1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * ppc64 code to implement the kexec_file_load syscall
4 *
5 * Copyright (C) 2004  Adam Litke (agl@us.ibm.com)
6 * Copyright (C) 2004  IBM Corp.
7 * Copyright (C) 2004,2005  Milton D Miller II, IBM Corporation
8 * Copyright (C) 2005  R Sharada (sharada@in.ibm.com)
9 * Copyright (C) 2006  Mohan Kumar M (mohan@in.ibm.com)
10 * Copyright (C) 2020  IBM Corporation
11 *
12 * Based on kexec-tools' kexec-ppc64.c, kexec-elf-rel-ppc64.c, fs2dt.c.
13 * Heavily modified for the kernel by
14 * Hari Bathini, IBM Corporation.
15 */
16
17#include <linux/kexec.h>
18#include <linux/of_fdt.h>
19#include <linux/libfdt.h>
20#include <linux/of.h>
21#include <linux/memblock.h>
22#include <linux/slab.h>
23#include <linux/vmalloc.h>
24#include <asm/setup.h>
25#include <asm/drmem.h>
26#include <asm/firmware.h>
27#include <asm/kexec_ranges.h>
28#include <asm/crashdump-ppc64.h>
29#include <asm/mmzone.h>
30#include <asm/iommu.h>
31#include <asm/prom.h>
32#include <asm/plpks.h>
33
34struct umem_info {
35	__be64 *buf;		/* data buffer for usable-memory property */
36	u32 size;		/* size allocated for the data buffer */
37	u32 max_entries;	/* maximum no. of entries */
38	u32 idx;		/* index of current entry */
39
40	/* usable memory ranges to look up */
41	unsigned int nr_ranges;
42	const struct range *ranges;
43};
44
45const struct kexec_file_ops * const kexec_file_loaders[] = {
46	&kexec_elf64_ops,
47	NULL
48};
49
50/**
51 * get_exclude_memory_ranges - Get exclude memory ranges. This list includes
52 *                             regions like opal/rtas, tce-table, initrd,
53 *                             kernel, htab which should be avoided while
54 *                             setting up kexec load segments.
55 * @mem_ranges:                Range list to add the memory ranges to.
56 *
57 * Returns 0 on success, negative errno on error.
58 */
59static int get_exclude_memory_ranges(struct crash_mem **mem_ranges)
60{
61	int ret;
62
63	ret = add_tce_mem_ranges(mem_ranges);
64	if (ret)
65		goto out;
66
67	ret = add_initrd_mem_range(mem_ranges);
68	if (ret)
69		goto out;
70
71	ret = add_htab_mem_range(mem_ranges);
72	if (ret)
73		goto out;
74
75	ret = add_kernel_mem_range(mem_ranges);
76	if (ret)
77		goto out;
78
79	ret = add_rtas_mem_range(mem_ranges);
80	if (ret)
81		goto out;
82
83	ret = add_opal_mem_range(mem_ranges);
84	if (ret)
85		goto out;
86
87	ret = add_reserved_mem_ranges(mem_ranges);
88	if (ret)
89		goto out;
90
91	/* exclude memory ranges should be sorted for easy lookup */
92	sort_memory_ranges(*mem_ranges, true);
93out:
94	if (ret)
95		pr_err("Failed to setup exclude memory ranges\n");
96	return ret;
97}
98
99/**
100 * get_reserved_memory_ranges - Get reserve memory ranges. This list includes
101 *                              memory regions that should be added to the
102 *                              memory reserve map to ensure the region is
103 *                              protected from any mischief.
104 * @mem_ranges:                 Range list to add the memory ranges to.
105 *
106 * Returns 0 on success, negative errno on error.
107 */
108static int get_reserved_memory_ranges(struct crash_mem **mem_ranges)
109{
110	int ret;
111
112	ret = add_rtas_mem_range(mem_ranges);
113	if (ret)
114		goto out;
115
116	ret = add_tce_mem_ranges(mem_ranges);
117	if (ret)
118		goto out;
119
120	ret = add_reserved_mem_ranges(mem_ranges);
121out:
122	if (ret)
123		pr_err("Failed to setup reserved memory ranges\n");
124	return ret;
125}
126
127/**
128 * __locate_mem_hole_top_down - Looks top down for a large enough memory hole
129 *                              in the memory regions between buf_min & buf_max
130 *                              for the buffer. If found, sets kbuf->mem.
131 * @kbuf:                       Buffer contents and memory parameters.
132 * @buf_min:                    Minimum address for the buffer.
133 * @buf_max:                    Maximum address for the buffer.
134 *
135 * Returns 0 on success, negative errno on error.
136 */
137static int __locate_mem_hole_top_down(struct kexec_buf *kbuf,
138				      u64 buf_min, u64 buf_max)
139{
140	int ret = -EADDRNOTAVAIL;
141	phys_addr_t start, end;
142	u64 i;
143
144	for_each_mem_range_rev(i, &start, &end) {
145		/*
146		 * memblock uses [start, end) convention while it is
147		 * [start, end] here. Fix the off-by-one to have the
148		 * same convention.
149		 */
150		end -= 1;
151
152		if (start > buf_max)
153			continue;
154
155		/* Memory hole not found */
156		if (end < buf_min)
157			break;
158
159		/* Adjust memory region based on the given range */
160		if (start < buf_min)
161			start = buf_min;
162		if (end > buf_max)
163			end = buf_max;
164
165		start = ALIGN(start, kbuf->buf_align);
166		if (start < end && (end - start + 1) >= kbuf->memsz) {
167			/* Suitable memory range found. Set kbuf->mem */
168			kbuf->mem = ALIGN_DOWN(end - kbuf->memsz + 1,
169					       kbuf->buf_align);
170			ret = 0;
171			break;
172		}
173	}
174
175	return ret;
176}
177
178/**
179 * locate_mem_hole_top_down_ppc64 - Skip special memory regions to find a
180 *                                  suitable buffer with top down approach.
181 * @kbuf:                           Buffer contents and memory parameters.
182 * @buf_min:                        Minimum address for the buffer.
183 * @buf_max:                        Maximum address for the buffer.
184 * @emem:                           Exclude memory ranges.
185 *
186 * Returns 0 on success, negative errno on error.
187 */
188static int locate_mem_hole_top_down_ppc64(struct kexec_buf *kbuf,
189					  u64 buf_min, u64 buf_max,
190					  const struct crash_mem *emem)
191{
192	int i, ret = 0, err = -EADDRNOTAVAIL;
193	u64 start, end, tmin, tmax;
194
195	tmax = buf_max;
196	for (i = (emem->nr_ranges - 1); i >= 0; i--) {
197		start = emem->ranges[i].start;
198		end = emem->ranges[i].end;
199
200		if (start > tmax)
201			continue;
202
203		if (end < tmax) {
204			tmin = (end < buf_min ? buf_min : end + 1);
205			ret = __locate_mem_hole_top_down(kbuf, tmin, tmax);
206			if (!ret)
207				return 0;
208		}
209
210		tmax = start - 1;
211
212		if (tmax < buf_min) {
213			ret = err;
214			break;
215		}
216		ret = 0;
217	}
218
219	if (!ret) {
220		tmin = buf_min;
221		ret = __locate_mem_hole_top_down(kbuf, tmin, tmax);
222	}
223	return ret;
224}
225
226/**
227 * __locate_mem_hole_bottom_up - Looks bottom up for a large enough memory hole
228 *                               in the memory regions between buf_min & buf_max
229 *                               for the buffer. If found, sets kbuf->mem.
230 * @kbuf:                        Buffer contents and memory parameters.
231 * @buf_min:                     Minimum address for the buffer.
232 * @buf_max:                     Maximum address for the buffer.
233 *
234 * Returns 0 on success, negative errno on error.
235 */
236static int __locate_mem_hole_bottom_up(struct kexec_buf *kbuf,
237				       u64 buf_min, u64 buf_max)
238{
239	int ret = -EADDRNOTAVAIL;
240	phys_addr_t start, end;
241	u64 i;
242
243	for_each_mem_range(i, &start, &end) {
244		/*
245		 * memblock uses [start, end) convention while it is
246		 * [start, end] here. Fix the off-by-one to have the
247		 * same convention.
248		 */
249		end -= 1;
250
251		if (end < buf_min)
252			continue;
253
254		/* Memory hole not found */
255		if (start > buf_max)
256			break;
257
258		/* Adjust memory region based on the given range */
259		if (start < buf_min)
260			start = buf_min;
261		if (end > buf_max)
262			end = buf_max;
263
264		start = ALIGN(start, kbuf->buf_align);
265		if (start < end && (end - start + 1) >= kbuf->memsz) {
266			/* Suitable memory range found. Set kbuf->mem */
267			kbuf->mem = start;
268			ret = 0;
269			break;
270		}
271	}
272
273	return ret;
274}
275
276/**
277 * locate_mem_hole_bottom_up_ppc64 - Skip special memory regions to find a
278 *                                   suitable buffer with bottom up approach.
279 * @kbuf:                            Buffer contents and memory parameters.
280 * @buf_min:                         Minimum address for the buffer.
281 * @buf_max:                         Maximum address for the buffer.
282 * @emem:                            Exclude memory ranges.
283 *
284 * Returns 0 on success, negative errno on error.
285 */
286static int locate_mem_hole_bottom_up_ppc64(struct kexec_buf *kbuf,
287					   u64 buf_min, u64 buf_max,
288					   const struct crash_mem *emem)
289{
290	int i, ret = 0, err = -EADDRNOTAVAIL;
291	u64 start, end, tmin, tmax;
292
293	tmin = buf_min;
294	for (i = 0; i < emem->nr_ranges; i++) {
295		start = emem->ranges[i].start;
296		end = emem->ranges[i].end;
297
298		if (end < tmin)
299			continue;
300
301		if (start > tmin) {
302			tmax = (start > buf_max ? buf_max : start - 1);
303			ret = __locate_mem_hole_bottom_up(kbuf, tmin, tmax);
304			if (!ret)
305				return 0;
306		}
307
308		tmin = end + 1;
309
310		if (tmin > buf_max) {
311			ret = err;
312			break;
313		}
314		ret = 0;
315	}
316
317	if (!ret) {
318		tmax = buf_max;
319		ret = __locate_mem_hole_bottom_up(kbuf, tmin, tmax);
320	}
321	return ret;
322}
323
324#ifdef CONFIG_CRASH_DUMP
325/**
326 * get_usable_memory_ranges - Get usable memory ranges. This list includes
327 *                            regions like crashkernel, opal/rtas & tce-table,
328 *                            that kdump kernel could use.
329 * @mem_ranges:               Range list to add the memory ranges to.
330 *
331 * Returns 0 on success, negative errno on error.
332 */
333static int get_usable_memory_ranges(struct crash_mem **mem_ranges)
334{
335	int ret;
336
337	/*
338	 * Early boot failure observed on guests when low memory (first memory
339	 * block?) is not added to usable memory. So, add [0, crashk_res.end]
340	 * instead of [crashk_res.start, crashk_res.end] to workaround it.
341	 * Also, crashed kernel's memory must be added to reserve map to
342	 * avoid kdump kernel from using it.
343	 */
344	ret = add_mem_range(mem_ranges, 0, crashk_res.end + 1);
345	if (ret)
346		goto out;
347
348	ret = add_rtas_mem_range(mem_ranges);
349	if (ret)
350		goto out;
351
352	ret = add_opal_mem_range(mem_ranges);
353	if (ret)
354		goto out;
355
356	ret = add_tce_mem_ranges(mem_ranges);
357out:
358	if (ret)
359		pr_err("Failed to setup usable memory ranges\n");
360	return ret;
361}
362
363/**
364 * get_crash_memory_ranges - Get crash memory ranges. This list includes
365 *                           first/crashing kernel's memory regions that
366 *                           would be exported via an elfcore.
367 * @mem_ranges:              Range list to add the memory ranges to.
368 *
369 * Returns 0 on success, negative errno on error.
370 */
371static int get_crash_memory_ranges(struct crash_mem **mem_ranges)
372{
373	phys_addr_t base, end;
374	struct crash_mem *tmem;
375	u64 i;
376	int ret;
377
378	for_each_mem_range(i, &base, &end) {
379		u64 size = end - base;
380
381		/* Skip backup memory region, which needs a separate entry */
382		if (base == BACKUP_SRC_START) {
383			if (size > BACKUP_SRC_SIZE) {
384				base = BACKUP_SRC_END + 1;
385				size -= BACKUP_SRC_SIZE;
386			} else
387				continue;
388		}
389
390		ret = add_mem_range(mem_ranges, base, size);
391		if (ret)
392			goto out;
393
394		/* Try merging adjacent ranges before reallocation attempt */
395		if ((*mem_ranges)->nr_ranges == (*mem_ranges)->max_nr_ranges)
396			sort_memory_ranges(*mem_ranges, true);
397	}
398
399	/* Reallocate memory ranges if there is no space to split ranges */
400	tmem = *mem_ranges;
401	if (tmem && (tmem->nr_ranges == tmem->max_nr_ranges)) {
402		tmem = realloc_mem_ranges(mem_ranges);
403		if (!tmem)
404			goto out;
405	}
406
407	/* Exclude crashkernel region */
408	ret = crash_exclude_mem_range(tmem, crashk_res.start, crashk_res.end);
409	if (ret)
410		goto out;
411
412	/*
413	 * FIXME: For now, stay in parity with kexec-tools but if RTAS/OPAL
414	 *        regions are exported to save their context at the time of
415	 *        crash, they should actually be backed up just like the
416	 *        first 64K bytes of memory.
417	 */
418	ret = add_rtas_mem_range(mem_ranges);
419	if (ret)
420		goto out;
421
422	ret = add_opal_mem_range(mem_ranges);
423	if (ret)
424		goto out;
425
426	/* create a separate program header for the backup region */
427	ret = add_mem_range(mem_ranges, BACKUP_SRC_START, BACKUP_SRC_SIZE);
428	if (ret)
429		goto out;
430
431	sort_memory_ranges(*mem_ranges, false);
432out:
433	if (ret)
434		pr_err("Failed to setup crash memory ranges\n");
435	return ret;
436}
437
438/**
439 * check_realloc_usable_mem - Reallocate buffer if it can't accommodate entries
440 * @um_info:                  Usable memory buffer and ranges info.
441 * @cnt:                      No. of entries to accommodate.
442 *
443 * Frees up the old buffer if memory reallocation fails.
444 *
445 * Returns buffer on success, NULL on error.
446 */
447static __be64 *check_realloc_usable_mem(struct umem_info *um_info, int cnt)
448{
449	u32 new_size;
450	__be64 *tbuf;
451
452	if ((um_info->idx + cnt) <= um_info->max_entries)
453		return um_info->buf;
454
455	new_size = um_info->size + MEM_RANGE_CHUNK_SZ;
456	tbuf = krealloc(um_info->buf, new_size, GFP_KERNEL);
457	if (tbuf) {
458		um_info->buf = tbuf;
459		um_info->size = new_size;
460		um_info->max_entries = (um_info->size / sizeof(u64));
461	}
462
463	return tbuf;
464}
465
466/**
467 * add_usable_mem - Add the usable memory ranges within the given memory range
468 *                  to the buffer
469 * @um_info:        Usable memory buffer and ranges info.
470 * @base:           Base address of memory range to look for.
471 * @end:            End address of memory range to look for.
472 *
473 * Returns 0 on success, negative errno on error.
474 */
475static int add_usable_mem(struct umem_info *um_info, u64 base, u64 end)
476{
477	u64 loc_base, loc_end;
478	bool add;
479	int i;
480
481	for (i = 0; i < um_info->nr_ranges; i++) {
482		add = false;
483		loc_base = um_info->ranges[i].start;
484		loc_end = um_info->ranges[i].end;
485		if (loc_base >= base && loc_end <= end)
486			add = true;
487		else if (base < loc_end && end > loc_base) {
488			if (loc_base < base)
489				loc_base = base;
490			if (loc_end > end)
491				loc_end = end;
492			add = true;
493		}
494
495		if (add) {
496			if (!check_realloc_usable_mem(um_info, 2))
497				return -ENOMEM;
498
499			um_info->buf[um_info->idx++] = cpu_to_be64(loc_base);
500			um_info->buf[um_info->idx++] =
501					cpu_to_be64(loc_end - loc_base + 1);
502		}
503	}
504
505	return 0;
506}
507
508/**
509 * kdump_setup_usable_lmb - This is a callback function that gets called by
510 *                          walk_drmem_lmbs for every LMB to set its
511 *                          usable memory ranges.
512 * @lmb:                    LMB info.
513 * @usm:                    linux,drconf-usable-memory property value.
514 * @data:                   Pointer to usable memory buffer and ranges info.
515 *
516 * Returns 0 on success, negative errno on error.
517 */
518static int kdump_setup_usable_lmb(struct drmem_lmb *lmb, const __be32 **usm,
519				  void *data)
520{
521	struct umem_info *um_info;
522	int tmp_idx, ret;
523	u64 base, end;
524
525	/*
526	 * kdump load isn't supported on kernels already booted with
527	 * linux,drconf-usable-memory property.
528	 */
529	if (*usm) {
530		pr_err("linux,drconf-usable-memory property already exists!");
531		return -EINVAL;
532	}
533
534	um_info = data;
535	tmp_idx = um_info->idx;
536	if (!check_realloc_usable_mem(um_info, 1))
537		return -ENOMEM;
538
539	um_info->idx++;
540	base = lmb->base_addr;
541	end = base + drmem_lmb_size() - 1;
542	ret = add_usable_mem(um_info, base, end);
543	if (!ret) {
544		/*
545		 * Update the no. of ranges added. Two entries (base & size)
546		 * for every range added.
547		 */
548		um_info->buf[tmp_idx] =
549				cpu_to_be64((um_info->idx - tmp_idx - 1) / 2);
550	}
551
552	return ret;
553}
554
555#define NODE_PATH_LEN		256
556/**
557 * add_usable_mem_property - Add usable memory property for the given
558 *                           memory node.
559 * @fdt:                     Flattened device tree for the kdump kernel.
560 * @dn:                      Memory node.
561 * @um_info:                 Usable memory buffer and ranges info.
562 *
563 * Returns 0 on success, negative errno on error.
564 */
565static int add_usable_mem_property(void *fdt, struct device_node *dn,
566				   struct umem_info *um_info)
567{
568	int n_mem_addr_cells, n_mem_size_cells, node;
569	char path[NODE_PATH_LEN];
570	int i, len, ranges, ret;
571	const __be32 *prop;
572	u64 base, end;
573
574	of_node_get(dn);
575
576	if (snprintf(path, NODE_PATH_LEN, "%pOF", dn) > (NODE_PATH_LEN - 1)) {
577		pr_err("Buffer (%d) too small for memory node: %pOF\n",
578		       NODE_PATH_LEN, dn);
579		return -EOVERFLOW;
580	}
581	kexec_dprintk("Memory node path: %s\n", path);
582
583	/* Now that we know the path, find its offset in kdump kernel's fdt */
584	node = fdt_path_offset(fdt, path);
585	if (node < 0) {
586		pr_err("Malformed device tree: error reading %s\n", path);
587		ret = -EINVAL;
588		goto out;
589	}
590
591	/* Get the address & size cells */
592	n_mem_addr_cells = of_n_addr_cells(dn);
593	n_mem_size_cells = of_n_size_cells(dn);
594	kexec_dprintk("address cells: %d, size cells: %d\n", n_mem_addr_cells,
595		      n_mem_size_cells);
596
597	um_info->idx  = 0;
598	if (!check_realloc_usable_mem(um_info, 2)) {
599		ret = -ENOMEM;
600		goto out;
601	}
602
603	prop = of_get_property(dn, "reg", &len);
604	if (!prop || len <= 0) {
605		ret = 0;
606		goto out;
607	}
608
609	/*
610	 * "reg" property represents sequence of (addr,size) tuples
611	 * each representing a memory range.
612	 */
613	ranges = (len >> 2) / (n_mem_addr_cells + n_mem_size_cells);
614
615	for (i = 0; i < ranges; i++) {
616		base = of_read_number(prop, n_mem_addr_cells);
617		prop += n_mem_addr_cells;
618		end = base + of_read_number(prop, n_mem_size_cells) - 1;
619		prop += n_mem_size_cells;
620
621		ret = add_usable_mem(um_info, base, end);
622		if (ret)
623			goto out;
624	}
625
626	/*
627	 * No kdump kernel usable memory found in this memory node.
628	 * Write (0,0) tuple in linux,usable-memory property for
629	 * this region to be ignored.
630	 */
631	if (um_info->idx == 0) {
632		um_info->buf[0] = 0;
633		um_info->buf[1] = 0;
634		um_info->idx = 2;
635	}
636
637	ret = fdt_setprop(fdt, node, "linux,usable-memory", um_info->buf,
638			  (um_info->idx * sizeof(u64)));
639
640out:
641	of_node_put(dn);
642	return ret;
643}
644
645
646/**
647 * update_usable_mem_fdt - Updates kdump kernel's fdt with linux,usable-memory
648 *                         and linux,drconf-usable-memory DT properties as
649 *                         appropriate to restrict its memory usage.
650 * @fdt:                   Flattened device tree for the kdump kernel.
651 * @usable_mem:            Usable memory ranges for kdump kernel.
652 *
653 * Returns 0 on success, negative errno on error.
654 */
655static int update_usable_mem_fdt(void *fdt, struct crash_mem *usable_mem)
656{
657	struct umem_info um_info;
658	struct device_node *dn;
659	int node, ret = 0;
660
661	if (!usable_mem) {
662		pr_err("Usable memory ranges for kdump kernel not found\n");
663		return -ENOENT;
664	}
665
666	node = fdt_path_offset(fdt, "/ibm,dynamic-reconfiguration-memory");
667	if (node == -FDT_ERR_NOTFOUND)
668		kexec_dprintk("No dynamic reconfiguration memory found\n");
669	else if (node < 0) {
670		pr_err("Malformed device tree: error reading /ibm,dynamic-reconfiguration-memory.\n");
671		return -EINVAL;
672	}
673
674	um_info.buf  = NULL;
675	um_info.size = 0;
676	um_info.max_entries = 0;
677	um_info.idx  = 0;
678	/* Memory ranges to look up */
679	um_info.ranges = &(usable_mem->ranges[0]);
680	um_info.nr_ranges = usable_mem->nr_ranges;
681
682	dn = of_find_node_by_path("/ibm,dynamic-reconfiguration-memory");
683	if (dn) {
684		ret = walk_drmem_lmbs(dn, &um_info, kdump_setup_usable_lmb);
685		of_node_put(dn);
686
687		if (ret) {
688			pr_err("Could not setup linux,drconf-usable-memory property for kdump\n");
689			goto out;
690		}
691
692		ret = fdt_setprop(fdt, node, "linux,drconf-usable-memory",
693				  um_info.buf, (um_info.idx * sizeof(u64)));
694		if (ret) {
695			pr_err("Failed to update fdt with linux,drconf-usable-memory property: %s",
696			       fdt_strerror(ret));
697			goto out;
698		}
699	}
700
701	/*
702	 * Walk through each memory node and set linux,usable-memory property
703	 * for the corresponding node in kdump kernel's fdt.
704	 */
705	for_each_node_by_type(dn, "memory") {
706		ret = add_usable_mem_property(fdt, dn, &um_info);
707		if (ret) {
708			pr_err("Failed to set linux,usable-memory property for %s node",
709			       dn->full_name);
710			of_node_put(dn);
711			goto out;
712		}
713	}
714
715out:
716	kfree(um_info.buf);
717	return ret;
718}
719
720/**
721 * load_backup_segment - Locate a memory hole to place the backup region.
722 * @image:               Kexec image.
723 * @kbuf:                Buffer contents and memory parameters.
724 *
725 * Returns 0 on success, negative errno on error.
726 */
727static int load_backup_segment(struct kimage *image, struct kexec_buf *kbuf)
728{
729	void *buf;
730	int ret;
731
732	/*
733	 * Setup a source buffer for backup segment.
734	 *
735	 * A source buffer has no meaning for backup region as data will
736	 * be copied from backup source, after crash, in the purgatory.
737	 * But as load segment code doesn't recognize such segments,
738	 * setup a dummy source buffer to keep it happy for now.
739	 */
740	buf = vzalloc(BACKUP_SRC_SIZE);
741	if (!buf)
742		return -ENOMEM;
743
744	kbuf->buffer = buf;
745	kbuf->mem = KEXEC_BUF_MEM_UNKNOWN;
746	kbuf->bufsz = kbuf->memsz = BACKUP_SRC_SIZE;
747	kbuf->top_down = false;
748
749	ret = kexec_add_buffer(kbuf);
750	if (ret) {
751		vfree(buf);
752		return ret;
753	}
754
755	image->arch.backup_buf = buf;
756	image->arch.backup_start = kbuf->mem;
757	return 0;
758}
759
760/**
761 * update_backup_region_phdr - Update backup region's offset for the core to
762 *                             export the region appropriately.
763 * @image:                     Kexec image.
764 * @ehdr:                      ELF core header.
765 *
766 * Assumes an exclusive program header is setup for the backup region
767 * in the ELF headers
768 *
769 * Returns nothing.
770 */
771static void update_backup_region_phdr(struct kimage *image, Elf64_Ehdr *ehdr)
772{
773	Elf64_Phdr *phdr;
774	unsigned int i;
775
776	phdr = (Elf64_Phdr *)(ehdr + 1);
777	for (i = 0; i < ehdr->e_phnum; i++) {
778		if (phdr->p_paddr == BACKUP_SRC_START) {
779			phdr->p_offset = image->arch.backup_start;
780			kexec_dprintk("Backup region offset updated to 0x%lx\n",
781				      image->arch.backup_start);
782			return;
783		}
784	}
785}
786
787/**
788 * load_elfcorehdr_segment - Setup crash memory ranges and initialize elfcorehdr
789 *                           segment needed to load kdump kernel.
790 * @image:                   Kexec image.
791 * @kbuf:                    Buffer contents and memory parameters.
792 *
793 * Returns 0 on success, negative errno on error.
794 */
795static int load_elfcorehdr_segment(struct kimage *image, struct kexec_buf *kbuf)
796{
797	struct crash_mem *cmem = NULL;
798	unsigned long headers_sz;
799	void *headers = NULL;
800	int ret;
801
802	ret = get_crash_memory_ranges(&cmem);
803	if (ret)
804		goto out;
805
806	/* Setup elfcorehdr segment */
807	ret = crash_prepare_elf64_headers(cmem, false, &headers, &headers_sz);
808	if (ret) {
809		pr_err("Failed to prepare elf headers for the core\n");
810		goto out;
811	}
812
813	/* Fix the offset for backup region in the ELF header */
814	update_backup_region_phdr(image, headers);
815
816	kbuf->buffer = headers;
817	kbuf->mem = KEXEC_BUF_MEM_UNKNOWN;
818	kbuf->bufsz = kbuf->memsz = headers_sz;
819	kbuf->top_down = false;
820
821	ret = kexec_add_buffer(kbuf);
822	if (ret) {
823		vfree(headers);
824		goto out;
825	}
826
827	image->elf_load_addr = kbuf->mem;
828	image->elf_headers_sz = headers_sz;
829	image->elf_headers = headers;
830out:
831	kfree(cmem);
832	return ret;
833}
834
835/**
836 * load_crashdump_segments_ppc64 - Initialize the additional segements needed
837 *                                 to load kdump kernel.
838 * @image:                         Kexec image.
839 * @kbuf:                          Buffer contents and memory parameters.
840 *
841 * Returns 0 on success, negative errno on error.
842 */
843int load_crashdump_segments_ppc64(struct kimage *image,
844				  struct kexec_buf *kbuf)
845{
846	int ret;
847
848	/* Load backup segment - first 64K bytes of the crashing kernel */
849	ret = load_backup_segment(image, kbuf);
850	if (ret) {
851		pr_err("Failed to load backup segment\n");
852		return ret;
853	}
854	kexec_dprintk("Loaded the backup region at 0x%lx\n", kbuf->mem);
855
856	/* Load elfcorehdr segment - to export crashing kernel's vmcore */
857	ret = load_elfcorehdr_segment(image, kbuf);
858	if (ret) {
859		pr_err("Failed to load elfcorehdr segment\n");
860		return ret;
861	}
862	kexec_dprintk("Loaded elf core header at 0x%lx, bufsz=0x%lx memsz=0x%lx\n",
863		      image->elf_load_addr, kbuf->bufsz, kbuf->memsz);
864
865	return 0;
866}
867#endif
868
869/**
870 * setup_purgatory_ppc64 - initialize PPC64 specific purgatory's global
871 *                         variables and call setup_purgatory() to initialize
872 *                         common global variable.
873 * @image:                 kexec image.
874 * @slave_code:            Slave code for the purgatory.
875 * @fdt:                   Flattened device tree for the next kernel.
876 * @kernel_load_addr:      Address where the kernel is loaded.
877 * @fdt_load_addr:         Address where the flattened device tree is loaded.
878 *
879 * Returns 0 on success, negative errno on error.
880 */
881int setup_purgatory_ppc64(struct kimage *image, const void *slave_code,
882			  const void *fdt, unsigned long kernel_load_addr,
883			  unsigned long fdt_load_addr)
884{
885	struct device_node *dn = NULL;
886	int ret;
887
888	ret = setup_purgatory(image, slave_code, fdt, kernel_load_addr,
889			      fdt_load_addr);
890	if (ret)
891		goto out;
892
893	if (image->type == KEXEC_TYPE_CRASH) {
894		u32 my_run_at_load = 1;
895
896		/*
897		 * Tell relocatable kernel to run at load address
898		 * via the word meant for that at 0x5c.
899		 */
900		ret = kexec_purgatory_get_set_symbol(image, "run_at_load",
901						     &my_run_at_load,
902						     sizeof(my_run_at_load),
903						     false);
904		if (ret)
905			goto out;
906	}
907
908	/* Tell purgatory where to look for backup region */
909	ret = kexec_purgatory_get_set_symbol(image, "backup_start",
910					     &image->arch.backup_start,
911					     sizeof(image->arch.backup_start),
912					     false);
913	if (ret)
914		goto out;
915
916	/* Setup OPAL base & entry values */
917	dn = of_find_node_by_path("/ibm,opal");
918	if (dn) {
919		u64 val;
920
921		of_property_read_u64(dn, "opal-base-address", &val);
922		ret = kexec_purgatory_get_set_symbol(image, "opal_base", &val,
923						     sizeof(val), false);
924		if (ret)
925			goto out;
926
927		of_property_read_u64(dn, "opal-entry-address", &val);
928		ret = kexec_purgatory_get_set_symbol(image, "opal_entry", &val,
929						     sizeof(val), false);
930	}
931out:
932	if (ret)
933		pr_err("Failed to setup purgatory symbols");
934	of_node_put(dn);
935	return ret;
936}
937
938/**
939 * cpu_node_size - Compute the size of a CPU node in the FDT.
940 *                 This should be done only once and the value is stored in
941 *                 a static variable.
942 * Returns the max size of a CPU node in the FDT.
943 */
944static unsigned int cpu_node_size(void)
945{
946	static unsigned int size;
947	struct device_node *dn;
948	struct property *pp;
949
950	/*
951	 * Don't compute it twice, we are assuming that the per CPU node size
952	 * doesn't change during the system's life.
953	 */
954	if (size)
955		return size;
956
957	dn = of_find_node_by_type(NULL, "cpu");
958	if (WARN_ON_ONCE(!dn)) {
959		// Unlikely to happen
960		return 0;
961	}
962
963	/*
964	 * We compute the sub node size for a CPU node, assuming it
965	 * will be the same for all.
966	 */
967	size += strlen(dn->name) + 5;
968	for_each_property_of_node(dn, pp) {
969		size += strlen(pp->name);
970		size += pp->length;
971	}
972
973	of_node_put(dn);
974	return size;
975}
976
977static unsigned int kdump_extra_fdt_size_ppc64(struct kimage *image)
978{
979	unsigned int cpu_nodes, extra_size = 0;
980	struct device_node *dn;
981	u64 usm_entries;
982
983	if (!IS_ENABLED(CONFIG_CRASH_DUMP) || image->type != KEXEC_TYPE_CRASH)
984		return 0;
985
986	/*
987	 * For kdump kernel, account for linux,usable-memory and
988	 * linux,drconf-usable-memory properties. Get an approximate on the
989	 * number of usable memory entries and use for FDT size estimation.
990	 */
991	if (drmem_lmb_size()) {
992		usm_entries = ((memory_hotplug_max() / drmem_lmb_size()) +
993			       (2 * (resource_size(&crashk_res) / drmem_lmb_size())));
994		extra_size += (unsigned int)(usm_entries * sizeof(u64));
995	}
996
997	/*
998	 * Get the number of CPU nodes in the current DT. This allows to
999	 * reserve places for CPU nodes added since the boot time.
1000	 */
1001	cpu_nodes = 0;
1002	for_each_node_by_type(dn, "cpu") {
1003		cpu_nodes++;
1004	}
1005
1006	if (cpu_nodes > boot_cpu_node_count)
1007		extra_size += (cpu_nodes - boot_cpu_node_count) * cpu_node_size();
1008
1009	return extra_size;
1010}
1011
1012/**
1013 * kexec_extra_fdt_size_ppc64 - Return the estimated additional size needed to
1014 *                              setup FDT for kexec/kdump kernel.
1015 * @image:                      kexec image being loaded.
1016 *
1017 * Returns the estimated extra size needed for kexec/kdump kernel FDT.
1018 */
1019unsigned int kexec_extra_fdt_size_ppc64(struct kimage *image)
1020{
1021	unsigned int extra_size = 0;
1022
1023	// Budget some space for the password blob. There's already extra space
1024	// for the key name
1025	if (plpks_is_available())
1026		extra_size += (unsigned int)plpks_get_passwordlen();
1027
1028	return extra_size + kdump_extra_fdt_size_ppc64(image);
1029}
1030
1031/**
1032 * add_node_props - Reads node properties from device node structure and add
1033 *                  them to fdt.
1034 * @fdt:            Flattened device tree of the kernel
1035 * @node_offset:    offset of the node to add a property at
1036 * @dn:             device node pointer
1037 *
1038 * Returns 0 on success, negative errno on error.
1039 */
1040static int add_node_props(void *fdt, int node_offset, const struct device_node *dn)
1041{
1042	int ret = 0;
1043	struct property *pp;
1044
1045	if (!dn)
1046		return -EINVAL;
1047
1048	for_each_property_of_node(dn, pp) {
1049		ret = fdt_setprop(fdt, node_offset, pp->name, pp->value, pp->length);
1050		if (ret < 0) {
1051			pr_err("Unable to add %s property: %s\n", pp->name, fdt_strerror(ret));
1052			return ret;
1053		}
1054	}
1055	return ret;
1056}
1057
1058/**
1059 * update_cpus_node - Update cpus node of flattened device tree using of_root
1060 *                    device node.
1061 * @fdt:              Flattened device tree of the kernel.
1062 *
1063 * Returns 0 on success, negative errno on error.
1064 */
1065static int update_cpus_node(void *fdt)
1066{
1067	struct device_node *cpus_node, *dn;
1068	int cpus_offset, cpus_subnode_offset, ret = 0;
1069
1070	cpus_offset = fdt_path_offset(fdt, "/cpus");
1071	if (cpus_offset < 0 && cpus_offset != -FDT_ERR_NOTFOUND) {
1072		pr_err("Malformed device tree: error reading /cpus node: %s\n",
1073		       fdt_strerror(cpus_offset));
1074		return cpus_offset;
1075	}
1076
1077	if (cpus_offset > 0) {
1078		ret = fdt_del_node(fdt, cpus_offset);
1079		if (ret < 0) {
1080			pr_err("Error deleting /cpus node: %s\n", fdt_strerror(ret));
1081			return -EINVAL;
1082		}
1083	}
1084
1085	/* Add cpus node to fdt */
1086	cpus_offset = fdt_add_subnode(fdt, fdt_path_offset(fdt, "/"), "cpus");
1087	if (cpus_offset < 0) {
1088		pr_err("Error creating /cpus node: %s\n", fdt_strerror(cpus_offset));
1089		return -EINVAL;
1090	}
1091
1092	/* Add cpus node properties */
1093	cpus_node = of_find_node_by_path("/cpus");
1094	ret = add_node_props(fdt, cpus_offset, cpus_node);
1095	of_node_put(cpus_node);
1096	if (ret < 0)
1097		return ret;
1098
1099	/* Loop through all subnodes of cpus and add them to fdt */
1100	for_each_node_by_type(dn, "cpu") {
1101		cpus_subnode_offset = fdt_add_subnode(fdt, cpus_offset, dn->full_name);
1102		if (cpus_subnode_offset < 0) {
1103			pr_err("Unable to add %s subnode: %s\n", dn->full_name,
1104			       fdt_strerror(cpus_subnode_offset));
1105			ret = cpus_subnode_offset;
1106			goto out;
1107		}
1108
1109		ret = add_node_props(fdt, cpus_subnode_offset, dn);
1110		if (ret < 0)
1111			goto out;
1112	}
1113out:
1114	of_node_put(dn);
1115	return ret;
1116}
1117
1118static int copy_property(void *fdt, int node_offset, const struct device_node *dn,
1119			 const char *propname)
1120{
1121	const void *prop, *fdtprop;
1122	int len = 0, fdtlen = 0;
1123
1124	prop = of_get_property(dn, propname, &len);
1125	fdtprop = fdt_getprop(fdt, node_offset, propname, &fdtlen);
1126
1127	if (fdtprop && !prop)
1128		return fdt_delprop(fdt, node_offset, propname);
1129	else if (prop)
1130		return fdt_setprop(fdt, node_offset, propname, prop, len);
1131	else
1132		return -FDT_ERR_NOTFOUND;
1133}
1134
1135static int update_pci_dma_nodes(void *fdt, const char *dmapropname)
1136{
1137	struct device_node *dn;
1138	int pci_offset, root_offset, ret = 0;
1139
1140	if (!firmware_has_feature(FW_FEATURE_LPAR))
1141		return 0;
1142
1143	root_offset = fdt_path_offset(fdt, "/");
1144	for_each_node_with_property(dn, dmapropname) {
1145		pci_offset = fdt_subnode_offset(fdt, root_offset, of_node_full_name(dn));
1146		if (pci_offset < 0)
1147			continue;
1148
1149		ret = copy_property(fdt, pci_offset, dn, "ibm,dma-window");
1150		if (ret < 0) {
1151			of_node_put(dn);
1152			break;
1153		}
1154		ret = copy_property(fdt, pci_offset, dn, dmapropname);
1155		if (ret < 0) {
1156			of_node_put(dn);
1157			break;
1158		}
1159	}
1160
1161	return ret;
1162}
1163
1164/**
1165 * setup_new_fdt_ppc64 - Update the flattend device-tree of the kernel
1166 *                       being loaded.
1167 * @image:               kexec image being loaded.
1168 * @fdt:                 Flattened device tree for the next kernel.
1169 * @initrd_load_addr:    Address where the next initrd will be loaded.
1170 * @initrd_len:          Size of the next initrd, or 0 if there will be none.
1171 * @cmdline:             Command line for the next kernel, or NULL if there will
1172 *                       be none.
1173 *
1174 * Returns 0 on success, negative errno on error.
1175 */
1176int setup_new_fdt_ppc64(const struct kimage *image, void *fdt,
1177			unsigned long initrd_load_addr,
1178			unsigned long initrd_len, const char *cmdline)
1179{
1180	struct crash_mem *umem = NULL, *rmem = NULL;
1181	int i, nr_ranges, ret;
1182
1183#ifdef CONFIG_CRASH_DUMP
1184	/*
1185	 * Restrict memory usage for kdump kernel by setting up
1186	 * usable memory ranges and memory reserve map.
1187	 */
1188	if (image->type == KEXEC_TYPE_CRASH) {
1189		ret = get_usable_memory_ranges(&umem);
1190		if (ret)
1191			goto out;
1192
1193		ret = update_usable_mem_fdt(fdt, umem);
1194		if (ret) {
1195			pr_err("Error setting up usable-memory property for kdump kernel\n");
1196			goto out;
1197		}
1198
1199		/*
1200		 * Ensure we don't touch crashed kernel's memory except the
1201		 * first 64K of RAM, which will be backed up.
1202		 */
1203		ret = fdt_add_mem_rsv(fdt, BACKUP_SRC_END + 1,
1204				      crashk_res.start - BACKUP_SRC_SIZE);
1205		if (ret) {
1206			pr_err("Error reserving crash memory: %s\n",
1207			       fdt_strerror(ret));
1208			goto out;
1209		}
1210
1211		/* Ensure backup region is not used by kdump/capture kernel */
1212		ret = fdt_add_mem_rsv(fdt, image->arch.backup_start,
1213				      BACKUP_SRC_SIZE);
1214		if (ret) {
1215			pr_err("Error reserving memory for backup: %s\n",
1216			       fdt_strerror(ret));
1217			goto out;
1218		}
1219	}
1220#endif
1221
1222	/* Update cpus nodes information to account hotplug CPUs. */
1223	ret =  update_cpus_node(fdt);
1224	if (ret < 0)
1225		goto out;
1226
1227	ret = update_pci_dma_nodes(fdt, DIRECT64_PROPNAME);
1228	if (ret < 0)
1229		goto out;
1230
1231	ret = update_pci_dma_nodes(fdt, DMA64_PROPNAME);
1232	if (ret < 0)
1233		goto out;
1234
1235	/* Update memory reserve map */
1236	ret = get_reserved_memory_ranges(&rmem);
1237	if (ret)
1238		goto out;
1239
1240	nr_ranges = rmem ? rmem->nr_ranges : 0;
1241	for (i = 0; i < nr_ranges; i++) {
1242		u64 base, size;
1243
1244		base = rmem->ranges[i].start;
1245		size = rmem->ranges[i].end - base + 1;
1246		ret = fdt_add_mem_rsv(fdt, base, size);
1247		if (ret) {
1248			pr_err("Error updating memory reserve map: %s\n",
1249			       fdt_strerror(ret));
1250			goto out;
1251		}
1252	}
1253
1254	// If we have PLPKS active, we need to provide the password to the new kernel
1255	if (plpks_is_available())
1256		ret = plpks_populate_fdt(fdt);
1257
1258out:
1259	kfree(rmem);
1260	kfree(umem);
1261	return ret;
1262}
1263
1264/**
1265 * arch_kexec_locate_mem_hole - Skip special memory regions like rtas, opal,
1266 *                              tce-table, reserved-ranges & such (exclude
1267 *                              memory ranges) as they can't be used for kexec
1268 *                              segment buffer. Sets kbuf->mem when a suitable
1269 *                              memory hole is found.
1270 * @kbuf:                       Buffer contents and memory parameters.
1271 *
1272 * Assumes minimum of PAGE_SIZE alignment for kbuf->memsz & kbuf->buf_align.
1273 *
1274 * Returns 0 on success, negative errno on error.
1275 */
1276int arch_kexec_locate_mem_hole(struct kexec_buf *kbuf)
1277{
1278	struct crash_mem **emem;
1279	u64 buf_min, buf_max;
1280	int ret;
1281
1282	/* Look up the exclude ranges list while locating the memory hole */
1283	emem = &(kbuf->image->arch.exclude_ranges);
1284	if (!(*emem) || ((*emem)->nr_ranges == 0)) {
1285		pr_warn("No exclude range list. Using the default locate mem hole method\n");
1286		return kexec_locate_mem_hole(kbuf);
1287	}
1288
1289	buf_min = kbuf->buf_min;
1290	buf_max = kbuf->buf_max;
1291	/* Segments for kdump kernel should be within crashkernel region */
1292	if (IS_ENABLED(CONFIG_CRASH_DUMP) && kbuf->image->type == KEXEC_TYPE_CRASH) {
1293		buf_min = (buf_min < crashk_res.start ?
1294			   crashk_res.start : buf_min);
1295		buf_max = (buf_max > crashk_res.end ?
1296			   crashk_res.end : buf_max);
1297	}
1298
1299	if (buf_min > buf_max) {
1300		pr_err("Invalid buffer min and/or max values\n");
1301		return -EINVAL;
1302	}
1303
1304	if (kbuf->top_down)
1305		ret = locate_mem_hole_top_down_ppc64(kbuf, buf_min, buf_max,
1306						     *emem);
1307	else
1308		ret = locate_mem_hole_bottom_up_ppc64(kbuf, buf_min, buf_max,
1309						      *emem);
1310
1311	/* Add the buffer allocated to the exclude list for the next lookup */
1312	if (!ret) {
1313		add_mem_range(emem, kbuf->mem, kbuf->memsz);
1314		sort_memory_ranges(*emem, true);
1315	} else {
1316		pr_err("Failed to locate memory buffer of size %lu\n",
1317		       kbuf->memsz);
1318	}
1319	return ret;
1320}
1321
1322/**
1323 * arch_kexec_kernel_image_probe - Does additional handling needed to setup
1324 *                                 kexec segments.
1325 * @image:                         kexec image being loaded.
1326 * @buf:                           Buffer pointing to elf data.
1327 * @buf_len:                       Length of the buffer.
1328 *
1329 * Returns 0 on success, negative errno on error.
1330 */
1331int arch_kexec_kernel_image_probe(struct kimage *image, void *buf,
1332				  unsigned long buf_len)
1333{
1334	int ret;
1335
1336	/* Get exclude memory ranges needed for setting up kexec segments */
1337	ret = get_exclude_memory_ranges(&(image->arch.exclude_ranges));
1338	if (ret) {
1339		pr_err("Failed to setup exclude memory ranges for buffer lookup\n");
1340		return ret;
1341	}
1342
1343	return kexec_image_probe_default(image, buf, buf_len);
1344}
1345
1346/**
1347 * arch_kimage_file_post_load_cleanup - Frees up all the allocations done
1348 *                                      while loading the image.
1349 * @image:                              kexec image being loaded.
1350 *
1351 * Returns 0 on success, negative errno on error.
1352 */
1353int arch_kimage_file_post_load_cleanup(struct kimage *image)
1354{
1355	kfree(image->arch.exclude_ranges);
1356	image->arch.exclude_ranges = NULL;
1357
1358	vfree(image->arch.backup_buf);
1359	image->arch.backup_buf = NULL;
1360
1361	vfree(image->elf_headers);
1362	image->elf_headers = NULL;
1363	image->elf_headers_sz = 0;
1364
1365	kvfree(image->arch.fdt);
1366	image->arch.fdt = NULL;
1367
1368	return kexec_image_post_load_cleanup_default(image);
1369}
1370