1// SPDX-License-Identifier: GPL-2.0-or-later
2/*
3 * Common time routines among all ppc machines.
4 *
5 * Written by Cort Dougan (cort@cs.nmt.edu) to merge
6 * Paul Mackerras' version and mine for PReP and Pmac.
7 * MPC8xx/MBX changes by Dan Malek (dmalek@jlc.net).
8 * Converted for 64-bit by Mike Corrigan (mikejc@us.ibm.com)
9 *
10 * First round of bugfixes by Gabriel Paubert (paubert@iram.es)
11 * to make clock more stable (2.4.0-test5). The only thing
12 * that this code assumes is that the timebases have been synchronized
13 * by firmware on SMP and are never stopped (never do sleep
14 * on SMP then, nap and doze are OK).
15 *
16 * Speeded up do_gettimeofday by getting rid of references to
17 * xtime (which required locks for consistency). (mikejc@us.ibm.com)
18 *
19 * TODO (not necessarily in this file):
20 * - improve precision and reproducibility of timebase frequency
21 * measurement at boot time.
22 * - for astronomical applications: add a new function to get
23 * non ambiguous timestamps even around leap seconds. This needs
24 * a new timestamp format and a good name.
25 *
26 * 1997-09-10  Updated NTP code according to technical memorandum Jan '96
27 *             "A Kernel Model for Precision Timekeeping" by Dave Mills
28 */
29
30#include <linux/errno.h>
31#include <linux/export.h>
32#include <linux/sched.h>
33#include <linux/sched/clock.h>
34#include <linux/sched/cputime.h>
35#include <linux/kernel.h>
36#include <linux/param.h>
37#include <linux/string.h>
38#include <linux/mm.h>
39#include <linux/interrupt.h>
40#include <linux/timex.h>
41#include <linux/kernel_stat.h>
42#include <linux/time.h>
43#include <linux/init.h>
44#include <linux/profile.h>
45#include <linux/cpu.h>
46#include <linux/security.h>
47#include <linux/percpu.h>
48#include <linux/rtc.h>
49#include <linux/jiffies.h>
50#include <linux/posix-timers.h>
51#include <linux/irq.h>
52#include <linux/delay.h>
53#include <linux/irq_work.h>
54#include <linux/of_clk.h>
55#include <linux/suspend.h>
56#include <linux/processor.h>
57#include <linux/mc146818rtc.h>
58#include <linux/platform_device.h>
59
60#include <asm/trace.h>
61#include <asm/interrupt.h>
62#include <asm/io.h>
63#include <asm/nvram.h>
64#include <asm/cache.h>
65#include <asm/machdep.h>
66#include <linux/uaccess.h>
67#include <asm/time.h>
68#include <asm/irq.h>
69#include <asm/div64.h>
70#include <asm/smp.h>
71#include <asm/vdso_datapage.h>
72#include <asm/firmware.h>
73#include <asm/mce.h>
74
75/* powerpc clocksource/clockevent code */
76
77#include <linux/clockchips.h>
78#include <linux/timekeeper_internal.h>
79
80static u64 timebase_read(struct clocksource *);
81static struct clocksource clocksource_timebase = {
82	.name         = "timebase",
83	.rating       = 400,
84	.flags        = CLOCK_SOURCE_IS_CONTINUOUS,
85	.mask         = CLOCKSOURCE_MASK(64),
86	.read         = timebase_read,
87	.vdso_clock_mode	= VDSO_CLOCKMODE_ARCHTIMER,
88};
89
90#define DECREMENTER_DEFAULT_MAX 0x7FFFFFFF
91u64 decrementer_max = DECREMENTER_DEFAULT_MAX;
92EXPORT_SYMBOL_GPL(decrementer_max); /* for KVM HDEC */
93
94static int decrementer_set_next_event(unsigned long evt,
95				      struct clock_event_device *dev);
96static int decrementer_shutdown(struct clock_event_device *evt);
97
98struct clock_event_device decrementer_clockevent = {
99	.name			= "decrementer",
100	.rating			= 200,
101	.irq			= 0,
102	.set_next_event		= decrementer_set_next_event,
103	.set_state_oneshot_stopped = decrementer_shutdown,
104	.set_state_shutdown	= decrementer_shutdown,
105	.tick_resume		= decrementer_shutdown,
106	.features		= CLOCK_EVT_FEAT_ONESHOT |
107				  CLOCK_EVT_FEAT_C3STOP,
108};
109EXPORT_SYMBOL(decrementer_clockevent);
110
111/*
112 * This always puts next_tb beyond now, so the clock event will never fire
113 * with the usual comparison, no need for a separate test for stopped.
114 */
115#define DEC_CLOCKEVENT_STOPPED ~0ULL
116DEFINE_PER_CPU(u64, decrementers_next_tb) = DEC_CLOCKEVENT_STOPPED;
117EXPORT_SYMBOL_GPL(decrementers_next_tb);
118static DEFINE_PER_CPU(struct clock_event_device, decrementers);
119
120#define XSEC_PER_SEC (1024*1024)
121
122#ifdef CONFIG_PPC64
123#define SCALE_XSEC(xsec, max)	(((xsec) * max) / XSEC_PER_SEC)
124#else
125/* compute ((xsec << 12) * max) >> 32 */
126#define SCALE_XSEC(xsec, max)	mulhwu((xsec) << 12, max)
127#endif
128
129unsigned long tb_ticks_per_jiffy;
130unsigned long tb_ticks_per_usec = 100; /* sane default */
131EXPORT_SYMBOL(tb_ticks_per_usec);
132unsigned long tb_ticks_per_sec;
133EXPORT_SYMBOL(tb_ticks_per_sec);	/* for cputime conversions */
134
135DEFINE_SPINLOCK(rtc_lock);
136EXPORT_SYMBOL_GPL(rtc_lock);
137
138static u64 tb_to_ns_scale __read_mostly;
139static unsigned tb_to_ns_shift __read_mostly;
140static u64 boot_tb __read_mostly;
141
142extern struct timezone sys_tz;
143static long timezone_offset;
144
145unsigned long ppc_proc_freq;
146EXPORT_SYMBOL_GPL(ppc_proc_freq);
147unsigned long ppc_tb_freq;
148EXPORT_SYMBOL_GPL(ppc_tb_freq);
149
150bool tb_invalid;
151
152#ifdef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
153/*
154 * Read the SPURR on systems that have it, otherwise the PURR,
155 * or if that doesn't exist return the timebase value passed in.
156 */
157static inline unsigned long read_spurr(unsigned long tb)
158{
159	if (cpu_has_feature(CPU_FTR_SPURR))
160		return mfspr(SPRN_SPURR);
161	if (cpu_has_feature(CPU_FTR_PURR))
162		return mfspr(SPRN_PURR);
163	return tb;
164}
165
166/*
167 * Account time for a transition between system, hard irq
168 * or soft irq state.
169 */
170static unsigned long vtime_delta_scaled(struct cpu_accounting_data *acct,
171					unsigned long now, unsigned long stime)
172{
173	unsigned long stime_scaled = 0;
174#ifdef CONFIG_ARCH_HAS_SCALED_CPUTIME
175	unsigned long nowscaled, deltascaled;
176	unsigned long utime, utime_scaled;
177
178	nowscaled = read_spurr(now);
179	deltascaled = nowscaled - acct->startspurr;
180	acct->startspurr = nowscaled;
181	utime = acct->utime - acct->utime_sspurr;
182	acct->utime_sspurr = acct->utime;
183
184	/*
185	 * Because we don't read the SPURR on every kernel entry/exit,
186	 * deltascaled includes both user and system SPURR ticks.
187	 * Apportion these ticks to system SPURR ticks and user
188	 * SPURR ticks in the same ratio as the system time (delta)
189	 * and user time (udelta) values obtained from the timebase
190	 * over the same interval.  The system ticks get accounted here;
191	 * the user ticks get saved up in paca->user_time_scaled to be
192	 * used by account_process_tick.
193	 */
194	stime_scaled = stime;
195	utime_scaled = utime;
196	if (deltascaled != stime + utime) {
197		if (utime) {
198			stime_scaled = deltascaled * stime / (stime + utime);
199			utime_scaled = deltascaled - stime_scaled;
200		} else {
201			stime_scaled = deltascaled;
202		}
203	}
204	acct->utime_scaled += utime_scaled;
205#endif
206
207	return stime_scaled;
208}
209
210static unsigned long vtime_delta(struct cpu_accounting_data *acct,
211				 unsigned long *stime_scaled,
212				 unsigned long *steal_time)
213{
214	unsigned long now, stime;
215
216	WARN_ON_ONCE(!irqs_disabled());
217
218	now = mftb();
219	stime = now - acct->starttime;
220	acct->starttime = now;
221
222	*stime_scaled = vtime_delta_scaled(acct, now, stime);
223
224	if (IS_ENABLED(CONFIG_PPC_SPLPAR) &&
225			firmware_has_feature(FW_FEATURE_SPLPAR))
226		*steal_time = pseries_calculate_stolen_time(now);
227	else
228		*steal_time = 0;
229
230	return stime;
231}
232
233static void vtime_delta_kernel(struct cpu_accounting_data *acct,
234			       unsigned long *stime, unsigned long *stime_scaled)
235{
236	unsigned long steal_time;
237
238	*stime = vtime_delta(acct, stime_scaled, &steal_time);
239	*stime -= min(*stime, steal_time);
240	acct->steal_time += steal_time;
241}
242
243void vtime_account_kernel(struct task_struct *tsk)
244{
245	struct cpu_accounting_data *acct = get_accounting(tsk);
246	unsigned long stime, stime_scaled;
247
248	vtime_delta_kernel(acct, &stime, &stime_scaled);
249
250	if (tsk->flags & PF_VCPU) {
251		acct->gtime += stime;
252#ifdef CONFIG_ARCH_HAS_SCALED_CPUTIME
253		acct->utime_scaled += stime_scaled;
254#endif
255	} else {
256		acct->stime += stime;
257#ifdef CONFIG_ARCH_HAS_SCALED_CPUTIME
258		acct->stime_scaled += stime_scaled;
259#endif
260	}
261}
262EXPORT_SYMBOL_GPL(vtime_account_kernel);
263
264void vtime_account_idle(struct task_struct *tsk)
265{
266	unsigned long stime, stime_scaled, steal_time;
267	struct cpu_accounting_data *acct = get_accounting(tsk);
268
269	stime = vtime_delta(acct, &stime_scaled, &steal_time);
270	acct->idle_time += stime + steal_time;
271}
272
273static void vtime_account_irq_field(struct cpu_accounting_data *acct,
274				    unsigned long *field)
275{
276	unsigned long stime, stime_scaled;
277
278	vtime_delta_kernel(acct, &stime, &stime_scaled);
279	*field += stime;
280#ifdef CONFIG_ARCH_HAS_SCALED_CPUTIME
281	acct->stime_scaled += stime_scaled;
282#endif
283}
284
285void vtime_account_softirq(struct task_struct *tsk)
286{
287	struct cpu_accounting_data *acct = get_accounting(tsk);
288	vtime_account_irq_field(acct, &acct->softirq_time);
289}
290
291void vtime_account_hardirq(struct task_struct *tsk)
292{
293	struct cpu_accounting_data *acct = get_accounting(tsk);
294	vtime_account_irq_field(acct, &acct->hardirq_time);
295}
296
297static void vtime_flush_scaled(struct task_struct *tsk,
298			       struct cpu_accounting_data *acct)
299{
300#ifdef CONFIG_ARCH_HAS_SCALED_CPUTIME
301	if (acct->utime_scaled)
302		tsk->utimescaled += cputime_to_nsecs(acct->utime_scaled);
303	if (acct->stime_scaled)
304		tsk->stimescaled += cputime_to_nsecs(acct->stime_scaled);
305
306	acct->utime_scaled = 0;
307	acct->utime_sspurr = 0;
308	acct->stime_scaled = 0;
309#endif
310}
311
312/*
313 * Account the whole cputime accumulated in the paca
314 * Must be called with interrupts disabled.
315 * Assumes that vtime_account_kernel/idle() has been called
316 * recently (i.e. since the last entry from usermode) so that
317 * get_paca()->user_time_scaled is up to date.
318 */
319void vtime_flush(struct task_struct *tsk)
320{
321	struct cpu_accounting_data *acct = get_accounting(tsk);
322
323	if (acct->utime)
324		account_user_time(tsk, cputime_to_nsecs(acct->utime));
325
326	if (acct->gtime)
327		account_guest_time(tsk, cputime_to_nsecs(acct->gtime));
328
329	if (IS_ENABLED(CONFIG_PPC_SPLPAR) && acct->steal_time) {
330		account_steal_time(cputime_to_nsecs(acct->steal_time));
331		acct->steal_time = 0;
332	}
333
334	if (acct->idle_time)
335		account_idle_time(cputime_to_nsecs(acct->idle_time));
336
337	if (acct->stime)
338		account_system_index_time(tsk, cputime_to_nsecs(acct->stime),
339					  CPUTIME_SYSTEM);
340
341	if (acct->hardirq_time)
342		account_system_index_time(tsk, cputime_to_nsecs(acct->hardirq_time),
343					  CPUTIME_IRQ);
344	if (acct->softirq_time)
345		account_system_index_time(tsk, cputime_to_nsecs(acct->softirq_time),
346					  CPUTIME_SOFTIRQ);
347
348	vtime_flush_scaled(tsk, acct);
349
350	acct->utime = 0;
351	acct->gtime = 0;
352	acct->idle_time = 0;
353	acct->stime = 0;
354	acct->hardirq_time = 0;
355	acct->softirq_time = 0;
356}
357#endif /* CONFIG_VIRT_CPU_ACCOUNTING_NATIVE */
358
359void __no_kcsan __delay(unsigned long loops)
360{
361	unsigned long start;
362
363	spin_begin();
364	if (tb_invalid) {
365		/*
366		 * TB is in error state and isn't ticking anymore.
367		 * HMI handler was unable to recover from TB error.
368		 * Return immediately, so that kernel won't get stuck here.
369		 */
370		spin_cpu_relax();
371	} else {
372		start = mftb();
373		while (mftb() - start < loops)
374			spin_cpu_relax();
375	}
376	spin_end();
377}
378EXPORT_SYMBOL(__delay);
379
380void __no_kcsan udelay(unsigned long usecs)
381{
382	__delay(tb_ticks_per_usec * usecs);
383}
384EXPORT_SYMBOL(udelay);
385
386#ifdef CONFIG_SMP
387unsigned long profile_pc(struct pt_regs *regs)
388{
389	unsigned long pc = instruction_pointer(regs);
390
391	if (in_lock_functions(pc))
392		return regs->link;
393
394	return pc;
395}
396EXPORT_SYMBOL(profile_pc);
397#endif
398
399#ifdef CONFIG_IRQ_WORK
400
401/*
402 * 64-bit uses a byte in the PACA, 32-bit uses a per-cpu variable...
403 */
404#ifdef CONFIG_PPC64
405static inline unsigned long test_irq_work_pending(void)
406{
407	unsigned long x;
408
409	asm volatile("lbz %0,%1(13)"
410		: "=r" (x)
411		: "i" (offsetof(struct paca_struct, irq_work_pending)));
412	return x;
413}
414
415static inline void set_irq_work_pending_flag(void)
416{
417	asm volatile("stb %0,%1(13)" : :
418		"r" (1),
419		"i" (offsetof(struct paca_struct, irq_work_pending)));
420}
421
422static inline void clear_irq_work_pending(void)
423{
424	asm volatile("stb %0,%1(13)" : :
425		"r" (0),
426		"i" (offsetof(struct paca_struct, irq_work_pending)));
427}
428
429#else /* 32-bit */
430
431DEFINE_PER_CPU(u8, irq_work_pending);
432
433#define set_irq_work_pending_flag()	__this_cpu_write(irq_work_pending, 1)
434#define test_irq_work_pending()		__this_cpu_read(irq_work_pending)
435#define clear_irq_work_pending()	__this_cpu_write(irq_work_pending, 0)
436
437#endif /* 32 vs 64 bit */
438
439void arch_irq_work_raise(void)
440{
441	/*
442	 * 64-bit code that uses irq soft-mask can just cause an immediate
443	 * interrupt here that gets soft masked, if this is called under
444	 * local_irq_disable(). It might be possible to prevent that happening
445	 * by noticing interrupts are disabled and setting decrementer pending
446	 * to be replayed when irqs are enabled. The problem there is that
447	 * tracing can call irq_work_raise, including in code that does low
448	 * level manipulations of irq soft-mask state (e.g., trace_hardirqs_on)
449	 * which could get tangled up if we're messing with the same state
450	 * here.
451	 */
452	preempt_disable();
453	set_irq_work_pending_flag();
454	set_dec(1);
455	preempt_enable();
456}
457
458static void set_dec_or_work(u64 val)
459{
460	set_dec(val);
461	/* We may have raced with new irq work */
462	if (unlikely(test_irq_work_pending()))
463		set_dec(1);
464}
465
466#else  /* CONFIG_IRQ_WORK */
467
468#define test_irq_work_pending()	0
469#define clear_irq_work_pending()
470
471static void set_dec_or_work(u64 val)
472{
473	set_dec(val);
474}
475#endif /* CONFIG_IRQ_WORK */
476
477#ifdef CONFIG_KVM_BOOK3S_HV_POSSIBLE
478void timer_rearm_host_dec(u64 now)
479{
480	u64 *next_tb = this_cpu_ptr(&decrementers_next_tb);
481
482	WARN_ON_ONCE(!arch_irqs_disabled());
483	WARN_ON_ONCE(mfmsr() & MSR_EE);
484
485	if (now >= *next_tb) {
486		local_paca->irq_happened |= PACA_IRQ_DEC;
487	} else {
488		now = *next_tb - now;
489		if (now > decrementer_max)
490			now = decrementer_max;
491		set_dec_or_work(now);
492	}
493}
494EXPORT_SYMBOL_GPL(timer_rearm_host_dec);
495#endif
496
497/*
498 * timer_interrupt - gets called when the decrementer overflows,
499 * with interrupts disabled.
500 */
501DEFINE_INTERRUPT_HANDLER_ASYNC(timer_interrupt)
502{
503	struct clock_event_device *evt = this_cpu_ptr(&decrementers);
504	u64 *next_tb = this_cpu_ptr(&decrementers_next_tb);
505	struct pt_regs *old_regs;
506	u64 now;
507
508	/*
509	 * Some implementations of hotplug will get timer interrupts while
510	 * offline, just ignore these.
511	 */
512	if (unlikely(!cpu_online(smp_processor_id()))) {
513		set_dec(decrementer_max);
514		return;
515	}
516
517	/* Conditionally hard-enable interrupts. */
518	if (should_hard_irq_enable(regs)) {
519		/*
520		 * Ensure a positive value is written to the decrementer, or
521		 * else some CPUs will continue to take decrementer exceptions.
522		 * When the PPC_WATCHDOG (decrementer based) is configured,
523		 * keep this at most 31 bits, which is about 4 seconds on most
524		 * systems, which gives the watchdog a chance of catching timer
525		 * interrupt hard lockups.
526		 */
527		if (IS_ENABLED(CONFIG_PPC_WATCHDOG))
528			set_dec(0x7fffffff);
529		else
530			set_dec(decrementer_max);
531
532		do_hard_irq_enable();
533	}
534
535#if defined(CONFIG_PPC32) && defined(CONFIG_PPC_PMAC)
536	if (atomic_read(&ppc_n_lost_interrupts) != 0)
537		__do_IRQ(regs);
538#endif
539
540	old_regs = set_irq_regs(regs);
541
542	trace_timer_interrupt_entry(regs);
543
544	if (test_irq_work_pending()) {
545		clear_irq_work_pending();
546		mce_run_irq_context_handlers();
547		irq_work_run();
548	}
549
550	now = get_tb();
551	if (now >= *next_tb) {
552		evt->event_handler(evt);
553		__this_cpu_inc(irq_stat.timer_irqs_event);
554	} else {
555		now = *next_tb - now;
556		if (now > decrementer_max)
557			now = decrementer_max;
558		set_dec_or_work(now);
559		__this_cpu_inc(irq_stat.timer_irqs_others);
560	}
561
562	trace_timer_interrupt_exit(regs);
563
564	set_irq_regs(old_regs);
565}
566EXPORT_SYMBOL(timer_interrupt);
567
568#ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST
569void timer_broadcast_interrupt(void)
570{
571	tick_receive_broadcast();
572	__this_cpu_inc(irq_stat.broadcast_irqs_event);
573}
574#endif
575
576#ifdef CONFIG_SUSPEND
577/* Overrides the weak version in kernel/power/main.c */
578void arch_suspend_disable_irqs(void)
579{
580	if (ppc_md.suspend_disable_irqs)
581		ppc_md.suspend_disable_irqs();
582
583	/* Disable the decrementer, so that it doesn't interfere
584	 * with suspending.
585	 */
586
587	set_dec(decrementer_max);
588	local_irq_disable();
589	set_dec(decrementer_max);
590}
591
592/* Overrides the weak version in kernel/power/main.c */
593void arch_suspend_enable_irqs(void)
594{
595	local_irq_enable();
596
597	if (ppc_md.suspend_enable_irqs)
598		ppc_md.suspend_enable_irqs();
599}
600#endif
601
602unsigned long long tb_to_ns(unsigned long long ticks)
603{
604	return mulhdu(ticks, tb_to_ns_scale) << tb_to_ns_shift;
605}
606EXPORT_SYMBOL_GPL(tb_to_ns);
607
608/*
609 * Scheduler clock - returns current time in nanosec units.
610 *
611 * Note: mulhdu(a, b) (multiply high double unsigned) returns
612 * the high 64 bits of a * b, i.e. (a * b) >> 64, where a and b
613 * are 64-bit unsigned numbers.
614 */
615notrace unsigned long long sched_clock(void)
616{
617	return mulhdu(get_tb() - boot_tb, tb_to_ns_scale) << tb_to_ns_shift;
618}
619
620
621#ifdef CONFIG_PPC_PSERIES
622
623/*
624 * Running clock - attempts to give a view of time passing for a virtualised
625 * kernels.
626 * Uses the VTB register if available otherwise a next best guess.
627 */
628unsigned long long running_clock(void)
629{
630	/*
631	 * Don't read the VTB as a host since KVM does not switch in host
632	 * timebase into the VTB when it takes a guest off the CPU, reading the
633	 * VTB would result in reading 'last switched out' guest VTB.
634	 *
635	 * Host kernels are often compiled with CONFIG_PPC_PSERIES checked, it
636	 * would be unsafe to rely only on the #ifdef above.
637	 */
638	if (firmware_has_feature(FW_FEATURE_LPAR) &&
639	    cpu_has_feature(CPU_FTR_ARCH_207S))
640		return mulhdu(get_vtb() - boot_tb, tb_to_ns_scale) << tb_to_ns_shift;
641
642	/*
643	 * This is a next best approximation without a VTB.
644	 * On a host which is running bare metal there should never be any stolen
645	 * time and on a host which doesn't do any virtualisation TB *should* equal
646	 * VTB so it makes no difference anyway.
647	 */
648	return local_clock() - kcpustat_this_cpu->cpustat[CPUTIME_STEAL];
649}
650#endif
651
652static int __init get_freq(char *name, int cells, unsigned long *val)
653{
654	struct device_node *cpu;
655	const __be32 *fp;
656	int found = 0;
657
658	/* The cpu node should have timebase and clock frequency properties */
659	cpu = of_find_node_by_type(NULL, "cpu");
660
661	if (cpu) {
662		fp = of_get_property(cpu, name, NULL);
663		if (fp) {
664			found = 1;
665			*val = of_read_ulong(fp, cells);
666		}
667
668		of_node_put(cpu);
669	}
670
671	return found;
672}
673
674static void start_cpu_decrementer(void)
675{
676#ifdef CONFIG_BOOKE_OR_40x
677	unsigned int tcr;
678
679	/* Clear any pending timer interrupts */
680	mtspr(SPRN_TSR, TSR_ENW | TSR_WIS | TSR_DIS | TSR_FIS);
681
682	tcr = mfspr(SPRN_TCR);
683	/*
684	 * The watchdog may have already been enabled by u-boot. So leave
685	 * TRC[WP] (Watchdog Period) alone.
686	 */
687	tcr &= TCR_WP_MASK;	/* Clear all bits except for TCR[WP] */
688	tcr |= TCR_DIE;		/* Enable decrementer */
689	mtspr(SPRN_TCR, tcr);
690#endif
691}
692
693void __init generic_calibrate_decr(void)
694{
695	ppc_tb_freq = DEFAULT_TB_FREQ;		/* hardcoded default */
696
697	if (!get_freq("ibm,extended-timebase-frequency", 2, &ppc_tb_freq) &&
698	    !get_freq("timebase-frequency", 1, &ppc_tb_freq)) {
699
700		printk(KERN_ERR "WARNING: Estimating decrementer frequency "
701				"(not found)\n");
702	}
703
704	ppc_proc_freq = DEFAULT_PROC_FREQ;	/* hardcoded default */
705
706	if (!get_freq("ibm,extended-clock-frequency", 2, &ppc_proc_freq) &&
707	    !get_freq("clock-frequency", 1, &ppc_proc_freq)) {
708
709		printk(KERN_ERR "WARNING: Estimating processor frequency "
710				"(not found)\n");
711	}
712}
713
714int update_persistent_clock64(struct timespec64 now)
715{
716	struct rtc_time tm;
717
718	if (!ppc_md.set_rtc_time)
719		return -ENODEV;
720
721	rtc_time64_to_tm(now.tv_sec + 1 + timezone_offset, &tm);
722
723	return ppc_md.set_rtc_time(&tm);
724}
725
726static void __read_persistent_clock(struct timespec64 *ts)
727{
728	struct rtc_time tm;
729	static int first = 1;
730
731	ts->tv_nsec = 0;
732	/* XXX this is a little fragile but will work okay in the short term */
733	if (first) {
734		first = 0;
735		if (ppc_md.time_init)
736			timezone_offset = ppc_md.time_init();
737
738		/* get_boot_time() isn't guaranteed to be safe to call late */
739		if (ppc_md.get_boot_time) {
740			ts->tv_sec = ppc_md.get_boot_time() - timezone_offset;
741			return;
742		}
743	}
744	if (!ppc_md.get_rtc_time) {
745		ts->tv_sec = 0;
746		return;
747	}
748	ppc_md.get_rtc_time(&tm);
749
750	ts->tv_sec = rtc_tm_to_time64(&tm);
751}
752
753void read_persistent_clock64(struct timespec64 *ts)
754{
755	__read_persistent_clock(ts);
756
757	/* Sanitize it in case real time clock is set below EPOCH */
758	if (ts->tv_sec < 0) {
759		ts->tv_sec = 0;
760		ts->tv_nsec = 0;
761	}
762
763}
764
765/* clocksource code */
766static notrace u64 timebase_read(struct clocksource *cs)
767{
768	return (u64)get_tb();
769}
770
771static void __init clocksource_init(void)
772{
773	struct clocksource *clock = &clocksource_timebase;
774
775	if (clocksource_register_hz(clock, tb_ticks_per_sec)) {
776		printk(KERN_ERR "clocksource: %s is already registered\n",
777		       clock->name);
778		return;
779	}
780
781	printk(KERN_INFO "clocksource: %s mult[%x] shift[%d] registered\n",
782	       clock->name, clock->mult, clock->shift);
783}
784
785static int decrementer_set_next_event(unsigned long evt,
786				      struct clock_event_device *dev)
787{
788	__this_cpu_write(decrementers_next_tb, get_tb() + evt);
789	set_dec_or_work(evt);
790
791	return 0;
792}
793
794static int decrementer_shutdown(struct clock_event_device *dev)
795{
796	__this_cpu_write(decrementers_next_tb, DEC_CLOCKEVENT_STOPPED);
797	set_dec_or_work(decrementer_max);
798
799	return 0;
800}
801
802static void register_decrementer_clockevent(int cpu)
803{
804	struct clock_event_device *dec = &per_cpu(decrementers, cpu);
805
806	*dec = decrementer_clockevent;
807	dec->cpumask = cpumask_of(cpu);
808
809	clockevents_config_and_register(dec, ppc_tb_freq, 2, decrementer_max);
810
811	printk_once(KERN_DEBUG "clockevent: %s mult[%x] shift[%d] cpu[%d]\n",
812		    dec->name, dec->mult, dec->shift, cpu);
813
814	/* Set values for KVM, see kvm_emulate_dec() */
815	decrementer_clockevent.mult = dec->mult;
816	decrementer_clockevent.shift = dec->shift;
817}
818
819static void enable_large_decrementer(void)
820{
821	if (!cpu_has_feature(CPU_FTR_ARCH_300))
822		return;
823
824	if (decrementer_max <= DECREMENTER_DEFAULT_MAX)
825		return;
826
827	/*
828	 * If we're running as the hypervisor we need to enable the LD manually
829	 * otherwise firmware should have done it for us.
830	 */
831	if (cpu_has_feature(CPU_FTR_HVMODE))
832		mtspr(SPRN_LPCR, mfspr(SPRN_LPCR) | LPCR_LD);
833}
834
835static void __init set_decrementer_max(void)
836{
837	struct device_node *cpu;
838	u32 bits = 32;
839
840	/* Prior to ISAv3 the decrementer is always 32 bit */
841	if (!cpu_has_feature(CPU_FTR_ARCH_300))
842		return;
843
844	cpu = of_find_node_by_type(NULL, "cpu");
845
846	if (of_property_read_u32(cpu, "ibm,dec-bits", &bits) == 0) {
847		if (bits > 64 || bits < 32) {
848			pr_warn("time_init: firmware supplied invalid ibm,dec-bits");
849			bits = 32;
850		}
851
852		/* calculate the signed maximum given this many bits */
853		decrementer_max = (1ul << (bits - 1)) - 1;
854	}
855
856	of_node_put(cpu);
857
858	pr_info("time_init: %u bit decrementer (max: %llx)\n",
859		bits, decrementer_max);
860}
861
862static void __init init_decrementer_clockevent(void)
863{
864	register_decrementer_clockevent(smp_processor_id());
865}
866
867void secondary_cpu_time_init(void)
868{
869	/* Enable and test the large decrementer for this cpu */
870	enable_large_decrementer();
871
872	/* Start the decrementer on CPUs that have manual control
873	 * such as BookE
874	 */
875	start_cpu_decrementer();
876
877	/* FIME: Should make unrelated change to move snapshot_timebase
878	 * call here ! */
879	register_decrementer_clockevent(smp_processor_id());
880}
881
882/* This function is only called on the boot processor */
883void __init time_init(void)
884{
885	struct div_result res;
886	u64 scale;
887	unsigned shift;
888
889	/* Normal PowerPC with timebase register */
890	if (ppc_md.calibrate_decr)
891		ppc_md.calibrate_decr();
892	else
893		generic_calibrate_decr();
894
895	printk(KERN_DEBUG "time_init: decrementer frequency = %lu.%.6lu MHz\n",
896	       ppc_tb_freq / 1000000, ppc_tb_freq % 1000000);
897	printk(KERN_DEBUG "time_init: processor frequency   = %lu.%.6lu MHz\n",
898	       ppc_proc_freq / 1000000, ppc_proc_freq % 1000000);
899
900	tb_ticks_per_jiffy = ppc_tb_freq / HZ;
901	tb_ticks_per_sec = ppc_tb_freq;
902	tb_ticks_per_usec = ppc_tb_freq / 1000000;
903
904	/*
905	 * Compute scale factor for sched_clock.
906	 * The calibrate_decr() function has set tb_ticks_per_sec,
907	 * which is the timebase frequency.
908	 * We compute 1e9 * 2^64 / tb_ticks_per_sec and interpret
909	 * the 128-bit result as a 64.64 fixed-point number.
910	 * We then shift that number right until it is less than 1.0,
911	 * giving us the scale factor and shift count to use in
912	 * sched_clock().
913	 */
914	div128_by_32(1000000000, 0, tb_ticks_per_sec, &res);
915	scale = res.result_low;
916	for (shift = 0; res.result_high != 0; ++shift) {
917		scale = (scale >> 1) | (res.result_high << 63);
918		res.result_high >>= 1;
919	}
920	tb_to_ns_scale = scale;
921	tb_to_ns_shift = shift;
922	/* Save the current timebase to pretty up CONFIG_PRINTK_TIME */
923	boot_tb = get_tb();
924
925	/* If platform provided a timezone (pmac), we correct the time */
926	if (timezone_offset) {
927		sys_tz.tz_minuteswest = -timezone_offset / 60;
928		sys_tz.tz_dsttime = 0;
929	}
930
931	vdso_data->tb_ticks_per_sec = tb_ticks_per_sec;
932
933	/* initialise and enable the large decrementer (if we have one) */
934	set_decrementer_max();
935	enable_large_decrementer();
936
937	/* Start the decrementer on CPUs that have manual control
938	 * such as BookE
939	 */
940	start_cpu_decrementer();
941
942	/* Register the clocksource */
943	clocksource_init();
944
945	init_decrementer_clockevent();
946	tick_setup_hrtimer_broadcast();
947
948	of_clk_init(NULL);
949	enable_sched_clock_irqtime();
950}
951
952/*
953 * Divide a 128-bit dividend by a 32-bit divisor, leaving a 128 bit
954 * result.
955 */
956void div128_by_32(u64 dividend_high, u64 dividend_low,
957		  unsigned divisor, struct div_result *dr)
958{
959	unsigned long a, b, c, d;
960	unsigned long w, x, y, z;
961	u64 ra, rb, rc;
962
963	a = dividend_high >> 32;
964	b = dividend_high & 0xffffffff;
965	c = dividend_low >> 32;
966	d = dividend_low & 0xffffffff;
967
968	w = a / divisor;
969	ra = ((u64)(a - (w * divisor)) << 32) + b;
970
971	rb = ((u64) do_div(ra, divisor) << 32) + c;
972	x = ra;
973
974	rc = ((u64) do_div(rb, divisor) << 32) + d;
975	y = rb;
976
977	do_div(rc, divisor);
978	z = rc;
979
980	dr->result_high = ((u64)w << 32) + x;
981	dr->result_low  = ((u64)y << 32) + z;
982
983}
984
985/* We don't need to calibrate delay, we use the CPU timebase for that */
986void calibrate_delay(void)
987{
988	/* Some generic code (such as spinlock debug) use loops_per_jiffy
989	 * as the number of __delay(1) in a jiffy, so make it so
990	 */
991	loops_per_jiffy = tb_ticks_per_jiffy;
992}
993
994#if IS_ENABLED(CONFIG_RTC_DRV_GENERIC)
995static int rtc_generic_get_time(struct device *dev, struct rtc_time *tm)
996{
997	ppc_md.get_rtc_time(tm);
998	return 0;
999}
1000
1001static int rtc_generic_set_time(struct device *dev, struct rtc_time *tm)
1002{
1003	if (!ppc_md.set_rtc_time)
1004		return -EOPNOTSUPP;
1005
1006	if (ppc_md.set_rtc_time(tm) < 0)
1007		return -EOPNOTSUPP;
1008
1009	return 0;
1010}
1011
1012static const struct rtc_class_ops rtc_generic_ops = {
1013	.read_time = rtc_generic_get_time,
1014	.set_time = rtc_generic_set_time,
1015};
1016
1017static int __init rtc_init(void)
1018{
1019	struct platform_device *pdev;
1020
1021	if (!ppc_md.get_rtc_time)
1022		return -ENODEV;
1023
1024	pdev = platform_device_register_data(NULL, "rtc-generic", -1,
1025					     &rtc_generic_ops,
1026					     sizeof(rtc_generic_ops));
1027
1028	return PTR_ERR_OR_ZERO(pdev);
1029}
1030
1031device_initcall(rtc_init);
1032#endif
1033