcpu);
3030
3031	/*
3032	 * PM, EBB, TM are demand-faulted so start with it clear.
3033	 */
3034	kvmppc_set_hfscr_hv(vcpu, kvmppc_get_hfscr_hv(vcpu) & ~(HFSCR_PM | HFSCR_EBB | HFSCR_TM));
3035
3036	kvmppc_mmu_book3s_hv_init(vcpu);
3037
3038	vcpu->arch.state = KVMPPC_VCPU_NOTREADY;
3039
3040	init_waitqueue_head(&vcpu->arch.cpu_run);
3041
3042	mutex_lock(&kvm->lock);
3043	vcore = NULL;
3044	err = -EINVAL;
3045	if (cpu_has_feature(CPU_FTR_ARCH_300)) {
3046		if (id >= (KVM_MAX_VCPUS * kvm->arch.emul_smt_mode)) {
3047			pr_devel("KVM: VCPU ID too high\n");
3048			core = KVM_MAX_VCORES;
3049		} else {
3050			BUG_ON(kvm->arch.smt_mode != 1);
3051			core = kvmppc_pack_vcpu_id(kvm, id);
3052		}
3053	} else {
3054		core = id / kvm->arch.smt_mode;
3055	}
3056	if (core < KVM_MAX_VCORES) {
3057		vcore = kvm->arch.vcores[core];
3058		if (vcore && cpu_has_feature(CPU_FTR_ARCH_300)) {
3059			pr_devel("KVM: collision on id %u", id);
3060			vcore = NULL;
3061		} else if (!vcore) {
3062			/*
3063			 * Take mmu_setup_lock for mutual exclusion
3064			 * with kvmppc_update_lpcr().
3065			 */
3066			err = -ENOMEM;
3067			vcore = kvmppc_vcore_create(kvm,
3068					id & ~(kvm->arch.smt_mode - 1));
3069			mutex_lock(&kvm->arch.mmu_setup_lock);
3070			kvm->arch.vcores[core] = vcore;
3071			kvm->arch.online_vcores++;
3072			mutex_unlock(&kvm->arch.mmu_setup_lock);
3073		}
3074	}
3075	mutex_unlock(&kvm->lock);
3076
3077	if (!vcore)
3078		return err;
3079
3080	spin_lock(&vcore->lock);
3081	++vcore->num_threads;
3082	spin_unlock(&vcore->lock);
3083	vcpu->arch.vcore = vcore;
3084	vcpu->arch.ptid = vcpu->vcpu_id - vcore->first_vcpuid;
3085	vcpu->arch.thread_cpu = -1;
3086	vcpu->arch.prev_cpu = -1;
3087
3088	vcpu->arch.cpu_type = KVM_CPU_3S_64;
3089	kvmppc_sanity_check(vcpu);
3090
3091	return 0;
3092}
3093
3094static int kvmhv_set_smt_mode(struct kvm *kvm, unsigned long smt_mode,
3095			      unsigned long flags)
3096{
3097	int err;
3098	int esmt = 0;
3099
3100	if (flags)
3101		return -EINVAL;
3102	if (smt_mode > MAX_SMT_THREADS || !is_power_of_2(smt_mode))
3103		return -EINVAL;
3104	if (!cpu_has_feature(CPU_FTR_ARCH_300)) {
3105		/*
3106		 * On POWER8 (or POWER7), the threading mode is "strict",
3107		 * so we pack smt_mode vcpus per vcore.
3108		 */
3109		if (smt_mode > threads_per_subcore)
3110			return -EINVAL;
3111	} else {
3112		/*
3113		 * On POWER9, the threading mode is "loose",
3114		 * so each vcpu gets its own vcore.
3115		 */
3116		esmt = smt_mode;
3117		smt_mode = 1;
3118	}
3119	mutex_lock(&kvm->lock);
3120	err = -EBUSY;
3121	if (!kvm->arch.online_vcores) {
3122		kvm->arch.smt_mode = smt_mode;
3123		kvm->arch.emul_smt_mode = esmt;
3124		err = 0;
3125	}
3126	mutex_unlock(&kvm->lock);
3127
3128	return err;
3129}
3130
3131static void unpin_vpa(struct kvm *kvm, struct kvmppc_vpa *vpa)
3132{
3133	if (vpa->pinned_addr)
3134		kvmppc_unpin_guest_page(kvm, vpa->pinned_addr, vpa->gpa,
3135					vpa->dirty);
3136}
3137
3138static void kvmppc_core_vcpu_free_hv(struct kvm_vcpu *vcpu)
3139{
3140	spin_lock(&vcpu->arch.vpa_update_lock);
3141	unpin_vpa(vcpu->kvm, &vcpu->arch.dtl);
3142	unpin_vpa(vcpu->kvm, &vcpu->arch.slb_shadow);
3143	unpin_vpa(vcpu->kvm, &vcpu->arch.vpa);
3144	spin_unlock(&vcpu->arch.vpa_update_lock);
3145	if (kvmhv_is_nestedv2())
3146		kvmhv_nestedv2_vcpu_free(vcpu, &vcpu->arch.nestedv2_io);
3147}
3148
3149static int kvmppc_core_check_requests_hv(struct kvm_vcpu *vcpu)
3150{
3151	/* Indicate we want to get back into the guest */
3152	return 1;
3153}
3154
3155static void kvmppc_set_timer(struct kvm_vcpu *vcpu)
3156{
3157	unsigned long dec_nsec, now;
3158
3159	now = get_tb();
3160	if (now > kvmppc_dec_expires_host_tb(vcpu)) {
3161		/* decrementer has already gone negative */
3162		kvmppc_core_queue_dec(vcpu);
3163		kvmppc_core_prepare_to_enter(vcpu);
3164		return;
3165	}
3166	dec_nsec = tb_to_ns(kvmppc_dec_expires_host_tb(vcpu) - now);
3167	hrtimer_start(&vcpu->arch.dec_timer, dec_nsec, HRTIMER_MODE_REL);
3168	vcpu->arch.timer_running = 1;
3169}
3170
3171extern int __kvmppc_vcore_entry(void);
3172
3173static void kvmppc_remove_runnable(struct kvmppc_vcore *vc,
3174				   struct kvm_vcpu *vcpu, u64 tb)
3175{
3176	u64 now;
3177
3178	if (vcpu->arch.state != KVMPPC_VCPU_RUNNABLE)
3179		return;
3180	spin_lock_irq(&vcpu->arch.tbacct_lock);
3181	now = tb;
3182	vcpu->arch.busy_stolen += vcore_stolen_time(vc, now) -
3183		vcpu->arch.stolen_logged;
3184	vcpu->arch.busy_preempt = now;
3185	vcpu->arch.state = KVMPPC_VCPU_BUSY_IN_HOST;
3186	spin_unlock_irq(&vcpu->arch.tbacct_lock);
3187	--vc->n_runnable;
3188	WRITE_ONCE(vc->runnable_threads[vcpu->arch.ptid], NULL);
3189}
3190
3191static int kvmppc_grab_hwthread(int cpu)
3192{
3193	struct paca_struct *tpaca;
3194	long timeout = 10000;
3195
3196	tpaca = paca_ptrs[cpu];
3197
3198	/* Ensure the thread won't go into the kernel if it wakes */
3199	tpaca->kvm_hstate.kvm_vcpu = NULL;
3200	tpaca->kvm_hstate.kvm_vcore = NULL;
3201	tpaca->kvm_hstate.napping = 0;
3202	smp_wmb();
3203	tpaca->kvm_hstate.hwthread_req = 1;
3204
3205	/*
3206	 * If the thread is already executing in the kernel (e.g. handling
3207	 * a stray interrupt), wait for it to get back to nap mode.
3208	 * The smp_mb() is to ensure that our setting of hwthread_req
3209	 * is visible before we look at hwthread_state, so if this
3210	 * races with the code at system_reset_pSeries and the thread
3211	 * misses our setting of hwthread_req, we are sure to see its
3212	 * setting of hwthread_state, and vice versa.
3213	 */
3214	smp_mb();
3215	while (tpaca->kvm_hstate.hwthread_state == KVM_HWTHREAD_IN_KERNEL) {
3216		if (--timeout <= 0) {
3217			pr_err("KVM: couldn't grab cpu %d\n", cpu);
3218			return -EBUSY;
3219		}
3220		udelay(1);
3221	}
3222	return 0;
3223}
3224
3225static void kvmppc_release_hwthread(int cpu)
3226{
3227	struct paca_struct *tpaca;
3228
3229	tpaca = paca_ptrs[cpu];
3230	tpaca->kvm_hstate.hwthread_req = 0;
3231	tpaca->kvm_hstate.kvm_vcpu = NULL;
3232	tpaca->kvm_hstate.kvm_vcore = NULL;
3233	tpaca->kvm_hstate.kvm_split_mode = NULL;
3234}
3235
3236static DEFINE_PER_CPU(struct kvm *, cpu_in_guest);
3237
3238static void radix_flush_cpu(struct kvm *kvm, int cpu, struct kvm_vcpu *vcpu)
3239{
3240	struct kvm_nested_guest *nested = vcpu->arch.nested;
3241	cpumask_t *need_tlb_flush;
3242	int i;
3243
3244	if (nested)
3245		need_tlb_flush = &nested->need_tlb_flush;
3246	else
3247		need_tlb_flush = &kvm->arch.need_tlb_flush;
3248
3249	cpu = cpu_first_tlb_thread_sibling(cpu);
3250	for (i = cpu; i <= cpu_last_tlb_thread_sibling(cpu);
3251					i += cpu_tlb_thread_sibling_step())
3252		cpumask_set_cpu(i, need_tlb_flush);
3253
3254	/*
3255	 * Make sure setting of bit in need_tlb_flush precedes testing of
3256	 * cpu_in_guest. The matching barrier on the other side is hwsync
3257	 * when switching to guest MMU mode, which happens between
3258	 * cpu_in_guest being set to the guest kvm, and need_tlb_flush bit
3259	 * being tested.
3260	 */
3261	smp_mb();
3262
3263	for (i = cpu; i <= cpu_last_tlb_thread_sibling(cpu);
3264					i += cpu_tlb_thread_sibling_step()) {
3265		struct kvm *running = *per_cpu_ptr(&cpu_in_guest, i);
3266
3267		if (running == kvm)
3268			smp_call_function_single(i, do_nothing, NULL, 1);
3269	}
3270}
3271
3272static void do_migrate_away_vcpu(void *arg)
3273{
3274	struct kvm_vcpu *vcpu = arg;
3275	struct kvm *kvm = vcpu->kvm;
3276
3277	/*
3278	 * If the guest has GTSE, it may execute tlbie, so do a eieio; tlbsync;
3279	 * ptesync sequence on the old CPU before migrating to a new one, in
3280	 * case we interrupted the guest between a tlbie ; eieio ;
3281	 * tlbsync; ptesync sequence.
3282	 *
3283	 * Otherwise, ptesync is sufficient for ordering tlbiel sequences.
3284	 */
3285	if (kvm->arch.lpcr & LPCR_GTSE)
3286		asm volatile("eieio; tlbsync; ptesync");
3287	else
3288		asm volatile("ptesync");
3289}
3290
3291static void kvmppc_prepare_radix_vcpu(struct kvm_vcpu *vcpu, int pcpu)
3292{
3293	struct kvm_nested_guest *nested = vcpu->arch.nested;
3294	struct kvm *kvm = vcpu->kvm;
3295	int prev_cpu;
3296
3297	if (!cpu_has_feature(CPU_FTR_HVMODE))
3298		return;
3299
3300	if (nested)
3301		prev_cpu = nested->prev_cpu[vcpu->arch.nested_vcpu_id];
3302	else
3303		prev_cpu = vcpu->arch.prev_cpu;
3304
3305	/*
3306	 * With radix, the guest can do TLB invalidations itself,
3307	 * and it could choose to use the local form (tlbiel) if
3308	 * it is invalidating a translation that has only ever been
3309	 * used on one vcpu.  However, that doesn't mean it has
3310	 * only ever been used on one physical cpu, since vcpus
3311	 * can move around between pcpus.  To cope with this, when
3312	 * a vcpu moves from one pcpu to another, we need to tell
3313	 * any vcpus running on the same core as this vcpu previously
3314	 * ran to flush the TLB.
3315	 */
3316	if (prev_cpu != pcpu) {
3317		if (prev_cpu >= 0) {
3318			if (cpu_first_tlb_thread_sibling(prev_cpu) !=
3319			    cpu_first_tlb_thread_sibling(pcpu))
3320				radix_flush_cpu(kvm, prev_cpu, vcpu);
3321
3322			smp_call_function_single(prev_cpu,
3323					do_migrate_away_vcpu, vcpu, 1);
3324		}
3325		if (nested)
3326			nested->prev_cpu[vcpu->arch.nested_vcpu_id] = pcpu;
3327		else
3328			vcpu->arch.prev_cpu = pcpu;
3329	}
3330}
3331
3332static void kvmppc_start_thread(struct kvm_vcpu *vcpu, struct kvmppc_vcore *vc)
3333{
3334	int cpu;
3335	struct paca_struct *tpaca;
3336
3337	cpu = vc->pcpu;
3338	if (vcpu) {
3339		if (vcpu->arch.timer_running) {
3340			hrtimer_try_to_cancel(&vcpu->arch.dec_timer);
3341			vcpu->arch.timer_running = 0;
3342		}
3343		cpu += vcpu->arch.ptid;
3344		vcpu->cpu = vc->pcpu;
3345		vcpu->arch.thread_cpu = cpu;
3346	}
3347	tpaca = paca_ptrs[cpu];
3348	tpaca->kvm_hstate.kvm_vcpu = vcpu;
3349	tpaca->kvm_hstate.ptid = cpu - vc->pcpu;
3350	tpaca->kvm_hstate.fake_suspend = 0;
3351	/* Order stores to hstate.kvm_vcpu etc. before store to kvm_vcore */
3352	smp_wmb();
3353	tpaca->kvm_hstate.kvm_vcore = vc;
3354	if (cpu != smp_processor_id())
3355		kvmppc_ipi_thread(cpu);
3356}
3357
3358static void kvmppc_wait_for_nap(int n_threads)
3359{
3360	int cpu = smp_processor_id();
3361	int i, loops;
3362
3363	if (n_threads <= 1)
3364		return;
3365	for (loops = 0; loops < 1000000; ++loops) {
3366		/*
3367		 * Check if all threads are finished.
3368		 * We set the vcore pointer when starting a thread
3369		 * and the thread clears it when finished, so we look
3370		 * for any threads that still have a non-NULL vcore ptr.
3371		 */
3372		for (i = 1; i < n_threads; ++i)
3373			if (paca_ptrs[cpu + i]->kvm_hstate.kvm_vcore)
3374				break;
3375		if (i == n_threads) {
3376			HMT_medium();
3377			return;
3378		}
3379		HMT_low();
3380	}
3381	HMT_medium();
3382	for (i = 1; i < n_threads; ++i)
3383		if (paca_ptrs[cpu + i]->kvm_hstate.kvm_vcore)
3384			pr_err("KVM: CPU %d seems to be stuck\n", cpu + i);
3385}
3386
3387/*
3388 * Check that we are on thread 0 and that any other threads in
3389 * this core are off-line.  Then grab the threads so they can't
3390 * enter the kernel.
3391 */
3392static int on_primary_thread(void)
3393{
3394	int cpu = smp_processor_id();
3395	int thr;
3396
3397	/* Are we on a primary subcore? */
3398	if (cpu_thread_in_subcore(cpu))
3399		return 0;
3400
3401	thr = 0;
3402	while (++thr < threads_per_subcore)
3403		if (cpu_online(cpu + thr))
3404			return 0;
3405
3406	/* Grab all hw threads so they can't go into the kernel */
3407	for (thr = 1; thr < threads_per_subcore; ++thr) {
3408		if (kvmppc_grab_hwthread(cpu + thr)) {
3409			/* Couldn't grab one; let the others go */
3410			do {
3411				kvmppc_release_hwthread(cpu + thr);
3412			} while (--thr > 0);
3413			return 0;
3414		}
3415	}
3416	return 1;
3417}
3418
3419/*
3420 * A list of virtual cores for each physical CPU.
3421 * These are vcores that could run but their runner VCPU tasks are
3422 * (or may be) preempted.
3423 */
3424struct preempted_vcore_list {
3425	struct list_head	list;
3426	spinlock_t		lock;
3427};
3428
3429static DEFINE_PER_CPU(struct preempted_vcore_list, preempted_vcores);
3430
3431static void init_vcore_lists(void)
3432{
3433	int cpu;
3434
3435	for_each_possible_cpu(cpu) {
3436		struct preempted_vcore_list *lp = &per_cpu(preempted_vcores, cpu);
3437		spin_lock_init(&lp->lock);
3438		INIT_LIST_HEAD(&lp->list);
3439	}
3440}
3441
3442static void kvmppc_vcore_preempt(struct kvmppc_vcore *vc)
3443{
3444	struct preempted_vcore_list *lp = this_cpu_ptr(&preempted_vcores);
3445
3446	WARN_ON_ONCE(cpu_has_feature(CPU_FTR_ARCH_300));
3447
3448	vc->vcore_state = VCORE_PREEMPT;
3449	vc->pcpu = smp_processor_id();
3450	if (vc->num_threads < threads_per_vcore(vc->kvm)) {
3451		spin_lock(&lp->lock);
3452		list_add_tail(&vc->preempt_list, &lp->list);
3453		spin_unlock(&lp->lock);
3454	}
3455
3456	/* Start accumulating stolen time */
3457	kvmppc_core_start_stolen(vc, mftb());
3458}
3459
3460static void kvmppc_vcore_end_preempt(struct kvmppc_vcore *vc)
3461{
3462	struct preempted_vcore_list *lp;
3463
3464	WARN_ON_ONCE(cpu_has_feature(CPU_FTR_ARCH_300));
3465
3466	kvmppc_core_end_stolen(vc, mftb());
3467	if (!list_empty(&vc->preempt_list)) {
3468		lp = &per_cpu(preempted_vcores, vc->pcpu);
3469		spin_lock(&lp->lock);
3470		list_del_init(&vc->preempt_list);
3471		spin_unlock(&lp->lock);
3472	}
3473	vc->vcore_state = VCORE_INACTIVE;
3474}
3475
3476/*
3477 * This stores information about the virtual cores currently
3478 * assigned to a physical core.
3479 */
3480struct core_info {
3481	int		n_subcores;
3482	int		max_subcore_threads;
3483	int		total_threads;
3484	int		subcore_threads[MAX_SUBCORES];
3485	struct kvmppc_vcore *vc[MAX_SUBCORES];
3486};
3487
3488/*
3489 * This mapping means subcores 0 and 1 can use threads 0-3 and 4-7
3490 * respectively in 2-way micro-threading (split-core) mode on POWER8.
3491 */
3492static int subcore_thread_map[MAX_SUBCORES] = { 0, 4, 2, 6 };
3493
3494static void init_core_info(struct core_info *cip, struct kvmppc_vcore *vc)
3495{
3496	memset(cip, 0, sizeof(*cip));
3497	cip->n_subcores = 1;
3498	cip->max_subcore_threads = vc->num_threads;
3499	cip->total_threads = vc->num_threads;
3500	cip->subcore_threads[0] = vc->num_threads;
3501	cip->vc[0] = vc;
3502}
3503
3504static bool subcore_config_ok(int n_subcores, int n_threads)
3505{
3506	/*
3507	 * POWER9 "SMT4" cores are permanently in what is effectively a 4-way
3508	 * split-core mode, with one thread per subcore.
3509	 */
3510	if (cpu_has_feature(CPU_FTR_ARCH_300))
3511		return n_subcores <= 4 && n_threads == 1;
3512
3513	/* On POWER8, can only dynamically split if unsplit to begin with */
3514	if (n_subcores > 1 && threads_per_subcore < MAX_SMT_THREADS)
3515		return false;
3516	if (n_subcores > MAX_SUBCORES)
3517		return false;
3518	if (n_subcores > 1) {
3519		if (!(dynamic_mt_modes & 2))
3520			n_subcores = 4;
3521		if (n_subcores > 2 && !(dynamic_mt_modes & 4))
3522			return false;
3523	}
3524
3525	return n_subcores * roundup_pow_of_two(n_threads) <= MAX_SMT_THREADS;
3526}
3527
3528static void init_vcore_to_run(struct kvmppc_vcore *vc)
3529{
3530	vc->entry_exit_map = 0;
3531	vc->in_guest = 0;
3532	vc->napping_threads = 0;
3533	vc->conferring_threads = 0;
3534	vc->tb_offset_applied = 0;
3535}
3536
3537static bool can_dynamic_split(struct kvmppc_vcore *vc, struct core_info *cip)
3538{
3539	int n_threads = vc->num_threads;
3540	int sub;
3541
3542	if (!cpu_has_feature(CPU_FTR_ARCH_207S))
3543		return false;
3544
3545	/* In one_vm_per_core mode, require all vcores to be from the same vm */
3546	if (one_vm_per_core && vc->kvm != cip->vc[0]->kvm)
3547		return false;
3548
3549	if (n_threads < cip->max_subcore_threads)
3550		n_threads = cip->max_subcore_threads;
3551	if (!subcore_config_ok(cip->n_subcores + 1, n_threads))
3552		return false;
3553	cip->max_subcore_threads = n_threads;
3554
3555	sub = cip->n_subcores;
3556	++cip->n_subcores;
3557	cip->total_threads += vc->num_threads;
3558	cip->subcore_threads[sub] = vc->num_threads;
3559	cip->vc[sub] = vc;
3560	init_vcore_to_run(vc);
3561	list_del_init(&vc->preempt_list);
3562
3563	return true;
3564}
3565
3566/*
3567 * Work out whether it is possible to piggyback the execution of
3568 * vcore *pvc onto the execution of the other vcores described in *cip.
3569 */
3570static bool can_piggyback(struct kvmppc_vcore *pvc, struct core_info *cip,
3571			  int target_threads)
3572{
3573	if (cip->total_threads + pvc->num_threads > target_threads)
3574		return false;
3575
3576	return can_dynamic_split(pvc, cip);
3577}
3578
3579static void prepare_threads(struct kvmppc_vcore *vc)
3580{
3581	int i;
3582	struct kvm_vcpu *vcpu;
3583
3584	for_each_runnable_thread(i, vcpu, vc) {
3585		if (signal_pending(vcpu->arch.run_task))
3586			vcpu->arch.ret = -EINTR;
3587		else if (vcpu->arch.vpa.update_pending ||
3588			 vcpu->arch.slb_shadow.update_pending ||
3589			 vcpu->arch.dtl.update_pending)
3590			vcpu->arch.ret = RESUME_GUEST;
3591		else
3592			continue;
3593		kvmppc_remove_runnable(vc, vcpu, mftb());
3594		wake_up(&vcpu->arch.cpu_run);
3595	}
3596}
3597
3598static void collect_piggybacks(struct core_info *cip, int target_threads)
3599{
3600	struct preempted_vcore_list *lp = this_cpu_ptr(&preempted_vcores);
3601	struct kvmppc_vcore *pvc, *vcnext;
3602
3603	spin_lock(&lp->lock);
3604	list_for_each_entry_safe(pvc, vcnext, &lp->list, preempt_list) {
3605		if (!spin_trylock(&pvc->lock))
3606			continue;
3607		prepare_threads(pvc);
3608		if (!pvc->n_runnable || !pvc->kvm->arch.mmu_ready) {
3609			list_del_init(&pvc->preempt_list);
3610			if (pvc->runner == NULL) {
3611				pvc->vcore_state = VCORE_INACTIVE;
3612				kvmppc_core_end_stolen(pvc, mftb());
3613			}
3614			spin_unlock(&pvc->lock);
3615			continue;
3616		}
3617		if (!can_piggyback(pvc, cip, target_threads)) {
3618			spin_unlock(&pvc->lock);
3619			continue;
3620		}
3621		kvmppc_core_end_stolen(pvc, mftb());
3622		pvc->vcore_state = VCORE_PIGGYBACK;
3623		if (cip->total_threads >= target_threads)
3624			break;
3625	}
3626	spin_unlock(&lp->lock);
3627}
3628
3629static bool recheck_signals_and_mmu(struct core_info *cip)
3630{
3631	int sub, i;
3632	struct kvm_vcpu *vcpu;
3633	struct kvmppc_vcore *vc;
3634
3635	for (sub = 0; sub < cip->n_subcores; ++sub) {
3636		vc = cip->vc[sub];
3637		if (!vc->kvm->arch.mmu_ready)
3638			return true;
3639		for_each_runnable_thread(i, vcpu, vc)
3640			if (signal_pending(vcpu->arch.run_task))
3641				return true;
3642	}
3643	return false;
3644}
3645
3646static void post_guest_process(struct kvmppc_vcore *vc, bool is_master)
3647{
3648	int still_running = 0, i;
3649	u64 now;
3650	long ret;
3651	struct kvm_vcpu *vcpu;
3652
3653	spin_lock(&vc->lock);
3654	now = get_tb();
3655	for_each_runnable_thread(i, vcpu, vc) {
3656		/*
3657		 * It's safe to unlock the vcore in the loop here, because
3658		 * for_each_runnable_thread() is safe against removal of
3659		 * the vcpu, and the vcore state is VCORE_EXITING here,
3660		 * so any vcpus becoming runnable will have their arch.trap
3661		 * set to zero and can't actually run in the guest.
3662		 */
3663		spin_unlock(&vc->lock);
3664		/* cancel pending dec exception if dec is positive */
3665		if (now < kvmppc_dec_expires_host_tb(vcpu) &&
3666		    kvmppc_core_pending_dec(vcpu))
3667			kvmppc_core_dequeue_dec(vcpu);
3668
3669		trace_kvm_guest_exit(vcpu);
3670
3671		ret = RESUME_GUEST;
3672		if (vcpu->arch.trap)
3673			ret = kvmppc_handle_exit_hv(vcpu,
3674						    vcpu->arch.run_task);
3675
3676		vcpu->arch.ret = ret;
3677		vcpu->arch.trap = 0;
3678
3679		spin_lock(&vc->lock);
3680		if (is_kvmppc_resume_guest(vcpu->arch.ret)) {
3681			if (vcpu->arch.pending_exceptions)
3682				kvmppc_core_prepare_to_enter(vcpu);
3683			if (vcpu->arch.ceded)
3684				kvmppc_set_timer(vcpu);
3685			else
3686				++still_running;
3687		} else {
3688			kvmppc_remove_runnable(vc, vcpu, mftb());
3689			wake_up(&vcpu->arch.cpu_run);
3690		}
3691	}
3692	if (!is_master) {
3693		if (still_running > 0) {
3694			kvmppc_vcore_preempt(vc);
3695		} else if (vc->runner) {
3696			vc->vcore_state = VCORE_PREEMPT;
3697			kvmppc_core_start_stolen(vc, mftb());
3698		} else {
3699			vc->vcore_state = VCORE_INACTIVE;
3700		}
3701		if (vc->n_runnable > 0 && vc->runner == NULL) {
3702			/* make sure there's a candidate runner awake */
3703			i = -1;
3704			vcpu = next_runnable_thread(vc, &i);
3705			wake_up(&vcpu->arch.cpu_run);
3706		}
3707	}
3708	spin_unlock(&vc->lock);
3709}
3710
3711/*
3712 * Clear core from the list of active host cores as we are about to
3713 * enter the guest. Only do this if it is the primary thread of the
3714 * core (not if a subcore) that is entering the guest.
3715 */
3716static inline int kvmppc_clear_host_core(unsigned int cpu)
3717{
3718	int core;
3719
3720	if (!kvmppc_host_rm_ops_hv || cpu_thread_in_core(cpu))
3721		return 0;
3722	/*
3723	 * Memory barrier can be omitted here as we will do a smp_wmb()
3724	 * later in kvmppc_start_thread and we need ensure that state is
3725	 * visible to other CPUs only after we enter guest.
3726	 */
3727	core = cpu >> threads_shift;
3728	kvmppc_host_rm_ops_hv->rm_core[core].rm_state.in_host = 0;
3729	return 0;
3730}
3731
3732/*
3733 * Advertise this core as an active host core since we exited the guest
3734 * Only need to do this if it is the primary thread of the core that is
3735 * exiting.
3736 */
3737static inline int kvmppc_set_host_core(unsigned int cpu)
3738{
3739	int core;
3740
3741	if (!kvmppc_host_rm_ops_hv || cpu_thread_in_core(cpu))
3742		return 0;
3743
3744	/*
3745	 * Memory barrier can be omitted here because we do a spin_unlock
3746	 * immediately after this which provides the memory barrier.
3747	 */
3748	core = cpu >> threads_shift;
3749	kvmppc_host_rm_ops_hv->rm_core[core].rm_state.in_host = 1;
3750	return 0;
3751}
3752
3753static void set_irq_happened(int trap)
3754{
3755	switch (trap) {
3756	case BOOK3S_INTERRUPT_EXTERNAL:
3757		local_paca->irq_happened |= PACA_IRQ_EE;
3758		break;
3759	case BOOK3S_INTERRUPT_H_DOORBELL:
3760		local_paca->irq_happened |= PACA_IRQ_DBELL;
3761		break;
3762	case BOOK3S_INTERRUPT_HMI:
3763		local_paca->irq_happened |= PACA_IRQ_HMI;
3764		break;
3765	case BOOK3S_INTERRUPT_SYSTEM_RESET:
3766		replay_system_reset();
3767		break;
3768	}
3769}
3770
3771/*
3772 * Run a set of guest threads on a physical core.
3773 * Called with vc->lock held.
3774 */
3775static noinline void kvmppc_run_core(struct kvmppc_vcore *vc)
3776{
3777	struct kvm_vcpu *vcpu;
3778	int i;
3779	int srcu_idx;
3780	struct core_info core_info;
3781	struct kvmppc_vcore *pvc;
3782	struct kvm_split_mode split_info, *sip;
3783	int split, subcore_size, active;
3784	int sub;
3785	bool thr0_done;
3786	unsigned long cmd_bit, stat_bit;
3787	int pcpu, thr;
3788	int target_threads;
3789	int controlled_threads;
3790	int trap;
3791	bool is_power8;
3792
3793	if (WARN_ON_ONCE(cpu_has_feature(CPU_FTR_ARCH_300)))
3794		return;
3795
3796	/*
3797	 * Remove from the list any threads that have a signal pending
3798	 * or need a VPA update done
3799	 */
3800	prepare_threads(vc);
3801
3802	/* if the runner is no longer runnable, let the caller pick a new one */
3803	if (vc->runner->arch.state != KVMPPC_VCPU_RUNNABLE)
3804		return;
3805
3806	/*
3807	 * Initialize *vc.
3808	 */
3809	init_vcore_to_run(vc);
3810	vc->preempt_tb = TB_NIL;
3811
3812	/*
3813	 * Number of threads that we will be controlling: the same as
3814	 * the number of threads per subcore, except on POWER9,
3815	 * where it's 1 because the threads are (mostly) independent.
3816	 */
3817	controlled_threads = threads_per_vcore(vc->kvm);
3818
3819	/*
3820	 * Make sure we are running on primary threads, and that secondary
3821	 * threads are offline.  Also check if the number of threads in this
3822	 * guest are greater than the current system threads per guest.
3823	 */
3824	if ((controlled_threads > 1) &&
3825	    ((vc->num_threads > threads_per_subcore) || !on_primary_thread())) {
3826		for_each_runnable_thread(i, vcpu, vc) {
3827			vcpu->arch.ret = -EBUSY;
3828			kvmppc_remove_runnable(vc, vcpu, mftb());
3829			wake_up(&vcpu->arch.cpu_run);
3830		}
3831		goto out;
3832	}
3833
3834	/*
3835	 * See if we could run any other vcores on the physical core
3836	 * along with this one.
3837	 */
3838	init_core_info(&core_info, vc);
3839	pcpu = smp_processor_id();
3840	target_threads = controlled_threads;
3841	if (target_smt_mode && target_smt_mode < target_threads)
3842		target_threads = target_smt_mode;
3843	if (vc->num_threads < target_threads)
3844		collect_piggybacks(&core_info, target_threads);
3845
3846	/*
3847	 * Hard-disable interrupts, and check resched flag and signals.
3848	 * If we need to reschedule or deliver a signal, clean up
3849	 * and return without going into the guest(s).
3850	 * If the mmu_ready flag has been cleared, don't go into the
3851	 * guest because that means a HPT resize operation is in progress.
3852	 */
3853	local_irq_disable();
3854	hard_irq_disable();
3855	if (lazy_irq_pending() || need_resched() ||
3856	    recheck_signals_and_mmu(&core_info)) {
3857		local_irq_enable();
3858		vc->vcore_state = VCORE_INACTIVE;
3859		/* Unlock all except the primary vcore */
3860		for (sub = 1; sub < core_info.n_subcores; ++sub) {
3861			pvc = core_info.vc[sub];
3862			/* Put back on to the preempted vcores list */
3863			kvmppc_vcore_preempt(pvc);
3864			spin_unlock(&pvc->lock);
3865		}
3866		for (i = 0; i < controlled_threads; ++i)
3867			kvmppc_release_hwthread(pcpu + i);
3868		return;
3869	}
3870
3871	kvmppc_clear_host_core(pcpu);
3872
3873	/* Decide on micro-threading (split-core) mode */
3874	subcore_size = threads_per_subcore;
3875	cmd_bit = stat_bit = 0;
3876	split = core_info.n_subcores;
3877	sip = NULL;
3878	is_power8 = cpu_has_feature(CPU_FTR_ARCH_207S);
3879
3880	if (split > 1) {
3881		sip = &split_info;
3882		memset(&split_info, 0, sizeof(split_info));
3883		for (sub = 0; sub < core_info.n_subcores; ++sub)
3884			split_info.vc[sub] = core_info.vc[sub];
3885
3886		if (is_power8) {
3887			if (split == 2 && (dynamic_mt_modes & 2)) {
3888				cmd_bit = HID0_POWER8_1TO2LPAR;
3889				stat_bit = HID0_POWER8_2LPARMODE;
3890			} else {
3891				split = 4;
3892				cmd_bit = HID0_POWER8_1TO4LPAR;
3893				stat_bit = HID0_POWER8_4LPARMODE;
3894			}
3895			subcore_size = MAX_SMT_THREADS / split;
3896			split_info.rpr = mfspr(SPRN_RPR);
3897			split_info.pmmar = mfspr(SPRN_PMMAR);
3898			split_info.ldbar = mfspr(SPRN_LDBAR);
3899			split_info.subcore_size = subcore_size;
3900		} else {
3901			split_info.subcore_size = 1;
3902		}
3903
3904		/* order writes to split_info before kvm_split_mode pointer */
3905		smp_wmb();
3906	}
3907
3908	for (thr = 0; thr < controlled_threads; ++thr) {
3909		struct paca_struct *paca = paca_ptrs[pcpu + thr];
3910
3911		paca->kvm_hstate.napping = 0;
3912		paca->kvm_hstate.kvm_split_mode = sip;
3913	}
3914
3915	/* Initiate micro-threading (split-core) on POWER8 if required */
3916	if (cmd_bit) {
3917		unsigned long hid0 = mfspr(SPRN_HID0);
3918
3919		hid0 |= cmd_bit | HID0_POWER8_DYNLPARDIS;
3920		mb();
3921		mtspr(SPRN_HID0, hid0);
3922		isync();
3923		for (;;) {
3924			hid0 = mfspr(SPRN_HID0);
3925			if (hid0 & stat_bit)
3926				break;
3927			cpu_relax();
3928		}
3929	}
3930
3931	/*
3932	 * On POWER8, set RWMR register.
3933	 * Since it only affects PURR and SPURR, it doesn't affect
3934	 * the host, so we don't save/restore the host value.
3935	 */
3936	if (is_power8) {
3937		unsigned long rwmr_val = RWMR_RPA_P8_8THREAD;
3938		int n_online = atomic_read(&vc->online_count);
3939
3940		/*
3941		 * Use the 8-thread value if we're doing split-core
3942		 * or if the vcore's online count looks bogus.
3943		 */
3944		if (split == 1 && threads_per_subcore == MAX_SMT_THREADS &&
3945		    n_online >= 1 && n_online <= MAX_SMT_THREADS)
3946			rwmr_val = p8_rwmr_values[n_online];
3947		mtspr(SPRN_RWMR, rwmr_val);
3948	}
3949
3950	/* Start all the threads */
3951	active = 0;
3952	for (sub = 0; sub < core_info.n_subcores; ++sub) {
3953		thr = is_power8 ? subcore_thread_map[sub] : sub;
3954		thr0_done = false;
3955		active |= 1 << thr;
3956		pvc = core_info.vc[sub];
3957		pvc->pcpu = pcpu + thr;
3958		for_each_runnable_thread(i, vcpu, pvc) {
3959			/*
3960			 * XXX: is kvmppc_start_thread called too late here?
3961			 * It updates vcpu->cpu and vcpu->arch.thread_cpu
3962			 * which are used by kvmppc_fast_vcpu_kick_hv(), but
3963			 * kick is called after new exceptions become available
3964			 * and exceptions are checked earlier than here, by
3965			 * kvmppc_core_prepare_to_enter.
3966			 */
3967			kvmppc_start_thread(vcpu, pvc);
3968			kvmppc_update_vpa_dispatch(vcpu, pvc);
3969			trace_kvm_guest_enter(vcpu);
3970			if (!vcpu->arch.ptid)
3971				thr0_done = true;
3972			active |= 1 << (thr + vcpu->arch.ptid);
3973		}
3974		/*
3975		 * We need to start the first thread of each subcore
3976		 * even if it doesn't have a vcpu.
3977		 */
3978		if (!thr0_done)
3979			kvmppc_start_thread(NULL, pvc);
3980	}
3981
3982	/*
3983	 * Ensure that split_info.do_nap is set after setting
3984	 * the vcore pointer in the PACA of the secondaries.
3985	 */
3986	smp_mb();
3987
3988	/*
3989	 * When doing micro-threading, poke the inactive threads as well.
3990	 * This gets them to the nap instruction after kvm_do_nap,
3991	 * which reduces the time taken to unsplit later.
3992	 */
3993	if (cmd_bit) {
3994		split_info.do_nap = 1;	/* ask secondaries to nap when done */
3995		for (thr = 1; thr < threads_per_subcore; ++thr)
3996			if (!(active & (1 << thr)))
3997				kvmppc_ipi_thread(pcpu + thr);
3998	}
3999
4000	vc->vcore_state = VCORE_RUNNING;
4001	preempt_disable();
4002
4003	trace_kvmppc_run_core(vc, 0);
4004
4005	for (sub = 0; sub < core_info.n_subcores; ++sub)
4006		spin_unlock(&core_info.vc[sub]->lock);
4007
4008	guest_timing_enter_irqoff();
4009
4010	srcu_idx = srcu_read_lock(&vc->kvm->srcu);
4011
4012	guest_state_enter_irqoff();
4013	this_cpu_disable_ftrace();
4014
4015	trap = __kvmppc_vcore_entry();
4016
4017	this_cpu_enable_ftrace();
4018	guest_state_exit_irqoff();
4019
4020	srcu_read_unlock(&vc->kvm->srcu, srcu_idx);
4021
4022	set_irq_happened(trap);
4023
4024	spin_lock(&vc->lock);
4025	/* prevent other vcpu threads from doing kvmppc_start_thread() now */
4026	vc->vcore_state = VCORE_EXITING;
4027
4028	/* wait for secondary threads to finish writing their state to memory */
4029	kvmppc_wait_for_nap(controlled_threads);
4030
4031	/* Return to whole-core mode if we split the core earlier */
4032	if (cmd_bit) {
4033		unsigned long hid0 = mfspr(SPRN_HID0);
4034		unsigned long loops = 0;
4035
4036		hid0 &= ~HID0_POWER8_DYNLPARDIS;
4037		stat_bit = HID0_POWER8_2LPARMODE | HID0_POWER8_4LPARMODE;
4038		mb();
4039		mtspr(SPRN_HID0, hid0);
4040		isync();
4041		for (;;) {
4042			hid0 = mfspr(SPRN_HID0);
4043			if (!(hid0 & stat_bit))
4044				break;
4045			cpu_relax();
4046			++loops;
4047		}
4048		split_info.do_nap = 0;
4049	}
4050
4051	kvmppc_set_host_core(pcpu);
4052
4053	if (!vtime_accounting_enabled_this_cpu()) {
4054		local_irq_enable();
4055		/*
4056		 * Service IRQs here before guest_timing_exit_irqoff() so any
4057		 * ticks that occurred while running the guest are accounted to
4058		 * the guest. If vtime accounting is enabled, accounting uses
4059		 * TB rather than ticks, so it can be done without enabling
4060		 * interrupts here, which has the problem that it accounts
4061		 * interrupt processing overhead to the host.
4062		 */
4063		local_irq_disable();
4064	}
4065	guest_timing_exit_irqoff();
4066
4067	local_irq_enable();
4068
4069	/* Let secondaries go back to the offline loop */
4070	for (i = 0; i < controlled_threads; ++i) {
4071		kvmppc_release_hwthread(pcpu + i);
4072		if (sip && sip->napped[i])
4073			kvmppc_ipi_thread(pcpu + i);
4074	}
4075
4076	spin_unlock(&vc->lock);
4077
4078	/* make sure updates to secondary vcpu structs are visible now */
4079	smp_mb();
4080
4081	preempt_enable();
4082
4083	for (sub = 0; sub < core_info.n_subcores; ++sub) {
4084		pvc = core_info.vc[sub];
4085		post_guest_process(pvc, pvc == vc);
4086	}
4087
4088	spin_lock(&vc->lock);
4089
4090 out:
4091	vc->vcore_state = VCORE_INACTIVE;
4092	trace_kvmppc_run_core(vc, 1);
4093}
4094
4095static inline bool hcall_is_xics(unsigned long req)
4096{
4097	return req == H_EOI || req == H_CPPR || req == H_IPI ||
4098		req == H_IPOLL || req == H_XIRR || req == H_XIRR_X;
4099}
4100
4101static void vcpu_vpa_increment_dispatch(struct kvm_vcpu *vcpu)
4102{
4103	struct lppaca *lp = vcpu->arch.vpa.pinned_addr;
4104	if (lp) {
4105		u32 yield_count = be32_to_cpu(lp->yield_count) + 1;
4106		lp->yield_count = cpu_to_be32(yield_count);
4107		vcpu->arch.vpa.dirty = 1;
4108	}
4109}
4110
4111static int kvmhv_vcpu_entry_nestedv2(struct kvm_vcpu *vcpu, u64 time_limit,
4112				     unsigned long lpcr, u64 *tb)
4113{
4114	struct kvmhv_nestedv2_io *io;
4115	unsigned long msr, i;
4116	int trap;
4117	long rc;
4118
4119	io = &vcpu->arch.nestedv2_io;
4120
4121	msr = mfmsr();
4122	kvmppc_msr_hard_disable_set_facilities(vcpu, msr);
4123	if (lazy_irq_pending())
4124		return 0;
4125
4126	rc = kvmhv_nestedv2_flush_vcpu(vcpu, time_limit);
4127	if (rc < 0)
4128		return -EINVAL;
4129
4130	kvmppc_gse_put_u64(io->vcpu_run_input, KVMPPC_GSID_LPCR, lpcr);
4131
4132	accumulate_time(vcpu, &vcpu->arch.in_guest);
4133	rc = plpar_guest_run_vcpu(0, vcpu->kvm->arch.lpid, vcpu->vcpu_id,
4134				  &trap, &i);
4135
4136	if (rc != H_SUCCESS) {
4137		pr_err("KVM Guest Run VCPU hcall failed\n");
4138		if (rc == H_INVALID_ELEMENT_ID)
4139			pr_err("KVM: Guest Run VCPU invalid element id at %ld\n", i);
4140		else if (rc == H_INVALID_ELEMENT_SIZE)
4141			pr_err("KVM: Guest Run VCPU invalid element size at %ld\n", i);
4142		else if (rc == H_INVALID_ELEMENT_VALUE)
4143			pr_err("KVM: Guest Run VCPU invalid element value at %ld\n", i);
4144		return -EINVAL;
4145	}
4146	accumulate_time(vcpu, &vcpu->arch.guest_exit);
4147
4148	*tb = mftb();
4149	kvmppc_gsm_reset(io->vcpu_message);
4150	kvmppc_gsm_reset(io->vcore_message);
4151	kvmppc_gsbm_zero(&io->valids);
4152
4153	rc = kvmhv_nestedv2_parse_output(vcpu);
4154	if (rc < 0)
4155		return -EINVAL;
4156
4157	timer_rearm_host_dec(*tb);
4158
4159	return trap;
4160}
4161
4162/* call our hypervisor to load up HV regs and go */
4163static int kvmhv_vcpu_entry_p9_nested(struct kvm_vcpu *vcpu, u64 time_limit, unsigned long lpcr, u64 *tb)
4164{
4165	unsigned long host_psscr;
4166	unsigned long msr;
4167	struct hv_guest_state hvregs;
4168	struct p9_host_os_sprs host_os_sprs;
4169	s64 dec;
4170	int trap;
4171
4172	msr = mfmsr();
4173
4174	save_p9_host_os_sprs(&host_os_sprs);
4175
4176	/*
4177	 * We need to save and restore the guest visible part of the
4178	 * psscr (i.e. using SPRN_PSSCR_PR) since the hypervisor
4179	 * doesn't do this for us. Note only required if pseries since
4180	 * this is done in kvmhv_vcpu_entry_p9() below otherwise.
4181	 */
4182	host_psscr = mfspr(SPRN_PSSCR_PR);
4183
4184	kvmppc_msr_hard_disable_set_facilities(vcpu, msr);
4185	if (lazy_irq_pending())
4186		return 0;
4187
4188	if (unlikely(load_vcpu_state(vcpu, &host_os_sprs)))
4189		msr = mfmsr(); /* TM restore can update msr */
4190
4191	if (vcpu->arch.psscr != host_psscr)
4192		mtspr(SPRN_PSSCR_PR, vcpu->arch.psscr);
4193
4194	kvmhv_save_hv_regs(vcpu, &hvregs);
4195	hvregs.lpcr = lpcr;
4196	hvregs.amor = ~0;
4197	vcpu->arch.regs.msr = vcpu->arch.shregs.msr;
4198	hvregs.version = HV_GUEST_STATE_VERSION;
4199	if (vcpu->arch.nested) {
4200		hvregs.lpid = vcpu->arch.nested->shadow_lpid;
4201		hvregs.vcpu_token = vcpu->arch.nested_vcpu_id;
4202	} else {
4203		hvregs.lpid = vcpu->kvm->arch.lpid;
4204		hvregs.vcpu_token = vcpu->vcpu_id;
4205	}
4206	hvregs.hdec_expiry = time_limit;
4207
4208	/*
4209	 * When setting DEC, we must always deal with irq_work_raise
4210	 * via NMI vs setting DEC. The problem occurs right as we
4211	 * switch into guest mode if a NMI hits and sets pending work
4212	 * and sets DEC, then that will apply to the guest and not
4213	 * bring us back to the host.
4214	 *
4215	 * irq_work_raise could check a flag (or possibly LPCR[HDICE]
4216	 * for example) and set HDEC to 1? That wouldn't solve the
4217	 * nested hv case which needs to abort the hcall or zero the
4218	 * time limit.
4219	 *
4220	 * XXX: Another day's problem.
4221	 */
4222	mtspr(SPRN_DEC, kvmppc_dec_expires_host_tb(vcpu) - *tb);
4223
4224	mtspr(SPRN_DAR, vcpu->arch.shregs.dar);
4225	mtspr(SPRN_DSISR, vcpu->arch.shregs.dsisr);
4226	switch_pmu_to_guest(vcpu, &host_os_sprs);
4227	accumulate_time(vcpu, &vcpu->arch.in_guest);
4228	trap = plpar_hcall_norets(H_ENTER_NESTED, __pa(&hvregs),
4229				  __pa(&vcpu->arch.regs));
4230	accumulate_time(vcpu, &vcpu->arch.guest_exit);
4231	kvmhv_restore_hv_return_state(vcpu, &hvregs);
4232	switch_pmu_to_host(vcpu, &host_os_sprs);
4233	vcpu->arch.shregs.msr = vcpu->arch.regs.msr;
4234	vcpu->arch.shregs.dar = mfspr(SPRN_DAR);
4235	vcpu->arch.shregs.dsisr = mfspr(SPRN_DSISR);
4236	vcpu->arch.psscr = mfspr(SPRN_PSSCR_PR);
4237
4238	store_vcpu_state(vcpu);
4239
4240	dec = mfspr(SPRN_DEC);
4241	if (!(lpcr & LPCR_LD)) /* Sign extend if not using large decrementer */
4242		dec = (s32) dec;
4243	*tb = mftb();
4244	vcpu->arch.dec_expires = dec + (*tb + kvmppc_get_tb_offset(vcpu));
4245
4246	timer_rearm_host_dec(*tb);
4247
4248	restore_p9_host_os_sprs(vcpu, &host_os_sprs);
4249	if (vcpu->arch.psscr != host_psscr)
4250		mtspr(SPRN_PSSCR_PR, host_psscr);
4251
4252	return trap;
4253}
4254
4255/*
4256 * Guest entry for POWER9 and later CPUs.
4257 */
4258static int kvmhv_p9_guest_entry(struct kvm_vcpu *vcpu, u64 time_limit,
4259			 unsigned long lpcr, u64 *tb)
4260{
4261	struct kvm *kvm = vcpu->kvm;
4262	struct kvm_nested_guest *nested = vcpu->arch.nested;
4263	u64 next_timer;
4264	int trap;
4265
4266	next_timer = timer_get_next_tb();
4267	if (*tb >= next_timer)
4268		return BOOK3S_INTERRUPT_HV_DECREMENTER;
4269	if (next_timer < time_limit)
4270		time_limit = next_timer;
4271	else if (*tb >= time_limit) /* nested time limit */
4272		return BOOK3S_INTERRUPT_NESTED_HV_DECREMENTER;
4273
4274	vcpu->arch.ceded = 0;
4275
4276	vcpu_vpa_increment_dispatch(vcpu);
4277
4278	if (kvmhv_on_pseries()) {
4279		if (kvmhv_is_nestedv1())
4280			trap = kvmhv_vcpu_entry_p9_nested(vcpu, time_limit, lpcr, tb);
4281		else
4282			trap = kvmhv_vcpu_entry_nestedv2(vcpu, time_limit, lpcr, tb);
4283
4284		/* H_CEDE has to be handled now, not later */
4285		if (trap == BOOK3S_INTERRUPT_SYSCALL && !nested &&
4286		    kvmppc_get_gpr(vcpu, 3) == H_CEDE) {
4287			kvmppc_cede(vcpu);
4288			kvmppc_set_gpr(vcpu, 3, 0);
4289			trap = 0;
4290		}
4291
4292	} else if (nested) {
4293		__this_cpu_write(cpu_in_guest, kvm);
4294		trap = kvmhv_vcpu_entry_p9(vcpu, time_limit, lpcr, tb);
4295		__this_cpu_write(cpu_in_guest, NULL);
4296
4297	} else {
4298		kvmppc_xive_push_vcpu(vcpu);
4299
4300		__this_cpu_write(cpu_in_guest, kvm);
4301		trap = kvmhv_vcpu_entry_p9(vcpu, time_limit, lpcr, tb);
4302		__this_cpu_write(cpu_in_guest, NULL);
4303
4304		if (trap == BOOK3S_INTERRUPT_SYSCALL &&
4305		    !(__kvmppc_get_msr_hv(vcpu) & MSR_PR)) {
4306			unsigned long req = kvmppc_get_gpr(vcpu, 3);
4307
4308			/*
4309			 * XIVE rearm and XICS hcalls must be handled
4310			 * before xive context is pulled (is this
4311			 * true?)
4312			 */
4313			if (req == H_CEDE) {
4314				/* H_CEDE has to be handled now */
4315				kvmppc_cede(vcpu);
4316				if (!kvmppc_xive_rearm_escalation(vcpu)) {
4317					/*
4318					 * Pending escalation so abort
4319					 * the cede.
4320					 */
4321					vcpu->arch.ceded = 0;
4322				}
4323				kvmppc_set_gpr(vcpu, 3, 0);
4324				trap = 0;
4325
4326			} else if (req == H_ENTER_NESTED) {
4327				/*
4328				 * L2 should not run with the L1
4329				 * context so rearm and pull it.
4330				 */
4331				if (!kvmppc_xive_rearm_escalation(vcpu)) {
4332					/*
4333					 * Pending escalation so abort
4334					 * H_ENTER_NESTED.
4335					 */
4336					kvmppc_set_gpr(vcpu, 3, 0);
4337					trap = 0;
4338				}
4339
4340			} else if (hcall_is_xics(req)) {
4341				int ret;
4342
4343				ret = kvmppc_xive_xics_hcall(vcpu, req);
4344				if (ret != H_TOO_HARD) {
4345					kvmppc_set_gpr(vcpu, 3, ret);
4346					trap = 0;
4347				}
4348			}
4349		}
4350		kvmppc_xive_pull_vcpu(vcpu);
4351
4352		if (kvm_is_radix(kvm))
4353			vcpu->arch.slb_max = 0;
4354	}
4355
4356	vcpu_vpa_increment_dispatch(vcpu);
4357
4358	return trap;
4359}
4360
4361/*
4362 * Wait for some other vcpu thread to execute us, and
4363 * wake us up when we need to handle something in the host.
4364 */
4365static void kvmppc_wait_for_exec(struct kvmppc_vcore *vc,
4366				 struct kvm_vcpu *vcpu, int wait_state)
4367{
4368	DEFINE_WAIT(wait);
4369
4370	prepare_to_wait(&vcpu->arch.cpu_run, &wait, wait_state);
4371	if (vcpu->arch.state == KVMPPC_VCPU_RUNNABLE) {
4372		spin_unlock(&vc->lock);
4373		schedule();
4374		spin_lock(&vc->lock);
4375	}
4376	finish_wait(&vcpu->arch.cpu_run, &wait);
4377}
4378
4379static void grow_halt_poll_ns(struct kvmppc_vcore *vc)
4380{
4381	if (!halt_poll_ns_grow)
4382		return;
4383
4384	vc->halt_poll_ns *= halt_poll_ns_grow;
4385	if (vc->halt_poll_ns < halt_poll_ns_grow_start)
4386		vc->halt_poll_ns = halt_poll_ns_grow_start;
4387}
4388
4389static void shrink_halt_poll_ns(struct kvmppc_vcore *vc)
4390{
4391	if (halt_poll_ns_shrink == 0)
4392		vc->halt_poll_ns = 0;
4393	else
4394		vc->halt_poll_ns /= halt_poll_ns_shrink;
4395}
4396
4397#ifdef CONFIG_KVM_XICS
4398static inline bool xive_interrupt_pending(struct kvm_vcpu *vcpu)
4399{
4400	if (!xics_on_xive())
4401		return false;
4402	return vcpu->arch.irq_pending || vcpu->arch.xive_saved_state.pipr <
4403		vcpu->arch.xive_saved_state.cppr;
4404}
4405#else
4406static inline bool xive_interrupt_pending(struct kvm_vcpu *vcpu)
4407{
4408	return false;
4409}
4410#endif /* CONFIG_KVM_XICS */
4411
4412static bool kvmppc_vcpu_woken(struct kvm_vcpu *vcpu)
4413{
4414	if (vcpu->arch.pending_exceptions || vcpu->arch.prodded ||
4415	    kvmppc_doorbell_pending(vcpu) || xive_interrupt_pending(vcpu))
4416		return true;
4417
4418	return false;
4419}
4420
4421static bool kvmppc_vcpu_check_block(struct kvm_vcpu *vcpu)
4422{
4423	if (!vcpu->arch.ceded || kvmppc_vcpu_woken(vcpu))
4424		return true;
4425	return false;
4426}
4427
4428/*
4429 * Check to see if any of the runnable vcpus on the vcore have pending
4430 * exceptions or are no longer ceded
4431 */
4432static int kvmppc_vcore_check_block(struct kvmppc_vcore *vc)
4433{
4434	struct kvm_vcpu *vcpu;
4435	int i;
4436
4437	for_each_runnable_thread(i, vcpu, vc) {
4438		if (kvmppc_vcpu_check_block(vcpu))
4439			return 1;
4440	}
4441
4442	return 0;
4443}
4444
4445/*
4446 * All the vcpus in this vcore are idle, so wait for a decrementer
4447 * or external interrupt to one of the vcpus.  vc->lock is held.
4448 */
4449static void kvmppc_vcore_blocked(struct kvmppc_vcore *vc)
4450{
4451	ktime_t cur, start_poll, start_wait;
4452	int do_sleep = 1;
4453	u64 block_ns;
4454
4455	WARN_ON_ONCE(cpu_has_feature(CPU_FTR_ARCH_300));
4456
4457	/* Poll for pending exceptions and ceded state */
4458	cur = start_poll = ktime_get();
4459	if (vc->halt_poll_ns) {
4460		ktime_t stop = ktime_add_ns(start_poll, vc->halt_poll_ns);
4461		++vc->runner->stat.generic.halt_attempted_poll;
4462
4463		vc->vcore_state = VCORE_POLLING;
4464		spin_unlock(&vc->lock);
4465
4466		do {
4467			if (kvmppc_vcore_check_block(vc)) {
4468				do_sleep = 0;
4469				break;
4470			}
4471			cur = ktime_get();
4472		} while (kvm_vcpu_can_poll(cur, stop));
4473
4474		spin_lock(&vc->lock);
4475		vc->vcore_state = VCORE_INACTIVE;
4476
4477		if (!do_sleep) {
4478			++vc->runner->stat.generic.halt_successful_poll;
4479			goto out;
4480		}
4481	}
4482
4483	prepare_to_rcuwait(&vc->wait);
4484	set_current_state(TASK_INTERRUPTIBLE);
4485	if (kvmppc_vcore_check_block(vc)) {
4486		finish_rcuwait(&vc->wait);
4487		do_sleep = 0;
4488		/* If we polled, count this as a successful poll */
4489		if (vc->halt_poll_ns)
4490			++vc->runner->stat.generic.halt_successful_poll;
4491		goto out;
4492	}
4493
4494	start_wait = ktime_get();
4495
4496	vc->vcore_state = VCORE_SLEEPING;
4497	trace_kvmppc_vcore_blocked(vc->runner, 0);
4498	spin_unlock(&vc->lock);
4499	schedule();
4500	finish_rcuwait(&vc->wait);
4501	spin_lock(&vc->lock);
4502	vc->vcore_state = VCORE_INACTIVE;
4503	trace_kvmppc_vcore_blocked(vc->runner, 1);
4504	++vc->runner->stat.halt_successful_wait;
4505
4506	cur = ktime_get();
4507
4508out:
4509	block_ns = ktime_to_ns(cur) - ktime_to_ns(start_poll);
4510
4511	/* Attribute wait time */
4512	if (do_sleep) {
4513		vc->runner->stat.generic.halt_wait_ns +=
4514			ktime_to_ns(cur) - ktime_to_ns(start_wait);
4515		KVM_STATS_LOG_HIST_UPDATE(
4516				vc->runner->stat.generic.halt_wait_hist,
4517				ktime_to_ns(cur) - ktime_to_ns(start_wait));
4518		/* Attribute failed poll time */
4519		if (vc->halt_poll_ns) {
4520			vc->runner->stat.generic.halt_poll_fail_ns +=
4521				ktime_to_ns(start_wait) -
4522				ktime_to_ns(start_poll);
4523			KVM_STATS_LOG_HIST_UPDATE(
4524				vc->runner->stat.generic.halt_poll_fail_hist,
4525				ktime_to_ns(start_wait) -
4526				ktime_to_ns(start_poll));
4527		}
4528	} else {
4529		/* Attribute successful poll time */
4530		if (vc->halt_poll_ns) {
4531			vc->runner->stat.generic.halt_poll_success_ns +=
4532				ktime_to_ns(cur) -
4533				ktime_to_ns(start_poll);
4534			KVM_STATS_LOG_HIST_UPDATE(
4535				vc->runner->stat.generic.halt_poll_success_hist,
4536				ktime_to_ns(cur) - ktime_to_ns(start_poll));
4537		}
4538	}
4539
4540	/* Adjust poll time */
4541	if (halt_poll_ns) {
4542		if (block_ns <= vc->halt_poll_ns)
4543			;
4544		/* We slept and blocked for longer than the max halt time */
4545		else if (vc->halt_poll_ns && block_ns > halt_poll_ns)
4546			shrink_halt_poll_ns(vc);
4547		/* We slept and our poll time is too small */
4548		else if (vc->halt_poll_ns < halt_poll_ns &&
4549				block_ns < halt_poll_ns)
4550			grow_halt_poll_ns(vc);
4551		if (vc->halt_poll_ns > halt_poll_ns)
4552			vc->halt_poll_ns = halt_poll_ns;
4553	} else
4554		vc->halt_poll_ns = 0;
4555
4556	trace_kvmppc_vcore_wakeup(do_sleep, block_ns);
4557}
4558
4559/*
4560 * This never fails for a radix guest, as none of the operations it does
4561 * for a radix guest can fail or have a way to report failure.
4562 */
4563static int kvmhv_setup_mmu(struct kvm_vcpu *vcpu)
4564{
4565	int r = 0;
4566	struct kvm *kvm = vcpu->kvm;
4567
4568	mutex_lock(&kvm->arch.mmu_setup_lock);
4569	if (!kvm->arch.mmu_ready) {
4570		if (!kvm_is_radix(kvm))
4571			r = kvmppc_hv_setup_htab_rma(vcpu);
4572		if (!r) {
4573			if (cpu_has_feature(CPU_FTR_ARCH_300))
4574				kvmppc_setup_partition_table(kvm);
4575			kvm->arch.mmu_ready = 1;
4576		}
4577	}
4578	mutex_unlock(&kvm->arch.mmu_setup_lock);
4579	return r;
4580}
4581
4582static int kvmppc_run_vcpu(struct kvm_vcpu *vcpu)
4583{
4584	struct kvm_run *run = vcpu->run;
4585	int n_ceded, i, r;
4586	struct kvmppc_vcore *vc;
4587	struct kvm_vcpu *v;
4588
4589	trace_kvmppc_run_vcpu_enter(vcpu);
4590
4591	run->exit_reason = 0;
4592	vcpu->arch.ret = RESUME_GUEST;
4593	vcpu->arch.trap = 0;
4594	kvmppc_update_vpas(vcpu);
4595
4596	/*
4597	 * Synchronize with other threads in this virtual core
4598	 */
4599	vc = vcpu->arch.vcore;
4600	spin_lock(&vc->lock);
4601	vcpu->arch.ceded = 0;
4602	vcpu->arch.run_task = current;
4603	vcpu->arch.stolen_logged = vcore_stolen_time(vc, mftb());
4604	vcpu->arch.state = KVMPPC_VCPU_RUNNABLE;
4605	vcpu->arch.busy_preempt = TB_NIL;
4606	WRITE_ONCE(vc->runnable_threads[vcpu->arch.ptid], vcpu);
4607	++vc->n_runnable;
4608
4609	/*
4610	 * This happens the first time this is called for a vcpu.
4611	 * If the vcore is already running, we may be able to start
4612	 * this thread straight away and have it join in.
4613	 */
4614	if (!signal_pending(current)) {
4615		if ((vc->vcore_state == VCORE_PIGGYBACK ||
4616		     vc->vcore_state == VCORE_RUNNING) &&
4617			   !VCORE_IS_EXITING(vc)) {
4618			kvmppc_update_vpa_dispatch(vcpu, vc);
4619			kvmppc_start_thread(vcpu, vc);
4620			trace_kvm_guest_enter(vcpu);
4621		} else if (vc->vcore_state == VCORE_SLEEPING) {
4622		        rcuwait_wake_up(&vc->wait);
4623		}
4624
4625	}
4626
4627	while (vcpu->arch.state == KVMPPC_VCPU_RUNNABLE &&
4628	       !signal_pending(current)) {
4629		/* See if the MMU is ready to go */
4630		if (!vcpu->kvm->arch.mmu_ready) {
4631			spin_unlock(&vc->lock);
4632			r = kvmhv_setup_mmu(vcpu);
4633			spin_lock(&vc->lock);
4634			if (r) {
4635				run->exit_reason = KVM_EXIT_FAIL_ENTRY;
4636				run->fail_entry.
4637					hardware_entry_failure_reason = 0;
4638				vcpu->arch.ret = r;
4639				break;
4640			}
4641		}
4642
4643		if (vc->vcore_state == VCORE_PREEMPT && vc->runner == NULL)
4644			kvmppc_vcore_end_preempt(vc);
4645
4646		if (vc->vcore_state != VCORE_INACTIVE) {
4647			kvmppc_wait_for_exec(vc, vcpu, TASK_INTERRUPTIBLE);
4648			continue;
4649		}
4650		for_each_runnable_thread(i, v, vc) {
4651			kvmppc_core_prepare_to_enter(v);
4652			if (signal_pending(v->arch.run_task)) {
4653				kvmppc_remove_runnable(vc, v, mftb());
4654				v->stat.signal_exits++;
4655				v->run->exit_reason = KVM_EXIT_INTR;
4656				v->arch.ret = -EINTR;
4657				wake_up(&v->arch.cpu_run);
4658			}
4659		}
4660		if (!vc->n_runnable || vcpu->arch.state != KVMPPC_VCPU_RUNNABLE)
4661			break;
4662		n_ceded = 0;
4663		for_each_runnable_thread(i, v, vc) {
4664			if (!kvmppc_vcpu_woken(v))
4665				n_ceded += v->arch.ceded;
4666			else
4667				v->arch.ceded = 0;
4668		}
4669		vc->runner = vcpu;
4670		if (n_ceded == vc->n_runnable) {
4671			kvmppc_vcore_blocked(vc);
4672		} else if (need_resched()) {
4673			kvmppc_vcore_preempt(vc);
4674			/* Let something else run */
4675			cond_resched_lock(&vc->lock);
4676			if (vc->vcore_state == VCORE_PREEMPT)
4677				kvmppc_vcore_end_preempt(vc);
4678		} else {
4679			kvmppc_run_core(vc);
4680		}
4681		vc->runner = NULL;
4682	}
4683
4684	while (vcpu->arch.state == KVMPPC_VCPU_RUNNABLE &&
4685	       (vc->vcore_state == VCORE_RUNNING ||
4686		vc->vcore_state == VCORE_EXITING ||
4687		vc->vcore_state == VCORE_PIGGYBACK))
4688		kvmppc_wait_for_exec(vc, vcpu, TASK_UNINTERRUPTIBLE);
4689
4690	if (vc->vcore_state == VCORE_PREEMPT && vc->runner == NULL)
4691		kvmppc_vcore_end_preempt(vc);
4692
4693	if (vcpu->arch.state == KVMPPC_VCPU_RUNNABLE) {
4694		kvmppc_remove_runnable(vc, vcpu, mftb());
4695		vcpu->stat.signal_exits++;
4696		run->exit_reason = KVM_EXIT_INTR;
4697		vcpu->arch.ret = -EINTR;
4698	}
4699
4700	if (vc->n_runnable && vc->vcore_state == VCORE_INACTIVE) {
4701		/* Wake up some vcpu to run the core */
4702		i = -1;
4703		v = next_runnable_thread(vc, &i);
4704		wake_up(&v->arch.cpu_run);
4705	}
4706
4707	trace_kvmppc_run_vcpu_exit(vcpu);
4708	spin_unlock(&vc->lock);
4709	return vcpu->arch.ret;
4710}
4711
4712int kvmhv_run_single_vcpu(struct kvm_vcpu *vcpu, u64 time_limit,
4713			  unsigned long lpcr)
4714{
4715	struct rcuwait *wait = kvm_arch_vcpu_get_wait(vcpu);
4716	struct kvm_run *run = vcpu->run;
4717	int trap, r, pcpu;
4718	int srcu_idx;
4719	struct kvmppc_vcore *vc;
4720	struct kvm *kvm = vcpu->kvm;
4721	struct kvm_nested_guest *nested = vcpu->arch.nested;
4722	unsigned long flags;
4723	u64 tb;
4724
4725	trace_kvmppc_run_vcpu_enter(vcpu);
4726
4727	run->exit_reason = 0;
4728	vcpu->arch.ret = RESUME_GUEST;
4729	vcpu->arch.trap = 0;
4730
4731	vc = vcpu->arch.vcore;
4732	vcpu->arch.ceded = 0;
4733	vcpu->arch.run_task = current;
4734	vcpu->arch.last_inst = KVM_INST_FETCH_FAILED;
4735
4736	/* See if the MMU is ready to go */
4737	if (unlikely(!kvm->arch.mmu_ready)) {
4738		r = kvmhv_setup_mmu(vcpu);
4739		if (r) {
4740			run->exit_reason = KVM_EXIT_FAIL_ENTRY;
4741			run->fail_entry.hardware_entry_failure_reason = 0;
4742			vcpu->arch.ret = r;
4743			return r;
4744		}
4745	}
4746
4747	if (need_resched())
4748		cond_resched();
4749
4750	kvmppc_update_vpas(vcpu);
4751
4752	preempt_disable();
4753	pcpu = smp_processor_id();
4754	if (kvm_is_radix(kvm))
4755		kvmppc_prepare_radix_vcpu(vcpu, pcpu);
4756
4757	/* flags save not required, but irq_pmu has no disable/enable API */
4758	powerpc_local_irq_pmu_save(flags);
4759
4760	vcpu->arch.state = KVMPPC_VCPU_RUNNABLE;
4761
4762	if (signal_pending(current))
4763		goto sigpend;
4764	if (need_resched() || !kvm->arch.mmu_ready)
4765		goto out;
4766
4767	vcpu->cpu = pcpu;
4768	vcpu->arch.thread_cpu = pcpu;
4769	vc->pcpu = pcpu;
4770	local_paca->kvm_hstate.kvm_vcpu = vcpu;
4771	local_paca->kvm_hstate.ptid = 0;
4772	local_paca->kvm_hstate.fake_suspend = 0;
4773
4774	/*
4775	 * Orders set cpu/thread_cpu vs testing for pending interrupts and
4776	 * doorbells below. The other side is when these fields are set vs
4777	 * kvmppc_fast_vcpu_kick_hv reading the cpu/thread_cpu fields to
4778	 * kick a vCPU to notice the pending interrupt.
4779	 */
4780	smp_mb();
4781
4782	if (!nested) {
4783		kvmppc_core_prepare_to_enter(vcpu);
4784		if (test_bit(BOOK3S_IRQPRIO_EXTERNAL,
4785			     &vcpu->arch.pending_exceptions) ||
4786		    xive_interrupt_pending(vcpu)) {
4787			/*
4788			 * For nested HV, don't synthesize but always pass MER,
4789			 * the L0 will be able to optimise that more
4790			 * effectively than manipulating registers directly.
4791			 */
4792			if (!kvmhv_on_pseries() && (__kvmppc_get_msr_hv(vcpu) & MSR_EE))
4793				kvmppc_inject_interrupt_hv(vcpu,
4794							   BOOK3S_INTERRUPT_EXTERNAL, 0);
4795			else
4796				lpcr |= LPCR_MER;
4797		}
4798	} else if (vcpu->arch.pending_exceptions ||
4799		   vcpu->arch.doorbell_request ||
4800		   xive_interrupt_pending(vcpu)) {
4801		vcpu->arch.ret = RESUME_HOST;
4802		goto out;
4803	}
4804
4805	if (vcpu->arch.timer_running) {
4806		hrtimer_try_to_cancel(&vcpu->arch.dec_timer);
4807		vcpu->arch.timer_running = 0;
4808	}
4809
4810	tb = mftb();
4811
4812	kvmppc_update_vpa_dispatch_p9(vcpu, vc, tb + kvmppc_get_tb_offset(vcpu));
4813
4814	trace_kvm_guest_enter(vcpu);
4815
4816	guest_timing_enter_irqoff();
4817
4818	srcu_idx = srcu_read_lock(&kvm->srcu);
4819
4820	guest_state_enter_irqoff();
4821	this_cpu_disable_ftrace();
4822
4823	trap = kvmhv_p9_guest_entry(vcpu, time_limit, lpcr, &tb);
4824	vcpu->arch.trap = trap;
4825
4826	this_cpu_enable_ftrace();
4827	guest_state_exit_irqoff();
4828
4829	srcu_read_unlock(&kvm->srcu, srcu_idx);
4830
4831	set_irq_happened(trap);
4832
4833	vcpu->cpu = -1;
4834	vcpu->arch.thread_cpu = -1;
4835	vcpu->arch.state = KVMPPC_VCPU_BUSY_IN_HOST;
4836
4837	if (!vtime_accounting_enabled_this_cpu()) {
4838		powerpc_local_irq_pmu_restore(flags);
4839		/*
4840		 * Service IRQs here before guest_timing_exit_irqoff() so any
4841		 * ticks that occurred while running the guest are accounted to
4842		 * the guest. If vtime accounting is enabled, accounting uses
4843		 * TB rather than ticks, so it can be done without enabling
4844		 * interrupts here, which has the problem that it accounts
4845		 * interrupt processing overhead to the host.
4846		 */
4847		powerpc_local_irq_pmu_save(flags);
4848	}
4849	guest_timing_exit_irqoff();
4850
4851	powerpc_local_irq_pmu_restore(flags);
4852
4853	preempt_enable();
4854
4855	/*
4856	 * cancel pending decrementer exception if DEC is now positive, or if
4857	 * entering a nested guest in which case the decrementer is now owned
4858	 * by L2 and the L1 decrementer is provided in hdec_expires
4859	 */
4860	if (!kvmhv_is_nestedv2() && kvmppc_core_pending_dec(vcpu) &&
4861			((tb < kvmppc_dec_expires_host_tb(vcpu)) ||
4862			 (trap == BOOK3S_INTERRUPT_SYSCALL &&
4863			  kvmppc_get_gpr(vcpu, 3) == H_ENTER_NESTED)))
4864		kvmppc_core_dequeue_dec(vcpu);
4865
4866	trace_kvm_guest_exit(vcpu);
4867	r = RESUME_GUEST;
4868	if (trap) {
4869		if (!nested)
4870			r = kvmppc_handle_exit_hv(vcpu, current);
4871		else
4872			r = kvmppc_handle_nested_exit(vcpu);
4873	}
4874	vcpu->arch.ret = r;
4875
4876	if (is_kvmppc_resume_guest(r) && !kvmppc_vcpu_check_block(vcpu)) {
4877		kvmppc_set_timer(vcpu);
4878
4879		prepare_to_rcuwait(wait);
4880		for (;;) {
4881			set_current_state(TASK_INTERRUPTIBLE);
4882			if (signal_pending(current)) {
4883				vcpu->stat.signal_exits++;
4884				run->exit_reason = KVM_EXIT_INTR;
4885				vcpu->arch.ret = -EINTR;
4886				break;
4887			}
4888
4889			if (kvmppc_vcpu_check_block(vcpu))
4890				break;
4891
4892			trace_kvmppc_vcore_blocked(vcpu, 0);
4893			schedule();
4894			trace_kvmppc_vcore_blocked(vcpu, 1);
4895		}
4896		finish_rcuwait(wait);
4897	}
4898	vcpu->arch.ceded = 0;
4899
4900 done:
4901	trace_kvmppc_run_vcpu_exit(vcpu);
4902
4903	return vcpu->arch.ret;
4904
4905 sigpend:
4906	vcpu->stat.signal_exits++;
4907	run->exit_reason = KVM_EXIT_INTR;
4908	vcpu->arch.ret = -EINTR;
4909 out:
4910	vcpu->cpu = -1;
4911	vcpu->arch.thread_cpu = -1;
4912	vcpu->arch.state = KVMPPC_VCPU_BUSY_IN_HOST;
4913	powerpc_local_irq_pmu_restore(flags);
4914	preempt_enable();
4915	goto done;
4916}
4917
4918static int kvmppc_vcpu_run_hv(struct kvm_vcpu *vcpu)
4919{
4920	struct kvm_run *run = vcpu->run;
4921	int r;
4922	int srcu_idx;
4923	struct kvm *kvm;
4924	unsigned long msr;
4925
4926	start_timing(vcpu, &vcpu->arch.vcpu_entry);
4927
4928	if (!vcpu->arch.sane) {
4929		run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
4930		return -EINVAL;
4931	}
4932
4933	/* No need to go into the guest when all we'll do is come back out */
4934	if (signal_pending(current)) {
4935		run->exit_reason = KVM_EXIT_INTR;
4936		return -EINTR;
4937	}
4938
4939#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
4940	/*
4941	 * Don't allow entry with a suspended transaction, because
4942	 * the guest entry/exit code will lose it.
4943	 */
4944	if (cpu_has_feature(CPU_FTR_TM) && current->thread.regs &&
4945	    (current->thread.regs->msr & MSR_TM)) {
4946		if (MSR_TM_ACTIVE(current->thread.regs->msr)) {
4947			run->exit_reason = KVM_EXIT_FAIL_ENTRY;
4948			run->fail_entry.hardware_entry_failure_reason = 0;
4949			return -EINVAL;
4950		}
4951	}
4952#endif
4953
4954	/*
4955	 * Force online to 1 for the sake of old userspace which doesn't
4956	 * set it.
4957	 */
4958	if (!vcpu->arch.online) {
4959		atomic_inc(&vcpu->arch.vcore->online_count);
4960		vcpu->arch.online = 1;
4961	}
4962
4963	kvmppc_core_prepare_to_enter(vcpu);
4964
4965	kvm = vcpu->kvm;
4966	atomic_inc(&kvm->arch.vcpus_running);
4967	/* Order vcpus_running vs. mmu_ready, see kvmppc_alloc_reset_hpt */
4968	smp_mb();
4969
4970	msr = 0;
4971	if (IS_ENABLED(CONFIG_PPC_FPU))
4972		msr |= MSR_FP;
4973	if (cpu_has_feature(CPU_FTR_ALTIVEC))
4974		msr |= MSR_VEC;
4975	if (cpu_has_feature(CPU_FTR_VSX))
4976		msr |= MSR_VSX;
4977	if ((cpu_has_feature(CPU_FTR_TM) ||
4978	    cpu_has_feature(CPU_FTR_P9_TM_HV_ASSIST)) &&
4979			(kvmppc_get_hfscr_hv(vcpu) & HFSCR_TM))
4980		msr |= MSR_TM;
4981	msr = msr_check_and_set(msr);
4982
4983	kvmppc_save_user_regs();
4984
4985	kvmppc_save_current_sprs();
4986
4987	if (!cpu_has_feature(CPU_FTR_ARCH_300))
4988		vcpu->arch.waitp = &vcpu->arch.vcore->wait;
4989	vcpu->arch.pgdir = kvm->mm->pgd;
4990	vcpu->arch.state = KVMPPC_VCPU_BUSY_IN_HOST;
4991
4992	do {
4993		accumulate_time(vcpu, &vcpu->arch.guest_entry);
4994		if (cpu_has_feature(CPU_FTR_ARCH_300))
4995			r = kvmhv_run_single_vcpu(vcpu, ~(u64)0,
4996						  vcpu->arch.vcore->lpcr);
4997		else
4998			r = kvmppc_run_vcpu(vcpu);
4999
5000		if (run->exit_reason == KVM_EXIT_PAPR_HCALL) {
5001			accumulate_time(vcpu, &vcpu->arch.hcall);
5002
5003			if (!kvmhv_is_nestedv2() && WARN_ON_ONCE(__kvmppc_get_msr_hv(vcpu) & MSR_PR)) {
5004				/*
5005				 * These should have been caught reflected
5006				 * into the guest by now. Final sanity check:
5007				 * don't allow userspace to execute hcalls in
5008				 * the hypervisor.
5009				 */
5010				r = RESUME_GUEST;
5011				continue;
5012			}
5013			trace_kvm_hcall_enter(vcpu);
5014			r = kvmppc_pseries_do_hcall(vcpu);
5015			trace_kvm_hcall_exit(vcpu, r);
5016			kvmppc_core_prepare_to_enter(vcpu);
5017		} else if (r == RESUME_PAGE_FAULT) {
5018			accumulate_time(vcpu, &vcpu->arch.pg_fault);
5019			srcu_idx = srcu_read_lock(&kvm->srcu);
5020			r = kvmppc_book3s_hv_page_fault(vcpu,
5021				vcpu->arch.fault_dar, vcpu->arch.fault_dsisr);
5022			srcu_read_unlock(&kvm->srcu, srcu_idx);
5023		} else if (r == RESUME_PASSTHROUGH) {
5024			if (WARN_ON(xics_on_xive()))
5025				r = H_SUCCESS;
5026			else
5027				r = kvmppc_xics_rm_complete(vcpu, 0);
5028		}
5029	} while (is_kvmppc_resume_guest(r));
5030	accumulate_time(vcpu, &vcpu->arch.vcpu_exit);
5031
5032	vcpu->arch.state = KVMPPC_VCPU_NOTREADY;
5033	atomic_dec(&kvm->arch.vcpus_running);
5034
5035	srr_regs_clobbered();
5036
5037	end_timing(vcpu);
5038
5039	return r;
5040}
5041
5042static void kvmppc_add_seg_page_size(struct kvm_ppc_one_seg_page_size **sps,
5043				     int shift, int sllp)
5044{
5045	(*sps)->page_shift = shift;
5046	(*sps)->slb_enc = sllp;
5047	(*sps)->enc[0].page_shift = shift;
5048	(*sps)->enc[0].pte_enc = kvmppc_pgsize_lp_encoding(shift, shift);
5049	/*
5050	 * Add 16MB MPSS support (may get filtered out by userspace)
5051	 */
5052	if (shift != 24) {
5053		int penc = kvmppc_pgsize_lp_encoding(shift, 24);
5054		if (penc != -1) {
5055			(*sps)->enc[1].page_shift = 24;
5056			(*sps)->enc[1].pte_enc = penc;
5057		}
5058	}
5059	(*sps)++;
5060}
5061
5062static int kvm_vm_ioctl_get_smmu_info_hv(struct kvm *kvm,
5063					 struct kvm_ppc_smmu_info *info)
5064{
5065	struct kvm_ppc_one_seg_page_size *sps;
5066
5067	/*
5068	 * POWER7, POWER8 and POWER9 all support 32 storage keys for data.
5069	 * POWER7 doesn't support keys for instruction accesses,
5070	 * POWER8 and POWER9 do.
5071	 */
5072	info->data_keys = 32;
5073	info->instr_keys = cpu_has_feature(CPU_FTR_ARCH_207S) ? 32 : 0;
5074
5075	/* POWER7, 8 and 9 all have 1T segments and 32-entry SLB */
5076	info->flags = KVM_PPC_PAGE_SIZES_REAL | KVM_PPC_1T_SEGMENTS;
5077	info->slb_size = 32;
5078
5079	/* We only support these sizes for now, and no muti-size segments */
5080	sps = &info->sps[0];
5081	kvmppc_add_seg_page_size(&sps, 12, 0);
5082	kvmppc_add_seg_page_size(&sps, 16, SLB_VSID_L | SLB_VSID_LP_01);
5083	kvmppc_add_seg_page_size(&sps, 24, SLB_VSID_L);
5084
5085	/* If running as a nested hypervisor, we don't support HPT guests */
5086	if (kvmhv_on_pseries())
5087		info->flags |= KVM_PPC_NO_HASH;
5088
5089	return 0;
5090}
5091
5092/*
5093 * Get (and clear) the dirty memory log for a memory slot.
5094 */
5095static int kvm_vm_ioctl_get_dirty_log_hv(struct kvm *kvm,
5096					 struct kvm_dirty_log *log)
5097{
5098	struct kvm_memslots *slots;
5099	struct kvm_memory_slot *memslot;
5100	int r;
5101	unsigned long n, i;
5102	unsigned long *buf, *p;
5103	struct kvm_vcpu *vcpu;
5104
5105	mutex_lock(&kvm->slots_lock);
5106
5107	r = -EINVAL;
5108	if (log->slot >= KVM_USER_MEM_SLOTS)
5109		goto out;
5110
5111	slots = kvm_memslots(kvm);
5112	memslot = id_to_memslot(slots, log->slot);
5113	r = -ENOENT;
5114	if (!memslot || !memslot->dirty_bitmap)
5115		goto out;
5116
5117	/*
5118	 * Use second half of bitmap area because both HPT and radix
5119	 * accumulate bits in the first half.
5120	 */
5121	n = kvm_dirty_bitmap_bytes(memslot);
5122	buf = memslot->dirty_bitmap + n / sizeof(long);
5123	memset(buf, 0, n);
5124
5125	if (kvm_is_radix(kvm))
5126		r = kvmppc_hv_get_dirty_log_radix(kvm, memslot, buf);
5127	else
5128		r = kvmppc_hv_get_dirty_log_hpt(kvm, memslot, buf);
5129	if (r)
5130		goto out;
5131
5132	/*
5133	 * We accumulate dirty bits in the first half of the
5134	 * memslot's dirty_bitmap area, for when pages are paged
5135	 * out or modified by the host directly.  Pick up these
5136	 * bits and add them to the map.
5137	 */
5138	p = memslot->dirty_bitmap;
5139	for (i = 0; i < n / sizeof(long); ++i)
5140		buf[i] |= xchg(&p[i], 0);
5141
5142	/* Harvest dirty bits from VPA and DTL updates */
5143	/* Note: we never modify the SLB shadow buffer areas */
5144	kvm_for_each_vcpu(i, vcpu, kvm) {
5145		spin_lock(&vcpu->arch.vpa_update_lock);
5146		kvmppc_harvest_vpa_dirty(&vcpu->arch.vpa, memslot, buf);
5147		kvmppc_harvest_vpa_dirty(&vcpu->arch.dtl, memslot, buf);
5148		spin_unlock(&vcpu->arch.vpa_update_lock);
5149	}
5150
5151	r = -EFAULT;
5152	if (copy_to_user(log->dirty_bitmap, buf, n))
5153		goto out;
5154
5155	r = 0;
5156out:
5157	mutex_unlock(&kvm->slots_lock);
5158	return r;
5159}
5160
5161static void kvmppc_core_free_memslot_hv(struct kvm_memory_slot *slot)
5162{
5163	vfree(slot->arch.rmap);
5164	slot->arch.rmap = NULL;
5165}
5166
5167static int kvmppc_core_prepare_memory_region_hv(struct kvm *kvm,
5168				const struct kvm_memory_slot *old,
5169				struct kvm_memory_slot *new,
5170				enum kvm_mr_change change)
5171{
5172	if (change == KVM_MR_CREATE) {
5173		unsigned long size = array_size(new->npages, sizeof(*new->arch.rmap));
5174
5175		if ((size >> PAGE_SHIFT) > totalram_pages())
5176			return -ENOMEM;
5177
5178		new->arch.rmap = vzalloc(size);
5179		if (!new->arch.rmap)
5180			return -ENOMEM;
5181	} else if (change != KVM_MR_DELETE) {
5182		new->arch.rmap = old->arch.rmap;
5183	}
5184
5185	return 0;
5186}
5187
5188static void kvmppc_core_commit_memory_region_hv(struct kvm *kvm,
5189				struct kvm_memory_slot *old,
5190				const struct kvm_memory_slot *new,
5191				enum kvm_mr_change change)
5192{
5193	/*
5194	 * If we are creating or modifying a memslot, it might make
5195	 * some address that was previously cached as emulated
5196	 * MMIO be no longer emulated MMIO, so invalidate
5197	 * all the caches of emulated MMIO translations.
5198	 */
5199	if (change != KVM_MR_DELETE)
5200		atomic64_inc(&kvm->arch.mmio_update);
5201
5202	/*
5203	 * For change == KVM_MR_MOVE or KVM_MR_DELETE, higher levels
5204	 * have already called kvm_arch_flush_shadow_memslot() to
5205	 * flush shadow mappings.  For KVM_MR_CREATE we have no
5206	 * previous mappings.  So the only case to handle is
5207	 * KVM_MR_FLAGS_ONLY when the KVM_MEM_LOG_DIRTY_PAGES bit
5208	 * has been changed.
5209	 * For radix guests, we flush on setting KVM_MEM_LOG_DIRTY_PAGES
5210	 * to get rid of any THP PTEs in the partition-scoped page tables
5211	 * so we can track dirtiness at the page level; we flush when
5212	 * clearing KVM_MEM_LOG_DIRTY_PAGES so that we can go back to
5213	 * using THP PTEs.
5214	 */
5215	if (change == KVM_MR_FLAGS_ONLY && kvm_is_radix(kvm) &&
5216	    ((new->flags ^ old->flags) & KVM_MEM_LOG_DIRTY_PAGES))
5217		kvmppc_radix_flush_memslot(kvm, old);
5218	/*
5219	 * If UV hasn't yet called H_SVM_INIT_START, don't register memslots.
5220	 */
5221	if (!kvm->arch.secure_guest)
5222		return;
5223
5224	switch (change) {
5225	case KVM_MR_CREATE:
5226		/*
5227		 * @TODO kvmppc_uvmem_memslot_create() can fail and
5228		 * return error. Fix this.
5229		 */
5230		kvmppc_uvmem_memslot_create(kvm, new);
5231		break;
5232	case KVM_MR_DELETE:
5233		kvmppc_uvmem_memslot_delete(kvm, old);
5234		break;
5235	default:
5236		/* TODO: Handle KVM_MR_MOVE */
5237		break;
5238	}
5239}
5240
5241/*
5242 * Update LPCR values in kvm->arch and in vcores.
5243 * Caller must hold kvm->arch.mmu_setup_lock (for mutual exclusion
5244 * of kvm->arch.lpcr update).
5245 */
5246void kvmppc_update_lpcr(struct kvm *kvm, unsigned long lpcr, unsigned long mask)
5247{
5248	long int i;
5249	u32 cores_done = 0;
5250
5251	if ((kvm->arch.lpcr & mask) == lpcr)
5252		return;
5253
5254	kvm->arch.lpcr = (kvm->arch.lpcr & ~mask) | lpcr;
5255
5256	for (i = 0; i < KVM_MAX_VCORES; ++i) {
5257		struct kvmppc_vcore *vc = kvm->arch.vcores[i];
5258		if (!vc)
5259			continue;
5260
5261		spin_lock(&vc->lock);
5262		vc->lpcr = (vc->lpcr & ~mask) | lpcr;
5263		verify_lpcr(kvm, vc->lpcr);
5264		spin_unlock(&vc->lock);
5265		if (++cores_done >= kvm->arch.online_vcores)
5266			break;
5267	}
5268
5269	if (kvmhv_is_nestedv2()) {
5270		struct kvm_vcpu *vcpu;
5271
5272		kvm_for_each_vcpu(i, vcpu, kvm) {
5273			kvmhv_nestedv2_mark_dirty(vcpu, KVMPPC_GSID_LPCR);
5274		}
5275	}
5276}
5277
5278void kvmppc_setup_partition_table(struct kvm *kvm)
5279{
5280	unsigned long dw0, dw1;
5281
5282	if (!kvm_is_radix(kvm)) {
5283		/* PS field - page size for VRMA */
5284		dw0 = ((kvm->arch.vrma_slb_v & SLB_VSID_L) >> 1) |
5285			((kvm->arch.vrma_slb_v & SLB_VSID_LP) << 1);
5286		/* HTABSIZE and HTABORG fields */
5287		dw0 |= kvm->arch.sdr1;
5288
5289		/* Second dword as set by userspace */
5290		dw1 = kvm->arch.process_table;
5291	} else {
5292		dw0 = PATB_HR | radix__get_tree_size() |
5293			__pa(kvm->arch.pgtable) | RADIX_PGD_INDEX_SIZE;
5294		dw1 = PATB_GR | kvm->arch.process_table;
5295	}
5296	kvmhv_set_ptbl_entry(kvm->arch.lpid, dw0, dw1);
5297}
5298
5299/*
5300 * Set up HPT (hashed page table) and RMA (real-mode area).
5301 * Must be called with kvm->arch.mmu_setup_lock held.
5302 */
5303static int kvmppc_hv_setup_htab_rma(struct kvm_vcpu *vcpu)
5304{
5305	int err = 0;
5306	struct kvm *kvm = vcpu->kvm;
5307	unsigned long hva;
5308	struct kvm_memory_slot *memslot;
5309	struct vm_area_struct *vma;
5310	unsigned long lpcr = 0, senc;
5311	unsigned long psize, porder;
5312	int srcu_idx;
5313
5314	/* Allocate hashed page table (if not done already) and reset it */
5315	if (!kvm->arch.hpt.virt) {
5316		int order = KVM_DEFAULT_HPT_ORDER;
5317		struct kvm_hpt_info info;
5318
5319		err = kvmppc_allocate_hpt(&info, order);
5320		/* If we get here, it means userspace didn't specify a
5321		 * size explicitly.  So, try successively smaller
5322		 * sizes if the default failed. */
5323		while ((err == -ENOMEM) && --order >= PPC_MIN_HPT_ORDER)
5324			err  = kvmppc_allocate_hpt(&info, order);
5325
5326		if (err < 0) {
5327			pr_err("KVM: Couldn't alloc HPT\n");
5328			goto out;
5329		}
5330
5331		kvmppc_set_hpt(kvm, &info);
5332	}
5333
5334	/* Look up the memslot for guest physical address 0 */
5335	srcu_idx = srcu_read_lock(&kvm->srcu);
5336	memslot = gfn_to_memslot(kvm, 0);
5337
5338	/* We must have some memory at 0 by now */
5339	err = -EINVAL;
5340	if (!memslot || (memslot->flags & KVM_MEMSLOT_INVALID))
5341		goto out_srcu;
5342
5343	/* Look up the VMA for the start of this memory slot */
5344	hva = memslot->userspace_addr;
5345	mmap_read_lock(kvm->mm);
5346	vma = vma_lookup(kvm->mm, hva);
5347	if (!vma || (vma->vm_flags & VM_IO))
5348		goto up_out;
5349
5350	psize = vma_kernel_pagesize(vma);
5351
5352	mmap_read_unlock(kvm->mm);
5353
5354	/* We can handle 4k, 64k or 16M pages in the VRMA */
5355	if (psize >= 0x1000000)
5356		psize = 0x1000000;
5357	else if (psize >= 0x10000)
5358		psize = 0x10000;
5359	else
5360		psize = 0x1000;
5361	porder = __ilog2(psize);
5362
5363	senc = slb_pgsize_encoding(psize);
5364	kvm->arch.vrma_slb_v = senc | SLB_VSID_B_1T |
5365		(VRMA_VSID << SLB_VSID_SHIFT_1T);
5366	/* Create HPTEs in the hash page table for the VRMA */
5367	kvmppc_map_vrma(vcpu, memslot, porder);
5368
5369	/* Update VRMASD field in the LPCR */
5370	if (!cpu_has_feature(CPU_FTR_ARCH_300)) {
5371		/* the -4 is to account for senc values starting at 0x10 */
5372		lpcr = senc << (LPCR_VRMASD_SH - 4);
5373		kvmppc_update_lpcr(kvm, lpcr, LPCR_VRMASD);
5374	}
5375
5376	/* Order updates to kvm->arch.lpcr etc. vs. mmu_ready */
5377	smp_wmb();
5378	err = 0;
5379 out_srcu:
5380	srcu_read_unlock(&kvm->srcu, srcu_idx);
5381 out:
5382	return err;
5383
5384 up_out:
5385	mmap_read_unlock(kvm->mm);
5386	goto out_srcu;
5387}
5388
5389/*
5390 * Must be called with kvm->arch.mmu_setup_lock held and
5391 * mmu_ready = 0 and no vcpus running.
5392 */
5393int kvmppc_switch_mmu_to_hpt(struct kvm *kvm)
5394{
5395	unsigned long lpcr, lpcr_mask;
5396
5397	if (nesting_enabled(kvm))
5398		kvmhv_release_all_nested(kvm);
5399	kvmppc_rmap_reset(kvm);
5400	kvm->arch.process_table = 0;
5401	/* Mutual exclusion with kvm_unmap_gfn_range etc. */
5402	spin_lock(&kvm->mmu_lock);
5403	kvm->arch.radix = 0;
5404	spin_unlock(&kvm->mmu_lock);
5405	kvmppc_free_radix(kvm);
5406
5407	lpcr = LPCR_VPM1;
5408	lpcr_mask = LPCR_VPM1 | LPCR_UPRT | LPCR_GTSE | LPCR_HR;
5409	if (cpu_has_feature(CPU_FTR_ARCH_31))
5410		lpcr_mask |= LPCR_HAIL;
5411	kvmppc_update_lpcr(kvm, lpcr, lpcr_mask);
5412
5413	return 0;
5414}
5415
5416/*
5417 * Must be called with kvm->arch.mmu_setup_lock held and
5418 * mmu_ready = 0 and no vcpus running.
5419 */
5420int kvmppc_switch_mmu_to_radix(struct kvm *kvm)
5421{
5422	unsigned long lpcr, lpcr_mask;
5423	int err;
5424
5425	err = kvmppc_init_vm_radix(kvm);
5426	if (err)
5427		return err;
5428	kvmppc_rmap_reset(kvm);
5429	/* Mutual exclusion with kvm_unmap_gfn_range etc. */
5430	spin_lock(&kvm->mmu_lock);
5431	kvm->arch.radix = 1;
5432	spin_unlock(&kvm->mmu_lock);
5433	kvmppc_free_hpt(&kvm->arch.hpt);
5434
5435	lpcr = LPCR_UPRT | LPCR_GTSE | LPCR_HR;
5436	lpcr_mask = LPCR_VPM1 | LPCR_UPRT | LPCR_GTSE | LPCR_HR;
5437	if (cpu_has_feature(CPU_FTR_ARCH_31)) {
5438		lpcr_mask |= LPCR_HAIL;
5439		if (cpu_has_feature(CPU_FTR_HVMODE) &&
5440				(kvm->arch.host_lpcr & LPCR_HAIL))
5441			lpcr |= LPCR_HAIL;
5442	}
5443	kvmppc_update_lpcr(kvm, lpcr, lpcr_mask);
5444
5445	return 0;
5446}
5447
5448#ifdef CONFIG_KVM_XICS
5449/*
5450 * Allocate a per-core structure for managing state about which cores are
5451 * running in the host versus the guest and for exchanging data between
5452 * real mode KVM and CPU running in the host.
5453 * This is only done for the first VM.
5454 * The allocated structure stays even if all VMs have stopped.
5455 * It is only freed when the kvm-hv module is unloaded.
5456 * It's OK for this routine to fail, we just don't support host
5457 * core operations like redirecting H_IPI wakeups.
5458 */
5459void kvmppc_alloc_host_rm_ops(void)
5460{
5461	struct kvmppc_host_rm_ops *ops;
5462	unsigned long l_ops;
5463	int cpu, core;
5464	int size;
5465
5466	if (cpu_has_feature(CPU_FTR_ARCH_300))
5467		return;
5468
5469	/* Not the first time here ? */
5470	if (kvmppc_host_rm_ops_hv != NULL)
5471		return;
5472
5473	ops = kzalloc(sizeof(struct kvmppc_host_rm_ops), GFP_KERNEL);
5474	if (!ops)
5475		return;
5476
5477	size = cpu_nr_cores() * sizeof(struct kvmppc_host_rm_core);
5478	ops->rm_core = kzalloc(size, GFP_KERNEL);
5479
5480	if (!ops->rm_core) {
5481		kfree(ops);
5482		return;
5483	}
5484
5485	cpus_read_lock();
5486
5487	for (cpu = 0; cpu < nr_cpu_ids; cpu += threads_per_core) {
5488		if (!cpu_online(cpu))
5489			continue;
5490
5491		core = cpu >> threads_shift;
5492		ops->rm_core[core].rm_state.in_host = 1;
5493	}
5494
5495	ops->vcpu_kick = kvmppc_fast_vcpu_kick_hv;
5496
5497	/*
5498	 * Make the contents of the kvmppc_host_rm_ops structure visible
5499	 * to other CPUs before we assign it to the global variable.
5500	 * Do an atomic assignment (no locks used here), but if someone
5501	 * beats us to it, just free our copy and return.
5502	 */
5503	smp_wmb();
5504	l_ops = (unsigned long) ops;
5505
5506	if (cmpxchg64((unsigned long *)&kvmppc_host_rm_ops_hv, 0, l_ops)) {
5507		cpus_read_unlock();
5508		kfree(ops->rm_core);
5509		kfree(ops);
5510		return;
5511	}
5512
5513	cpuhp_setup_state_nocalls_cpuslocked(CPUHP_KVM_PPC_BOOK3S_PREPARE,
5514					     "ppc/kvm_book3s:prepare",
5515					     kvmppc_set_host_core,
5516					     kvmppc_clear_host_core);
5517	cpus_read_unlock();
5518}
5519
5520void kvmppc_free_host_rm_ops(void)
5521{
5522	if (kvmppc_host_rm_ops_hv) {
5523		cpuhp_remove_state_nocalls(CPUHP_KVM_PPC_BOOK3S_PREPARE);
5524		kfree(kvmppc_host_rm_ops_hv->rm_core);
5525		kfree(kvmppc_host_rm_ops_hv);
5526		kvmppc_host_rm_ops_hv = NULL;
5527	}
5528}
5529#endif
5530
5531static int kvmppc_core_init_vm_hv(struct kvm *kvm)
5532{
5533	unsigned long lpcr, lpid;
5534	int ret;
5535
5536	mutex_init(&kvm->arch.uvmem_lock);
5537	INIT_LIST_HEAD(&kvm->arch.uvmem_pfns);
5538	mutex_init(&kvm->arch.mmu_setup_lock);
5539
5540	/* Allocate the guest's logical partition ID */
5541
5542	if (!kvmhv_is_nestedv2()) {
5543		lpid = kvmppc_alloc_lpid();
5544		if ((long)lpid < 0)
5545			return -ENOMEM;
5546		kvm->arch.lpid = lpid;
5547	}
5548
5549	kvmppc_alloc_host_rm_ops();
5550
5551	kvmhv_vm_nested_init(kvm);
5552
5553	if (kvmhv_is_nestedv2()) {
5554		long rc;
5555		unsigned long guest_id;
5556
5557		rc = plpar_guest_create(0, &guest_id);
5558
5559		if (rc != H_SUCCESS)
5560			pr_err("KVM: Create Guest hcall failed, rc=%ld\n", rc);
5561
5562		switch (rc) {
5563		case H_PARAMETER:
5564		case H_FUNCTION:
5565		case H_STATE:
5566			return -EINVAL;
5567		case H_NOT_ENOUGH_RESOURCES:
5568		case H_ABORTED:
5569			return -ENOMEM;
5570		case H_AUTHORITY:
5571			return -EPERM;
5572		case H_NOT_AVAILABLE:
5573			return -EBUSY;
5574		}
5575		kvm->arch.lpid = guest_id;
5576	}
5577
5578
5579	/*
5580	 * Since we don't flush the TLB when tearing down a VM,
5581	 * and this lpid might have previously been used,
5582	 * make sure we flush on each core before running the new VM.
5583	 * On POWER9, the tlbie in mmu_partition_table_set_entry()
5584	 * does this flush for us.
5585	 */
5586	if (!cpu_has_feature(CPU_FTR_ARCH_300))
5587		cpumask_setall(&kvm->arch.need_tlb_flush);
5588
5589	/* Start out with the default set of hcalls enabled */
5590	memcpy(kvm->arch.enabled_hcalls, default_enabled_hcalls,
5591	       sizeof(kvm->arch.enabled_hcalls));
5592
5593	if (!cpu_has_feature(CPU_FTR_ARCH_300))
5594		kvm->arch.host_sdr1 = mfspr(SPRN_SDR1);
5595
5596	/* Init LPCR for virtual RMA mode */
5597	if (cpu_has_feature(CPU_FTR_HVMODE)) {
5598		kvm->arch.host_lpid = mfspr(SPRN_LPID);
5599		kvm->arch.host_lpcr = lpcr = mfspr(SPRN_LPCR);
5600		lpcr &= LPCR_PECE | LPCR_LPES;
5601	} else {
5602		/*
5603		 * The L2 LPES mode will be set by the L0 according to whether
5604		 * or not it needs to take external interrupts in HV mode.
5605		 */
5606		lpcr = 0;
5607	}
5608	lpcr |= (4UL << LPCR_DPFD_SH) | LPCR_HDICE |
5609		LPCR_VPM0 | LPCR_VPM1;
5610	kvm->arch.vrma_slb_v = SLB_VSID_B_1T |
5611		(VRMA_VSID << SLB_VSID_SHIFT_1T);
5612	/* On POWER8 turn on online bit to enable PURR/SPURR */
5613	if (cpu_has_feature(CPU_FTR_ARCH_207S))
5614		lpcr |= LPCR_ONL;
5615	/*
5616	 * On POWER9, VPM0 bit is reserved (VPM0=1 behaviour is assumed)
5617	 * Set HVICE bit to enable hypervisor virtualization interrupts.
5618	 * Set HEIC to prevent OS interrupts to go to hypervisor (should
5619	 * be unnecessary but better safe than sorry in case we re-enable
5620	 * EE in HV mode with this LPCR still set)
5621	 */
5622	if (cpu_has_feature(CPU_FTR_ARCH_300)) {
5623		lpcr &= ~LPCR_VPM0;
5624		lpcr |= LPCR_HVICE | LPCR_HEIC;
5625
5626		/*
5627		 * If xive is enabled, we route 0x500 interrupts directly
5628		 * to the guest.
5629		 */
5630		if (xics_on_xive())
5631			lpcr |= LPCR_LPES;
5632	}
5633
5634	/*
5635	 * If the host uses radix, the guest starts out as radix.
5636	 */
5637	if (radix_enabled()) {
5638		kvm->arch.radix = 1;
5639		kvm->arch.mmu_ready = 1;
5640		lpcr &= ~LPCR_VPM1;
5641		lpcr |= LPCR_UPRT | LPCR_GTSE | LPCR_HR;
5642		if (cpu_has_feature(CPU_FTR_HVMODE) &&
5643		    cpu_has_feature(CPU_FTR_ARCH_31) &&
5644		    (kvm->arch.host_lpcr & LPCR_HAIL))
5645			lpcr |= LPCR_HAIL;
5646		ret = kvmppc_init_vm_radix(kvm);
5647		if (ret) {
5648			if (kvmhv_is_nestedv2())
5649				plpar_guest_delete(0, kvm->arch.lpid);
5650			else
5651				kvmppc_free_lpid(kvm->arch.lpid);
5652			return ret;
5653		}
5654		kvmppc_setup_partition_table(kvm);
5655	}
5656
5657	verify_lpcr(kvm, lpcr);
5658	kvm->arch.lpcr = lpcr;
5659
5660	/* Initialization for future HPT resizes */
5661	kvm->arch.resize_hpt = NULL;
5662
5663	/*
5664	 * Work out how many sets the TLB has, for the use of
5665	 * the TLB invalidation loop in book3s_hv_rmhandlers.S.
5666	 */
5667	if (cpu_has_feature(CPU_FTR_ARCH_31)) {
5668		/*
5669		 * P10 will flush all the congruence class with a single tlbiel
5670		 */
5671		kvm->arch.tlb_sets = 1;
5672	} else if (radix_enabled())
5673		kvm->arch.tlb_sets = POWER9_TLB_SETS_RADIX;	/* 128 */
5674	else if (cpu_has_feature(CPU_FTR_ARCH_300))
5675		kvm->arch.tlb_sets = POWER9_TLB_SETS_HASH;	/* 256 */
5676	else if (cpu_has_feature(CPU_FTR_ARCH_207S))
5677		kvm->arch.tlb_sets = POWER8_TLB_SETS;		/* 512 */
5678	else
5679		kvm->arch.tlb_sets = POWER7_TLB_SETS;		/* 128 */
5680
5681	/*
5682	 * Track that we now have a HV mode VM active. This blocks secondary
5683	 * CPU threads from coming online.
5684	 */
5685	if (!cpu_has_feature(CPU_FTR_ARCH_300))
5686		kvm_hv_vm_activated();
5687
5688	/*
5689	 * Initialize smt_mode depending on processor.
5690	 * POWER8 and earlier have to use "strict" threading, where
5691	 * all vCPUs in a vcore have to run on the same (sub)core,
5692	 * whereas on POWER9 the threads can each run a different
5693	 * guest.
5694	 */
5695	if (!cpu_has_feature(CPU_FTR_ARCH_300))
5696		kvm->arch.smt_mode = threads_per_subcore;
5697	else
5698		kvm->arch.smt_mode = 1;
5699	kvm->arch.emul_smt_mode = 1;
5700
5701	return 0;
5702}
5703
5704static int kvmppc_arch_create_vm_debugfs_hv(struct kvm *kvm)
5705{
5706	kvmppc_mmu_debugfs_init(kvm);
5707	if (radix_enabled())
5708		kvmhv_radix_debugfs_init(kvm);
5709	return 0;
5710}
5711
5712static void kvmppc_free_vcores(struct kvm *kvm)
5713{
5714	long int i;
5715
5716	for (i = 0; i < KVM_MAX_VCORES; ++i)
5717		kfree(kvm->arch.vcores[i]);
5718	kvm->arch.online_vcores = 0;
5719}
5720
5721static void kvmppc_core_destroy_vm_hv(struct kvm *kvm)
5722{
5723	if (!cpu_has_feature(CPU_FTR_ARCH_300))
5724		kvm_hv_vm_deactivated();
5725
5726	kvmppc_free_vcores(kvm);
5727
5728
5729	if (kvm_is_radix(kvm))
5730		kvmppc_free_radix(kvm);
5731	else
5732		kvmppc_free_hpt(&kvm->arch.hpt);
5733
5734	/* Perform global invalidation and return lpid to the pool */
5735	if (cpu_has_feature(CPU_FTR_ARCH_300)) {
5736		if (nesting_enabled(kvm))
5737			kvmhv_release_all_nested(kvm);
5738		kvm->arch.process_table = 0;
5739		if (kvm->arch.secure_guest)
5740			uv_svm_terminate(kvm->arch.lpid);
5741		if (!kvmhv_is_nestedv2())
5742			kvmhv_set_ptbl_entry(kvm->arch.lpid, 0, 0);
5743	}
5744
5745	if (kvmhv_is_nestedv2()) {
5746		kvmhv_flush_lpid(kvm->arch.lpid);
5747		plpar_guest_delete(0, kvm->arch.lpid);
5748	} else {
5749		kvmppc_free_lpid(kvm->arch.lpid);
5750	}
5751
5752	kvmppc_free_pimap(kvm);
5753}
5754
5755/* We don't need to emulate any privileged instructions or dcbz */
5756static int kvmppc_core_emulate_op_hv(struct kvm_vcpu *vcpu,
5757				     unsigned int inst, int *advance)
5758{
5759	return EMULATE_FAIL;
5760}
5761
5762static int kvmppc_core_emulate_mtspr_hv(struct kvm_vcpu *vcpu, int sprn,
5763					ulong spr_val)
5764{
5765	return EMULATE_FAIL;
5766}
5767
5768static int kvmppc_core_emulate_mfspr_hv(struct kvm_vcpu *vcpu, int sprn,
5769					ulong *spr_val)
5770{
5771	return EMULATE_FAIL;
5772}
5773
5774static int kvmppc_core_check_processor_compat_hv(void)
5775{
5776	if (cpu_has_feature(CPU_FTR_HVMODE) &&
5777	    cpu_has_feature(CPU_FTR_ARCH_206))
5778		return 0;
5779
5780	/* POWER9 in radix mode is capable of being a nested hypervisor. */
5781	if (cpu_has_feature(CPU_FTR_ARCH_300) && radix_enabled())
5782		return 0;
5783
5784	return -EIO;
5785}
5786
5787#ifdef CONFIG_KVM_XICS
5788
5789void kvmppc_free_pimap(struct kvm *kvm)
5790{
5791	kfree(kvm->arch.pimap);
5792}
5793
5794static struct kvmppc_passthru_irqmap *kvmppc_alloc_pimap(void)
5795{
5796	return kzalloc(sizeof(struct kvmppc_passthru_irqmap), GFP_KERNEL);
5797}
5798
5799static int kvmppc_set_passthru_irq(struct kvm *kvm, int host_irq, int guest_gsi)
5800{
5801	struct irq_desc *desc;
5802	struct kvmppc_irq_map *irq_map;
5803	struct kvmppc_passthru_irqmap *pimap;
5804	struct irq_chip *chip;
5805	int i, rc = 0;
5806	struct irq_data *host_data;
5807
5808	if (!kvm_irq_bypass)
5809		return 1;
5810
5811	desc = irq_to_desc(host_irq);
5812	if (!desc)
5813		return -EIO;
5814
5815	mutex_lock(&kvm->lock);
5816
5817	pimap = kvm->arch.pimap;
5818	if (pimap == NULL) {
5819		/* First call, allocate structure to hold IRQ map */
5820		pimap = kvmppc_alloc_pimap();
5821		if (pimap == NULL) {
5822			mutex_unlock(&kvm->lock);
5823			return -ENOMEM;
5824		}
5825		kvm->arch.pimap = pimap;
5826	}
5827
5828	/*
5829	 * For now, we only support interrupts for which the EOI operation
5830	 * is an OPAL call followed by a write to XIRR, since that's
5831	 * what our real-mode EOI code does, or a XIVE interrupt
5832	 */
5833	chip = irq_data_get_irq_chip(&desc->irq_data);
5834	if (!chip || !is_pnv_opal_msi(chip)) {
5835		pr_warn("kvmppc_set_passthru_irq_hv: Could not assign IRQ map for (%d,%d)\n",
5836			host_irq, guest_gsi);
5837		mutex_unlock(&kvm->lock);
5838		return -ENOENT;
5839	}
5840
5841	/*
5842	 * See if we already have an entry for this guest IRQ number.
5843	 * If it's mapped to a hardware IRQ number, that's an error,
5844	 * otherwise re-use this entry.
5845	 */
5846	for (i = 0; i < pimap->n_mapped; i++) {
5847		if (guest_gsi == pimap->mapped[i].v_hwirq) {
5848			if (pimap->mapped[i].r_hwirq) {
5849				mutex_unlock(&kvm->lock);
5850				return -EINVAL;
5851			}
5852			break;
5853		}
5854	}
5855
5856	if (i == KVMPPC_PIRQ_MAPPED) {
5857		mutex_unlock(&kvm->lock);
5858		return -EAGAIN;		/* table is full */
5859	}
5860
5861	irq_map = &pimap->mapped[i];
5862
5863	irq_map->v_hwirq = guest_gsi;
5864	irq_map->desc = desc;
5865
5866	/*
5867	 * Order the above two stores before the next to serialize with
5868	 * the KVM real mode handler.
5869	 */
5870	smp_wmb();
5871
5872	/*
5873	 * The 'host_irq' number is mapped in the PCI-MSI domain but
5874	 * the underlying calls, which will EOI the interrupt in real
5875	 * mode, need an HW IRQ number mapped in the XICS IRQ domain.
5876	 */
5877	host_data = irq_domain_get_irq_data(irq_get_default_host(), host_irq);
5878	irq_map->r_hwirq = (unsigned int)irqd_to_hwirq(host_data);
5879
5880	if (i == pimap->n_mapped)
5881		pimap->n_mapped++;
5882
5883	if (xics_on_xive())
5884		rc = kvmppc_xive_set_mapped(kvm, guest_gsi, host_irq);
5885	else
5886		kvmppc_xics_set_mapped(kvm, guest_gsi, irq_map->r_hwirq);
5887	if (rc)
5888		irq_map->r_hwirq = 0;
5889
5890	mutex_unlock(&kvm->lock);
5891
5892	return 0;
5893}
5894
5895static int kvmppc_clr_passthru_irq(struct kvm *kvm, int host_irq, int guest_gsi)
5896{
5897	struct irq_desc *desc;
5898	struct kvmppc_passthru_irqmap *pimap;
5899	int i, rc = 0;
5900
5901	if (!kvm_irq_bypass)
5902		return 0;
5903
5904	desc = irq_to_desc(host_irq);
5905	if (!desc)
5906		return -EIO;
5907
5908	mutex_lock(&kvm->lock);
5909	if (!kvm->arch.pimap)
5910		goto unlock;
5911
5912	pimap = kvm->arch.pimap;
5913
5914	for (i = 0; i < pimap->n_mapped; i++) {
5915		if (guest_gsi == pimap->mapped[i].v_hwirq)
5916			break;
5917	}
5918
5919	if (i == pimap->n_mapped) {
5920		mutex_unlock(&kvm->lock);
5921		return -ENODEV;
5922	}
5923
5924	if (xics_on_xive())
5925		rc = kvmppc_xive_clr_mapped(kvm, guest_gsi, host_irq);
5926	else
5927		kvmppc_xics_clr_mapped(kvm, guest_gsi, pimap->mapped[i].r_hwirq);
5928
5929	/* invalidate the entry (what to do on error from the above ?) */
5930	pimap->mapped[i].r_hwirq = 0;
5931
5932	/*
5933	 * We don't free this structure even when the count goes to
5934	 * zero. The structure is freed when we destroy the VM.
5935	 */
5936 unlock:
5937	mutex_unlock(&kvm->lock);
5938	return rc;
5939}
5940
5941static int kvmppc_irq_bypass_add_producer_hv(struct irq_bypass_consumer *cons,
5942					     struct irq_bypass_producer *prod)
5943{
5944	int ret = 0;
5945	struct kvm_kernel_irqfd *irqfd =
5946		container_of(cons, struct kvm_kernel_irqfd, consumer);
5947
5948	irqfd->producer = prod;
5949
5950	ret = kvmppc_set_passthru_irq(irqfd->kvm, prod->irq, irqfd->gsi);
5951	if (ret)
5952		pr_info("kvmppc_set_passthru_irq (irq %d, gsi %d) fails: %d\n",
5953			prod->irq, irqfd->gsi, ret);
5954
5955	return ret;
5956}
5957
5958static void kvmppc_irq_bypass_del_producer_hv(struct irq_bypass_consumer *cons,
5959					      struct irq_bypass_producer *prod)
5960{
5961	int ret;
5962	struct kvm_kernel_irqfd *irqfd =
5963		container_of(cons, struct kvm_kernel_irqfd, consumer);
5964
5965	irqfd->producer = NULL;
5966
5967	/*
5968	 * When producer of consumer is unregistered, we change back to
5969	 * default external interrupt handling mode - KVM real mode
5970	 * will switch back to host.
5971	 */
5972	ret = kvmppc_clr_passthru_irq(irqfd->kvm, prod->irq, irqfd->gsi);
5973	if (ret)
5974		pr_warn("kvmppc_clr_passthru_irq (irq %d, gsi %d) fails: %d\n",
5975			prod->irq, irqfd->gsi, ret);
5976}
5977#endif
5978
5979static int kvm_arch_vm_ioctl_hv(struct file *filp,
5980				unsigned int ioctl, unsigned long arg)
5981{
5982	struct kvm *kvm __maybe_unused = filp->private_data;
5983	void __user *argp = (void __user *)arg;
5984	int r;
5985
5986	switch (ioctl) {
5987
5988	case KVM_PPC_ALLOCATE_HTAB: {
5989		u32 htab_order;
5990
5991		/* If we're a nested hypervisor, we currently only support radix */
5992		if (kvmhv_on_pseries()) {
5993			r = -EOPNOTSUPP;
5994			break;
5995		}
5996
5997		r = -EFAULT;
5998		if (get_user(htab_order, (u32 __user *)argp))
5999			break;
6000		r = kvmppc_alloc_reset_hpt(kvm, htab_order);
6001		if (r)
6002			break;
6003		r = 0;
6004		break;
6005	}
6006
6007	case KVM_PPC_GET_HTAB_FD: {
6008		struct kvm_get_htab_fd ghf;
6009
6010		r = -EFAULT;
6011		if (copy_from_user(&ghf, argp, sizeof(ghf)))
6012			break;
6013		r = kvm_vm_ioctl_get_htab_fd(kvm, &ghf);
6014		break;
6015	}
6016
6017	case KVM_PPC_RESIZE_HPT_PREPARE: {
6018		struct kvm_ppc_resize_hpt rhpt;
6019
6020		r = -EFAULT;
6021		if (copy_from_user(&rhpt, argp, sizeof(rhpt)))
6022			break;
6023
6024		r = kvm_vm_ioctl_resize_hpt_prepare(kvm, &rhpt);
6025		break;
6026	}
6027
6028	case KVM_PPC_RESIZE_HPT_COMMIT: {
6029		struct kvm_ppc_resize_hpt rhpt;
6030
6031		r = -EFAULT;
6032		if (copy_from_user(&rhpt, argp, sizeof(rhpt)))
6033			break;
6034
6035		r = kvm_vm_ioctl_resize_hpt_commit(kvm, &rhpt);
6036		break;
6037	}
6038
6039	default:
6040		r = -ENOTTY;
6041	}
6042
6043	return r;
6044}
6045
6046/*
6047 * List of hcall numbers to enable by default.
6048 * For compatibility with old userspace, we enable by default
6049 * all hcalls that were implemented before the hcall-enabling
6050 * facility was added.  Note this list should not include H_RTAS.
6051 */
6052static unsigned int default_hcall_list[] = {
6053	H_REMOVE,
6054	H_ENTER,
6055	H_READ,
6056	H_PROTECT,
6057	H_BULK_REMOVE,
6058#ifdef CONFIG_SPAPR_TCE_IOMMU
6059	H_GET_TCE,
6060	H_PUT_TCE,
6061#endif
6062	H_SET_DABR,
6063	H_SET_XDABR,
6064	H_CEDE,
6065	H_PROD,
6066	H_CONFER,
6067	H_REGISTER_VPA,
6068#ifdef CONFIG_KVM_XICS
6069	H_EOI,
6070	H_CPPR,
6071	H_IPI,
6072	H_IPOLL,
6073	H_XIRR,
6074	H_XIRR_X,
6075#endif
6076	0
6077};
6078
6079static void init_default_hcalls(void)
6080{
6081	int i;
6082	unsigned int hcall;
6083
6084	for (i = 0; default_hcall_list[i]; ++i) {
6085		hcall = default_hcall_list[i];
6086		WARN_ON(!kvmppc_hcall_impl_hv(hcall));
6087		__set_bit(hcall / 4, default_enabled_hcalls);
6088	}
6089}
6090
6091static int kvmhv_configure_mmu(struct kvm *kvm, struct kvm_ppc_mmuv3_cfg *cfg)
6092{
6093	unsigned long lpcr;
6094	int radix;
6095	int err;
6096
6097	/* If not on a POWER9, reject it */
6098	if (!cpu_has_feature(CPU_FTR_ARCH_300))
6099		return -ENODEV;
6100
6101	/* If any unknown flags set, reject it */
6102	if (cfg->flags & ~(KVM_PPC_MMUV3_RADIX | KVM_PPC_MMUV3_GTSE))
6103		return -EINVAL;
6104
6105	/* GR (guest radix) bit in process_table field must match */
6106	radix = !!(cfg->flags & KVM_PPC_MMUV3_RADIX);
6107	if (!!(cfg->process_table & PATB_GR) != radix)
6108		return -EINVAL;
6109
6110	/* Process table size field must be reasonable, i.e. <= 24 */
6111	if ((cfg->process_table & PRTS_MASK) > 24)
6112		return -EINVAL;
6113
6114	/* We can change a guest to/from radix now, if the host is radix */
6115	if (radix && !radix_enabled())
6116		return -EINVAL;
6117
6118	/* If we're a nested hypervisor, we currently only support radix */
6119	if (kvmhv_on_pseries() && !radix)
6120		return -EINVAL;
6121
6122	mutex_lock(&kvm->arch.mmu_setup_lock);
6123	if (radix != kvm_is_radix(kvm)) {
6124		if (kvm->arch.mmu_ready) {
6125			kvm->arch.mmu_ready = 0;
6126			/* order mmu_ready vs. vcpus_running */
6127			smp_mb();
6128			if (atomic_read(&kvm->arch.vcpus_running)) {
6129				kvm->arch.mmu_ready = 1;
6130				err = -EBUSY;
6131				goto out_unlock;
6132			}
6133		}
6134		if (radix)
6135			err = kvmppc_switch_mmu_to_radix(kvm);
6136		else
6137			err = kvmppc_switch_mmu_to_hpt(kvm);
6138		if (err)
6139			goto out_unlock;
6140	}
6141
6142	kvm->arch.process_table = cfg->process_table;
6143	kvmppc_setup_partition_table(kvm);
6144
6145	lpcr = (cfg->flags & KVM_PPC_MMUV3_GTSE) ? LPCR_GTSE : 0;
6146	kvmppc_update_lpcr(kvm, lpcr, LPCR_GTSE);
6147	err = 0;
6148
6149 out_unlock:
6150	mutex_unlock(&kvm->arch.mmu_setup_lock);
6151	return err;
6152}
6153
6154static int kvmhv_enable_nested(struct kvm *kvm)
6155{
6156	if (!nested)
6157		return -EPERM;
6158	if (!cpu_has_feature(CPU_FTR_ARCH_300))
6159		return -ENODEV;
6160	if (!radix_enabled())
6161		return -ENODEV;
6162	if (kvmhv_is_nestedv2())
6163		return -ENODEV;
6164
6165	/* kvm == NULL means the caller is testing if the capability exists */
6166	if (kvm)
6167		kvm->arch.nested_enable = true;
6168	return 0;
6169}
6170
6171static int kvmhv_load_from_eaddr(struct kvm_vcpu *vcpu, ulong *eaddr, void *ptr,
6172				 int size)
6173{
6174	int rc = -EINVAL;
6175
6176	if (kvmhv_vcpu_is_radix(vcpu)) {
6177		rc = kvmhv_copy_from_guest_radix(vcpu, *eaddr, ptr, size);
6178
6179		if (rc > 0)
6180			rc = -EINVAL;
6181	}
6182
6183	/* For now quadrants are the only way to access nested guest memory */
6184	if (rc && vcpu->arch.nested)
6185		rc = -EAGAIN;
6186
6187	return rc;
6188}
6189
6190static int kvmhv_store_to_eaddr(struct kvm_vcpu *vcpu, ulong *eaddr, void *ptr,
6191				int size)
6192{
6193	int rc = -EINVAL;
6194
6195	if (kvmhv_vcpu_is_radix(vcpu)) {
6196		rc = kvmhv_copy_to_guest_radix(vcpu, *eaddr, ptr, size);
6197
6198		if (rc > 0)
6199			rc = -EINVAL;
6200	}
6201
6202	/* For now quadrants are the only way to access nested guest memory */
6203	if (rc && vcpu->arch.nested)
6204		rc = -EAGAIN;
6205
6206	return rc;
6207}
6208
6209static void unpin_vpa_reset(struct kvm *kvm, struct kvmppc_vpa *vpa)
6210{
6211	unpin_vpa(kvm, vpa);
6212	vpa->gpa = 0;
6213	vpa->pinned_addr = NULL;
6214	vpa->dirty = false;
6215	vpa->update_pending = 0;
6216}
6217
6218/*
6219 * Enable a guest to become a secure VM, or test whether
6220 * that could be enabled.
6221 * Called when the KVM_CAP_PPC_SECURE_GUEST capability is
6222 * tested (kvm == NULL) or enabled (kvm != NULL).
6223 */
6224static int kvmhv_enable_svm(struct kvm *kvm)
6225{
6226	if (!kvmppc_uvmem_available())
6227		return -EINVAL;
6228	if (kvm)
6229		kvm->arch.svm_enabled = 1;
6230	return 0;
6231}
6232
6233/*
6234 *  IOCTL handler to turn off secure mode of guest
6235 *
6236 * - Release all device pages
6237 * - Issue ucall to terminate the guest on the UV side
6238 * - Unpin the VPA pages.
6239 * - Reinit the partition scoped page tables
6240 */
6241static int kvmhv_svm_off(struct kvm *kvm)
6242{
6243	struct kvm_vcpu *vcpu;
6244	int mmu_was_ready;
6245	int srcu_idx;
6246	int ret = 0;
6247	unsigned long i;
6248
6249	if (!(kvm->arch.secure_guest & KVMPPC_SECURE_INIT_START))
6250		return ret;
6251
6252	mutex_lock(&kvm->arch.mmu_setup_lock);
6253	mmu_was_ready = kvm->arch.mmu_ready;
6254	if (kvm->arch.mmu_ready) {
6255		kvm->arch.mmu_ready = 0;
6256		/* order mmu_ready vs. vcpus_running */
6257		smp_mb();
6258		if (atomic_read(&kvm->arch.vcpus_running)) {
6259			kvm->arch.mmu_ready = 1;
6260			ret = -EBUSY;
6261			goto out;
6262		}
6263	}
6264
6265	srcu_idx = srcu_read_lock(&kvm->srcu);
6266	for (i = 0; i < kvm_arch_nr_memslot_as_ids(kvm); i++) {
6267		struct kvm_memory_slot *memslot;
6268		struct kvm_memslots *slots = __kvm_memslots(kvm, i);
6269		int bkt;
6270
6271		if (!slots)
6272			continue;
6273
6274		kvm_for_each_memslot(memslot, bkt, slots) {
6275			kvmppc_uvmem_drop_pages(memslot, kvm, true);
6276			uv_unregister_mem_slot(kvm->arch.lpid, memslot->id);
6277		}
6278	}
6279	srcu_read_unlock(&kvm->srcu, srcu_idx);
6280
6281	ret = uv_svm_terminate(kvm->arch.lpid);
6282	if (ret != U_SUCCESS) {
6283		ret = -EINVAL;
6284		goto out;
6285	}
6286
6287	/*
6288	 * When secure guest is reset, all the guest pages are sent
6289	 * to UV via UV_PAGE_IN before the non-boot vcpus get a
6290	 * chance to run and unpin their VPA pages. Unpinning of all
6291	 * VPA pages is done here explicitly so that VPA pages
6292	 * can be migrated to the secure side.
6293	 *
6294	 * This is required to for the secure SMP guest to reboot
6295	 * correctly.
6296	 */
6297	kvm_for_each_vcpu(i, vcpu, kvm) {
6298		spin_lock(&vcpu->arch.vpa_update_lock);
6299		unpin_vpa_reset(kvm, &vcpu->arch.dtl);
6300		unpin_vpa_reset(kvm, &vcpu->arch.slb_shadow);
6301		unpin_vpa_reset(kvm, &vcpu->arch.vpa);
6302		spin_unlock(&vcpu->arch.vpa_update_lock);
6303	}
6304
6305	kvmppc_setup_partition_table(kvm);
6306	kvm->arch.secure_guest = 0;
6307	kvm->arch.mmu_ready = mmu_was_ready;
6308out:
6309	mutex_unlock(&kvm->arch.mmu_setup_lock);
6310	return ret;
6311}
6312
6313static int kvmhv_enable_dawr1(struct kvm *kvm)
6314{
6315	if (!cpu_has_feature(CPU_FTR_DAWR1))
6316		return -ENODEV;
6317
6318	/* kvm == NULL means the caller is testing if the capability exists */
6319	if (kvm)
6320		kvm->arch.dawr1_enabled = true;
6321	return 0;
6322}
6323
6324static bool kvmppc_hash_v3_possible(void)
6325{
6326	if (!cpu_has_feature(CPU_FTR_ARCH_300))
6327		return false;
6328
6329	if (!cpu_has_feature(CPU_FTR_HVMODE))
6330		return false;
6331
6332	/*
6333	 * POWER9 chips before version 2.02 can't have some threads in
6334	 * HPT mode and some in radix mode on the same core.
6335	 */
6336	if (radix_enabled()) {
6337		unsigned int pvr = mfspr(SPRN_PVR);
6338		if ((pvr >> 16) == PVR_POWER9 &&
6339		    (((pvr & 0xe000) == 0 && (pvr & 0xfff) < 0x202) ||
6340		     ((pvr & 0xe000) == 0x2000 && (pvr & 0xfff) < 0x101)))
6341			return false;
6342	}
6343
6344	return true;
6345}
6346
6347static struct kvmppc_ops kvm_ops_hv = {
6348	.get_sregs = kvm_arch_vcpu_ioctl_get_sregs_hv,
6349	.set_sregs = kvm_arch_vcpu_ioctl_set_sregs_hv,
6350	.get_one_reg = kvmppc_get_one_reg_hv,
6351	.set_one_reg = kvmppc_set_one_reg_hv,
6352	.vcpu_load   = kvmppc_core_vcpu_load_hv,
6353	.vcpu_put    = kvmppc_core_vcpu_put_hv,
6354	.inject_interrupt = kvmppc_inject_interrupt_hv,
6355	.set_msr     = kvmppc_set_msr_hv,
6356	.vcpu_run    = kvmppc_vcpu_run_hv,
6357	.vcpu_create = kvmppc_core_vcpu_create_hv,
6358	.vcpu_free   = kvmppc_core_vcpu_free_hv,
6359	.check_requests = kvmppc_core_check_requests_hv,
6360	.get_dirty_log  = kvm_vm_ioctl_get_dirty_log_hv,
6361	.flush_memslot  = kvmppc_core_flush_memslot_hv,
6362	.prepare_memory_region = kvmppc_core_prepare_memory_region_hv,
6363	.commit_memory_region  = kvmppc_core_commit_memory_region_hv,
6364	.unmap_gfn_range = kvm_unmap_gfn_range_hv,
6365	.age_gfn = kvm_age_gfn_hv,
6366	.test_age_gfn = kvm_test_age_gfn_hv,
6367	.set_spte_gfn = kvm_set_spte_gfn_hv,
6368	.free_memslot = kvmppc_core_free_memslot_hv,
6369	.init_vm =  kvmppc_core_init_vm_hv,
6370	.destroy_vm = kvmppc_core_destroy_vm_hv,
6371	.get_smmu_info = kvm_vm_ioctl_get_smmu_info_hv,
6372	.emulate_op = kvmppc_core_emulate_op_hv,
6373	.emulate_mtspr = kvmppc_core_emulate_mtspr_hv,
6374	.emulate_mfspr = kvmppc_core_emulate_mfspr_hv,
6375	.fast_vcpu_kick = kvmppc_fast_vcpu_kick_hv,
6376	.arch_vm_ioctl  = kvm_arch_vm_ioctl_hv,
6377	.hcall_implemented = kvmppc_hcall_impl_hv,
6378#ifdef CONFIG_KVM_XICS
6379	.irq_bypass_add_producer = kvmppc_irq_bypass_add_producer_hv,
6380	.irq_bypass_del_producer = kvmppc_irq_bypass_del_producer_hv,
6381#endif
6382	.configure_mmu = kvmhv_configure_mmu,
6383	.get_rmmu_info = kvmhv_get_rmmu_info,
6384	.set_smt_mode = kvmhv_set_smt_mode,
6385	.enable_nested = kvmhv_enable_nested,
6386	.load_from_eaddr = kvmhv_load_from_eaddr,
6387	.store_to_eaddr = kvmhv_store_to_eaddr,
6388	.enable_svm = kvmhv_enable_svm,
6389	.svm_off = kvmhv_svm_off,
6390	.enable_dawr1 = kvmhv_enable_dawr1,
6391	.hash_v3_possible = kvmppc_hash_v3_possible,
6392	.create_vcpu_debugfs = kvmppc_arch_create_vcpu_debugfs_hv,
6393	.create_vm_debugfs = kvmppc_arch_create_vm_debugfs_hv,
6394};
6395
6396static int kvm_init_subcore_bitmap(void)
6397{
6398	int i, j;
6399	int nr_cores = cpu_nr_cores();
6400	struct sibling_subcore_state *sibling_subcore_state;
6401
6402	for (i = 0; i < nr_cores; i++) {
6403		int first_cpu = i * threads_per_core;
6404		int node = cpu_to_node(first_cpu);
6405
6406		/* Ignore if it is already allocated. */
6407		if (paca_ptrs[first_cpu]->sibling_subcore_state)
6408			continue;
6409
6410		sibling_subcore_state =
6411			kzalloc_node(sizeof(struct sibling_subcore_state),
6412							GFP_KERNEL, node);
6413		if (!sibling_subcore_state)
6414			return -ENOMEM;
6415
6416
6417		for (j = 0; j < threads_per_core; j++) {
6418			int cpu = first_cpu + j;
6419
6420			paca_ptrs[cpu]->sibling_subcore_state =
6421						sibling_subcore_state;
6422		}
6423	}
6424	return 0;
6425}
6426
6427static int kvmppc_radix_possible(void)
6428{
6429	return cpu_has_feature(CPU_FTR_ARCH_300) && radix_enabled();
6430}
6431
6432static int kvmppc_book3s_init_hv(void)
6433{
6434	int r;
6435
6436	if (!tlbie_capable) {
6437		pr_err("KVM-HV: Host does not support TLBIE\n");
6438		return -ENODEV;
6439	}
6440
6441	/*
6442	 * FIXME!! Do we need to check on all cpus ?
6443	 */
6444	r = kvmppc_core_check_processor_compat_hv();
6445	if (r < 0)
6446		return -ENODEV;
6447
6448	r = kvmhv_nested_init();
6449	if (r)
6450		return r;
6451
6452	if (!cpu_has_feature(CPU_FTR_ARCH_300)) {
6453		r = kvm_init_subcore_bitmap();
6454		if (r)
6455			goto err;
6456	}
6457
6458	/*
6459	 * We need a way of accessing the XICS interrupt controller,
6460	 * either directly, via paca_ptrs[cpu]->kvm_hstate.xics_phys, or
6461	 * indirectly, via OPAL.
6462	 */
6463#ifdef CONFIG_SMP
6464	if (!xics_on_xive() && !kvmhv_on_pseries() &&
6465	    !local_paca->kvm_hstate.xics_phys) {
6466		struct device_node *np;
6467
6468		np = of_find_compatible_node(NULL, NULL, "ibm,opal-intc");
6469		if (!np) {
6470			pr_err("KVM-HV: Cannot determine method for accessing XICS\n");
6471			r = -ENODEV;
6472			goto err;
6473		}
6474		/* presence of intc confirmed - node can be dropped again */
6475		of_node_put(np);
6476	}
6477#endif
6478
6479	init_default_hcalls();
6480
6481	init_vcore_lists();
6482
6483	r = kvmppc_mmu_hv_init();
6484	if (r)
6485		goto err;
6486
6487	if (kvmppc_radix_possible()) {
6488		r = kvmppc_radix_init();
6489		if (r)
6490			goto err;
6491	}
6492
6493	r = kvmppc_uvmem_init();
6494	if (r < 0) {
6495		pr_err("KVM-HV: kvmppc_uvmem_init failed %d\n", r);
6496		return r;
6497	}
6498
6499	kvm_ops_hv.owner = THIS_MODULE;
6500	kvmppc_hv_ops = &kvm_ops_hv;
6501
6502	return 0;
6503
6504err:
6505	kvmhv_nested_exit();
6506	kvmppc_radix_exit();
6507
6508	return r;
6509}
6510
6511static void kvmppc_book3s_exit_hv(void)
6512{
6513	kvmppc_uvmem_free();
6514	kvmppc_free_host_rm_ops();
6515	if (kvmppc_radix_possible())
6516		kvmppc_radix_exit();
6517	kvmppc_hv_ops = NULL;
6518	kvmhv_nested_exit();
6519}
6520
6521module_init(kvmppc_book3s_init_hv);
6522module_exit(kvmppc_book3s_exit_hv);
6523MODULE_LICENSE("GPL");
6524MODULE_ALIAS_MISCDEV(KVM_MINOR);
6525MODULE_ALIAS("devname:kvm");
6526